JP2002071643A - Water content measuring method and device, and garbage disposal device - Google Patents

Water content measuring method and device, and garbage disposal device

Info

Publication number
JP2002071643A
JP2002071643A JP2000268587A JP2000268587A JP2002071643A JP 2002071643 A JP2002071643 A JP 2002071643A JP 2000268587 A JP2000268587 A JP 2000268587A JP 2000268587 A JP2000268587 A JP 2000268587A JP 2002071643 A JP2002071643 A JP 2002071643A
Authority
JP
Japan
Prior art keywords
water content
sample
coil
physical quantity
moisture content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000268587A
Other languages
Japanese (ja)
Inventor
Taiji Furukawa
泰至 古川
Takahiro Mita
隆浩 三田
Yasushi Okamoto
泰志 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000268587A priority Critical patent/JP2002071643A/en
Publication of JP2002071643A publication Critical patent/JP2002071643A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low-cost garbage disposal device capable of measuring the water content of the whole examined object in a short time without needing a large amount of energy for measurement. SOLUTION: A water content measuring system A is provided with a coil 4 having a hollow part 41; a container 42 having a sample or garbage (the examined object) inside and disposed in the hollow part 41; a correlation extracting and recording part 73 for extracting a circuit current value correlated to the water content of the sample when disposing the container 42 with the sample inside, in the hollow part of the coil, and recording the correlation between the water content and each physical quantity extracted from each sample of the same volume and set to different known water contents; a current detecting part 72 for measuring a circuit current value when the container 42 with the garbage (the examined object) of unknown water content and the same volume as each sample is disposed in the hollow part 41 of the coil 4; and a water content computing part 74 for collating the circuit current value measured by the current detecting part 72, with the correlation 731 recorded in the correlation extracting and recording part 73, to compute the water content of the garbage (the examined object).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、含水率計測装置に
関する。
TECHNICAL FIELD The present invention relates to a water content measuring device.

【0002】[0002]

【従来の技術】特開平8- 178879号公報には、発
熱手段と温度センサとを有する含水率センサを備えた生
ごみ処理機(従来技術1)が開示されている。また、特
開平10- 19771号公報には、複数波長を含んだ赤
外光を雪に照射して反射光の強度を検出し、反射光の強
度の比を予め算出しておいた相関データに照らし合わせ
て雪の含水率を導き出す水分検査装置(従来技術2)も
知られている。
2. Description of the Related Art Japanese Unexamined Patent Publication No. Hei 8-178879 discloses a garbage disposer equipped with a moisture content sensor having a heating means and a temperature sensor (prior art 1). Japanese Patent Application Laid-Open No. Hei 10-19771 discloses that snow is irradiated with infrared light containing a plurality of wavelengths, the intensity of reflected light is detected, and the ratio of the intensity of reflected light is calculated based on correlation data. There is also known a moisture inspection device (prior art 2) for deriving the water content of snow by comparing the moisture content with the water content.

【0003】[0003]

【発明が解決しようとする課題】上記従来の技術は、以
下の課題を有する。従来技術1は、温度を上昇させる必
要があるので、検査開始から終了迄に相当な時間がかか
るとともに、大量のエネルギーが必要である。また、対
象物の一部分の含水率しか検出できない。従来技術2
は、水分検査装置の製造コストが膨大である。また、対
象物の一部分の含水率しか検出できない。
The above prior art has the following problems. In the prior art 1, since it is necessary to raise the temperature, it takes a considerable time from the start to the end of the inspection and also requires a large amount of energy. Further, only the moisture content of a part of the object can be detected. Conventional technology 2
However, the manufacturing cost of the moisture inspection device is enormous. Further, only the moisture content of a part of the object can be detected.

【0004】本発明の目的は、計測に大量のエネルギー
を必要とせず、短時間で被検物全体の含水率を計測する
ことができる安価な、含水率計測方法、含水率計測装
置、および生ごみ処理装置の提供にある。
An object of the present invention is to provide an inexpensive method for measuring water content, an apparatus for measuring water content, and a method for measuring water content of an entire test object in a short time without requiring a large amount of energy for measurement. It is in providing a refuse treatment device.

【0005】[0005]

【課題を解決するための手段】[請求項1、5につい
て]以下の様にして被検物の含水率を計測する。各試料
の容積が同じであるが、既知の異なる含水率に設定した
各試料を入れた容器をコイルの中空内に配して、試料の
含水率に相関する物理量を抽出し、各試料の含水率と抽
出した物理量との相関関係を記録しておき、この相関関
係を測定した各試料と容積が同じであるが、含水率が不
明の被検物を入れた容器をコイルの中空内に配して、被
検物の含水率に相関する物理量を計測し、この計測され
た物理量と記録してある相関関係とを照合して被検物の
含水率を求める。なお、物理量は、コイルのインダクタ
ンス、試料や被検物の比透磁率や磁化率である。
[Means for Solving the Problems] [Claims 1 and 5] The moisture content of a test object is measured as follows. Although the volume of each sample is the same, a container containing each sample set at a known different moisture content is placed in the hollow of the coil, and a physical quantity correlated with the moisture content of the sample is extracted, and the moisture content of each sample is extracted. The correlation between the water content and the extracted physical quantity is recorded, and a container containing the specimen whose volume is the same as that of the sample for which the correlation was measured, but whose water content is unknown is placed in the hollow of the coil. Then, a physical quantity correlated with the water content of the test object is measured, and the measured physical quantity is collated with the recorded correlation to determine the water content of the test object. The physical quantities are the inductance of the coil, the relative permeability and the magnetic susceptibility of the sample and the test object.

【0006】{物理量がインダクタンスの場合}有限長
のコイルにおいては、下記に示す数1でインダクタンス
Lが示される。
{When the physical quantity is an inductance} For a coil having a finite length, the inductance L is expressed by the following equation (1).

【数1】 コイルの中空部に物質(試料や被検物)を入れると物質
の種類や容積に応じて比透磁率が変化する。例えば、空
気の比透磁率は(1+3.65×10-7)であり、水の
比透磁率は(1−0.88×10-5)である。含水率x
%の試料を容器内に入れてコイルの中空内に配してイン
ダクタンスL(x)を計測すると、大凡、下記に示す数
2の相関が得られる。
(Equation 1) When a substance (sample or test object) is put into the hollow portion of the coil, the relative magnetic permeability changes according to the type and volume of the substance. For example, the relative permeability of air is (1 + 3.65 × 10 −7 ), and the relative permeability of water is (1−0.88 × 10 −5 ). Moisture content x
% Of the sample is placed in the hollow of the coil with the sample placed in the container, and the inductance L (x) is measured.

【数2】 (Equation 2)

【0007】この数2を変形してxの式にすると、下記
に示す数3になる。
When this equation 2 is transformed into an equation of x, the following equation 3 is obtained.

【数3】 この試料と容積が同じであるが、含水率が不明の被検物
を入れた容器をコイルの中空内に配してコイルのインダ
クタンスLを計測する。計測したインダクタンスL
(x)の値を数3に代入すれば被検物の含水率x%が算
出できる。
(Equation 3) A container having the same volume as that of the sample, but containing a specimen whose moisture content is unknown is arranged in the hollow of the coil, and the inductance L of the coil is measured. Measured inductance L
By substituting the value of (x) into Equation 3, the moisture content x% of the test object can be calculated.

【0008】{物理量が比透磁率の場合}数1におい
て、含水率x%時の比透磁率をμS (x)とし、数2=
数1として、含水率x%の式にすると数4が得られる。
{When the physical quantity is relative magnetic permeability} In Equation 1, the relative magnetic permeability when the water content is x% is μ S (x), and Equation 2 =
When Equation 1 is expressed by the equation of water content x%, Equation 4 is obtained.

【数4】 この試料と容積が同じであるが、含水率が不明の被検物
を入れた容器をコイルの中空内に配してコイルのインダ
クタンスLを計測し、数4から被検物の比透磁率μS
求める。この比透磁率μS の値を数3に代入すれば被検
物の含水率x%が算出できる。
(Equation 4) A container having the same volume as that of the sample, but containing a specimen whose moisture content is unknown is arranged in the hollow of the coil, and the inductance L of the coil is measured. Ask for S. The by substituting the value of relative magnetic permeability mu S to the number 3 water content x% of the test object can be calculated.

【0009】{物理量が磁化率の場合}磁化率Xは、下
記の数5で表される。
{When Physical Quantity is Magnetic Susceptibility} Magnetic susceptibility X is expressed by the following equation (5).

【数5】 含水率x%時の磁化率および比透磁率をそれぞれX
(x)、μS (x)とし、数5を数4に代入して整理す
ると数6が得られる。
(Equation 5) The magnetic susceptibility and relative magnetic permeability at a moisture content of x% are represented by X, respectively.
(X), μ S (x), and substituting equation 5 into equation 4 and rearranging, equation 6 is obtained.

【数6】 この試料と容積が同じであるが、含水率が不明の被検物
を入れた容器をコイルの中空内に配してコイルのインダ
クタンスLを計測し、数6から被検物の磁化率Xを求め
る。この磁化率Xの値を数6に代入すれば被検物の含水
率x%が算出できる。
(Equation 6) A container having the same volume as that of the sample, but containing a specimen whose moisture content is unknown is placed in the hollow of the coil, the inductance L of the coil is measured, and the magnetic susceptibility X of the specimen is calculated from Equation 6. Ask. By substituting the value of the magnetic susceptibility X into Equation 6, the moisture content x% of the test object can be calculated.

【0010】また、容器は、水より磁化され難い材質
(例えば樹脂)で形成されている必要である。上記含水
率計測方法を用いれば、計測に大量のエネルギーを必要
とせず、短時間で被検物全体の含水率x%を安価に計測
することができる。
[0010] The container must be made of a material (eg, resin) that is hardly magnetized by water. By using the above-mentioned water content measurement method, a large amount of energy is not required for the measurement, and the water content x% of the entire test object can be measured inexpensively in a short time.

【0011】[請求項2、5について]以下の様にして
被検物の含水率を計測する。各試料の容積が同じである
が、既知の異なる含水率に設定した各試料を入れた容器
をコイルの中空内に配し、該コイルを高周波電源に接続
して、試料毎に、電圧波形と電流波形とから電流の電圧
に対する位相差を求め、電流値、電圧値、および位相差
から、試料の含水率に相関する物理量を演算して求め
る。各試料の含水率と物理量との相関関係を記録してお
く。これら各試料と容積が同じであるが、含水率が不明
の被検物を容器内に入れてコイルの中空内に配し、該コ
イルを高周波電源に接続して、電圧波形と電流波形とを
計測して電流の電圧に対する位相差を求め、電流値、電
圧値、および位相差から、被検物の含水率に相関する物
理量を演算して求める。この物理量と記録してある相関
関係とを照合して被検物の含水率を求める。なお、物理
量は、コイルのインダクタンス、試料や被検物の比透磁
率や磁化率である。
[Claims 2 and 5] The moisture content of the test object is measured as follows. The volume of each sample is the same, but a container containing each sample set at a known different moisture content is arranged in the hollow of the coil, the coil is connected to a high-frequency power source, and a voltage waveform and The phase difference between the current and the voltage is obtained from the current waveform, and the physical quantity correlated with the water content of the sample is calculated from the current value, the voltage value, and the phase difference. The correlation between the water content and the physical quantity of each sample is recorded. A test object having the same volume as each of these samples, but having an unknown moisture content, is placed in a container, placed in the hollow of a coil, and the coil is connected to a high-frequency power source, and a voltage waveform and a current waveform are measured. The phase difference of the current with respect to the voltage is measured, and a physical quantity correlated with the water content of the test object is calculated from the current value, the voltage value, and the phase difference. The physical quantity is collated with the recorded correlation to determine the moisture content of the test object. The physical quantities are the inductance of the coil, the relative permeability and the magnetic susceptibility of the sample and the test object.

【0012】例えば、物理量がコイルのインダクタンス
の場合には、下記に示す数7に基づいて演算して求め
る。
For example, when the physical quantity is the inductance of the coil, it is obtained by calculation based on the following equation (7).

【数7】 (Equation 7)

【0013】また、容器は、水より磁化され難い材質
(例えば樹脂)で形成されている必要がある。上記含水
率計測方法を用いれば、計測に大量のエネルギーを必要
とせず、短時間で被検物全体の含水率を安価に計測する
ことができる。
The container must be made of a material (eg, resin) that is hardly magnetized by water. By using the above water content measurement method, a large amount of energy is not required for the measurement, and the water content of the entire test object can be measured at a low cost in a short time.

【0014】[請求項3、5について]以下の様にして
被検物の含水率を計測する。各試料の容積が同じである
が、既知の異なる含水率に設定した各試料を入れた容器
をコイルの中空内に配し、コイル、コンデンサ、および
抵抗負荷を接続して同調回路を作り、試料の含水率に相
関する物理量が所定量の場合に、同調回路が共振状態に
なる様に、コイルのインダクタンス、コンデンサのキャ
パシティ、および高周波電源の周波数を設定しておく。
各試料の容積が同じであるが、既知の異なる含水率に設
定した各試料を入れた容器をコイルの中空内に配し、同
調回路を高周波電源に接続して、試料毎に、同調回路を
流れる回路電流や負荷電圧を計測して、回路電流や負荷
電圧と含水率との相関関係を記録しておく。これら各試
料と容積が同じであるが、含水率が不明の被検物を容器
内に入れてコイルの中空内に配して、同調回路を高周波
電源に接続して、回路電流や負荷電圧を計測する。この
計測した回路電流や負荷電圧と、記録してある相関関係
とを照合して被検物の含水率を求める。なお、物理量
は、コイルのインダクタンス、試料や被検物の比透磁率
や磁化率である。
[Claims 3 and 5] The moisture content of the test object is measured as follows. A container containing each sample having the same volume but set to a known different moisture content is placed in the hollow of the coil, a coil, a capacitor, and a resistive load are connected to form a tuning circuit, The inductance of the coil, the capacity of the capacitor, and the frequency of the high-frequency power supply are set so that the tuning circuit is in a resonance state when the physical quantity correlated with the water content is a predetermined amount.
The volume of each sample is the same, but a container containing each sample set to a known different moisture content is placed in the hollow of the coil, a tuning circuit is connected to a high frequency power supply, and a tuning circuit is provided for each sample. The flowing circuit current and load voltage are measured, and the correlation between the circuit current and load voltage and the water content is recorded. A test sample whose volume is the same as each of these samples, but whose moisture content is unknown, is placed in a container, placed in the hollow of the coil, and a tuning circuit is connected to a high-frequency power source to reduce the circuit current and load voltage. measure. The measured circuit current and load voltage are compared with the recorded correlation to determine the moisture content of the test object. The physical quantities are the inductance of the coil, the relative magnetic permeability and the magnetic susceptibility of the sample and the test object.

【0015】例えば、抵抗R、コンデンサC、インダク
タンスLのコイルを直列に接続したRLC共振回路の場
合、周波数f(Hz)、電圧V(V)の高周波を印加す
ると、回路を流れる回路電流Iは下記に示す数8で表さ
れる。
For example, in the case of an RLC resonance circuit in which a coil of a resistor R, a capacitor C and an inductance L are connected in series, when a high frequency of a frequency f (Hz) and a voltage V (V) is applied, a circuit current I flowing through the circuit becomes It is expressed by the following equation (8).

【数8】 (Equation 8)

【0016】数8から回路電流IはインダクタンスLの
関数であることは明らかで、更にインダクタンスLrc
の時に共振状態となる様にコンデンサCrcを設定す
る。即ち、数8の分母平方根内の第2項が零になる様に
設定する。コンデンサCが下記に示す数9を満足する時
に、回路電流Iが最大となる。
From equation (8), it is clear that the circuit current I is a function of the inductance L.
The capacitor Crc is set so as to be in a resonance state at the time of (1). That is, the second term in the square root of the denominator of Equation 8 is set to be zero. When the capacitor C satisfies the following equation 9, the circuit current I becomes maximum.

【数9】 (Equation 9)

【0017】数2を数8に代入すると回路電流Iと含水
率x%との相関の数10が得られる。
By substituting Equation 2 into Equation 8, Equation 10 of the correlation between the circuit current I and the water content x% is obtained.

【数10】 (Equation 10)

【0018】更に、数10に関して含水率x%を回路電
流Iの関数として表記すると下記に示す数11が得られ
る。従って、回路電流Iから含水率x%が算出できる。
Further, when the water content x% is expressed as a function of the circuit current I with respect to Equation 10, the following Equation 11 is obtained. Therefore, the water content x% can be calculated from the circuit current I.

【数11】 [Equation 11]

【0019】なお、容器は、水より磁化され難い材質
(例えば樹脂)で形成されている必要である。上記含水
率計測方法を用いれば、計測に大量のエネルギーを必要
とせず、短時間で被検物全体の含水率を安価に計測する
ことができる。
The container must be formed of a material (eg, resin) that is hardly magnetized by water. By using the above water content measurement method, a large amount of energy is not required for the measurement, and the water content of the entire test object can be measured at a low cost in a short time.

【0020】[請求項4について]共振状態の近傍で
は、回路電流や負荷電圧が急激に変化する。このため、
同調回路が共振状態になる物理量の所定量を、高精度の
検出が必要な含水率の近傍にしている。これにより、検
出しようとする含水率の近傍の含水率を高い精度で検出
することができる。
[Claim 4] In the vicinity of the resonance state, the circuit current and the load voltage change rapidly. For this reason,
The predetermined amount of the physical quantity at which the tuning circuit is brought into a resonance state is set close to the water content that requires highly accurate detection. Thereby, the water content near the water content to be detected can be detected with high accuracy.

【0021】例えば、共振回路が共振するインダクタン
スLの所定値を、検出しようとする低い含水率の近傍に
設定すれば、含水率が少ない場合に高い精度で含水率を
算出することができる。また、共振回路が共振するイン
ダクタンスLの所定値を、検出しようとする高い含水率
の近傍に設定すれば、含水率が多い場合に高い精度で含
水率を算出することができる。数10をグラフ化した共
振曲線が共振点の近傍で微分係数の絶対値が大きくな
り、共振点から離れる程、微分係数の絶対値が小さくな
る。
For example, if the predetermined value of the inductance L at which the resonance circuit resonates is set near a low moisture content to be detected, the moisture content can be calculated with high accuracy when the moisture content is small. Further, if the predetermined value of the inductance L at which the resonance circuit resonates is set near a high water content to be detected, the water content can be calculated with high accuracy when the water content is high. The absolute value of the differential coefficient increases in the vicinity of the resonance point of the resonance curve obtained by graphing Equation 10, and the absolute value of the differential coefficient decreases as the distance from the resonance point increases.

【0022】[請求項6、7について]含水率計測装置
は、中空部を有するコイルと、試料や被検物を入れて中
空部に配される容器と、試料を入れた容器をコイルの中
空内に配した際の、試料の含水率に相関する物理量を抽
出する物理量抽出手段と、同容積で既知の異なる含水率
に設定した各試料から抽出される各物理量と含水率との
相関関係を記録しておく相関関係記録手段と、含水率が
不明であり各試料と容積が同じである被検物を入れた容
器をコイルの中空内に配した際の、被検物の含水率に相
関する物理量を計測する物理量計測手段と、該物理量計
測手段が計測した被検物の含水率に相関する物理量と、
相関関係記録手段に記録された相関関係とを照合して被
検物の含水率を算出する含水率算出手段とを備える。な
お、物理量は、コイルのインダクタンス、試料や被検物
の比透磁率や磁化率である。
[Claims 6 and 7] The water content measuring device comprises a coil having a hollow portion, a container in which a sample or a test object is placed and which is disposed in the hollow portion, and a container in which the sample is placed is hollow. When placed in the container, a physical quantity extraction means for extracting a physical quantity correlated with the moisture content of the sample, and a correlation between each physical quantity extracted from each sample set to a known different moisture content with the same volume and the moisture content. Correlation between the recording means and the water content of the specimen when the vessel containing the specimen whose water content is unknown and has the same volume as each sample is placed in the hollow of the coil. Physical quantity measuring means for measuring the physical quantity to be, and a physical quantity correlated with the water content of the test object measured by the physical quantity measuring means,
A water content calculating means for calculating the water content of the test object by comparing the correlation with the correlation recorded in the correlation recording means. The physical quantities are the inductance of the coil, the relative permeability and the magnetic susceptibility of the sample and the test object.

【0023】含水率計測装置は、以下の様にして被検物
の含水率を計測する。物理量抽出手段は、試料を入れた
容器をコイルの中空内に配した際の、試料の含水率に相
関する物理量を抽出する。
The moisture content measuring device measures the moisture content of the test object as follows. The physical quantity extracting means extracts a physical quantity correlated with the water content of the sample when the container containing the sample is placed in the hollow of the coil.

【0024】相関関係記録手段は、同容積で既知の異な
る含水率に設定した各試料から抽出される各物理量と含
水率との相関関係を記録しておく。物理量計測手段は、
含水率が不明であり各試料と容積が同じである被検物を
入れた容器をコイルの中空内に配した際の、被検物の含
水率に相関する物理量を計測する。
The correlation recording means records a correlation between each physical quantity extracted from each sample having the same volume and a different known moisture content and the moisture content. The physical quantity measuring means is
When a container containing a specimen having an unknown water content and the same volume as each sample is placed in the hollow of the coil, a physical quantity correlated with the moisture content of the specimen is measured.

【0025】含水率算出手段は、相関関係記録手段に記
録された相関関係とを照合して被検物の含水率を算出す
る。なお、容器は、水より磁化され難い材質(例えば樹
脂)で形成されている必要がある。上記含水率計測装置
を用いれば、計測に大量のエネルギーを必要とせず、短
時間で被検物全体の含水率を安価に計測することができ
る。
The moisture content calculating means calculates the moisture content of the test object by comparing the correlation with the correlation recorded in the correlation recording means. The container needs to be formed of a material (for example, resin) that is hardly magnetized by water. The use of the above-mentioned water content measuring device does not require a large amount of energy for the measurement, and the water content of the entire test object can be measured inexpensively in a short time.

【0026】[請求項8について]生ごみ処理装置は、
好気性の微生物により生ごみを分解処理する分解槽と、
該分解槽内を微生物の活動に適した環境に維持するアク
チュエータと、該アクチュエータを制御する制御器とを
有する生ごみ処理装置において、請求項6または請求項
7に記載の含水率計測装置を付設し、該含水率計測装置
によって検出された、生ごみである被検物の含水率に基
づいて制御器がアクチュエータを制御する構成である。
このため、生ごみ処理装置は、含水率に適した様にアク
チュエータが制御され、効率良く生ごみを分解すること
ができる。なお、アクチュエータは、分解槽内に堆積し
た生ごみを攪拌する攪拌器のモータ、換気を行う換気フ
ァンのモータ、または分解槽内の温度を制御する電気ヒ
ータ等である。
[Regarding Claim 8] The garbage disposal apparatus comprises:
A decomposition tank for decomposing garbage by aerobic microorganisms,
A garbage disposal device having an actuator for maintaining the inside of the decomposition tank in an environment suitable for the activity of microorganisms, and a controller for controlling the actuator, the water content measurement device according to claim 6 or 7 being additionally provided. Then, the controller controls the actuator based on the moisture content of the test object, which is garbage, detected by the moisture content measuring device.
Therefore, in the garbage processing apparatus, the actuator is controlled so as to be suitable for the water content, and the garbage can be efficiently decomposed. The actuator is a motor of a stirrer that stirs garbage deposited in the decomposition tank, a motor of a ventilation fan that performs ventilation, an electric heater that controls the temperature in the decomposition tank, or the like.

【0027】[0027]

【発明の実施の形態】本発明の一実施例(請求項1〜8
に対応)を図1〜図3に基づいて説明する。図1に示す
様に、含水率計測システムAは、好気性の微生物により
生ごみを分解処理する分解槽1と、該分解槽1内を微生
物の活動に適した環境に維持するアクチュエータ2と、
アクチュエータ2を制御する制御器3とを有する生ごみ
処理装置Bに組み付けられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention (claims 1 to 8)
Will be described with reference to FIGS. As shown in FIG. 1, a water content measurement system A includes a decomposition tank 1 for decomposing garbage by aerobic microorganisms, an actuator 2 for maintaining the decomposition tank 1 in an environment suitable for the activity of microorganisms,
The garbage disposal apparatus B includes a controller 3 for controlling the actuator 2.

【0028】コイル4は、内径66.5mm、コイル巻
径70.5mm、高さ102mmであり、線径0.5m
mの被覆付銅線をボビン40に隙間無く192回巻いた
ものである。
The coil 4 has an inner diameter of 66.5 mm, a coil winding diameter of 70.5 mm, a height of 102 mm, and a wire diameter of 0.5 m.
m is a copper wire wound around a bobbin 40 192 times with no gap.

【0029】コンデンサ5は、コイル4が所定のインダ
クタンス値の場合に、コイル4、コンデンサ5、および
抵抗6を直列接続したRLC回路7が共振状態になって
回路電流Iが最大になる様に定数が設定されている。7
1は高周波電源であり、72はRLC回路7内を流れる
回路電流Iを検出するための電流検出部である。また、
73は相関関係抽出記録部、74は含水率算出部であ
る。
The capacitor 5 has a constant value such that when the coil 4 has a predetermined inductance value, the RLC circuit 7 in which the coil 4, the capacitor 5, and the resistor 6 are connected in series is brought into a resonance state and the circuit current I is maximized. Is set. 7
Reference numeral 1 denotes a high-frequency power supply, and reference numeral 72 denotes a current detection unit for detecting a circuit current I flowing in the RLC circuit 7. Also,
73 is a correlation extraction recording unit, and 74 is a moisture content calculation unit.

【0030】つぎに、含水率計測システムAの作動(物
理量の抽出・格納、含水率の算出、アクチュエータ制
御)について述べる。 [物理量の抽出・格納]図2に示す様に、インピーダン
ス計81をコイル4に接続し、含水率が既知(30%〜
90%)の九種類の試料を一種類ずつプラスチック製の
容器42内に入れてコイル4の中空部41内に配し、各
試料毎にコイル4のインダクタンスをインピーダンス計
81で計測する。
Next, the operation of the moisture content measurement system A (extraction and storage of physical quantities, calculation of moisture content, actuator control) will be described. [Extraction and storage of physical quantity] As shown in FIG. 2, an impedance meter 81 is connected to the coil 4 and the moisture content is known (30% to 30%).
Nine types of samples (90%) are placed one by one in a plastic container 42 and placed in the hollow portion 41 of the coil 4, and the inductance of the coil 4 is measured by the impedance meter 81 for each sample.

【0031】相関関係抽出格納部75は、上記インダク
タンスの計測結果に基づいて、含水率と計測した各イン
ダクタンスとの相関関係を示す相関式811を算出し、
格納する。
The correlation extraction and storage unit 75 calculates a correlation equation 811 indicating the correlation between the water content and each measured inductance based on the measurement result of the inductance.
Store.

【0032】つぎに、図3に示す様に、コイル4、コン
デンサ5、および抵抗6を直列接続したRLC回路7を
高周波電源71に接続して、含水率が既知(30%〜9
0%)の九種類の試料を一種類ずつプラスチック製の容
器42内に入れてコイル4の中空部41内に配し、各試
料毎に電流検出部72で回路電流Iを検出し、相関関係
抽出格納部76がインダクタンスと回路電流値との相関
式761を算出し、格納する。そして、相関関係抽出記
録部73は、相関式811、761から、数11に示す
含水率と回路電流値との相関731を抽出して格納す
る。
Next, as shown in FIG. 3, an RLC circuit 7 in which a coil 4, a capacitor 5, and a resistor 6 are connected in series is connected to a high frequency power supply 71, and the water content is known (30% to 9%).
(0%) are placed in the hollow portion 41 of the coil 4 by placing each of the nine types of samples in a plastic container 42, and the circuit current I is detected by the current detection unit 72 for each sample, and the correlation is determined. The extraction storage unit 76 calculates and stores a correlation equation 761 between the inductance and the circuit current value. Then, the correlation extraction recording unit 73 extracts and stores the correlation 731 between the water content and the circuit current value shown in Expression 11 from the correlation expressions 811 and 761.

【0033】[含水率の算出]つぎに、図1に示す様
に、コイル4、コンデンサ5、および抵抗6を直列接続
したRLC回路7を高周波電源71に接続して、各試料
と容積が同じであるが、含水率が不明の生ごみ(被検
物)をプラスチック製の容器42内に入れてコイル4の
中空部41内に配し、電流検出部72で回路電流Iを検
出する。
[Calculation of Moisture Content] Next, as shown in FIG. 1, an RLC circuit 7 in which a coil 4, a capacitor 5, and a resistor 6 are connected in series is connected to a high frequency power supply 71, and the volume of each sample is the same. However, garbage (test object) whose water content is unknown is placed in a plastic container 42 and placed in the hollow portion 41 of the coil 4, and a circuit current I is detected by a current detection unit 72.

【0034】相関関係抽出記録部73に格納されている
含水率と回路電流I値との相関731を用いて含水率算
出部74が含水率を算出し、且つ算出した含水率が正常
範囲内であるか否かを判別する。
The water content calculating section 74 calculates the water content using the correlation 731 between the water content and the circuit current I value stored in the correlation extraction recording section 73, and the calculated water content is within the normal range. It is determined whether or not there is.

【0035】[アクチュエータ制御]含水率を計測した
生ごみは容器42から出されて分解槽1内に排出され
る。制御器3は、アクチュエータ2を含水率(正常範囲
内に限る)に応じて制御する。アクチュエータ2は、分
解槽1内に堆積した生ごみを攪拌する攪拌器のモータ、
換気を行う換気ファンのモータ、または分解槽1内の温
度を制御する電気ヒータ等である。
[Actuator Control] The garbage whose moisture content has been measured is discharged from the container 42 and discharged into the decomposition tank 1. The controller 3 controls the actuator 2 according to the water content (limited to a normal range). The actuator 2 is a motor of a stirrer that stirs the garbage deposited in the decomposition tank 1,
It is a motor of a ventilation fan that performs ventilation, or an electric heater that controls the temperature in the decomposition tank 1.

【0036】本実施例は以下の利点を有する。 [ア]含水率計測システムAは、複数の既知の含水率に
設定した試料を用いて上記物理量の抽出・格納を行って
おけば、含水率が不明の生ごみ(被検物)の含水率を瞬
時に算出することができる。このため、生ごみ処理装置
Bは、含水率に適した様にアクチュエータ2が制御さ
れ、効率良く生ごみを分解することができる。
This embodiment has the following advantages. [A] If the water content measurement system A extracts and stores the above physical quantities using a plurality of samples set to a known water content, the water content of garbage (test object) whose water content is unknown is known. Can be calculated instantaneously. Therefore, in the garbage disposal apparatus B, the actuator 2 is controlled so as to be suitable for the water content, and the garbage can be efficiently decomposed.

【0037】[イ]含水率計測システムAは、安価であ
り、且つ含水率の計測に僅かなエネルギーしか消費しな
い。
[A] The water content measuring system A is inexpensive and consumes little energy for measuring the water content.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る、含水率計測システム
を組み付けた生ごみ処理装置の説明図である。
FIG. 1 is an explanatory view of a garbage processing apparatus to which a moisture content measuring system according to one embodiment of the present invention is assembled.

【図2】その含水率計測システムを用いて、含水率とイ
ンダクタンスとの相関関係を示す相関式を算出する様子
を示す説明図である。
FIG. 2 is an explanatory diagram showing how to calculate a correlation equation indicating a correlation between a water content and an inductance using the water content measurement system.

【図3】その含水率計測システムを用いて、含水率と回
路電流値との相関を抽出する様子を示す説明図である。
FIG. 3 is an explanatory diagram showing how a correlation between a water content and a circuit current value is extracted by using the water content measurement system.

【符号の説明】[Explanation of symbols]

A 含水率計測システム(含水率計測装置) I 回路電流 4 コイル 41 中空部 42 容器 72 電流検出部(物理量計測手段) 73 相関関係抽出記録部(物理量抽出手段、相関関係
記録手段) 74 含水率算出部(含水率算出手段)
A water content measurement system (water content measurement device) I circuit current 4 coil 41 hollow part 42 container 72 current detection part (physical quantity measurement means) 73 correlation extraction recording part (physical quantity extraction means, correlation recording means) 74 water content calculation Part (moisture content calculating means)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡本 泰志 愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内 Fターム(参考) 2G053 AA21 AB06 AB07 BC14 CA03 CA17 CA18 4D004 AA03 CA19 CB01 CB32 CB50 DA01 DA02 DA04 DA06 DA09 DA13 DA16  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yasushi Okamoto 1-1-1, Showa-cho, Kariya-shi, Aichi F-term in DENSO Corporation (reference) 2G053 AA21 AB06 AB07 BC14 CA03 CA17 CA18 4D004 AA03 CA19 CB01 CB32 CB50 DA01 DA02 DA04 DA06 DA09 DA13 DA16

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 各試料の容積が同じであるが、既知の異
なる含水率に設定した各試料を入れた容器をコイルの中
空内に配して、前記試料の含水率に相関する物理量を抽
出し、 前記各試料の含水率と抽出した物理量との相関関係を記
録しておき、 この相関関係を測定した各試料と容積が同じであるが、
含水率が不明の被検物を入れた前記容器を前記コイルの
中空内に配して、前記被検物の含水率に相関する物理量
を計測し、 この計測された物理量と記録してある前記相関関係とを
照合して前記被検物の含水率を求める含水率計測方法。
1. A container containing each sample having the same volume but set to a known different moisture content is placed in the hollow of the coil to extract a physical quantity correlated with the moisture content of the sample. Then, the correlation between the moisture content of each sample and the extracted physical quantity is recorded, and the volume of each sample measured for this correlation is the same,
The container containing the specimen whose moisture content is unknown is arranged in the hollow of the coil, and a physical quantity correlated with the moisture content of the specimen is measured, and the measured physical quantity is recorded. A water content measurement method for obtaining a water content of the test object by collating with a correlation.
【請求項2】 各試料の容積が同じであるが、既知の異
なる含水率に設定した各試料を入れた容器をコイルの中
空内に配し、該コイルを高周波電源に接続して、試料毎
に、電圧波形と電流波形とから電流の電圧に対する位相
差を求め、 電流値、電圧値、および前記位相差から、前記試料の含
水率に相関する物理量を演算し、 前記各試料の含水率と前記物理量との相関関係を記録し
ておき、 これら各試料と容積が同じであるが、含水率が不明の被
検物を容器内に入れて前記コイルの中空内に配し、該コ
イルを高周波電源に接続して、電圧波形と電流波形とを
計測して電流の電圧に対する位相差を求め、 電流値、電圧値、および前記位相差から、前記被検物の
含水率に相関する物理量を演算し、 この物理量と記録してある前記相関関係とを照合して前
記被検物の含水率を求める含水率計測方法。
2. A container containing each sample having the same volume but set to a known different moisture content is disposed in the hollow of the coil, and the coil is connected to a high-frequency power source, so that each sample has a different water content. The phase difference of the current with respect to the voltage is obtained from the voltage waveform and the current waveform, and a current value, a voltage value, and a physical quantity correlating with the water content of the sample are calculated from the phase difference. The correlation with the physical quantity is recorded, and a test object having the same volume as each of these samples, but having an unknown water content is placed in a container and placed in the hollow of the coil, and the coil is set to a high frequency. Connects to a power supply, measures the voltage waveform and the current waveform, determines the phase difference of the current with respect to the voltage, and calculates a physical quantity correlated with the water content of the test object from the current value, the voltage value, and the phase difference. The physical quantity is compared with the recorded correlation. Moisture content measuring method for determining the moisture content of the test object Te.
【請求項3】 各試料の容積が同じであるが、既知の異
なる含水率に設定した各試料を入れた容器をコイルの中
空内に配し、 前記コイル、コンデンサ、および抵抗負荷を接続して同
調回路を作り、前記試料の含水率に相関する物理量が所
定量の場合に、前記同調回路が共振状態になる様に、前
記コイルのインダクタンス、前記コンデンサのキャパシ
ティ、および高周波電源の周波数を設定しておき、 各試料の容積が同じであるが、既知の異なる含水率に設
定した各試料を入れた容器をコイルの中空内に配し、前
記同調回路を前記高周波電源に接続して、試料毎に、前
記同調回路を流れる回路電流や負荷電圧を計測して、前
記回路電流や負荷電圧と含水率との相関関係を記録して
おき、 これら各試料と容積が同じであるが、含水率が不明の被
検物を容器内に入れて前記コイルの中空内に配して、前
記同調回路を高周波電源に接続して、前記回路電流や前
記負荷電圧を計測し、 この計測した回路電流や負荷電圧と、記録してある前記
相関関係とを照合して前記被検物の含水率を求める含水
率計測方法。
3. A container containing each sample having the same volume but set to a known different moisture content is disposed in the hollow of the coil, and the coil, the capacitor, and the resistance load are connected. A tuning circuit is created, and the inductance of the coil, the capacity of the capacitor, and the frequency of the high-frequency power supply are set so that the tuning circuit is in a resonance state when the physical quantity correlated with the water content of the sample is a predetermined amount. In the meantime, the volume of each sample is the same, but a container containing each sample set to a known different moisture content is arranged in the hollow of the coil, and the tuning circuit is connected to the high-frequency power supply, In each case, the circuit current and load voltage flowing through the tuning circuit were measured, and the correlation between the circuit current and load voltage and the water content was recorded. Subject with unknown An object is placed in a container, arranged in the hollow of the coil, the tuning circuit is connected to a high-frequency power source, the circuit current and the load voltage are measured, and the measured circuit current and load voltage are recorded. A moisture content measuring method for obtaining the moisture content of the test object by comparing the correlation with the correlation.
【請求項4】 前記同調回路が共振状態になる前記物理
量の所定量は、高精度の検出が必要な含水率の近傍であ
る請求項3記載の含水率計測方法。
4. The water content measuring method according to claim 3, wherein the predetermined amount of the physical quantity at which the tuning circuit is brought into a resonance state is near a water content that requires highly accurate detection.
【請求項5】 前記物理量は、前記コイルのインダクタ
ンス、前記試料や前記被検物の比透磁率や磁化率である
請求項1乃至請求項4の何れかに記載の含水率計測方
法。
5. The water content measuring method according to claim 1, wherein the physical quantity is an inductance of the coil, a relative magnetic permeability or a magnetic susceptibility of the sample or the test object.
【請求項6】 中空部を有するコイルと、 試料や被検物を入れて前記中空部に配される容器と、 前記試料を入れた容器を前記コイルの中空内に配した際
の、前記試料の含水率に相関する物理量を抽出する物理
量抽出手段と、 同容積で既知の異なる含水率に設定した各試料から抽出
される各物理量と含水率との相関関係を記録しておく相
関関係記録手段と、 含水率が不明であり前記各試料と容積が同じである被検
物を入れた容器を前記コイルの中空内に配した際の、前
記被検物の含水率に相関する物理量を計測する物理量計
測手段と、 該物理量計測手段が計測した前記被検物の含水率に相関
する物理量と、前記相関関係記録手段に記録された前記
相関関係とを照合して前記被検物の含水率を算出する含
水率算出手段とを備える含水率計測装置。
6. A coil having a hollow portion, a container in which a sample or a test object is placed and placed in the hollow portion, and a sample in which the container containing the sample is placed in the hollow portion of the coil. A physical quantity extracting means for extracting a physical quantity correlated with the water content of the sample, and a correlation recording means for recording a correlation between each physical quantity extracted from each sample set to a known and different water content with the same volume and the water content. And measuring a physical quantity correlated with the water content of the test object when a container containing the test object whose water content is unknown and having the same volume as each sample is placed in the hollow of the coil. Physical quantity measuring means, a physical quantity correlated with the moisture content of the test object measured by the physical quantity measuring means, and collating the correlation recorded in the correlation recording means to determine the moisture content of the test object. Water content measuring device comprising a water content calculating means for calculating
【請求項7】 前記物理量は、前記コイルのインダクタ
ンス、前記試料や前記被検物の比透磁率や磁化率である
請求項6記載の含水率計測装置。
7. The moisture content measuring device according to claim 6, wherein the physical quantity is an inductance of the coil, a relative magnetic permeability or a magnetic susceptibility of the sample or the test object.
【請求項8】 好気性の微生物により生ごみを分解処理
する分解槽と、 該分解槽内を前記微生物の活動に適した環境に維持する
アクチュエータと、 該アクチュエータを制御する制御器とを有する生ごみ処
理装置において、 請求項6または請求項7に記載の含水率計測装置を付設
し、 該含水率計測装置によって検出された、生ごみである前
記被検物の含水率に基づいて前記制御器が前記アクチュ
エータを制御することを特徴とする生ごみ処理装置。
8. A production tank comprising: a decomposition tank for decomposing garbage by aerobic microorganisms; an actuator for maintaining an environment suitable for the activity of the microorganism in the decomposition tank; and a controller for controlling the actuator. A refuse treatment apparatus, further comprising the moisture content measurement device according to claim 6 or 7, wherein the controller is configured to perform a control based on a moisture content of the test object, which is garbage, detected by the moisture content measurement device. Controls the actuator.
JP2000268587A 2000-09-05 2000-09-05 Water content measuring method and device, and garbage disposal device Pending JP2002071643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000268587A JP2002071643A (en) 2000-09-05 2000-09-05 Water content measuring method and device, and garbage disposal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000268587A JP2002071643A (en) 2000-09-05 2000-09-05 Water content measuring method and device, and garbage disposal device

Publications (1)

Publication Number Publication Date
JP2002071643A true JP2002071643A (en) 2002-03-12

Family

ID=18755352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000268587A Pending JP2002071643A (en) 2000-09-05 2000-09-05 Water content measuring method and device, and garbage disposal device

Country Status (1)

Country Link
JP (1) JP2002071643A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170004561A (en) * 2015-07-03 2017-01-11 수정전자산업(주) Coiled jig for measuring leakage inductance of single coil component and method of measuring leakage inductance for the component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170004561A (en) * 2015-07-03 2017-01-11 수정전자산업(주) Coiled jig for measuring leakage inductance of single coil component and method of measuring leakage inductance for the component
KR101696606B1 (en) 2015-07-03 2017-01-16 수정전자산업(주) Coiled jig for measuring leakage inductance of single coil component and method of measuring leakage inductance for the component

Similar Documents

Publication Publication Date Title
US3735247A (en) Method and apparatus for measuring fat content in animal tissue either in vivo or in slaughtered and prepared form
US9766109B2 (en) Capacitive liquid level sensor
KR900701217A (en) Catheter positioning method and apparatus
US5187989A (en) Apparatus for detecting rotation of a rotary element such as the spinner of a water meter
WO2006044469A1 (en) Measurement of viscosity using magnetostrictive particle sensors
KR890000998A (en) Coin Detection Device and Method
KR20140100493A (en) System, controller, and method for determining conductance of an object
CN111682653B (en) Wireless power transmission foreign matter detection and living body detection shared system and identification method
JP2002005892A (en) Magnetic particle detection
US20080191693A1 (en) System and Methods for Detecting Environmental Conditions
EP0129120A1 (en) Liquid level sensor
JP2002071643A (en) Water content measuring method and device, and garbage disposal device
CN109443622A (en) Suo Li detection method and device and cable tension sensor
US5243539A (en) Method for predicting physical parameters in a diffusion process
JP2002071644A (en) Water content measuring method and device having metal piece detecting function, and garbage disposal device
EP1488230B1 (en) Drift compensated magnetic permeability detector
Singh et al. Thickness evaluation of aluminium plate using pulsed eddy current technique
JP3314715B2 (en) Odor sensor
KR20090017012A (en) Apparatus and method for detecting particle and microorganism with electromagnetic induction
SE536654C2 (en) Method for testing temperature sensors, and a test device
CN107515276B (en) Air detection device and method thereof
KR20090017013A (en) Apparatus and method for detecting particle and microorganism with magnetic flux
JPH11142313A (en) Method for quantifying concentration of matter, device for detecting concentration of matter, and storage medium
US20220229006A1 (en) A sensor device
KR100462386B1 (en) Coefficient Of Heat Expansion Of Non-magnetic Substance Measuring Device In Accordance With The Magnetic Field Change