JP2002071215A - High-efficiency water heater - Google Patents

High-efficiency water heater

Info

Publication number
JP2002071215A
JP2002071215A JP2000257595A JP2000257595A JP2002071215A JP 2002071215 A JP2002071215 A JP 2002071215A JP 2000257595 A JP2000257595 A JP 2000257595A JP 2000257595 A JP2000257595 A JP 2000257595A JP 2002071215 A JP2002071215 A JP 2002071215A
Authority
JP
Japan
Prior art keywords
heat exchanger
combustion
water
combustion chamber
water heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000257595A
Other languages
Japanese (ja)
Other versions
JP4250317B2 (en
Inventor
Masaru Kodama
勝 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Paloma Kogyo KK
Original Assignee
Paloma Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paloma Kogyo KK filed Critical Paloma Kogyo KK
Priority to JP2000257595A priority Critical patent/JP4250317B2/en
Publication of JP2002071215A publication Critical patent/JP2002071215A/en
Application granted granted Critical
Publication of JP4250317B2 publication Critical patent/JP4250317B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

PROBLEM TO BE SOLVED: To effectively recover latent heat without raising the internal pressure of a combustion chamber. SOLUTION: In the combustion chamber 2, two heat exchangers of a main heat exchanger 8 and an auxiliary heat exchanger 9 are provided, and a fan 10 which sucks combustion air into the combustion chamber 2 from an air supplying opening 11 and discharges the air in the chamber 2 to the outside of a water heater through a discharge port 12 is provided on the exhaust-side downstream side of the auxiliary heat exchanger 9. The heat exchanger 9 is composed of a liquid tank 14 used for storing water, an exhaust air passage 15 which connects the inside of the tank 14 to the fan 10, an introducing pipe 16 the front end section of which has a plurality of small holes and positioned in the tank 14, and a heat-exchanger pipe 17 dipped in the water of the tank 14 and connected to a water supply pipe 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、バーナを利用して
水を加熱する給湯器に関し、特に熱効率の向上を図った
高効率給湯器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water heater for heating water using a burner, and more particularly to a high-efficiency water heater with improved thermal efficiency.

【0002】[0002]

【従来の技術】高効率給湯器は、熱交換器の熱効率を向
上させるために燃焼ガスの潜熱を利用したものが知られ
ている。例えば特許第3041976号特許掲載公報に
おいては、ファンによって強制排気される燃焼ガスと水
とを間接的に熱交換する間接熱交換器を設ける一方、そ
の燃焼ガスの排気側下流に、燃焼ガス中に水を散布して
燃焼ガスと水とを直接的に熱交換させる直接熱交換器
と、直接熱交換器の下部にあって散布された湯をためる
貯湯器内で湯と水とを間接的に熱交換させる水用熱交換
器とを設けて、直接熱交換器で燃焼ガス中の水蒸気の潜
熱を回収して水用熱交換器で水を予熱してから、間接熱
交換器で燃焼ガスの顕熱で水を加熱する給湯器の発明が
開示されている。同様に、特開平59−125350号
公報においては、間接熱交換器の排気側下流に、燃焼ガ
スを水を主成分として設けた液槽内に通過させて潜熱を
回収し、液槽内に設けた熱交換パイプで水を予熱する液
−液熱交換器を設けた給湯器の発明が開示されている。
2. Description of the Related Art A high-efficiency water heater is known which utilizes latent heat of combustion gas in order to improve the heat efficiency of a heat exchanger. For example, in Japanese Patent No. 3041976, an indirect heat exchanger for indirectly exchanging heat between combustion gas and water that is forcibly exhausted by a fan is provided, while the combustion gas is disposed downstream of the exhaust gas in the combustion gas. A direct heat exchanger that sprays water to directly exchange heat between the combustion gas and water, and a hot water and water indirectly in a water reservoir that is located directly below the heat exchanger and stores the sprayed hot water. A water heat exchanger for heat exchange is provided, the latent heat of the steam in the combustion gas is recovered by the direct heat exchanger, the water is preheated by the water heat exchanger, and then the combustion gas is recovered by the indirect heat exchanger. An invention of a water heater for heating water with sensible heat is disclosed. Similarly, in JP-A-59-125350, the latent heat is recovered by passing a combustion gas through a liquid tank provided with water as a main component downstream of the exhaust side of the indirect heat exchanger and provided in the liquid tank. The invention of a water heater provided with a liquid-liquid heat exchanger for preheating water with a heat exchange pipe is disclosed.

【0003】[0003]

【発明が解決しようとする課題】前者の公報の発明は、
水の散布による熱交換であるため、熱交換が不十分で効
率の良い潜熱回収ができない。又、散布水は全て排水さ
れる構成となっているから、無駄水の量が多くなってし
まう。一方、後者の公報の発明においては、液槽を利用
した液−液熱交換器によって潜熱回収の効率が良く、無
駄水の発生も少なくて済むが、燃焼用空気を供給するフ
ァンが間接熱交換器の上流側に位置するいわゆる押し込
み式のものであるから、燃焼ガスを液槽内に通過させる
ために燃焼室の内圧が高くなり、燃焼ガスが漏洩するお
それが生じる。又、潜熱の回収によって液槽からオーバ
ーフローした排出液が排水されることとなるが、この排
出液は強酸性のためそのまま下水へ排出できず、条例等
で定められた排水基準値内のpH値に中和処理する中和
装置が必要となる。
The invention of the former publication is
Since the heat exchange is performed by spraying water, the heat exchange is insufficient and efficient latent heat recovery cannot be performed. In addition, since all the spray water is drained, the amount of waste water increases. On the other hand, in the invention of the latter publication, the efficiency of latent heat recovery and the generation of waste water can be reduced by the liquid-liquid heat exchanger using the liquid tank, but the fan for supplying the combustion air requires an indirect heat exchange. Since it is a so-called push type located on the upstream side of the vessel, the internal pressure of the combustion chamber increases due to the passage of the combustion gas into the liquid tank, and the combustion gas may leak. Also, due to the recovery of latent heat, the effluent that overflows from the liquid tank will be drained, but this effluent cannot be directly discharged to sewage due to its strong acidity. Requires a neutralization device for neutralization.

【0004】そこで、請求項1に記載の発明は、液槽を
利用した液−液熱交換器によって効率の良い潜熱回収を
維持しつつ、液−液熱交換器を用いても燃焼室の内圧上
昇による燃焼ガスの漏洩のおそれを生じさせない高効率
給湯器を提供することを目的としたものである。一方、
請求項5に記載の発明は、燃焼ガスの潜熱回収を行うた
めには上記2公報のように間接熱交換器以外に液−液熱
交換器等の付加装置が必要となり、コストアップに繋が
ることから、これらの付加装置を用いることなく、簡単
な構成で熱効率を上げることができる高効率給湯器を提
供することを目的としたものである。
Accordingly, the invention according to claim 1 provides a liquid-liquid heat exchanger that utilizes a liquid tank, while maintaining efficient latent heat recovery, while using a liquid-liquid heat exchanger to maintain the internal pressure of the combustion chamber. It is an object of the present invention to provide a high-efficiency water heater that does not cause a risk of combustion gas leakage due to rising. on the other hand,
According to the fifth aspect of the present invention, in order to recover the latent heat of the combustion gas, an additional device such as a liquid-liquid heat exchanger is required in addition to the indirect heat exchanger as described in the above two publications, leading to an increase in cost. Therefore, it is an object of the present invention to provide a high-efficiency water heater that can increase thermal efficiency with a simple configuration without using these additional devices.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に記載の発明は、バーナを備えた燃焼室内
に、燃焼ガスと水とを間接的に熱交換させる主熱交換器
を設け、その主熱交換器の排気側下流に、燃焼ガスを通
過させる液槽を有し、その液槽と主熱交換器への給水と
を熱交換させる補助熱交換器を設け、燃焼室における補
助熱交換器の排気側下流に、燃焼室内にバーナの燃焼用
空気を吸引排気するファンを設けてなる高効率給湯器と
したものである。請求項2に記載の発明は、請求項1の
目的に加えて、液槽からの排出液のpH値を、中和装置
を用いることなく簡単な構成で中和処理するために、液
槽に、所定水位を超えた液を排水するオーバーフロー管
を設け、オーバーフロー管内の排水に、主熱交換器を経
て給湯箇所に出湯された排水を混合する構成としたもの
である。請求項3に記載の発明は、請求項1又は2の目
的に加えて、液槽からの排出液を確実に中和処理するた
めに、オーバーフロー管に、オーバーフロー管内の排水
を中和する中和装置を設けたものである。請求項4に記
載の発明は、請求項1乃至3の何れかの目的に加えて、
より高い熱効率を得るために、燃焼室に供給される燃焼
用空気の給気口を、ファンの排気側下流に設けられる排
気口の近傍に配置して、燃焼室及び排気口を通過する燃
焼ガスによって給気経路及び給気口を通過する燃焼用空
気を予熱可能としたものである。
In order to achieve the above object, the present invention is directed to a main heat exchanger for indirectly exchanging heat between combustion gas and water in a combustion chamber provided with a burner. And a downstream side of the main heat exchanger on the exhaust side thereof has a liquid tank through which a combustion gas passes, and an auxiliary heat exchanger that exchanges heat between the liquid tank and water supplied to the main heat exchanger, and a combustion chamber. , A high-efficiency water heater is provided downstream of the auxiliary heat exchanger on the exhaust side and provided with a fan that sucks and exhausts combustion air from a burner in the combustion chamber. The invention according to claim 2 provides the liquid tank with a simple structure for neutralizing the pH value of the effluent from the liquid tank without using a neutralization device. An overflow pipe for draining a liquid exceeding a predetermined water level is provided, and the waste water in the overflow pipe is mixed with the waste water discharged to the hot water supply point via the main heat exchanger. According to the third aspect of the present invention, in addition to the object of the first or second aspect, in order to surely neutralize the effluent from the liquid tank, the overflow pipe is neutralized to neutralize wastewater in the overflow pipe. A device is provided. The invention described in claim 4 provides, in addition to the object of any of claims 1 to 3,
In order to obtain higher thermal efficiency, the intake port of the combustion air supplied to the combustion chamber is arranged near the exhaust port provided downstream of the exhaust side of the fan, and the combustion gas passing through the combustion chamber and the exhaust port is arranged. Thus, the combustion air passing through the air supply path and the air supply port can be preheated.

【0006】上記目的を達成するために、請求項5に記
載の発明は、バーナを備えた燃焼室に、ファンによって
燃焼用空気が吸引される給気口を、燃焼室から燃焼ガス
が排出される排気口の近傍に配置して、燃焼室及び排気
口を通過する燃焼ガスによって給気経路及び給気口を通
過する燃焼用空気を予熱可能としたものである。
According to a fifth aspect of the present invention, a combustion chamber provided with a burner is provided with an air supply port through which combustion air is sucked by a fan, and combustion gas is discharged from the combustion chamber. The combustion gas passing through the combustion chamber and the exhaust port can be preheated by the combustion gas passing through the combustion chamber and the exhaust port.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1は、高効率給湯器(以下「給
湯器」という。)1の概略図で、燃焼室2内には、バー
ナユニット(以下「ユニット」という)3,3が備えら
れる。各ユニット3には、ガス管4から各ユニット3,
3へ分岐する分岐管5,5が接続され、各分岐管5ごと
に切替電磁弁6が夫々設けられている。7は分岐前のガ
ス管4に設けられた比例弁である。又、燃焼室2内に
は、燃焼ガスの顕熱回収部となる主熱交換器8と、主熱
交換器8の排気側下流で、燃焼ガスの潜熱回収部となる
補助熱交換器9との2つの熱交換器が設けられ、補助熱
交換器9の排気側下流に、燃焼用空気を燃焼室2内に吸
引し、給湯器外部へ排出するファン10が備えられてい
る。11は給湯器1のハウジングに形成された給気口、
12は排気口で、ここでは、給気口11が排気口12の
近傍に設けられている。よって、給気口11から取り込
まれた燃焼用空気は、実線矢印で示すように燃焼室2に
隣接する給気経路11aを経由して燃焼室2の下方から
燃焼室2内に吸引され、各ユニット3の燃焼に費やされ
るが、給気口11が排気口12の近傍にあることから、
燃焼用空気は燃焼室2の外周を通過する間に燃焼ガスと
熱交換(予熱)されることになる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic view of a high-efficiency water heater (hereinafter, referred to as “water heater”) 1, and burner units (hereinafter, referred to as “units”) 3, 3 are provided in a combustion chamber 2. Each unit 3 is connected to each unit 3,
Branch pipes 5 and 5 branching to 3 are connected, and a switching solenoid valve 6 is provided for each branch pipe 5. Reference numeral 7 denotes a proportional valve provided on the gas pipe 4 before branching. In the combustion chamber 2, a main heat exchanger 8 serving as a sensible heat recovery unit for the combustion gas, and an auxiliary heat exchanger 9 serving as a latent heat recovery unit for the combustion gas downstream of the main heat exchanger 8 on the exhaust side. And a fan 10 that sucks combustion air into the combustion chamber 2 and discharges the air to the outside of the water heater, downstream of the auxiliary heat exchanger 9 on the exhaust side. 11 is an air supply port formed in the housing of the water heater 1;
Reference numeral 12 denotes an exhaust port, and here, an air supply port 11 is provided near the exhaust port 12. Therefore, the combustion air taken in from the air supply port 11 is sucked into the combustion chamber 2 from below the combustion chamber 2 via the air supply path 11a adjacent to the combustion chamber 2 as shown by a solid arrow, and Although it is spent on the combustion of the unit 3, since the air supply port 11 is near the exhaust port 12,
The combustion air is heat-exchanged (preheated) with the combustion gas while passing through the outer periphery of the combustion chamber 2.

【0008】一方、給湯器1へ接続される給水管13
は、まず補助熱交換器9と接続される。補助熱交換器9
は、水を溜めた液槽14と、液槽14の底面積よりも小
さい開口で液槽14内とファン10とを接続する排気通
路15と、基端を燃焼室2内に開口させ、複数の小孔を
形成した先端部を液槽14内に設置した導入パイプ16
と、液槽14内に浸される熱交換パイプ17とからな
り、給水管13は熱交換パイプ17に接続されている。
又、液槽14には、先端が液槽14の上面近くに位置す
るオーバーフロー管18が接続され、液槽14の所定水
位を超えた水は、オーバーフロー管18を介して給湯器
1外部の下水管33へ排水されるようになっている。1
9は、給水管13から分岐して液槽14へ接続された補
水管で、補水バルブ20が設けられている。そして、補
助熱交換器9の熱交換パイプ17は、液槽14の出口で
中継管21に接続され、中継管21は主熱交換器8の吸
熱管22に接続されている。吸熱管22には、フィン2
3,23・・が設けられると共に、主熱交換器8の出湯
側で出湯管24に接続されて給湯器1の外部へ導かれて
いる。25は、主熱交換器8をバイパスして中継管21
と出湯管24とに接続されたバイパス管である。
On the other hand, a water supply pipe 13 connected to the water heater 1
Is first connected to the auxiliary heat exchanger 9. Auxiliary heat exchanger 9
A liquid tank 14 in which water is stored, an exhaust passage 15 connecting the inside of the liquid tank 14 and the fan 10 with an opening smaller than the bottom area of the liquid tank 14, and a base end opened in the combustion chamber 2; An introduction pipe 16 having a tip portion having a small hole formed in the liquid tank 14.
And a heat exchange pipe 17 immersed in the liquid tank 14, and the water supply pipe 13 is connected to the heat exchange pipe 17.
Further, an overflow pipe 18 whose tip is located near the upper surface of the liquid tank 14 is connected to the liquid tank 14, and water that exceeds a predetermined water level of the liquid tank 14 is supplied to the outside of the water heater 1 through the overflow pipe 18. The water is drained to the water pipe 33. 1
Reference numeral 9 denotes a water refill pipe branched from the water supply pipe 13 and connected to the liquid tank 14, and is provided with a water refill valve 20. The heat exchange pipe 17 of the auxiliary heat exchanger 9 is connected to the relay pipe 21 at the outlet of the liquid tank 14, and the relay pipe 21 is connected to the heat absorbing pipe 22 of the main heat exchanger 8. The heat absorbing tube 22 has a fin 2
Are provided, and are connected to the tapping pipe 24 on the tapping side of the main heat exchanger 8 and are guided to the outside of the water heater 1. 25 is a relay pipe 21 bypassing the main heat exchanger 8.
And a bypass pipe connected to the tapping pipe 24.

【0009】更に、出湯管24は、所定の給湯場所に分
岐して、夫々給湯栓26,26・・により開閉される。
ここで、各給湯場所の排水管27,27・・は、全てオ
ーバーフロー管18に接続されていることから、各給湯
場所の排水は、オーバーフロー管18の排水と混合され
て下水管33へ流されることになる。一方、給水管13
には、給水管13内を流れる水量を検出する水量センサ
28と、入水温度を検出する入水温サーミスタ29が、
出湯管24には、主熱交換器8の内胴出口温度を検出す
る熱交換器サーミスタ30と、その下流側で出湯温度を
検出する出湯温サーミスタ31が夫々設けられている。
そして、32はコントローラ(図では「BC」と表示す
る。)で、水量センサ28による水量検出信号や各サー
ミスタによる温度検出信号が夫々入力され、コントロー
ラ32は、検出された水量、入水温度、出湯温度から設
定温度の出湯に必要な燃焼出力量を演算し、その演算結
果に基づいて比例弁7の開度制御と切替電磁弁6,6の
開閉による各ユニット3の燃焼制御とを実行すると共
に、ファン10の回転数を制御する。
Further, the tapping pipe 24 branches to a predetermined hot water supply location and is opened and closed by hot water taps 26, 26, respectively.
Here, since the drain pipes 27, 27,... Of each hot water supply place are all connected to the overflow pipe 18, the waste water of each hot water supply place is mixed with the waste water of the overflow pipe 18 and flows to the sewer pipe 33. Will be. On the other hand, water supply pipe 13
Includes a water amount sensor 28 for detecting an amount of water flowing in the water supply pipe 13 and an incoming water temperature thermistor 29 for detecting an incoming water temperature.
The tapping pipe 24 is provided with a heat exchanger thermistor 30 for detecting the temperature of the inner body outlet of the main heat exchanger 8 and a tapping temperature thermistor 31 for detecting the tapping temperature downstream thereof.
Reference numeral 32 denotes a controller (indicated as "BC" in the figure), which receives a water amount detection signal from the water amount sensor 28 and a temperature detection signal from each thermistor, respectively. The amount of combustion output required for tapping at the set temperature is calculated from the temperature, and based on the calculation result, the opening degree control of the proportional valve 7 and the combustion control of each unit 3 by opening and closing the switching solenoid valves 6 and 6 are executed. , The number of rotations of the fan 10 is controlled.

【0010】以上の如く構成された給湯器1において
は、給湯栓26,26・・の何れかが開栓され、給水管
13内を水が流れると、その水量を水量センサ28によ
って検知したコントローラ32がユニット3,3を燃焼
させる。ユニット3,3の燃焼により発生した高温の燃
焼ガスは、まず主熱交換器8のフィン23,23・・間
を通過することで、吸熱管22内の水を加熱する。そし
て燃焼ガスは、点線矢印で示すように、その下流で補助
熱交換器9の導入パイプ16を介して液槽14内に入
り、気泡となって液槽14を通過する。このとき燃焼ガ
スは、液温が露点以下では燃焼ガス中のHO蒸気が
潜熱を発生して水となり、水中に取り込まれるため、液
槽14内の水が加熱される。よって、燃焼ガスは略液温
と等しくなって排気通路15からファン10を経て排気
口12から外部に排気される。従って、給水管13から
給湯器1内に導かれる水は、補助熱交換器9の熱交換パ
イプ17を通過する際に、燃焼ガスの潜熱によって加熱
された液槽14内の水と熱交換することで、予熱が与え
られ、その後、主熱交換器8において高温の燃焼ガスと
の熱交換で加熱され、湯として出湯管24から出湯され
ることになる。
In the water heater 1 configured as described above, when one of the hot water taps 26 is opened and water flows through the water supply pipe 13, the controller detects the amount of water by the water amount sensor 28. 32 burns units 3,3. The high-temperature combustion gas generated by the combustion of the units 3 and 3 first passes between the fins 23 of the main heat exchanger 8 to heat the water in the heat absorbing tube 22. Then, as shown by the dotted arrow, the combustion gas enters the liquid tank 14 via the introduction pipe 16 of the auxiliary heat exchanger 9 on the downstream side thereof, and passes through the liquid tank 14 as bubbles. At this time, when the liquid temperature is lower than the dew point, the H 2 O vapor in the combustion gas generates latent heat to become water and is taken into the water, so that the water in the liquid tank 14 is heated. Therefore, the combustion gas becomes substantially equal to the liquid temperature, and is discharged from the exhaust passage 15 to the outside through the exhaust port 12 through the fan 10. Therefore, the water guided from the water supply pipe 13 into the water heater 1 exchanges heat with the water in the liquid tank 14 heated by the latent heat of the combustion gas when passing through the heat exchange pipe 17 of the auxiliary heat exchanger 9. As a result, preheating is given, and thereafter, the main heat exchanger 8 is heated by heat exchange with the high-temperature combustion gas, and is discharged as hot water from the tapping pipe 24.

【0011】尚、液槽14内の温度が高くなると、それ
だけ熱交換パイプ17内の水への予熱が大きくなるが、
液槽14内の温度が高すぎて燃焼ガスの露点を越える
と、燃焼ガスの潜熱が回収できなくなるので、コントロ
ーラ32は、液槽14に設けられた液槽サーミスタ35
から得られる温度検出信号に基づいて、補水バルブ20
を開閉制御して液槽14内の水温を調整する。図2は、
空気過剰率(λ)と露点との関係を各ガス種ごとに示し
たグラフで、(A)が給気温度15℃、湿度60%の場
合、(B)が給気温度30℃、湿度90%の場合で、例
えばプロパン(「P」で示す)やブタン(「B」で示
す)では、(A)の条件で空気過剰率1.0では約55
℃以下で結露することになる。即ち、液槽14内の水温
が燃焼ガスの露点以下となるように、液槽14内の温度
調整を行うものである。
As the temperature in the liquid tank 14 increases, the preheating of the water in the heat exchange pipe 17 increases accordingly.
If the temperature in the liquid tank 14 is too high and exceeds the dew point of the combustion gas, the latent heat of the combustion gas cannot be recovered, so the controller 32 controls the liquid tank thermistor 35 provided in the liquid tank 14.
Rehydration valve 20 based on the temperature detection signal obtained from
Is controlled to adjust the water temperature in the liquid tank 14. FIG.
In the graph showing the relationship between the excess air ratio (λ) and the dew point for each gas type, (A) shows an air supply temperature of 15 ° C. and a humidity of 60%, and (B) shows an air supply temperature of 30 ° C. and a humidity of 90%. %, For example, in propane (indicated by "P") or butane (indicated by "B"), an excess air ratio of 1.0
Condensation will occur below ℃. That is, the temperature in the liquid tank 14 is adjusted so that the water temperature in the liquid tank 14 becomes lower than the dew point of the combustion gas.

【0012】そして、液槽14で燃焼ガス中のH
分が水となって液槽14の水量が増大すると、オーバー
フロー管18から排出される。このとき、燃焼ガス中の
NO 、CO等が液槽14内に溶けるため、排出
液は強酸性(pH3〜5)となるが、オーバーフロー管
18には、排水管27が接続されているから、給湯器1
の使用時には給湯箇所で使用された湯が全て排水されて
混合されることとなり、排出液はpH5以上に薄めら
れ、条例等で定められる排水基準値内のpH値として下
水管33へ排出可能となる。具体的には、ガスインプッ
ト30000kcal/hrの給湯器において、13A(天然
ガス)では発生するドレンは4.88kg/hrで、pH3
程度となるが、給湯器1で5℃の水を60℃にして出湯
させる場合、使用水量は545kg/hrとなり、ドレン量
の112倍、20℃の水を45℃にして出湯させる場
合、使用水量は1200kg/hrとなり、ドレン量の24
6倍になる。この排水量でドレンを希釈するため、排水
のpH値は5以下になることはない。尚、ここでの数値
は熱効率100%で算出しているが、一般的には熱効率
は95%以下となって潜熱とドレン発生量は小さくなる
ので、より安全側のpH値となる。
Then, H in the combustion gas is2O
When the amount of water in the liquid tank 14 increases due to water
It is discharged from the flow tube 18. At this time,
NO X, CO2Etc. are dissolved in the liquid tank 14 and discharged.
The solution becomes strongly acidic (pH 3-5), but the overflow tube
Since a drain pipe 27 is connected to 18, the water heater 1
When using, all the hot water used at the hot water supply point is drained
The effluent is diluted to pH 5 or more.
As a pH value within the effluent standard value specified by the ordinance, etc.
It can be discharged to the water pipe 33. Specifically, gas input
In a 30000 kcal / hr water heater, 13A (natural
Gas) generates 4.88 kg / hr of drainage and pH 3
It is about the extent, but the water of 5 ° C is turned to 60 ° C by the water heater 1
In this case, the amount of water used is 545 kg / hr and the amount of drain
A place where water of 20 degrees Celsius is turned 45 degrees Celsius, 112 times of
In this case, the amount of water used is 1200 kg / hr,
6 times. To dilute the drain with this amount of waste water,
Does not fall below 5. In addition, the numerical value here
Is calculated based on thermal efficiency of 100%.
Becomes 95% or less, and the amount of latent heat and drain generation decreases.
Therefore, the pH value is on the safer side.

【0013】このように上記形態の給湯器1によれば、
従来の主熱交換器8に加えて、液−液の直接熱交換とな
る補助熱交換器9を採用したことで、燃焼ガスの顕熱と
潜熱とを効果的に回収して熱効率を上昇させることがで
きる。特に、燃焼用空気を取り込むファン10を補助熱
交換器9の排気側下流に配置する吸い込み型としたこと
で、燃焼室2内が負圧となって燃焼ガスが漏洩するおそ
れはなくなると共に、潜熱回収後の低温の燃焼ガスを排
気することとなるので、補助熱交換器9を用いない場合
の吸い込み型と比較して、ファン10が小型であっても
吸い込みによる強制排気が実現可能となり、給湯器1の
コンパクト化やコストダウンが達成できる。
As described above, according to the water heater 1 of the above embodiment,
By employing an auxiliary heat exchanger 9 for direct liquid-liquid heat exchange in addition to the conventional main heat exchanger 8, the sensible heat and latent heat of the combustion gas are effectively recovered to increase the thermal efficiency. be able to. In particular, since the fan 10 for taking in the combustion air is of a suction type arranged downstream of the auxiliary heat exchanger 9 on the exhaust side, there is no danger that the combustion chamber 2 becomes negative pressure and the combustion gas leaks. Since the low-temperature combustion gas after recovery is exhausted, forced exhaustion by suction can be realized even if the fan 10 is small in size, as compared with the suction type in which the auxiliary heat exchanger 9 is not used. The size and cost of the container 1 can be reduced.

【0014】又、ここでは、給気口11を排気口12の
近傍に設けて、燃焼室2及び排気口12を通過する燃焼
ガスによって給気口11及び給気経路11aを通過する
燃焼用空気を予熱可能としているから、簡単な構成で一
層の熱効率の向上が図られ、給湯器1のケーシングの放
熱も少なくなる。特に、給湯器1が屋外に設置される場
合、風による逆圧を受けにくくなって給気口11と排気
口12とが同圧となるため、ファン10への負担が少な
くなり、その分ファン10の一層の小型化が図られると
いう効果も得られる。更に、液槽14のオーバーフロー
管18から排出される排出液に、給湯箇所で排水される
湯を混合して排水させているから、中和装置を用いるこ
となく、簡単な構成で液槽14からの強酸性の排出液を
適正なpH値に調整して下水へ排水可能となる。
Here, the air supply port 11 is provided near the exhaust port 12, and the combustion gas passing through the combustion chamber 2 and the exhaust port 12 is used for combustion air passing through the air supply port 11 and the air supply path 11 a. Can be preheated, the thermal efficiency can be further improved with a simple configuration, and the heat radiation of the casing of the water heater 1 can be reduced. In particular, when the water heater 1 is installed outdoors, it is difficult to receive the back pressure due to the wind, and the air supply port 11 and the exhaust port 12 have the same pressure. The effect of further reducing the size of the device 10 is also obtained. Furthermore, since the discharged liquid discharged from the overflow pipe 18 of the liquid tank 14 is mixed with hot water discharged at the hot water supply point and discharged, the liquid tank 14 can be easily discharged from the liquid tank 14 without using a neutralizing device. The highly acidic effluent can be adjusted to an appropriate pH value and drained to sewage.

【0015】尚、上記形態では、オーバーフロー管18
と排水管27との接続により液槽14からの排出液のp
H値の調整を図っているが、図1の二点鎖線で示すよう
に、中和剤として粒状炭酸カルシウム等を用いた中和装
置34をオーバーフロー管18に設けて、排出液をオー
バーフロー管18において中和処理することも可能であ
る。このようにすれば、給湯箇所が浴槽等であって出湯
分がそのまま排水されないような場合でも、確実に排出
液の中和処理が可能となる。又、補助熱交換器9も、吸
い込み型の排気形態で液−液の直接熱交換が可能な形態
であれば、排気通路15や導入パイプ16、熱交換パイ
プ17等の形状は適宜変更可能で、例えば導入パイプの
出口は小孔にせず、液槽14内にパンチングメタル等を
設けて気泡を分割することもできる。又、補助熱交換器
9を採用せず、主熱交換器8のみを設けた給湯器であっ
ても、上記形態のように給気口11を排気口12の近傍
に配置すれば、燃焼ガスの潜熱回収を行わなくても燃焼
用空気の予熱によって熱効率の向上を図ることが可能と
なり、コストダウンに繋がる。
In the above embodiment, the overflow pipe 18
Of the effluent from the liquid tank 14 by connecting the
Although the H value is adjusted, as shown by a two-dot chain line in FIG. 1, a neutralization device 34 using granular calcium carbonate or the like as a neutralizing agent is provided in the overflow pipe 18, and the discharged liquid is discharged from the overflow pipe 18. Can be neutralized. In this way, even when the hot water supply location is a bathtub or the like and the hot water is not drained as it is, the discharged water can be reliably neutralized. Also, if the auxiliary heat exchanger 9 is also in a form in which liquid-liquid direct heat exchange can be performed in a suction type exhaust form, the shapes of the exhaust passage 15, the introduction pipe 16, the heat exchange pipe 17, and the like can be appropriately changed. For example, instead of making the outlet of the introduction pipe a small hole, a punching metal or the like may be provided in the liquid tank 14 to divide the bubbles. Further, even in a water heater provided with only the main heat exchanger 8 without using the auxiliary heat exchanger 9, if the air supply port 11 is arranged near the exhaust port 12 as in the above embodiment, the combustion gas Even if the latent heat recovery is not performed, it is possible to improve thermal efficiency by preheating the combustion air, which leads to cost reduction.

【0016】[0016]

【発明の効果】請求項1に記載の発明によれば、従来の
主熱交換器に加えて、液−液の直接熱交換となる補助熱
交換器を採用したことで、燃焼ガスの顕熱と潜熱とを効
果的に回収して熱効率を上昇させることができる。特
に、燃焼用空気を取り込むファンを補助熱交換器の排気
側下流に配置する吸い込み型としたことで、燃焼室内が
負圧となって燃焼ガスの漏洩のおそれはなくなると共
に、潜熱回収後の低温の燃焼ガスを排気することとなる
ので、ファンが小型であっても吸い込みによる強制排気
が実現可能となり、給湯器のコンパクト化やコストダウ
ンが達成できる。請求項2に記載の発明によれば、請求
項1の効果に加えて、液槽に、所定水位を超えた液を排
水するオーバーフロー管を設け、オーバーフロー管内の
排水に、主熱交換器を経て給湯箇所に出湯された排水を
混合する構成としたことで、中和装置を用いることな
く、簡単な構成で液槽からの排出液を中和処理可能とな
る。請求項3に記載の発明によれば、請求項1又は2の
効果に加えて、オーバーフロー管に、オーバーフロー管
内の排水を中和する中和装置を設けたことで、給湯箇所
が浴槽等であって出湯分がそのまま排水されないような
場合でも、確実に排出液の中和処理が可能となる。請求
項4に記載の発明によれば、請求項1乃至3の何れかの
効果に加えて、燃焼室への給気口を排気口の近傍に配置
して、燃焼室及び排気口を通過する燃焼ガスによって給
気経路及び給気口を通過する燃焼用空気を予熱可能とし
たことで、簡単な構成で一層の熱効率の向上が図られ、
給湯器のケーシングの放熱も少なくなる。又、給湯器が
屋外に設置される場合、風による逆圧を受けにくくなっ
て給気口と排気口とが同圧となるため、ファンへの負担
が少なくなり、その分ファンの小型化が図られるという
効果も得られる。
According to the first aspect of the present invention, in addition to the conventional main heat exchanger, the auxiliary heat exchanger for direct liquid-liquid heat exchange is employed, so that the sensible heat of the combustion gas is obtained. And latent heat can be effectively recovered to increase thermal efficiency. In particular, since the fan that takes in the combustion air is a suction type that is located downstream of the auxiliary heat exchanger on the exhaust side, there is no danger of the combustion chamber becoming negative pressure and leakage of the combustion gas, and the low temperature after the latent heat is recovered. Therefore, even if the fan is small, forced exhaust by suction can be realized, and the water heater can be made compact and cost can be reduced. According to the second aspect of the present invention, in addition to the effect of the first aspect, the liquid tank is provided with an overflow pipe for draining a liquid exceeding a predetermined water level, and the drainage in the overflow pipe is passed through the main heat exchanger. By adopting a configuration in which the waste water discharged to the hot water supply location is mixed, the discharged liquid from the liquid tank can be neutralized with a simple configuration without using a neutralization device. According to the invention set forth in claim 3, in addition to the effect of claim 1 or 2, the hot water supply point is a bathtub or the like by providing the overflow pipe with a neutralization device for neutralizing wastewater in the overflow pipe. Even when the discharged hot water is not drained as it is, the discharged liquid can be reliably neutralized. According to the fourth aspect of the invention, in addition to the effects of any one of the first to third aspects, the air supply port to the combustion chamber is arranged near the exhaust port, and passes through the combustion chamber and the exhaust port. By making it possible to preheat the combustion air passing through the air supply path and air supply port with the combustion gas, the thermal efficiency can be further improved with a simple configuration,
The heat radiation of the water heater casing is also reduced. In addition, when the water heater is installed outdoors, it is difficult to receive the back pressure due to the wind, and the air supply port and the exhaust port have the same pressure, so that the load on the fan is reduced, and the size of the fan is reduced accordingly. The effect of being achieved is also obtained.

【0017】請求項5に記載の発明によれば、バーナを
備えた燃焼室に、ファンによって燃焼用空気が吸引され
る給気口を、燃焼室から燃焼ガスが排出される排気口の
近傍に配置して、燃焼室及び排気口を通過する燃焼ガス
によって給気経路及び給気口を通過する燃焼用空気を予
熱可能としたことで、潜熱回収用の補助熱交換器を用い
ることなく簡単な構成で熱効率の向上が図られ、コスト
ダウンに繋がると共に、給湯器のケーシングの放熱も少
なくなる。又、給湯器が屋外に設置される場合、風によ
る逆圧を受けにくくなって給気口と排気口とが同圧とな
るため、ファンへの負担が少なくなり、その分ファンの
小型化が図られるという効果も得られる。
According to the fifth aspect of the present invention, in the combustion chamber having the burner, the air supply port through which the combustion air is sucked by the fan is provided in the vicinity of the exhaust port through which the combustion gas is discharged from the combustion chamber. By arranging and preheating the combustion air passing through the air supply path and the air supply port by the combustion gas passing through the combustion chamber and the exhaust port, it can be simplified without using an auxiliary heat exchanger for latent heat recovery. With the configuration, the thermal efficiency is improved, which leads to cost reduction and also reduces heat radiation of the casing of the water heater. In addition, when the water heater is installed outdoors, it is difficult to receive the back pressure due to the wind, and the air supply port and the exhaust port have the same pressure, so that the load on the fan is reduced, and the size of the fan is reduced accordingly. The effect of being achieved is also obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】給湯器の概略図である。FIG. 1 is a schematic diagram of a water heater.

【図2】(A)空気過剰率と露点との関係を示すグラフ
である。 (B)空気過剰率と露点との関係を示すグラフである。
FIG. 2A is a graph showing a relationship between an excess air ratio and a dew point. (B) is a graph showing the relationship between the excess air ratio and the dew point.

【符号の説明】[Explanation of symbols]

1・・給湯器、2・・燃焼室、8・・主熱交換器、9・
・補助熱交換器、10・・ファン、11・・給気口、1
2・・排気口、13・・給水管、14・・液槽、15・
・排気通路、16・・導入パイプ、17・・熱交換パイ
プ、18・・オーバーフロー管、24・・出湯管、27
・・排水管、32・・コントローラ、33・・下水管。
1. hot water heater, 2. combustion chamber, 8. main heat exchanger, 9.
・ Auxiliary heat exchanger, 10 ・ ・ Fan, 11 ・ ・ Air supply port, 1
2 ··· Exhaust port, 13 ··· Water supply pipe, 14 ··· Liquid tank, 15 ·
・ Exhaust passage, 16 ・ ・ Introduction pipe, 17 ・ ・ Heat exchange pipe, 18 ・ ・ Overflow pipe, 24 ・ ・ Hot water pipe, 27
..Drain pipe, 32..controller, 33..sewer pipe.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 バーナを備えた燃焼室内に、燃焼ガスと
水とを間接的に熱交換させる主熱交換器を設け、その主
熱交換器の排気側下流に、前記燃焼ガスを通過させる液
槽を有し、その液槽と前記主熱交換器への給水とを熱交
換させる補助熱交換器を設け、前記燃焼室における前記
補助熱交換器の排気側下流に、前記燃焼室内に前記バー
ナの燃焼用空気を吸引排気するファンを設けてなる高効
率給湯器。
A main heat exchanger for indirectly exchanging heat between combustion gas and water is provided in a combustion chamber provided with a burner, and a liquid for passing the combustion gas is provided downstream of the main heat exchanger on the exhaust side. An auxiliary heat exchanger for exchanging heat between the liquid tank and water supplied to the main heat exchanger, and the burner is provided in the combustion chamber downstream of the auxiliary heat exchanger in the combustion chamber on the exhaust side. A high-efficiency water heater equipped with a fan that sucks and exhausts combustion air.
【請求項2】 液槽に、所定水位を超えた液を排水する
オーバーフロー管を設け、前記オーバーフロー管内の排
水に、主熱交換器を経て給湯箇所に出湯された排水を混
合する請求項1に記載の高効率給湯器。
2. The liquid tank according to claim 1, wherein an overflow pipe for draining a liquid exceeding a predetermined water level is provided, and the wastewater in the overflow pipe is mixed with wastewater discharged to a hot water supply point via a main heat exchanger. High efficiency water heater described.
【請求項3】 オーバーフロー管に、前記オーバーフロ
ー管内の排水を中和する中和装置を設けた請求項1又は
2に記載の高効率給湯器。
3. The high-efficiency water heater according to claim 1, wherein the overflow pipe is provided with a neutralizing device for neutralizing wastewater in the overflow pipe.
【請求項4】 燃焼室に供給される燃焼用空気の給気口
を、ファンの排気側下流に設けられる排気口の近傍に配
置して、前記燃焼室及び前記排気口を通過する燃焼ガス
によって給気経路及び前記給気口を通過する燃焼用空気
を予熱可能とした請求項1乃至3の何れかに記載の高効
率給湯器。
4. An air supply port for combustion air supplied to a combustion chamber is disposed near an exhaust port provided on the exhaust side downstream of a fan, and a combustion gas passing through the combustion chamber and the exhaust port is provided. The high-efficiency water heater according to any one of claims 1 to 3, wherein the combustion air passing through the air supply path and the air supply port can be preheated.
【請求項5】 バーナを備えた燃焼室に、ファンによっ
て燃焼用空気が吸引される給気口を、前記燃焼室から燃
焼ガスが排出される排気口の近傍に配置して、前記燃焼
室及び前記排気口を通過する燃焼ガスによって給気経路
及び前記給気口を通過する燃焼用空気を予熱可能として
なる高効率給湯器。
5. A combustion chamber provided with a burner, wherein an air supply port through which combustion air is sucked by a fan is disposed near an exhaust port from which combustion gas is discharged from the combustion chamber, and the combustion chamber and A high-efficiency water heater capable of preheating an air supply path and combustion air passing through the air supply port by the combustion gas passing through the exhaust port.
JP2000257595A 2000-08-28 2000-08-28 High efficiency water heater Expired - Fee Related JP4250317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000257595A JP4250317B2 (en) 2000-08-28 2000-08-28 High efficiency water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000257595A JP4250317B2 (en) 2000-08-28 2000-08-28 High efficiency water heater

Publications (2)

Publication Number Publication Date
JP2002071215A true JP2002071215A (en) 2002-03-08
JP4250317B2 JP4250317B2 (en) 2009-04-08

Family

ID=18746028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000257595A Expired - Fee Related JP4250317B2 (en) 2000-08-28 2000-08-28 High efficiency water heater

Country Status (1)

Country Link
JP (1) JP4250317B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005265228A (en) * 2004-03-16 2005-09-29 Takagi Ind Co Ltd Hot-water supply/additional heating device and its unnecessary water management method
JP2011231945A (en) * 2010-04-23 2011-11-17 Noritz Corp Hot water supply apparatus
JP2016044955A (en) * 2014-08-26 2016-04-04 大阪瓦斯株式会社 Hot water supply device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005265228A (en) * 2004-03-16 2005-09-29 Takagi Ind Co Ltd Hot-water supply/additional heating device and its unnecessary water management method
JP2011231945A (en) * 2010-04-23 2011-11-17 Noritz Corp Hot water supply apparatus
JP2016044955A (en) * 2014-08-26 2016-04-04 大阪瓦斯株式会社 Hot water supply device

Also Published As

Publication number Publication date
JP4250317B2 (en) 2009-04-08

Similar Documents

Publication Publication Date Title
JP5146635B2 (en) Water heater
JP2006234271A (en) Combustion device
JP2007187419A (en) Hot water supply heating device
JP5064811B2 (en) Combustion device
JP2003042566A (en) Latent heat recovery water heater
JP2006162121A (en) Latent heat recovery hot water heating system and bath water heater
JP2004170011A (en) Drain neutralizing device
JP5010201B2 (en) Drain neutralizer
JP5022109B2 (en) Drain treatment system
JP5256882B2 (en) Water heater
JP2002071215A (en) High-efficiency water heater
JP2964066B2 (en) Hot water heating system
JP5828264B2 (en) Heat source machine
JP5179914B2 (en) Bath water heater
KR200176948Y1 (en) A shutoff apparatus for exhaust gas of a condensate pipe
JP2006090564A (en) Latent heat recovery type hot water heating device
JP4407783B2 (en) Exhaust gas drain treatment equipment for latent heat recovery type heat source machine
JP2004138326A (en) Heat exchange device
JP2004061051A (en) Drain treatment structure for water heater
JP2009036479A (en) Combustion device
JP2015010753A (en) Water heater
JP2009228961A (en) Bath hot water supply device
JP2004293917A (en) Latent heat recovery type heat source machine
JP5170470B2 (en) Water heater
KR100406134B1 (en) an uptrend combustion type condensing Gas boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150123

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees