JP2002069559A - Aluminum alloy extruded material having excellent intergranular corrosion resistance - Google Patents

Aluminum alloy extruded material having excellent intergranular corrosion resistance

Info

Publication number
JP2002069559A
JP2002069559A JP2000260647A JP2000260647A JP2002069559A JP 2002069559 A JP2002069559 A JP 2002069559A JP 2000260647 A JP2000260647 A JP 2000260647A JP 2000260647 A JP2000260647 A JP 2000260647A JP 2002069559 A JP2002069559 A JP 2002069559A
Authority
JP
Japan
Prior art keywords
aluminum alloy
extruded material
corrosion resistance
intergranular corrosion
alloy extruded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000260647A
Other languages
Japanese (ja)
Inventor
Masao Takemoto
政男 竹本
Masakazu Hirano
正和 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000260647A priority Critical patent/JP2002069559A/en
Publication of JP2002069559A publication Critical patent/JP2002069559A/en
Pending legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy extruded material having excellent intergranular corrosion resistance and substituted for a 6063 alloy extruded material. SOLUTION: This aluminum alloy extruded material has a composition containing, by mass, 0.2 to 1.5% Si, 0.2 to 1.5% Mg, 0.001 to 0.2% Ti and 0.2 to 1.0% Zn, and the balance Al with inevitable impurities.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐粒界腐食性に優
れるアルミニウム合金押出材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an extruded aluminum alloy having excellent intergranular corrosion resistance.

【0002】[0002]

【従来の技術】従来、切削を多用して製造される熱交換
機用部材の材料には、Pb、Biを含み切削性を確保し
たJIS6262合金押出材が使用されているが、この
合金は耐食性が劣るため、部材には耐食性を確保するた
めのアルマイト処理が施されており、製造コストが高く
なるという問題があった。
2. Description of the Related Art Conventionally, extruded JIS6262 alloys containing Pb and Bi to ensure cutting properties have been used as materials for heat exchanger members manufactured by using a lot of cutting. However, this alloy has corrosion resistance. Because of its inferiority, the member has been subjected to alumite treatment to ensure corrosion resistance, and there has been a problem that the manufacturing cost is high.

【0003】[0003]

【発明が解決しようとする課題】このアルマイト処理を
省略するため、耐食性に劣る6262合金押出材に代え
て、耐食性及び切削性に優れるJIS6063合金押出
材を適用することが考えられるが、熱交換機用部材が異
種金属部材、例えばステンレス、真鍮等と組み合わさ
れ、高温になるなどきびしい腐食環境で使用される場
合、異種金属間の電位差に基づく電食により、通常は6
063合金には発生しにくい粒界腐食が発生する可能性
がある。熱交換機用部材の冷媒通路等に粒界腐食が発生
すると、その粒界腐食部では結晶粒が浮いて表面から脱
落し、腐食減量が多くなって元の表面が失われ、そこを
通路として冷媒がリークする恐れがあるため、粒界腐食
を防止することが望まれている。本発明は、かかる問題
に鑑みてなされたもので、6063合金押出材に代わ
る、耐粒界腐食性に優れたアルミニウム合金押出材を得
ることを目的とする。
In order to omit this alumite treatment, a JIS6063 alloy extruded material having excellent corrosion resistance and machinability may be used instead of the 6262 alloy extruded material having poor corrosion resistance. When the member is combined with a dissimilar metal member, for example, stainless steel, brass, etc., and is used in a severe corrosive environment such as at a high temperature, electric corrosion based on a potential difference between dissimilar metals usually results in 6 members.
There is a possibility that intergranular corrosion hardly occurs in the 063 alloy. When intergranular corrosion occurs in the refrigerant passage etc. of the heat exchanger member, crystal grains float at the intergranular corrosion portion and fall off the surface, the corrosion loss increases, the original surface is lost, and the refrigerant However, there is a risk of leaking, so that it is desired to prevent intergranular corrosion. The present invention has been made in view of such a problem, and an object of the present invention is to obtain an aluminum alloy extruded material having excellent intergranular corrosion resistance in place of the 6063 alloy extruded material.

【0004】[0004]

【課題を解決するための手段】本発明に係るアルミニウ
ム合金押出材は、Si:0.2〜1.5%、Mg:0.
2〜1.5%、Ti:0.001〜0.2%、Zn:
0.2〜1.0%を含み、残部Al及び不可避不純物か
らなることを特徴とし、耐粒界腐食性に優れ、例えば冷
媒通路を有する熱交換機用部材として好適である。
The aluminum alloy extruded material according to the present invention has an Si content of 0.2 to 1.5% and a Mg content of 0.2%.
2 to 1.5%, Ti: 0.001 to 0.2%, Zn:
It is characterized by containing 0.2 to 1.0%, the balance being Al and unavoidable impurities, having excellent intergranular corrosion resistance, and suitable as, for example, a heat exchanger member having a refrigerant passage.

【0005】[0005]

【発明の実施の形態】以下、上記アルミニウム合金押出
材の各成分の添加理由について説明する。 Si、Mg Si及びMgは、MgSiの析出により強度及び切削
性を向上させる作用がある。しかし、SiとMgのいず
れかの含有量が0.2%未満ではその作用が十分でな
く、一方、SiとMgのいずれかの含有量が1.5%を
超えると押出生産性が大きく低下する。従って、Siと
Mgの含有量はともに0.2〜1.5%の範囲とする。 Ti Tiはアルミニウム合金の鋳造組織を微細化する作用が
ある。しかし、含有量が0.001%未満ではその作用
が十分でなく、一方、0.2%を超えると結晶粒微細化
効果が飽和するとともに、押出生産性が大きく低下す
る。従って、Tiの含有量は0.001〜0.2%の範
囲とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for adding each component of the above-mentioned extruded aluminum alloy will be described below. Si, Mg Si and Mg have an effect of improving strength and machinability by precipitation of Mg 2 Si. However, if the content of either Si or Mg is less than 0.2%, the effect is not sufficient, while if the content of either Si or Mg exceeds 1.5%, the extrusion productivity is greatly reduced. I do. Therefore, the contents of both Si and Mg are in the range of 0.2 to 1.5%. Ti Ti has an effect of refining the cast structure of the aluminum alloy. However, if the content is less than 0.001%, the effect is not sufficient. On the other hand, if the content exceeds 0.2%, the crystal grain refining effect is saturated and the extrusion productivity is greatly reduced. Therefore, the content of Ti is set in the range of 0.001 to 0.2%.

【0006】Zn Znは、電位コントロールを目的として添加するもので
あり、含有量が0.2%未満ではその効果が得られな
い。粒界腐食は粒内電位又は粒界析出物の電位と粒界電
位の差(粒界電位が低い)がある程度大きくなった場合
に発生するが、Znを添加することにより粒内電位及び
粒界析出物の電位が下がり、粒界電位との差が小さくな
る。これにより粒界腐食が抑制される。一方、含有量が
1.0%を超えると、押出生産性が大きく低下するばか
りでなく、電位の低下による自己消耗が大きくなり耐食
性が著しく低下する。押出生産性の面から、好ましくは
0.2〜0.6%である。
[0006] Zn Zn is added for the purpose of controlling the potential, and if its content is less than 0.2%, its effect cannot be obtained. Intergranular corrosion occurs when the intragranular potential or the difference between the potential of intergranular precipitates and the intergranular potential (low intergranular potential) increases to some extent. The potential of the precipitate decreases, and the difference from the grain boundary potential decreases. Thereby, intergranular corrosion is suppressed. On the other hand, if the content exceeds 1.0%, not only extrusion productivity is greatly reduced, but also self-depletion due to a decrease in potential is increased, and corrosion resistance is significantly reduced. From the viewpoint of extrusion productivity, the content is preferably 0.2 to 0.6%.

【0007】不可避不純物 不可避不純物のうちFeはアルミニウム地金に最も多く
含まれる不純物であり、0.50%を超えて合金中に存
在すると鋳造時に粗大な金属間化合物を晶出し、合金の
機械的性質を損なう。従って、Feの含有量は0.50
%以下に規制する。また、アルミニウム合金を鋳造する
際には地金、添加元素の中間合金等様々な経路より不純
物が混入する。混入する元素は様々であるが、Fe以外
の不純物は単体で0.05%以下、総量で0.15%以
下であれば合金の特性にほとんど影響を及ぼさない。従
って、これらの不純物は単体で0.05%以下、総量で
0.15%以下とする。なお、不純物のうちBについて
はTiの添加に伴い合金中にTi含有量の1/5程度の
量で混入するが、より望ましい範囲は0.02%以下、
さらに0.01%以下が望ましい。
Inevitable impurities Fe is the most inevitable impurity contained in aluminum ingots. If it exceeds 0.50% in the alloy, coarse intermetallic compounds are crystallized during casting, and the mechanical properties of the alloy are reduced. Impair the nature. Therefore, the content of Fe is 0.50
% Or less. Further, when casting an aluminum alloy, impurities are mixed from various routes such as a base metal and an intermediate alloy of an additive element. There are various elements to be mixed, but impurities other than Fe alone have 0.05% or less, and if the total amount is 0.15% or less, it hardly affects the properties of the alloy. Therefore, these impurities are set to 0.05% or less in a simple substance, and 0.15% or less in total. In addition, B among impurities is mixed into the alloy in an amount of about 1/5 of the Ti content with the addition of Ti, but a more preferable range is 0.02% or less.
Further, it is desirably 0.01% or less.

【0008】[0008]

【実施例】次に、本発明に係るアルミニウム合金押出材
の実施例を比較例と比較して説明する。表1に示す化学
成分のAl−Mg−Si系アルミニウム合金を常法によ
り溶解し、半連続鋳造により直径200mmのビレット
に鋳造し、そのビレットを均質化処理し、20mm×5
0mmの角棒に熱間で押し出し、押出直後に水冷プレス
焼入れを行い、さらに時効処理を行った。なお、No.
5は6063合金である。
Next, examples of the extruded aluminum alloy according to the present invention will be described in comparison with comparative examples. An Al-Mg-Si-based aluminum alloy having the chemical composition shown in Table 1 was melted by a conventional method, cast into a billet having a diameter of 200 mm by semi-continuous casting, and the billet was homogenized to obtain a 20 mm × 5 mm.
It was extruded hot with a 0 mm square bar, water-cooled press quenching was performed immediately after extrusion, and aging treatment was further performed. In addition, No.
5 is a 6063 alloy.

【0009】時効処理後の各押出材を供試材とし、下記
要領で硬度測定及び腐食形態判定試験を行った。その結
果を表1にあわせて示す。 硬度測定;各供試材の押出軸に垂直な断面をエメリー紙
(#2400)で研磨し、断面硬度をJIS2244の
規定に準じてマイクロビッカース計(負荷;19.6
N)により測定した。 腐食形態判定試験;各供試材の両面をミーリングして厚
さ10mmとし、アセトン脱脂し、図1に示すように接
続部aと試験部b(20mm×50mm×10mm)を
残してテープでシールし、シール部cの中程以下を試験
液に浸漬し、電極dとの間に電流を流して腐食試験を行
った。試験条件として、試験液を5%NaCl、比液量
を150cc/cm、試験温度を室温、電流密度を3
mA/cm、試験時間を24時間に設定した。腐食試
験後、試験部を押出方向に垂直に切断し、断面組織を実
体顕微鏡で観察し腐食形態を調べた。その評価基準を表
1の脚注に示す。また、押出性試験として、同じ直径2
00mmのビレットを、470℃の押出温度にて30m
m×30mmの角棒に熱間で押し出し、押出速度を変え
て押出材表面に押出欠陥(むしれ)が発生し出す寸前の
速度を求め、表1の脚注に示す評価基準で各合金の押出
生産性を評価した。
Each extruded material after the aging treatment was used as a test material, and a hardness measurement and a corrosion form judgment test were performed in the following manner. The results are shown in Table 1. Hardness measurement: A cross section perpendicular to the extrusion axis of each test material was polished with emery paper (# 2400), and the cross-sectional hardness was measured using a micro Vickers meter (load: 19.6) in accordance with JIS 2244.
N). Corrosion form judgment test: Both sides of each test material were milled to a thickness of 10 mm, degreased with acetone, and sealed with tape leaving a connection part a and a test part b (20 mm × 50 mm × 10 mm) as shown in FIG. Then, the middle part or less of the seal part c was immersed in the test solution, and a current was passed between the electrode d and the electrode d to perform a corrosion test. As test conditions, the test solution was 5% NaCl, the specific solution volume was 150 cc / cm 2 , the test temperature was room temperature, and the current density was 3
mA / cm 2 and the test time were set to 24 hours. After the corrosion test, the test portion was cut perpendicular to the extrusion direction, and the cross-sectional structure was observed with a stereoscopic microscope to examine the form of corrosion. The evaluation criteria are shown in the footnote of Table 1. As an extrudability test, the same diameter 2
A billet of 00 mm is extruded for 30 m at an extrusion temperature of 470 ° C.
Extrude hot into a square bar of mx 30 mm, change the extrusion speed, find the speed just before extrusion defects (wrinkles) occur on the surface of the extruded material, and extrude each alloy according to the evaluation criteria shown in the footnote in Table 1. Productivity was evaluated.

【0010】[0010]

【表1】 [Table 1]

【0011】表1に示すように、Znを所定量含有する
No.1〜4の合金は、表面が全体的に浅く腐食され、
ほとんど粒界腐食は起きていない。No.2の顕微鏡組
織写真を図2に示す。また、押出生産性はZn含有量
0.2〜0.6%の範囲内にあるNo.1、2は特に優
れ、No.3、4も実用範囲にある。これに対し、Zn
を含有しない又は含有量が少ないNo.5〜6は、断面
深くまで粒界腐食が起きていた。No.5の顕微鏡組織
写真を図3に示す。Zn含有量が多いNo.7は、粒界
腐食は起きていなかったが押出生産性が劣っていた。全
体の腐食量も多かった。さらに、No.1〜4の硬度を
みると、6063合金であるNo.5以上の値が得られ
ており、強度及び切削性とも6063合金並に良好であ
ることが推測される。以上の通り、本発明例であるN
o.1〜4は耐粒界腐食性、押出性及び強度、切削性に
ついて総合的に優れている。
As shown in Table 1, No. 1 containing a predetermined amount of Zn. Alloys 1 to 4 are generally shallowly corroded on the surface,
Almost no intergranular corrosion has occurred. No. FIG. 2 shows a microstructure photograph of Sample No. 2. Extrusion productivity was the same for No. 2 having a Zn content in the range of 0.2 to 0.6%. Nos. 1 and 2 are particularly excellent. 3 and 4 are also within the practical range. In contrast, Zn
Containing no or low content of No. In Nos. 5 and 6, grain boundary corrosion occurred deep in the cross section. No. 5 is shown in FIG. No. 1 having a large Zn content. In No. 7, no intergranular corrosion occurred, but the extrusion productivity was poor. There was also a large amount of corrosion. In addition, No. Looking at the hardness of Nos. 1 to 4, No. 6063 alloy is No. 1; A value of 5 or more was obtained, and it is presumed that both the strength and the machinability were as good as the 6063 alloy. As described above, N which is an example of the present invention
o. Nos. 1 to 4 are generally excellent in intergranular corrosion resistance, extrudability and strength, and machinability.

【0012】[0012]

【発明の効果】本発明によれば、6063合金押出材に
代わる耐粒界腐食性に優れたアルミニウム合金押出材を
得ることができる。
According to the present invention, it is possible to obtain an aluminum alloy extruded material having excellent intergranular corrosion resistance in place of the 6063 alloy extruded material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 腐食形態判定試験に用いた試験片と試験の概
念図である。
FIG. 1 is a conceptual diagram of a test piece and a test used in a corrosion form determination test.

【図2】 No.2(発明例)の顕微鏡組織写真であ
る。
FIG. 2 is a photograph of a microstructure of Invention Example 2 (Example).

【図3】 No.5(比較例)の顕微鏡組織写真であ
る。
FIG. 5 is a photograph of a microstructure of Comparative Example 5 (Comparative Example).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Si:0.2〜1.5%(質量%、以下
同じ)、Mg:0.2〜1.5%、Ti:0.001〜
0.2%、Zn:0.2〜1.0%を含み、残部Al及
び不可避不純物からなる耐粒界腐食性に優れるアルミニ
ウム合金押出材。
1. Si: 0.2 to 1.5% (mass%, the same applies hereinafter), Mg: 0.2 to 1.5%, Ti: 0.001 to
Extruded aluminum alloy containing 0.2%, Zn: 0.2 to 1.0%, and excellent in intergranular corrosion resistance consisting of balance Al and inevitable impurities.
JP2000260647A 2000-08-30 2000-08-30 Aluminum alloy extruded material having excellent intergranular corrosion resistance Pending JP2002069559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000260647A JP2002069559A (en) 2000-08-30 2000-08-30 Aluminum alloy extruded material having excellent intergranular corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000260647A JP2002069559A (en) 2000-08-30 2000-08-30 Aluminum alloy extruded material having excellent intergranular corrosion resistance

Publications (1)

Publication Number Publication Date
JP2002069559A true JP2002069559A (en) 2002-03-08

Family

ID=18748624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000260647A Pending JP2002069559A (en) 2000-08-30 2000-08-30 Aluminum alloy extruded material having excellent intergranular corrosion resistance

Country Status (1)

Country Link
JP (1) JP2002069559A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102146543A (en) * 2010-02-05 2011-08-10 古河Sky株式会社 Aluminum alloy extrusion material for a connector which is excellent in extrusion property and sacrificial anode property
EP2354263A1 (en) 2010-02-05 2011-08-10 Furukawa-Sky Aluminium Corp. Aluminum alloy extrusion material for a connector which is excellent in extrusion property and sacrificial anode property
CN105970036A (en) * 2016-06-15 2016-09-28 宁波宏协承汽车部件有限公司 Rare earth micro-alloying aluminum alloy for automobile skylight guide rail and preparing method of alloy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102146543A (en) * 2010-02-05 2011-08-10 古河Sky株式会社 Aluminum alloy extrusion material for a connector which is excellent in extrusion property and sacrificial anode property
EP2354263A1 (en) 2010-02-05 2011-08-10 Furukawa-Sky Aluminium Corp. Aluminum alloy extrusion material for a connector which is excellent in extrusion property and sacrificial anode property
US10100389B2 (en) 2010-02-05 2018-10-16 Uacj Corporation Hollow connector of aluminum alloy extrusion material which is excellent in extrusion property and sacrificial anode property
CN105970036A (en) * 2016-06-15 2016-09-28 宁波宏协承汽车部件有限公司 Rare earth micro-alloying aluminum alloy for automobile skylight guide rail and preparing method of alloy

Similar Documents

Publication Publication Date Title
JPS59150052A (en) Al composite material for brazed heat exchanger
US6511555B2 (en) Cylinder head and motor block castings
JP6247225B2 (en) Aluminum fin alloy and manufacturing method thereof
WO2016129175A1 (en) Aluminum alloy fin material
EP3915719A1 (en) Aluminum brazing sheet for flux-free brazing
JP2001510240A (en) Corrosion resistant aluminum alloy containing titanium
JP5192718B2 (en) Fin material and heat exchanger with excellent strength, sacrificial anode effect, and corrosion resistance
JPH11310841A (en) Aluminum alloy extruded shape excellent in fatigue strength, and its production
JPH0380862B2 (en)
JP4107632B2 (en) Highly corrosion-resistant aluminum alloy containing zirconium
JP2021526594A (en) A method for producing an Al-Mg-Mn alloy plate product having improved corrosion resistance.
JPS6034617B2 (en) Al material for brazing
JPS59100251A (en) Corrosion resistant aluminum alloy with high strength for brazing
JP5189853B2 (en) Aluminum alloy clad material for heat exchanger
JP2002069559A (en) Aluminum alloy extruded material having excellent intergranular corrosion resistance
EP3434798A1 (en) Heat-resistant magnesium alloy
JPS6234826B2 (en)
JPS60251246A (en) Water resistant brazing sheet for vacuum brazing and heat exchanger using said material
EP4048823A1 (en) Aluminum alloy with improved extrudability and corrosion resistance
JPH04246141A (en) Copper-base alloy for heat exchanger
JPS6250538B2 (en)
JP2001269794A (en) Aluminum alloy clad material for heat exchanger
JP3800345B2 (en) Hot chamber castable zinc alloy
JP3274176B2 (en) Copper base alloy for heat exchanger and method for producing the same
JPH09209056A (en) Method for refining crystalline grain of zirconium-containing aluminum alloy