JP2002071616A - On-site measuring method for corrosion rate of steel structure - Google Patents

On-site measuring method for corrosion rate of steel structure

Info

Publication number
JP2002071616A
JP2002071616A JP2000264416A JP2000264416A JP2002071616A JP 2002071616 A JP2002071616 A JP 2002071616A JP 2000264416 A JP2000264416 A JP 2000264416A JP 2000264416 A JP2000264416 A JP 2000264416A JP 2002071616 A JP2002071616 A JP 2002071616A
Authority
JP
Japan
Prior art keywords
steel structure
steel
corrosion
less
pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000264416A
Other languages
Japanese (ja)
Other versions
JP3678406B2 (en
Inventor
Hideki Katayama
英樹 片山
Masahiro Yamamoto
正弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
National Institute for Materials Science
Original Assignee
Nippon Steel Corp
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, National Institute for Materials Science filed Critical Nippon Steel Corp
Priority to JP2000264416A priority Critical patent/JP3678406B2/en
Publication of JP2002071616A publication Critical patent/JP2002071616A/en
Application granted granted Critical
Publication of JP3678406B2 publication Critical patent/JP3678406B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure the state of corrosion of a steel structure on a portion-by- portion basis continuously in real time by performing alternating-current measurement between a pin made of steel and each of various portions of the steel structure via an insulation layer. SOLUTION: As a sensor electrode to be inserted in a part of the steel structure, the pin manufactured of a steel material with similar electrochemical properties is inserted therein with the insulation layer of a narrow width between. An alternating-current voltage not less than 10 mV and not more than 50 mV is applied between the body of the steel structure and the pin made of steel and alternating-current resistance is measured at two frequencies, not more than 0.01 Hz and not less than 10 kHz, respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この出願の発明は、鋼構造物
の腐食速度のその場測定方法に関し、橋梁、ビルディン
グに代表される鋼構造物の腐食速度、特に環境因子の変
化に伴い時々刻々と変化する腐食速度を連続的にかつリ
アルタイムに測定することのできる測定方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an in-situ method of measuring the corrosion rate of a steel structure, and relates to the corrosion rate of a steel structure represented by a bridge or a building, particularly, with the change of environmental factors. The present invention relates to a measuring method capable of measuring a changing corrosion rate continuously and in real time.

【0002】[0002]

【従来の技術とその解決課題】鋼構造物の大気環境中に
おける腐食は様々な環境因子の影響を受けており、非常
に複雑で時々刻々と変化する。そのため、腐食の状況を
連続的にかつリアルタイムに測定することは、橋梁、ビ
ルディングに代表される鋼構造物の腐食性や寿命を評価
する上で非常に重要である。大気環境中における金属材
料の耐食性評価は、JIS−Z2381に規定された切
板試験片の大気暴露による評価が主流であるが、大気暴
露試験は、年単位のような長期での耐食性の比較はでき
るものの、その間での腐食現象の変化を捉えることはで
きず、また、通常は暴露試験場で行うため、どこでもで
きるという試験ではなかった。
2. Description of the Related Art Corrosion of a steel structure in an atmospheric environment is affected by various environmental factors, and is very complicated and changes every moment. Therefore, continuous and real-time measurement of the state of corrosion is very important in evaluating the corrosiveness and life of steel structures represented by bridges and buildings. The mainstream of the corrosion resistance evaluation of metallic materials in the air environment is the evaluation based on the exposure of the test piece to the air specified in JIS-Z2381. Although it was possible, it was not possible to capture the change in corrosion phenomena during that time, and it was not a test that could be performed anywhere because it is usually performed at an exposure test site.

【0003】一方、構造物を考えた場合、その形状は様
々であり、各部位によってミクロな環境が異なるため、
その腐食も部位ごとによって異なり、従来の切り板試験
片を用いた暴露試験では、構造物のすべての部位の腐食
状況を把握することは不可能である。
On the other hand, when considering a structure, the shape is various, and the micro environment differs depending on each part.
The corrosion also differs for each part, and it is impossible to grasp the corrosion state of all parts of the structure by an exposure test using a conventional cut plate test piece.

【0004】腐食性の変化を捉える方法としては、例え
ば、特開平7−113740号公報に開示されている
が、この方法はコンピュータ室などの非常に緩やかな腐
食現象での腐食性を調べるものであり、屋外のような環
境によっては大きく腐食するような場所における腐食を
評価することは不可能である。
[0004] As a method of catching the change of corrosiveness, for example, it is disclosed in Japanese Patent Application Laid-Open No. Hei 7-113740, but this method examines corrosiveness in a very mild corrosion phenomenon in a computer room or the like. In some cases, it is impossible to evaluate corrosion in a place that corrodes greatly depending on the environment such as outdoors.

【0005】また、構造物の各部位を考慮して腐食現象
をモニタリングする方法としては、たとえば、特開昭5
9−145698号公報に示されているものがある。こ
の方法は実際の使用環境に同じ材料の試験片を設置し、
実使用後に評価するという方法であり、従来の暴露試験
と同様に時々刻々と変化する腐食現象を捉えることはで
きなかった。
A method of monitoring a corrosion phenomenon in consideration of each part of a structure is disclosed in, for example,
There is one disclosed in JP-A-9-145698. In this method, a test piece of the same material is placed in the actual use environment,
It is a method of evaluating after actual use, and it was not possible to catch the corrosion phenomena that change every moment like the conventional exposure test.

【0006】これに対し、この出願の発明は、鋼構造物
の様々な部位に絶縁層を介して、鋼製ピンとの間で交流
測定を行うことにより、鋼構造物の部位別の腐食状況を
連続的にかつリアルタイムに測定することを可能とする
測定方法である。
[0006] On the other hand, the invention of this application measures the corrosion state of each part of the steel structure by performing an alternating current measurement between the steel pin and various parts of the steel structure via an insulating layer. This is a measurement method that enables continuous and real-time measurement.

【0007】[0007]

【課題を解決するための手段】この出願の発明は、鋼構
造物の一部にセンサー電極を挿入するこよにより2電極
式で連続測定を行う鋼構造物の腐食速度のその場測定方
法(請求項1)を提供する。
SUMMARY OF THE INVENTION The present invention provides a method for in-situ measurement of the corrosion rate of a steel structure in which a sensor electrode is inserted into a part of the steel structure to perform continuous measurement with a two-electrode system. Item 1) is provided.

【0008】そして、この出願の発明は、センサー電極
として、狭い幅の絶縁層を挟んで電気化学的性質の類似
する鋼材料で製造されたピンを挿入し、鋼構造物本体と
鋼製ピンとの間に電圧10mV以上50mV未満の交流
を印加し、周波数0.01Hz以下及び10KHz以上
の2点の交流抵抗値を測定する鋼構造物の腐食速度のそ
の場測定方法(請求項2)を、さらに、鋼製のピンの形
状を直径1mm以上50mm未満の円筒状とした鋼構造
物の腐食速度のその場測定方法(請求項3)を提供す
る。
According to the invention of this application, as a sensor electrode, a pin made of a steel material having similar electrochemical properties is inserted with a narrow insulating layer interposed therebetween, and a steel structure main body and a steel pin are connected. An in-situ method for measuring the corrosion rate of a steel structure in which an alternating current having a voltage of 10 mV or more and less than 50 mV is applied between the two points and a frequency of 0.01 Hz or less and 10 KHz or more is measured. A method for in-situ measurement of the corrosion rate of a steel structure having a steel pin having a cylindrical shape with a diameter of 1 mm or more and less than 50 mm (Claim 3).

【0009】また、この出願の発明は、前記狭い絶縁層
の幅を10μm以上100μm以下としたり(請求項
4)、前記電気化学的性質が類似し、3%食塩水中にお
ける浸漬電位の差異を50mV以内とした鋼構造物の腐
食速度のその場測定方法(請求項5)をも提供する。
In the invention of this application, the width of the narrow insulating layer may be set to 10 μm or more and 100 μm or less (claim 4), or the electrochemical properties may be similar, and the difference in immersion potential in 3% saline may be reduced by 50 mV. The present invention also provides a method for in-situ measurement of the corrosion rate of a steel structure (claim 5).

【0010】[0010]

【実施の形態】この出願の発明における鋼構造物は、鋼
製の橋梁、鉄骨構造を有する建造物など、広く鋼を使用
する人工構造物で、とりわけ腐食による劣化が危惧され
るものを包含する。
BEST MODE FOR CARRYING OUT THE INVENTION The steel structure according to the invention of this application includes artificial structures that widely use steel, such as steel bridges and buildings having a steel structure, particularly those that are likely to be deteriorated by corrosion.

【0011】この出願の発明は、鋼構造物の一部にセン
サー電極を挿入することにより、2電極式で腐食速度を
連続的に測定を行うことを特徴とする。
The invention of this application is characterized in that a corrosion rate is continuously measured by a two-electrode system by inserting a sensor electrode into a part of a steel structure.

【0012】さらに、この出願の発明は、これらの鋼構
造物の腐食速度を測定するために電気化学的性質の類似
したピンを絶縁層を挟んで挿入することが特徴である。
この際の絶縁層の材質は特に規定するものではないが、
電気抵抗が106 Ω以上が望ましい。
Further, the invention of this application is characterized in that pins having similar electrochemical properties are inserted with an insulating layer interposed therebetween in order to measure the corrosion rate of these steel structures.
The material of the insulating layer at this time is not particularly specified,
It is desirable that the electric resistance is 10 6 Ω or more.

【0013】この出願の発明では、鋼構造物本体と鋼製
ピンとの間に電圧10mV以上50mV未満の交流を印
加し、周波数0.01Hz以下及び10KHz以上の2
点の交流抵抗値を測定することを特徴とするが、これは
実施例2に示したように、周波数0.01Hz以下と1
0KHz以上での交流抵抗値の差と腐食速度との間に相
関があるという発見に基づいている。
In the invention of this application, an alternating current having a voltage of 10 mV or more and less than 50 mV is applied between the steel structure main body and the steel pin, and a frequency of 0.01 Hz or less and a frequency of 10 KHz or more are applied.
The characteristic is to measure the AC resistance value at the point. As shown in the second embodiment, this is the
It is based on the finding that there is a correlation between the difference in AC resistance value above 0 KHz and the corrosion rate.

【0014】この際に電圧10mV未満では測定値の精
度が劣り、50mV以上では鋼構造物と鋼製ピンのどち
らかを分極することになり、それぞれの表面状態が変化
してしまうため、腐食速度とは異なる別の反応に起因す
る抵抗値が得られる。
At this time, if the voltage is less than 10 mV, the accuracy of the measured value is inferior. If the voltage is more than 50 mV, either the steel structure or the steel pin is polarized, and the respective surface conditions change, so that the corrosion rate is increased. A resistance value resulting from another reaction different from the above is obtained.

【0015】この出願の発明のピンの形状については、
方形や楕円形など特に規定するものではないが、円筒形
の場合、腐食速度の測定において電極形状による異方性
がなく、より正確な測定が行えるという特徴がある。
Regarding the shape of the pin of the invention of this application,
Although not particularly limited, such as a square or an ellipse, the cylindrical shape has a feature that in the measurement of the corrosion rate, there is no anisotropy due to the electrode shape and more accurate measurement can be performed.

【0016】直径の大きさは電極の相対する部分(周の
長さ)に比例するが、直径1mm未満の場合、測定する
面積が小さくなるため、交流抵抗値が不安定で測定値の
精度が劣り、50mm以上では、電極表面での電流の分
布が生じるため、腐食速度に対応する正確な抵抗値を得
ることができない。
The size of the diameter is proportional to the opposing portion (perimeter) of the electrode. If the diameter is less than 1 mm, the area to be measured is small, so that the AC resistance is unstable and the accuracy of the measured value is low. On the other hand, if the thickness is 50 mm or more, a current distribution occurs on the electrode surface, so that an accurate resistance value corresponding to the corrosion rate cannot be obtained.

【0017】また、この出願の発明では、絶縁層の幅の
下限は特に規定するものではないが、10μm未満の場
合、加工上の問題から電極間の絶縁が非常に困難であ
り、また100μmより大きい場合では、実施例3に示
したように測定値に絶縁層の抵抗値の影響が生じるた
め、100μm以下と規定した。
In the invention of this application, the lower limit of the width of the insulating layer is not particularly specified, but if it is less than 10 μm, it is very difficult to insulate the electrodes due to processing problems. In the case of a large value, the measured value is affected by the resistance value of the insulating layer as shown in Example 3, so that the value is specified to be 100 μm or less.

【0018】さらに、この出願の発明では、インピーダ
ンスの測定において2電極式手法を採るため、鋼構造物
もしくはピン電極のどちらか一方が腐食進行する場合、
腐食速度に対応しない抵抗値が得られる。そのため、本
手法ではピンの材質について鋼構造物の腐食挙動と同一
なものとすることが特徴である。
Further, according to the invention of this application, since a two-electrode method is used for measuring impedance, when either the steel structure or the pin electrode corrodes,
A resistance value that does not correspond to the corrosion rate is obtained. Therefore, this method is characterized in that the material of the pin is the same as the corrosion behavior of the steel structure.

【0019】電気化学的性質としては、3%食塩水中に
おける浸漬電位の差異が50mV未満の場合、ほぼ類似
した腐食挙動をとることから、ピンの材質について電気
化学的性質を規定する。
Regarding the electrochemical properties, when the difference in immersion potential in a 3% saline solution is less than 50 mV, almost the same corrosion behavior is taken, so the electrochemical properties are defined for the pin material.

【0020】以下、実施例にしたがい、この出願の発明
をさらに詳細に説明する。
Hereinafter, the invention of this application will be described in more detail with reference to examples.

【0021】[0021]

【実施例】(実施例1)この出願の発明における測定シ
ステムが図1、図2に示される。
(Embodiment 1) FIGS. 1 and 2 show a measurement system according to the invention of the present application.

【0022】鋼構造物の各部位(1)(1)の中央部に
センサー電極(2)を4フッ化エチレンを重合した合成
樹脂製の絶縁層(3)を挟んで挿入し、電流電圧測定装
置(4)によりセンサー電極(2)と鋼構造物(1)と
の間に電圧10mV以上50mV未満の正弦交流電圧を
印加する。
A sensor electrode (2) is inserted into the center of each part (1) (1) of the steel structure with an insulating layer (3) made of a synthetic resin obtained by polymerizing ethylene tetrafluoride interposed therebetween, and current and voltage are measured. A sinusoidal AC voltage of 10 mV or more and less than 50 mV is applied between the sensor electrode (2) and the steel structure (1) by the device (4).

【0023】電圧と2電極間で流れる電流を周波数応答
解析装置(5)で各周波数に対する電圧と電流の振幅と
位相差を求め、高周波数側(例えば10KHz)及び低
周波数側(例えば0.01KHz)のインピーダンスを
求め、その差の逆数からコンピュータを用いて鋼構造物
の腐食速度を連続的にかつリアルタイムに得ることがで
きる。
The voltage and the current flowing between the two electrodes are obtained by a frequency response analyzer (5) to determine the amplitude and phase difference of the voltage and current for each frequency, and to obtain a high frequency side (for example, 10 kHz) and a low frequency side (for example, 0.01 kHz). ) Is obtained, and the corrosion rate of the steel structure can be obtained continuously and in real time using a computer from the reciprocal of the difference.

【0024】測定する周波数については、図3に示すよ
うに、硫酸ナトリウム水溶液中におけるインピーダンス
の周波数特性から10KHz以上及び0.01KHz以
下では周波数依存性が殆どないことがわかる。
As shown in FIG. 3, it is understood from the frequency characteristics of the impedance in the aqueous sodium sulfate solution that the frequency to be measured has almost no frequency dependence at 10 KHz or more and 0.01 KHz or less.

【0025】サンプルセンサーを用いてこの測定システ
ムにより実際の屋外環境で測定した結果の一部を表1に
示す。システムの測定条件は正弦交流電圧10mV、測
定周波数は10KHz及び0.01Hzである。このシ
ステムにより時間に対する腐食速度の変化がリアルタイ
ムに測定可能であることがわかる。
Table 1 shows a part of the results of measurement in an actual outdoor environment by this measurement system using a sample sensor. The measurement conditions of the system are a sinusoidal AC voltage of 10 mV and measurement frequencies of 10 KHz and 0.01 Hz. It can be seen that the change in corrosion rate over time can be measured in real time by this system.

【0026】[0026]

【表1】 [Table 1]

【0027】(実施例2)図4に、実測した腐食深さと
腐食速度から計算した腐食深さについて比較したグラフ
を示す。実施例1で用いたサンプルセンサーにより、恒
温恒湿槽内で3%NaCl水溶液による腐食試験を行い
ながら図1のシステムにより腐食速度のその場測定を行
ったときの結果である。システムの測定条件は正弦交流
電圧10mV、測定周波数は10kHz及び0.01k
Hzである。
Example 2 FIG. 4 shows a graph comparing the measured corrosion depth with the corrosion depth calculated from the corrosion rate. This is a result when an in-situ corrosion rate measurement was performed by the system of FIG. 1 while performing a corrosion test using a 3% NaCl aqueous solution in a constant temperature and humidity chamber using the sample sensor used in Example 1. The measurement conditions of the system are sinusoidal AC voltage 10mV, measurement frequency is 10kHz and 0.01k
Hz.

【0028】計算による腐食深さは得られた腐食速度に
ついて測定時間の積分により計算した値であり、実測し
た腐食深さは腐食試験後に表面の凹凸を光学的に測定し
たときの値である。両者の値は比例関係にあり、実測し
た腐食量と本発明の測定方法により得られた腐食量とが
非常によく一致することが判る。 (実施例3)挿入したピン(2)の形状及び絶縁層の幅
に付いては、サンプルセンサーを用いて決定した。その
結果を表2に示す。ピン(2)の直径が1mm未満の場
合、測定電極の大きさが非常に小さいため、正弦交流電
圧に対する測定電流が非常に小さくなり、測定値の精度
が劣り、また、50mm以上では、大気腐食がμmオー
ダーの水膜上で進行することから、鋼構造物とピン電極
間に流れる電流分布が不均一になりやすくなる。そのた
め、本発明のようにピン(2)の直径を1mm以上、5
0mm未満にする必要がある。
The calculated corrosion depth is a value calculated from the obtained corrosion rate by integrating the measurement time, and the actually measured corrosion depth is a value obtained by optically measuring the surface irregularities after the corrosion test. The values are proportional to each other, and it can be seen that the measured corrosion amount and the corrosion amount obtained by the measurement method of the present invention match very well. (Example 3) The shape of the inserted pin (2) and the width of the insulating layer were determined using a sample sensor. Table 2 shows the results. When the diameter of the pin (2) is less than 1 mm, the size of the measuring electrode is very small, so that the measuring current with respect to the sinusoidal AC voltage is very small, and the accuracy of the measured value is inferior. Progresses on a water film of the order of μm, the distribution of current flowing between the steel structure and the pin electrode tends to be uneven. Therefore, as in the present invention, the diameter of the pin (2) is 1 mm or more,
It must be less than 0 mm.

【0029】絶縁層(3)については、4フッ化エチレ
ンを重合した合成樹脂を用いた。これは、実施例1で用
いたサンプルセンサーにおいて、絶縁層の幅を100μ
m、500μm、1000μmにしたときのインピーダ
ンスの値である。
For the insulating layer (3), a synthetic resin obtained by polymerizing ethylene tetrafluoride was used. This is because the width of the insulating layer was 100 μm in the sample sensor used in Example 1.
m, 500 μm, and 1000 μm.

【0030】測定条件は正弦交流電圧10mV、測定周
波数は10kHz及び0.01kHzであり、恒温恒湿
槽内を温度25°C、相対湿度95%に保った状態で5
%NaCl水溶液で測定した。この恒温恒湿槽内の条件
では、サンプルセンサー上に形成される水膜は肉眼で確
認できるほど非常に厚い。10kHzのときのインピー
ダンス値において、絶縁層の幅が500μm、1000
μmのときの値は、100μmのときの値よりも大きく
なっており、絶縁層の幅に起因する抵抗が生じている。
The measurement conditions were a sinusoidal AC voltage of 10 mV, measurement frequencies of 10 kHz and 0.01 kHz, and a temperature of 25 ° C. and a relative humidity of 95% in a constant temperature and humidity chamber.
% NaCl aqueous solution. Under the conditions in the thermo-hygrostat, the water film formed on the sample sensor is so thick that it can be confirmed with the naked eye. At an impedance value of 10 kHz, the width of the insulating layer is 500 μm and 1000 μm.
The value at μm is larger than the value at 100 μm, and resistance occurs due to the width of the insulating layer.

【0031】一方、0.01Hzのときのインピーダン
ス値においては、腐食速度が0.01Hzのときのイン
ピーダンス値と10kHzのときのインピーダンス値と
の差の逆数に比例することから、10kHzのときのイ
ンピーダンス値と比較して十分大きい必要がある。
On the other hand, the impedance value at 0.01 kHz is proportional to the reciprocal of the difference between the impedance value at 0.01 Hz and the impedance value at 10 kHz. Must be sufficiently large compared to the value.

【0032】[0032]

【表2】 [Table 2]

【0033】表2において、その差は絶縁層の幅が10
0μmの場合、約550Ωを示したが、その他の腐食セ
ンサでは殆ど差がなかった。
In Table 2, the difference is that the width of the insulating layer is 10
In the case of 0 μm, it showed about 550Ω, but there was almost no difference in other corrosion sensors.

【0034】絶縁層の幅の下限値については、10μm
未満の場合、両電極間の抵抗が1KΩ以下になり絶縁が
不十分であるため、腐食速度に対応しない抵抗値が得ら
れる。 (実施例4)挿入したピンの材質については、本測定シ
ステムにおいて市販の炭素鋼製のピン及び市販のステン
レス鋼製のピンを電極としたときの測定データを表3に
示す。
The lower limit of the width of the insulating layer is 10 μm
If it is less than 1, the resistance between the two electrodes becomes 1 KΩ or less and insulation is insufficient, so that a resistance value not corresponding to the corrosion rate is obtained. (Example 4) With respect to the material of the inserted pin, Table 3 shows measurement data when a commercially available carbon steel pin and a commercially available stainless steel pin were used as electrodes in this measurement system.

【0035】市販の炭素鋼製のピンは用いた鋼構造物と
同一の材質であり、ステンレス鋼製のピンとは3%食塩
水中における浸漬電位の差異が50mV以上である。用
いたピン電極は直径25mm、幅100μmとし、測定
条件は正弦交流電圧10mV、測定周波数は10kHz
及び0.01Hzとした。
The commercially available carbon steel pins are made of the same material as the steel structure used, and have a difference in immersion potential in a 3% saline solution of 50 mV or more from the stainless steel pins. The pin electrode used was 25 mm in diameter and 100 μm in width. The measurement conditions were a sinusoidal AC voltage of 10 mV and a measurement frequency of 10 kHz.
And 0.01 Hz.

【0036】[0036]

【表3】 [Table 3]

【0037】ステンレス鋼製のピン電極を用いた場合、
10kHzのときのインピーダンス値はほとんど変わら
ないが、 0.01Hzでは、ほぼステンレス鋼製ピン
電極自体のインピーダンス値が測定されており、実際の
鋼構造物の腐食速度より非常に小さい値が測定される。
When a stainless steel pin electrode is used,
At 10 kHz, the impedance value hardly changes, but at 0.01 Hz, the impedance value of the stainless steel pin electrode itself is measured, and a value much smaller than the actual corrosion rate of the steel structure is measured. .

【0038】一方、鋼構造物と類似した電気化学的性質
をもつ市販の炭素鋼製のピン電極では、鋼構造物の正確
な腐食速度が得られている
On the other hand, a commercially available pin electrode made of carbon steel having an electrochemical property similar to that of a steel structure provides an accurate corrosion rate of the steel structure.

【0039】[0039]

【発明の効果】この出願の発明によれば、構造物の様々
な部位における腐食状況について、構造物を破壊するこ
となく常にモニターすることができるので、従来型の暴
露試験とは異なる新しい腐食性及び寿命評価法として期
待できる。
According to the invention of this application, it is possible to constantly monitor the corrosion state in various parts of a structure without destroying the structure, so that a new corrosive property different from the conventional exposure test is used. And it can be expected as a life evaluation method.

【0040】従来、構造物の腐食を調査する場合、破壊
した後に評価するという手法や部分的な採取により評価
するという手法などをとるため、非常に莫大な労力と費
用が掛かっていた。この出願の発明によれば、非破壊で
構造物の腐食状況を連続的にモニタすることが可能であ
り、また、コンピュータを用いることにより、遠隔操作
も可能であるから、従来と比較して非常に簡便にかつ最
小限の労力で測定が可能となり、その経済的効果は極め
て大きい。
Conventionally, when investigating the corrosion of a structure, a method of evaluating after destruction or a method of evaluating by partial sampling has been used, which has required a huge amount of labor and cost. According to the invention of this application, it is possible to continuously monitor the corrosion state of a structure in a non-destructive manner, and it is also possible to remotely control the use of a computer. The measurement can be performed easily and with a minimum of labor, and the economic effect is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この出願の発明の鋼構造物にピン電極を挿入し
たときの断面模式図である。
FIG. 1 is a schematic cross-sectional view when a pin electrode is inserted into a steel structure of the present invention.

【図2】この出願の発明の測定システムを示す図であ
る。
FIG. 2 is a diagram showing a measurement system according to the invention of this application.

【図3】この出願の発明の測定方法により、硫酸ナトリ
ウム水溶液中で測定したインピーダンスの周波数特性を
示す図である。
FIG. 3 is a diagram showing frequency characteristics of impedance measured in an aqueous solution of sodium sulfate by the measuring method of the present invention.

【図4】この出願の発明の測定方法により、測定した腐
食速度から計算した腐食量と光学的に実測した腐食深さ
を比較したグラフである。
FIG. 4 is a graph comparing the amount of corrosion calculated from the measured corrosion rate with the optically measured corrosion depth according to the measurement method of the present invention.

【符号の説明】[Explanation of symbols]

1 鋼構造物 2 ピン電極 3 絶縁層 4 電流電圧測定装置 5 周波数応答解析装置 6 計算機 DESCRIPTION OF SYMBOLS 1 Steel structure 2 Pin electrode 3 Insulation layer 4 Current / voltage measuring device 5 Frequency response analysis device 6 Computer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 正弘 茨城県つくば市千現1丁目2番1号 科学 技術庁金属材料技術研究所内 Fターム(参考) 2G050 AA01 BA02 CA04 DA01 EB06 EC06 2G060 AA10 AE28 AF06 AG03 EA05 EA08 HA02 HC10  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masahiro Yamamoto 1-2-1 Sengen, Tsukuba, Ibaraki Pref. EA05 EA08 HA02 HC10

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 鋼構造物の一部にセンサー電極を挿入す
ることにより2電極式で連続測定を行うことを特徴とす
る鋼構造物の腐食速度のその場測定方法。
1. A method for in-situ measurement of corrosion rate of a steel structure, wherein a continuous measurement is performed by a two-electrode system by inserting a sensor electrode into a part of the steel structure.
【請求項2】 請求項1において、鋼構造物の一部に挿
入するセンサー電極として、狭い幅の絶縁層を挟んで鋼
構造物と電気化学的性質の類似する鋼材料で製造された
ピンを挿入し、鋼構造物本体と鋼製ピンとの間に電圧1
0mV以上50mV未満の交流を印加し、周波数0.0
1Hz以下及び10KHz以上の2点の交流抵抗値を測
定することを特徴とする鋼構造物の腐食速度のその場測
定方法。
2. A pin made of a steel material having electrochemical properties similar to those of a steel structure with a narrow insulating layer interposed therebetween as a sensor electrode to be inserted into a part of the steel structure according to claim 1. Insert and apply a voltage of 1 between the steel structure body and the steel pin.
An alternating current of 0 mV or more and less than 50 mV is applied, and a frequency of 0.0
An in-situ method for measuring the corrosion rate of a steel structure, comprising measuring two points of AC resistance at 1 Hz or less and 10 KHz or more.
【請求項3】請求項2において、前記鋼製のピンの形状
が直径1mm以上50mm未満の円筒状であることを特
徴とする鋼構造物の腐食速度のその場測定方法。
3. The method according to claim 2, wherein the steel pin has a cylindrical shape having a diameter of 1 mm or more and less than 50 mm.
【請求項4】請求項2又は3において前記狭い絶縁層の
幅が10μm以上100μm以下であることを特徴とす
る鋼構造物の腐食速度のその場測定方法。
4. The method according to claim 2, wherein the width of the narrow insulating layer is 10 μm or more and 100 μm or less.
【請求項5】請求項2ないし4のいずれかにおいて、前
記電気化学的性質の類似は、3%食塩水中における浸漬
電位の差異が50mV未満であるとしたことを特徴とす
る鋼構造物の腐食速度のその場測定方法。
5. The corrosion of a steel structure according to claim 2, wherein the similarity in the electrochemical properties is that a difference in immersion potential in a 3% saline solution is less than 50 mV. In-situ measurement of speed.
JP2000264416A 2000-08-31 2000-08-31 In-situ measurement method for corrosion rate of steel structures. Expired - Lifetime JP3678406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000264416A JP3678406B2 (en) 2000-08-31 2000-08-31 In-situ measurement method for corrosion rate of steel structures.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000264416A JP3678406B2 (en) 2000-08-31 2000-08-31 In-situ measurement method for corrosion rate of steel structures.

Publications (2)

Publication Number Publication Date
JP2002071616A true JP2002071616A (en) 2002-03-12
JP3678406B2 JP3678406B2 (en) 2005-08-03

Family

ID=18751838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000264416A Expired - Lifetime JP3678406B2 (en) 2000-08-31 2000-08-31 In-situ measurement method for corrosion rate of steel structures.

Country Status (1)

Country Link
JP (1) JP3678406B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292747A (en) * 2006-03-29 2007-11-08 Nippon Steel Corp Corrosion amount measuring sensor
JP2008256596A (en) * 2007-04-06 2008-10-23 Nippon Steel Corp Corrosion speed measuring circuit, sensor, apparatus, and method
JP2011112445A (en) * 2009-11-25 2011-06-09 Kobe Steel Ltd Method for estimating thickness reduction quantity of steel material
JP2018151373A (en) * 2017-01-16 2018-09-27 ザ・ボーイング・カンパニーThe Boeing Company Structural Health Monitoring System
JP2019215266A (en) * 2018-06-13 2019-12-19 三菱重工業株式会社 Corrosion sensor and corrosion sensor manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103808647A (en) * 2012-11-05 2014-05-21 金祖权 Cement based corrosion current sensor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007292747A (en) * 2006-03-29 2007-11-08 Nippon Steel Corp Corrosion amount measuring sensor
JP2008256596A (en) * 2007-04-06 2008-10-23 Nippon Steel Corp Corrosion speed measuring circuit, sensor, apparatus, and method
JP2011112445A (en) * 2009-11-25 2011-06-09 Kobe Steel Ltd Method for estimating thickness reduction quantity of steel material
JP2018151373A (en) * 2017-01-16 2018-09-27 ザ・ボーイング・カンパニーThe Boeing Company Structural Health Monitoring System
JP7144141B2 (en) 2017-01-16 2022-09-29 ザ・ボーイング・カンパニー Structural health monitoring system
JP2019215266A (en) * 2018-06-13 2019-12-19 三菱重工業株式会社 Corrosion sensor and corrosion sensor manufacturing method
CN110596198A (en) * 2018-06-13 2019-12-20 三菱重工业株式会社 Corrosion sensor and method for manufacturing corrosion sensor
US11262290B2 (en) 2018-06-13 2022-03-01 Mitsubishi Heavy Industries, Ltd. Corrosion sensor and production method for the same
CN110596198B (en) * 2018-06-13 2022-04-29 三菱重工业株式会社 Corrosion sensor and method for manufacturing corrosion sensor
JP7144203B2 (en) 2018-06-13 2022-09-29 三菱重工業株式会社 Corrosion sensor and manufacturing method of corrosion sensor

Also Published As

Publication number Publication date
JP3678406B2 (en) 2005-08-03

Similar Documents

Publication Publication Date Title
Feliu et al. A new method for in-situ measurement of electrical resistivity of reinforced concrete
US4861453A (en) Corrosion detecting probe for steel buried in concrete
RU2222001C2 (en) Procedure foreseeing utilization of electrochemical noise under corrosion
US7919971B2 (en) Method and device for measuring the condition of steel structures
Si et al. Potential difference methods for measuring crack growth: A review
US4924708A (en) Method for calculating crack lengths of conductive sensors
US20150097589A1 (en) Corrosion detection in structural tendons
CN88100063A (en) Nondestructive test to the ferromagnetic workpiece creep impairment
CN108362637B (en) Corrosion electrochemical testing device and corrosion electrochemical testing method
EP0411689B1 (en) Method for continuously monitoring the soundness of the protective covering on underground metal structures, and devices for its implementation
US6543931B2 (en) Method of evaluating the glass-transition temperature of a polymer part during use
JP2002071616A (en) On-site measuring method for corrosion rate of steel structure
JP2685358B2 (en) Corrosion diagnosis method for reinforcing bars in concrete
Law et al. Galvanostatic pulse measurements of passive and active reinforcing steel in concrete
US5331286A (en) Method for continuously monitoring the soundness of the protective covering on underground metal structures, and devices for its implementation
JP2007017405A (en) Method for evaluating reinforcement corrosion rate
Flis et al. Assessment of data from three electrochemical instruments for evaluation of reinforcement corrosion rates in concrete bridge components
Kamde et al. Condition assessment of reinforced concrete systems with fusion bonded epoxy coated rebars
US5612621A (en) Method for monitoring cracks and critical concentration by using phase angle
CN112082469A (en) Nondestructive testing method for bending deformation of structure
JP6732236B2 (en) Method and system for measuring rebar corrosion environment in concrete
US10690586B2 (en) Rapid detection and quantification of surface and bulk corrosion and erosion in metals and non-metallic materials with integrated monitoring system
JP2021032642A (en) Buried steel material detection device, buried steel material detection method and buried steel material detection program
GB2365977A (en) Corrosion monitoring system for use in multiple phase solutions
JPH10227784A (en) Creep damage evaluating method for tempered martensite based steel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050509

R150 Certificate of patent or registration of utility model

Ref document number: 3678406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term