JP2002068846A - Silicon nitride sintered compact, and sliding member and bearing ball using it - Google Patents

Silicon nitride sintered compact, and sliding member and bearing ball using it

Info

Publication number
JP2002068846A
JP2002068846A JP2000260280A JP2000260280A JP2002068846A JP 2002068846 A JP2002068846 A JP 2002068846A JP 2000260280 A JP2000260280 A JP 2000260280A JP 2000260280 A JP2000260280 A JP 2000260280A JP 2002068846 A JP2002068846 A JP 2002068846A
Authority
JP
Japan
Prior art keywords
silicon nitride
particles
sintered body
nitride sintered
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000260280A
Other languages
Japanese (ja)
Other versions
JP4567855B2 (en
Inventor
Kazuhiro Shinosawa
和弘 篠澤
Michiyasu Komatsu
通泰 小松
Hisao Yabe
久雄 矢部
Minoru Takao
実 高尾
Yukihiro Takenami
幸宏 武浪
Yoshiyuki Fukuda
悦幸 福田
Kimiya Miyashita
公哉 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000260280A priority Critical patent/JP4567855B2/en
Priority to US09/927,930 priority patent/US6642165B2/en
Publication of JP2002068846A publication Critical patent/JP2002068846A/en
Application granted granted Critical
Publication of JP4567855B2 publication Critical patent/JP4567855B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide silicon nitride sintered compacts, together eliminating badness, capable of effectively releasing heat of friction generated by high velocity revolution, when used for sliding members for electronic equipment such as hard disk drives and for bearing balls. SOLUTION: The silicon nitride sintered compacts contain carbide particles and nitride particles as electric conductivity imparting particles, and have the content of iron components of >=10 ppm and <=200 ppm. The strength and rotational life are prolonged by controlling the quantity of iron components in the sintered compacts and the size of aggregated parts composed of the iron components and/or the electric conductivity imparting particles.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、適度な電気抵抗値
を有する窒化珪素焼結体、またはそれを用いた摺動部材
並びにベアリングボールに関する。
The present invention relates to a silicon nitride sintered body having an appropriate electric resistance value, or a sliding member and a bearing ball using the same.

【0002】[0002]

【従来の技術】近年、ハードディスクドライブ(HD
D)等の磁気記録装置、光ディスク装置またはDVD、
モバイル製品、各種ゲーム機器などの発達は目覚しいも
のがある。これらは通常、スピンドルモータ等の回転駆
動装置により回転軸を高速回転させることにより各種デ
ィスクドライブを機能させている。従来、このような回
転軸を支えるベアリング(軸受)部材、特にベアリング
ボールには軸受鋼等の金属が用いられていた。しかしな
がら、軸受鋼等の金属は耐摩耗性が十分ではないことか
ら、例えば前記電子機器等のように5,000rpm以上の高速
回転が要求される分野においては寿命のバラツキが大き
く信頼性のある回転駆動を提供できずにいた。このよう
な不具合を解決するために近年はベアリングボールに窒
化珪素を用いることが試みられるようになっていた。窒
化珪素はセラミックスの中でも摺動特性に優れることか
ら耐摩耗性は十分であり、高速回転を行ったとしても信
頼性のある回転駆動を提供することができていることが
確認されている。
2. Description of the Related Art In recent years, hard disk drives (HD)
D) and other magnetic recording devices, optical disk devices or DVDs,
The development of mobile products and various game machines has been remarkable. Usually, these various disk drives are made to function by rotating a rotation shaft at high speed by a rotation drive device such as a spindle motor. Conventionally, metal such as bearing steel has been used for a bearing (bearing) member for supporting such a rotating shaft, particularly for a bearing ball. However, since metals such as bearing steel do not have sufficient wear resistance, in fields where high-speed rotation of 5,000 rpm or more is required, for example, in the above-mentioned electronic devices, etc., there is a large variation in life and a reliable rotation drive. Could not provide. In recent years, attempts have been made to use silicon nitride for bearing balls in order to solve such problems. Silicon nitride has excellent abrasion resistance because of its excellent sliding properties among ceramics, and it has been confirmed that a reliable rotation drive can be provided even at high speed rotation.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、窒化珪
素製ベアリングボールは電気的に絶縁物であることから
高速回転を行った際に発生する静電気を軸受鋼等の金属
部材により作製された回転軸部、ボール受け部(いわゆ
るベアリングボール以外のベアリング部材の構成要素)
に上手く静電気が発散されないと言った問題が発生して
しまうことが分かった。このように静電気が上手く発散
されず必要以上に帯電してしまうと電子機器、例えばハ
ードディスクドライブ等のように磁気的信号を用いる記
録媒体に悪影響を与えてしまい、その結果ハードディス
ク等の電子機器そのものを破壊してしまうと言った現象
が起きていた。さらに、ハードディスクドライブの小型
化、高容量化に伴い回転数も8,000rpm、さらには10,000
rpm以上とさらなる高速回転が要求されている。このよ
うな高速回転が行われるとベアリングボールは摺動によ
り加熱される。このとき従来の窒化珪素製ベアリングボ
ールでは熱伝導率が20W/m・k程度と低く摩擦熱を上手く
発散できずにいた。この放熱性の観点は高速回転になれ
ばなるほど問題となり、特に高速回転を長時間行うこと
対しての対応は十分ではなかった。
However, since the bearing balls made of silicon nitride are electrically insulative, static electricity generated during high-speed rotation is reduced by a rotating shaft made of a metal member such as bearing steel. , Ball receiving part (components of bearing members other than so-called bearing balls)
It turned out that the problem that static electricity was not dissipated well occurred. If the static electricity is not sufficiently dissipated and charged more than necessary, electronic devices, for example, a recording medium using a magnetic signal such as a hard disk drive are adversely affected, and as a result, the electronic device itself such as a hard disk is damaged. There was a phenomenon saying it would be destroyed. In addition, with the miniaturization and high capacity of hard disk drives, the number of revolutions has been increased to 8,000 rpm and 10,000
Higher speed rotations of more than rpm are required. When such high-speed rotation is performed, the bearing balls are heated by sliding. At this time, the heat conductivity of the conventional silicon nitride bearing ball was as low as about 20 W / m · k, and the frictional heat could not be dissipated well. From the viewpoint of heat dissipation, the higher the rotation speed, the more the problem becomes. In particular, it is not sufficient to cope with long-time rotation.

【0004】一方、従来から電気抵抗値が10-3Ω・cm程
度を示す低電気抵抗の窒化珪素焼結体は存在している。
このような窒化珪素焼結体は主に切削工具などに使われ
ているが、低電気抵抗を実現するために炭化物や鉄など
の導電性付与粒子を微構造中に多量に分散させねばなら
ない。多量の導電性付与粒子が分散された窒化珪素焼結
体は確かに電気抵抗値は下がるものの、これら導電性付
与粒子は窒化珪素と異なる材料、いわゆる異材として微
構造中に存在することを意味し、重要な構造部材として
使用される窒化珪素焼結体本来の信頼性を低下させるこ
とにもつながる。特に鉄成分は窒化珪素との化合物とし
て微構造中に存在し得ず、機械的特性を低下させる欠陥
として考えられるべきものである。例えば、ベアリング
ボールのように常に全体から圧縮荷重を受けるような用
途においては、このような異材が多く分布されていると
異材あるいはその界面から亀裂が入り易く摺動特性が劣
化してしまう。特に鉄の成分はそれが広く分布されてい
ると、ころがり特性上、相手材(レース)である金属材
料との間で凝着を引き起こし、ついには剥離を引き起こ
すことにもつながる。従って、ベアリングボールのよう
に全体から圧縮荷重を受けながら使用されるものにおい
ては鉄の成分は導電性促進に役立つ一方で、摺動特性
上、あまり多くない方が好ましい。
[0004] On the other hand, there has conventionally been a silicon nitride sintered body having a low electric resistance having an electric resistance of about 10 -3 Ω · cm.
Such a silicon nitride sintered body is mainly used for a cutting tool or the like, but in order to realize a low electric resistance, a large amount of conductive particles such as carbide and iron must be dispersed in a microstructure. Although a silicon nitride sintered body in which a large amount of conductivity-imparting particles are dispersed certainly has a lower electric resistance value, it means that these conductivity-imparting particles are present in the microstructure as a material different from silicon nitride, a so-called different material. In addition, the reliability of the silicon nitride sintered body used as an important structural member is reduced. In particular, the iron component cannot be present in the microstructure as a compound with silicon nitride and should be considered as a defect that degrades the mechanical properties. For example, in an application such as a bearing ball, which is always subjected to a compressive load from the whole, if a large amount of such dissimilar material is distributed, cracks are likely to be formed from the dissimilar material or its interface, and the sliding characteristics deteriorate. In particular, when the iron component is widely distributed, due to its rolling characteristics, it causes adhesion to a metal material as a mating material (race) and eventually causes peeling. Therefore, in a bearing ball which is used while receiving a compressive load from the whole, such as a bearing ball, it is preferable that the content of iron is not so large in terms of sliding characteristics, while it is useful for promoting conductivity.

【0005】本発明は上記したような問題を解決するた
めになされたものであって、優れた摺動特性を有しなが
ら、所定の電気抵抗値を有し、導電性付与粒子の分散状
態を制御した導電性を有する窒化珪素焼結体を提供する
ことを目的とする。さらにこのような導電性を有する窒
化珪素焼結体を、ハードディスク等の電子機器用摺動部
材、例えばベアリングボールに適用することにより必要
以上に静電気が帯電することを防止することができる。
また、熱伝導率が40W/m・k以上であるため摺動の際の熱
を効率よく発散できることから電子機器用摺動部材に適
している。従って、本発明においては導電性を有する窒
化珪素焼結体を用いた摺動部材並びにベアリングボール
を提供することも目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has a predetermined electric resistance value while having excellent sliding characteristics, and is capable of dispersing conductive particles. An object of the present invention is to provide a silicon nitride sintered body having controlled conductivity. Further, by applying such a conductive silicon nitride sintered body to a sliding member for an electronic device such as a hard disk, for example, a bearing ball, it is possible to prevent static electricity from being charged more than necessary.
In addition, since the heat conductivity is 40 W / m · k or more, heat at the time of sliding can be efficiently dissipated, so that it is suitable for sliding members for electronic devices. Therefore, an object of the present invention is to provide a sliding member and a bearing ball using a silicon nitride sintered body having conductivity.

【0006】[0006]

【課題を解決するための手段】本発明では上記目的を為
し得るために、窒化珪素焼結体中に存在する導電性付与
粒子と焼結体中に存在する鉄成分の分散状態を特定して
いる。具体的には、窒化珪素焼結体中に導電性付与粒子
として炭化物粒子と窒化物粒子を分散含有し、焼結体中
に存在する鉄成分の含有量が10ppm以上200ppm以下であ
り、電気抵抗値が102Ω・cm以上107Ω・cm以下である窒
化珪素焼結体である。また、該焼結体中に存在する鉄成
分の最大径が20μm以下であることが好ましい。また、
鉄成分及び導電性付与粒子同士の最も近い粒子間距離は
0.5μm以上5μm以下で、任意の断面でこの位置関係を
満たす粒子分布が80%以上を占めていることが好まし
い。該炭化物粒子は4a族,5a族,6a族,7a族元素、珪
素、硼素の炭化物の少なくとも1種以上からなることが
好ましく、該窒化物粒子は4a族の窒化物の少なくとも1
種であることが好ましい。さらに、熱伝導率が40W/m・k
以上であることが好ましい。このような窒化珪素焼結体
を、摺動部材、例えばベアリングボールに適用すると特
に効果的である。特に電子機器用の摺動部材、例えばハ
ードディスクドライブ等の電子機器の回転駆動に適用す
るベアリングボールの場合、回転駆動に伴い発生する静
電気を必要以上に帯電することを防止できると共に、熱
伝導率が高いことから放熱性も優れている。
According to the present invention, in order to achieve the above object, the state of dispersion between the conductivity imparting particles present in the silicon nitride sintered body and the iron component present in the sintered body is specified. ing. Specifically, carbide particles and nitride particles are dispersed and contained as conductivity imparting particles in a silicon nitride sintered body, and the content of an iron component present in the sintered body is 10 ppm or more and 200 ppm or less, A silicon nitride sintered body having a value of 10 2 Ω · cm or more and 10 7 Ω · cm or less. Further, the maximum diameter of the iron component present in the sintered body is preferably 20 μm or less. Also,
The closest distance between the iron component and the conductivity imparting particles is
It is preferable that the particle distribution satisfying the positional relationship in an arbitrary cross section of not less than 0.5 μm and not more than 5 μm accounts for 80% or more. The carbide particles are preferably made of at least one of carbides of group 4a, 5a, 6a, and 7a, silicon, and boron, and the nitride particles are at least one of nitrides of group 4a.
Preferably it is a seed. Furthermore, the thermal conductivity is 40W / mk
It is preferable that it is above. It is particularly effective to apply such a silicon nitride sintered body to a sliding member, for example, a bearing ball. In particular, in the case of a bearing ball applied to the rotational drive of an electronic device such as a hard disk drive, a sliding member for an electronic device can prevent static electricity generated due to the rotational drive from being charged more than necessary, and also has a thermal conductivity. Since it is high, it has excellent heat dissipation.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。本発明の窒化珪素焼結体は、導電性付与粒
子として炭化物粒子と窒化物粒子を含有し、焼結体中の
鉄の成分含有量が10ppm以上200ppm以下であり、鉄成分
及び導電性付与粒子の分散状態に関し、鉄成分及び導電
性付与粒子同士の最も近い粒子間距離が0.5μm以上5μ
m以下で、任意の断面でこの位置関係を満たす粒子分布
が80%以上を占めていることとしている。
Embodiments of the present invention will be described below. The silicon nitride sintered body of the present invention contains carbide particles and nitride particles as the conductivity imparting particles, the iron component content in the sintered body is 10 ppm or more and 200 ppm or less, the iron component and the conductivity imparting particles. Regarding the dispersion state, the closest interparticle distance between the iron component and the conductivity-imparting particles is 0.5 μm or more and 5 μm or more.
m, the particle distribution satisfying this positional relationship in an arbitrary cross section accounts for 80% or more.

【0008】鉄成分とは、金属鉄元素、鉄の窒化物や酸
化物などの鉄化合物のすべての鉄成分を示すものであ
る。また、鉄成分及び導電性付与粒子同士の最も近い粒
子間距離とは、鉄成分粒子同士の粒子間距離、導電性付
与粒子同士の粒子間距離、鉄成分粒子と導電性付与粒子
の粒子間距離のすべての粒子間距離の中で最も近い粒子
間距離を示すものである。この焼結体中の鉄成分の含有
量の求め方は、まず、焼結体を微細に粉砕し粉状にした
後にフッ硝酸を加え加圧容器中で180℃で加熱して溶
液にした後に硫酸でフッ酸を洗い落とし、この溶液に対
してICP発光分析を施し求めることが有効である。ま
た、鉄成分および導電性付与粒子の分布状態の求め方
は、焼結体表面もしくは断面に鏡面加工を施し(表面粗
さRaで0.01μm以下)、その表面における単位面積30μ
m×30μm(もしくはそれ以上の面積)をEPMAによ
るカラーマップと走査型電子顕微鏡による2次電子像を
撮り、2つの像の比較から鉄成分及び導電性付与粒子の
分布を特定することが有効である。
[0008] The iron component refers to all iron components of iron compounds such as metallic iron elements and iron nitrides and oxides. The closest distance between the iron component and the conductivity-imparting particles is the distance between the iron component particles, the distance between the conductivity-imparting particles, the distance between the iron component particles and the conductivity-imparting particles. Indicates the closest inter-particle distance among all the inter-particle distances. The method of obtaining the content of the iron component in the sintered body is as follows. First, the sintered body is finely pulverized and powdered, then hydrofluoric nitric acid is added, and the solution is heated at 180 ° C. in a pressurized container to form a solution. It is effective to wash off the hydrofluoric acid with sulfuric acid and to perform ICP emission analysis on the solution. The distribution state of the iron component and the conductivity-imparting particles can be determined by subjecting the surface or section of the sintered body to mirror finishing (0.01 μm or less in surface roughness Ra) and a unit area of 30 μm on the surface.
It is effective to take a color map by EPMA and a secondary electron image by a scanning electron microscope for mx 30 μm (or more area) and specify the distribution of the iron component and the conductivity imparting particles by comparing the two images. is there.

【0009】カラーマップ及び2次電子像撮影について
は倍率2000倍(50μmを10cmで表示)以上が好ましく、
この程度もしくはそれ以上の倍率において窒化珪素焼結
体の表面(もしくは断面)の鏡面部を観察することで粒
子間距離測定のバラツキを小さくすることができる。ま
た、その窒化珪素焼結体中の鉄成分及び導電性付与粒子
の面積を求める上で単位面積30μm×30μmあれば、本
材料中の鉄成分及び導電性付与粒子の分散状態を代表値
として捉えることができることから本発明では単位面積
30μm×30μmを適用した。また、窒化珪素焼結体中の
単位面積30μm×30μm中の鉄成分及び導電性付与粒子
間距離の測定場所については後述する均一混合を用いて
いるのであれば導電性付与粒子が均一混合されているこ
とから簡易的に表面1ヶ所のみの測定であっても問題は
ないが、通常、焼結体の表面または断面の少なくとも計
4ヶ所について任意の場所を、各測定個所のカラーマッ
プ及び2次電子像に対して30μm×30μmに相当する面
積中の粒子分布を測定し、その平均値で示すことが好ま
しい。なお、EPMAカラーマップにて判断するときベ
アリングボールのように球面状をカラーマップにとると
カラーマップの端部が湾曲して写るため正確に表面の凝
集した導電性付与粒子の存在状態を示さないことが考え
られるが単位面積30μm×30μmのように微小な範囲を
撮影する上ではこの問題は考慮しなくても実質的に問題
はない。このような観点からも単位面積は30μm×30μ
m程度が好ましい。
For the color map and the secondary electron image photographing, a magnification of 2000 times or more (50 μm is displayed in 10 cm) or more is preferable.
By observing the mirror surface of the surface (or cross section) of the silicon nitride sintered body at a magnification of this level or more, it is possible to reduce the dispersion of the interparticle distance measurement. In addition, if the unit area is 30 μm × 30 μm in calculating the area of the iron component and the conductivity-imparting particles in the silicon nitride sintered body, the dispersion state of the iron component and the conductivity-imparting particles in the material is regarded as a representative value. In the present invention, the unit area
30 μm × 30 μm was applied. Also, for the measurement location of the distance between the iron component and the conductivity-imparting particles in a unit area of 30 μm × 30 μm in the silicon nitride sintered body, the conductivity-imparting particles are uniformly mixed if uniform mixing described later is used. Therefore, there is no problem even if the measurement is simply performed on only one surface. However, in general, at least four arbitrary locations on the surface or cross section of the sintered body are determined by the color map of each measurement location and the secondary location. It is preferable to measure the particle distribution in an area corresponding to 30 μm × 30 μm with respect to the electronic image and indicate the average value. In addition, when judging from the EPMA color map, when the spherical shape is taken as a color map like a bearing ball, the end of the color map is curved and thus does not accurately show the existence state of the conductive particles which are aggregated on the surface. However, there is practically no problem in taking an image of a minute area such as a unit area of 30 μm × 30 μm without taking this problem into consideration. From this point of view, the unit area is 30μm × 30μ
m is preferable.

【0010】本発明においては、導電性付与粒子として
炭化物粒子および窒化物粒子を含み、鉄成分の含有量は
10ppm以上200ppm以下であるものであり、鉄成分の粒子
径が20μm以下であることが好ましい。また、鉄成分及
び導電性付与粒子同士の最も近い粒子間距離は、0.5μ
m以上5μm以下で、任意の断面でこの位置関係を満た
す粒子分布が80%以上を占めていることが好ましい。
In the present invention, the conductive particles include carbide particles and nitride particles, and the iron component content is
The content is 10 ppm or more and 200 ppm or less, and the particle diameter of the iron component is preferably 20 μm or less. The closest distance between the iron component and the conductivity-imparting particles is 0.5 μm.
It is preferable that the particle distribution satisfying this positional relationship in any cross section having a size of m to 5 μm occupies 80% or more.

【0011】窒化珪素焼結体を構成する窒化珪素結晶粒
子は前述のように絶縁体であることから通常、電気抵抗
値は1010Ω・cm以上である。そのため本発明では電気抵
抗値を所定の値にするために導電性付与粒子を添加して
いる。電気抵抗値を下げることのみに着目すれば導電性
付与粒子を添加するだけで十分であるが、例えば電子機
器用のベアリングボールに適用した場合、個々のベアリ
ングボールの電気抵抗値にバラツキが存在すると静電気
の帯電防止効果にバラツキが生じてしまう。静電気は基
本的に電気抵抗値の高いところ(絶縁性の高いところ)
に帯電することから、静電気の帯電防止効果にバラツキ
が生じてしまうとその中で最も電気抵抗値の高いところ
に静電気が集中してしまい電子機器に静電気による不具
合を生じてしまうこともある。このような現象は回転数
が5,000rpm程度ではさほど問題とはならないが、回転数
が9,000rpm以上の高速回転になると少しずつ確認され始
めている。特に、静電気の帯電による電子機器への不具
合は瞬間的な帯電量によっても影響されるためベアリン
グボールのように複数のボールを組合せて使用する摺動
部材においては個々のベアリングボールの電気抵抗値の
バラツキを無くすことは重要なことである。
Since the silicon nitride crystal particles constituting the silicon nitride sintered body are insulators as described above, the electric resistance value is usually 10 10 Ω · cm or more. Therefore, in the present invention, conductivity imparting particles are added to make the electric resistance value a predetermined value. It is enough to add only the conductivity-imparting particles if focusing only on lowering the electrical resistance value.However, when applied to a bearing ball for an electronic device, for example, if there is variation in the electrical resistance value of each bearing ball, The antistatic effect of static electricity varies. Static electricity is basically where the electrical resistance is high (where insulation is high)
When the antistatic effect of the static electricity varies, the static electricity concentrates on a portion having the highest electric resistance value, which may cause a malfunction in the electronic device due to the static electricity. Such a phenomenon is not so problematic at a rotational speed of about 5,000 rpm, but is gradually being observed at a high rotational speed of 9,000 rpm or more. In particular, malfunctions in electronic devices due to static electricity are also affected by the instantaneous charge amount. Therefore, in a sliding member that uses a combination of multiple balls, such as a bearing ball, the electrical resistance value of each bearing ball is reduced. Eliminating variations is important.

【0012】従って、本発明では導電性付与粒子の均一
分布に加え、導電性に影響を与える鉄成分の含有量及び
大きさと分布を制御することにより摺動特性を劣化させ
ることなく個々の窒化珪素焼結体の電気抵抗値のバラツ
キを改善させるものである。鉄成分の含有量は10pp
m以上200ppm以下であり、鉄成分の粒子径が20
μm以下であることが好ましい。また、鉄成分及び導電
性付与粒子同士の最も近い粒子間距離は、0.5μm以
上5μm以下で、任意の断面でこの位置関係を満たす粒
子分布が80%以上を占めている、このような形態にす
ることにより摺動特性を低下させることなく電気抵抗値
のバラツキを±20%/100個に抑えることができる。
Accordingly, in the present invention, in addition to the uniform distribution of the conductivity-imparting particles, by controlling the content, size and distribution of the iron component that affects the conductivity, individual silicon nitride can be produced without deteriorating the sliding characteristics. This is to improve the variation of the electric resistance value of the sintered body. The content of iron component is 10pp
m to 200 ppm, and the particle diameter of the iron component is 20
It is preferably not more than μm. The closest distance between the iron component and the conductivity-imparting particles is 0.5 μm or more and 5 μm or less, and the particle distribution satisfying this positional relationship occupies 80% or more in an arbitrary cross section. By doing so, the variation in the electric resistance value can be suppressed to ± 20% / 100 without lowering the sliding characteristics.

【0013】鉄成分の含有量が10ppm未満である場
合は、導電性付与粒子の分散状態に依存する電気抵抗値
のバラツキを示すことになり、そのロット間あるいはロ
ット内のバラツキが大きくなる傾向にある。また、この
バラツキを軽減するためには粒度分布の小さい導電性付
与粒子の均質混合処理が必要になり、製造コストが上が
り商業上不利益になる。一方、鉄成分の含有量が200
ppmを超える場合は、電気抵抗値のバラツキを抑えら
れるものの摺動部材として使用すると、欠陥すなわち破
壊起点となるケースが増え、ベアリングボールの様なク
リティカルな用途への適用は信頼性上不可能となる。
When the content of the iron component is less than 10 ppm, the dispersion of the electric resistance value depends on the dispersion state of the conductivity imparting particles, and the dispersion between lots or within the lot tends to increase. is there. In addition, in order to reduce this variation, it is necessary to perform a uniform mixing process of the conductive particles having a small particle size distribution, which increases the production cost and is disadvantageous commercially. On the other hand, when the content of the iron component is 200
If it exceeds ppm, it can suppress the variation of the electric resistance value, but if it is used as a sliding member, the number of defects, that is, the starting point of fracture increases, and it is impossible to apply it to critical applications such as bearing balls in terms of reliability. Become.

【0014】また、鉄成分の最大径が20μmを超える
場合は、欠陥すなわち破壊起点となるケースが増え、ベ
アリングボールの様なクリティカルな用途への適用は信
頼性上不可能となる。従って、鉄成分の最大径は20μ
m以下、さらには2μm以下であることが好ましい。前
述のように窒化珪素焼結体は絶縁体であるから電気抵抗
値を所定の値にするためには鉄成分及び導電性付与粒子
の存在は必要である。しかしながら、鉄成分及び導電性
付与粒子同士の最も近い粒子間距離があまり離れている
分布をとる微構造の場合には電気抵抗値を下げる効果が
十分ではなくなり、ロット間のバラツキも大きくなる。
そのため、鉄成分及び導電性付与粒子同士の粒子間距離
を適度に接近させ、またその分布も均一化させることに
より電気抵抗値を所定の値の範囲内に安定させる(バラ
ツキをなくす)ことが必要であり、鉄成分及び導電性付
与粒子同士の最も近い粒子間距離は好ましくは5μm以
下である。
When the maximum diameter of the iron component exceeds 20 μm, the number of defects, that is, the starting point of fracture increases, and application to critical applications such as bearing balls becomes impossible in terms of reliability. Therefore, the maximum diameter of the iron component is 20μ.
m or less, more preferably 2 μm or less. As described above, since the silicon nitride sintered body is an insulator, the presence of the iron component and the conductivity-imparting particles is necessary to make the electric resistance value a predetermined value. However, in the case of a microstructure having a distribution in which the closest inter-particle distance between the iron component and the conductivity-imparting particles is too large, the effect of lowering the electric resistance value is not sufficient, and the variation between lots increases.
Therefore, it is necessary to stabilize the electric resistance value within a predetermined value range (elimination of variation) by appropriately bringing the distance between the iron component and the particles imparting conductivity to each other and making the distribution uniform. And the closest interparticle distance between the iron component and the conductivity-imparting particles is preferably 5 μm or less.

【0015】一方、鉄成分及び導電性付与粒子同士の粒
子間距離が0.5μm未満になる場合には導電性付与粒
子が過度に凝集しているのと同じことになることから、
電気抵抗値のバラツキは小さくなるものの、この部位が
破壊起点となってしまい強度の低下を招く。また、ベア
リングボールなどの摺動部材においては転がり寿命を低
下させてしまう。
On the other hand, when the distance between the iron component and the conductivity-imparting particles is less than 0.5 μm, it is the same as the fact that the conductivity-imparting particles are excessively aggregated.
Although the variation in the electric resistance value is reduced, this portion serves as a starting point of destruction, resulting in a decrease in strength. Further, the rolling life of a sliding member such as a bearing ball is reduced.

【0016】従って、鉄成分及び導電性付与粒子同士の
最も近い粒子間距離は0.5μm以上5μm以下であ
る。また、このような粒子間距離は、任意の断面でこの
位置関係を満たす粒子分布が80%以上を占めることが
好ましい。このような範囲であれば窒化珪素焼結体の本
来持つ摺動特性を劣化させないで済むと共に、電気抵抗
値のバラツキを±20%/100個とさらに向上させる
ことが可能となる。言い換えれば20%以下は粒子間距
離が0.5μm未満または5μmを超えていてもよいこ
とになるが、特に粒子間距離が0.5μm未満のものは
凝集部となりやすい。そのため凝集部を形成している鉄
成分および/または導電性付与粒子は、その凝集部の最
大径を5μm以下、さらには3μm以下にすることが好
ましい。凝集部の最大径が5μmを超えるとその凝集部
が破壊起点となることから摺動特性を低下させてしま
う。つまり、本発明では窒化珪素焼結体中の導電性付与
粒子同士の粒子間距離に所定の形態を具備させることに
より電気抵抗値のバラツキを抑制し、さらには破壊起点
となる凝集部の大きさを制御したものである。
Therefore, the closest distance between the iron component and the conductive particles is 0.5 μm or more and 5 μm or less. Further, as for such a distance between particles, it is preferable that a particle distribution satisfying the positional relationship in an arbitrary cross section accounts for 80% or more. Within such a range, the inherent sliding characteristics of the silicon nitride sintered body need not be degraded, and the variation in electric resistance can be further improved to ± 20% / 100. In other words, if it is 20% or less, the distance between the particles may be less than 0.5 μm or more than 5 μm, but particularly, the one where the distance between the particles is less than 0.5 μm tends to be an agglomerated portion. Therefore, the iron component and / or the conductivity-imparting particles forming the aggregated portion preferably have a maximum diameter of the aggregated portion of 5 μm or less, more preferably 3 μm or less. If the maximum diameter of the agglomerated portion exceeds 5 μm, the agglomerated portion becomes a fracture starting point, so that the sliding characteristics are deteriorated. That is, in the present invention, the variation in the electric resistance value is suppressed by providing a predetermined form for the distance between the conductivity-imparting particles in the silicon nitride sintered body, and further, the size of the aggregated portion serving as a fracture starting point Is controlled.

【0017】以上のように、鉄成分の含有量が10pp
m以上200ppm以下であって、鉄成分の最大径が2
0μm以下であり、また、鉄成分及び導電性付与粒子に
ついてもあまり粒子間距離が離れてしまうと導電性付与
効果が小さくなってしまうことから、粒子間距離は0.
5μm以上5μm以下で、任意の断面でこの位置関係を
満たす粒子分布が80%以上を占めることが好ましい。
このような導電性付与粒子の分散状態を具備する窒化珪
素焼結体は電気抵抗値を107〜102Ω・cmとなると共に、
電気抵抗値のバラツキを±20%/100個に抑えるこ
とができる。
As described above, when the content of the iron component is 10 pp
m or more and 200 ppm or less, and the maximum diameter of the iron component is 2
0 μm or less, and the effect of imparting conductivity is reduced if the distance between the iron component and the conductivity-imparting particles is too large.
It is preferable that the particle distribution satisfying the positional relationship in any cross section of 5 μm or more and 5 μm or less occupies 80% or more.
The silicon nitride sintered body having the dispersion state of the conductivity imparting particles has an electric resistance of 10 7 to 10 2 Ωcm,
Variation in electric resistance can be suppressed to ± 20% / 100.

【0018】さらに、本発明の窒化珪素焼結体は窒化珪
素焼結体の持つ耐摩耗性や強度の良さをいかせることか
ら摺動部材に適しており、特に電子機器用摺動部材、例
えば電子機器用ベアリングボールに用いることにより回
転駆動に伴う静電気を効率よく発散でき必要以上に帯電
することを抑制することができると共に、優れた摺動特
性を示すことが可能となる。次に、導電性付与粒子の材
質について説明する。導電性付与粒子の材質は窒化珪素
焼結体の電気抵抗値を下げることができる炭化物および
窒化物であれば特に限定されるものではないが、好まし
くは炭化物粒子は4a族,5a族,6a族,7a族元素、珪素、
硼素の炭化物の少なくとも1種以上からなる化合物であ
り、さらに好ましくはタンタル、チタン、ニオブ、タン
グステン、珪素、硼素の炭化物の少なくとも1種以上で
ある。また、窒化物粒子は4a族元素の窒化物の少なくと
も1種である。なお、導電性付与粒子としての窒化物粒
子は窒化珪素焼結体の電気抵抗値を下げる効果を具備す
るものであるから窒化珪素粒子そのものは含まないもの
とする。
Further, the silicon nitride sintered body of the present invention is suitable for a sliding member because the silicon nitride sintered body has good wear resistance and high strength. By using the bearing ball for equipment, the static electricity accompanying the rotational drive can be efficiently dissipated, and it is possible to suppress charging more than necessary, and it is possible to exhibit excellent sliding characteristics. Next, the material of the conductivity-imparting particles will be described. The material of the conductivity-imparting particles is not particularly limited as long as it is a carbide or a nitride capable of lowering the electric resistance value of the silicon nitride sintered body, but preferably, the carbide particles are a 4a group, 5a group, or 6a group. , Group 7a element, silicon,
It is a compound comprising at least one kind of carbide of boron, and more preferably at least one kind of carbide of tantalum, titanium, niobium, tungsten, silicon and boron. Further, the nitride particles are at least one kind of a nitride of a Group 4a element. In addition, since the nitride particles as the conductivity imparting particles have an effect of lowering the electric resistance value of the silicon nitride sintered body, the silicon nitride particles themselves are not included.

【0019】本発明の窒化珪素焼結体は、例えばベアリ
ングボールなどの摺動部材に使用されるため含有する導
電性付与粒子も当然ながら窒化珪素焼結体と共に摺動さ
れる。このため、導電性付与粒子にもある程度の摺動特
性は要求されることから前述の炭化物が好適である。該
炭化物は摺動特性が優れているだけでなく、熱伝導性に
も優れていることから窒化珪素焼結体の熱伝導率を40W/
m・k以上にし易い。
Since the silicon nitride sintered body of the present invention is used for a sliding member such as a bearing ball, the conductivity imparting particles contained therein are naturally slid together with the silicon nitride sintered body. For this reason, the above-mentioned carbides are preferred because the conductivity imparting particles are required to have some sliding properties. The carbide not only has excellent sliding properties, but also has excellent thermal conductivity, so that the thermal conductivity of the silicon nitride sintered body is 40 W /
It is easy to increase to m · k or more.

【0020】また、窒化物粒子は4a族元素の窒化物が好
ましく、特に好ましくは窒化チタンである。4a族元素の
窒化物は導電性付与効果のみではなく焼結助剤としての
効果も得られることから好ましく、特に窒化チタンはそ
の効果が顕著であることから好ましい。さらに4a族元素
の窒化物を分散含有させるときに、4a族元素の酸化物を
含有させ、焼結時に窒化物へと析出させることにより焼
結性を向上させることができる。
The nitride particles are preferably a nitride of a Group 4a element, particularly preferably titanium nitride. A nitride of a Group 4a element is preferable because not only the effect of imparting conductivity but also an effect as a sintering aid can be obtained, and titanium nitride is particularly preferable because the effect is remarkable. Further, when the nitride of the group 4a element is dispersed and contained, the oxide of the group 4a element is contained and the sinterability can be improved by precipitating the oxide into the nitride at the time of sintering.

【0021】炭化物粒子および窒化物粒子の含有量は所
定量の凝集部を含有しているのであれば特に限定される
ものではないが、炭化物粒子は10wt%以上35wt%以下、窒
化物粒子は0.1wt%以上5wt%以下である。前述のように炭
化物粒子は摺動特性に優れていることから10wt%以上35w
t%以下含有させても窒化珪素焼結体の強度や摺動特性を
必要以上に低下させることはないが、窒化物粒子自体は
比較的強度が弱く脆性材料であることから5wt%を超えて
含有させると窒化珪素焼結体の強度および摺動特性を低
下させてしまう。窒化珪素焼結体中に存在する導電性付
与粒子の最大径2μm以下、好ましくは0.3〜1.2μmで
ある。本発明の導電性付与粒子の最大径とは個々の導電
性付与粒子のサイズであり、窒化珪素焼結体の表面鏡面
部のEPMAにおけるカラーマップを見たときの導電性
付与粒子粒子の最も長い対角線を最大径とする。
The contents of the carbide particles and the nitride particles are not particularly limited as long as they contain a predetermined amount of agglomerated parts, but the content of the carbide particles is 10 wt% to 35 wt% and the content of the nitride particles is 0.1 wt% or less. It is not less than wt% and not more than 5 wt%. As described above, carbide particles have excellent sliding properties, so 10wt% or more and 35w
Even if the content is less than 5% by weight, the strength and sliding characteristics of the silicon nitride sintered body will not be unnecessarily reduced.However, since the nitride particles themselves are relatively weak and brittle, they exceed 5% by weight. If it is contained, the strength and the sliding characteristics of the silicon nitride sintered body are reduced. The maximum diameter of the conductive particles present in the silicon nitride sintered body is 2 μm or less, preferably 0.3 to 1.2 μm. The maximum diameter of the conductivity-imparting particles of the present invention is the size of the individual conductivity-imparting particles, the longest of the conductivity-imparting particles when looking at the color map in EPMA of the surface mirror portion of the silicon nitride sintered body The diagonal is the maximum diameter.

【0022】また、炭化物粒子の平均粒径と窒化物粒子
の平均粒径を比較した場合、炭化物粒子の平均粒径≦窒
化物粒子の平均粒径であることが好ましい。具体的に
は、炭化物粒子の平均粒径は0.3μm以上1μm以下、窒
化物粒子の平均粒径は1μm以上2μm以下であることが
好ましい。炭化物粒子は窒化物粒子と比べて多く含有さ
せることから凝集しやすいことから、粒径を窒化物粒子
より小さくすることにより必要以上に凝集することを防
ぐ必要がある。
When comparing the average particle size of the carbide particles with the average particle size of the nitride particles, it is preferable that the average particle size of the carbide particles ≦ the average particle size of the nitride particles. Specifically, the average particle diameter of the carbide particles is preferably 0.3 μm or more and 1 μm or less, and the average particle diameter of the nitride particles is preferably 1 μm or more and 2 μm or less. Since carbide particles are contained more than nitride particles, they tend to aggregate. Therefore, it is necessary to prevent the particles from agglomerating more than necessary by making the particle diameter smaller than that of nitride particles.

【0023】このような形態を示す窒化珪素焼結体の電
気抵抗値が102Ω・cm以上107Ω・cmである。本発明の窒
化珪素焼結体は特に用途が限定されるものではないが、
ハードディスクドライブなどの電子機器を回転駆動させ
るためのモータ機器に具備される摺動部材、例えばベア
リングボールに用いることが最適である。このとき電気
抵抗値が107Ω・cmを超えるようであるとベアリングボ
ールの摺動時に発生する静電気の帯電を効率よく防ぐこ
とが難しく、逆に102Ω・cm未満であると静電気の帯電
を防ぐことは可能であるものの窒化珪素焼結体中に導電
性付与粒子が大量に添加されている状態となり易くなる
ため窒化珪素焼結体が本来持つ耐摩耗性や強度の良さを
十分いかせなくなるのであまり好ましくはない。
The electric resistance of the silicon nitride sintered body having such a form is 10 2 Ω · cm or more and 10 7 Ω · cm. The use of the silicon nitride sintered body of the present invention is not particularly limited,
It is optimally used for a sliding member, for example, a bearing ball provided in a motor device for rotatingly driving an electronic device such as a hard disk drive. At this time, if the electric resistance value exceeds 10 7 Ω · cm, it is difficult to efficiently prevent electrostatic charge generated when the bearing ball slides, and if the electric resistance value is less than 10 2 Ω · cm, the electrostatic charge becomes smaller. Although it is possible to prevent the silicon nitride sintered body from being easily added to the silicon nitride sintered body in a state where a large amount of the conductivity-imparting particles are added to the silicon nitride sintered body, the silicon nitride sintered body has sufficient inherent wear resistance and strength. It is not so preferable because it disappears.

【0024】また、本発明の窒化珪素焼結体は導電性付
与粒子を添加していることから熱伝導率40W/m・k以上と
向上させることができる。本発明の窒化珪素焼結体は、
主として電子機器用摺動部材に用いるものである。電子
機器は、例えば半導体装置用基板を見て分かる通り、熱
の問題は非常に重要である。このため、電子機器用の摺
動部材であっても放熱性に優れていることは重要であ
る。特に、ハードディスク等の電子機器の回転駆動に用
いるベアリングボールを熱伝導率が40W/m・k以上と放熱
性に優れた本発明の窒化珪素焼結体で形成すると、前述
の静電気の帯電を防止するだけでなく、回転駆動に伴う
摩擦熱をも効率よく発散できるようになり、静電気の帯
電防止および放熱性の両方の効果を得ることができる。
ベアリング部材の場合、回転軸およびボール受け部は軸
受鋼等の金属部材で形成されていることが多く、摺動時
の熱による変形等の問題は起き易い。特に電子機器にお
いては回転速度が8,000rpm以上、さらには10,000rpm以
上と高速回転化していく傾向にあり、従来より放熱性の
問題は起き易くなっている。従って、熱伝導率の高い本
発明の窒化珪素焼結体を用いたベアリングボールは電子
機器に適しており、特に回転軸およびボール受け部が軸
受鋼等の金属部材からなるベアリング部材に最適である
と言える。
In addition, since the silicon nitride sintered body of the present invention contains particles for imparting conductivity, the thermal conductivity can be improved to 40 W / m · k or more. The silicon nitride sintered body of the present invention,
It is mainly used for sliding members for electronic equipment. In an electronic device, for example, as can be seen from a semiconductor device substrate, the problem of heat is very important. For this reason, it is important that even a sliding member for an electronic device has excellent heat dissipation. In particular, when the bearing balls used for the rotational drive of electronic devices such as hard disks are formed of the silicon nitride sintered body of the present invention, which has a heat conductivity of 40 W / m.k or more and excellent heat dissipation, the aforementioned electrostatic charge is prevented. In addition to this, it is possible to efficiently dissipate the frictional heat associated with the rotational drive, and it is possible to obtain both the effects of preventing static electricity and dissipating heat.
In the case of a bearing member, the rotating shaft and the ball receiving portion are often formed of a metal member such as bearing steel, and problems such as deformation due to heat during sliding are likely to occur. In particular, electronic devices tend to rotate at a high speed of 8,000 rpm or more, and even 10,000 rpm or more, and the problem of heat dissipation is more likely to occur than in the past. Therefore, a bearing ball using the silicon nitride sintered body of the present invention having a high thermal conductivity is suitable for electronic equipment, and is particularly suitable for a bearing member in which a rotating shaft and a ball receiving portion are made of a metal member such as bearing steel. It can be said.

【0025】さらに、ベアリングボールの直径が3mm
以下、さらには2mm以下であることが好ましい。本発
明の窒化珪素焼結体は、熱伝導率が40W/m・k以上と高い
が、回転軸等を構成する金属部材と比較すると熱伝導率
という点では劣ってしまう。そのため、放熱性という観
点では窒化珪素製ベアリングボールは熱抵抗体となって
しまうことから、直径が3mm以下、さらには2mm以下
と小さくすることによりベアリング部材としての熱抵抗
を下げることができる。
Further, the diameter of the bearing ball is 3 mm
Hereafter, it is more preferably 2 mm or less. The silicon nitride sintered body of the present invention has a high thermal conductivity of 40 W / m · k or more, but is inferior in terms of thermal conductivity as compared with a metal member constituting a rotating shaft or the like. Therefore, from the viewpoint of heat dissipation, the bearing ball made of silicon nitride becomes a thermal resistor, so that the thermal resistance as a bearing member can be reduced by reducing the diameter to 3 mm or less, and further to 2 mm or less.

【0026】なお、ここまでは主に導電性付与粒子につ
いて説明してきたが本発明においては他の成分、例えば
焼結助剤を添加してよいことは言うまでもない。焼結助
剤としては一般的に使用されているものでよく、酸化イ
ットリウム等の希土類化合物、酸化マグネシウム等の金
属酸化物が好適である。また、酸化アルミニウムや窒化
アルミニウム等のアルミニウム化合物などを併用しても
よい。添加量としては特に限定されるものではないが3w
t%以上20wt%以下が好ましい。
Although the description has mainly been given of the conductivity-imparting particles, it goes without saying that other components such as a sintering aid may be added in the present invention. As the sintering aid, those generally used may be used, and rare earth compounds such as yttrium oxide and metal oxides such as magnesium oxide are preferable. Further, an aluminum compound such as aluminum oxide or aluminum nitride may be used in combination. The amount of addition is not particularly limited, but 3w
It is preferably at least t% and at most 20 wt%.

【0027】次に製造方法について説明する。製造方法
は鉄成分及び導電性付与粒子の分散状態に関し、鉄成分
の含有量が10ppm以上200ppm以下であり、分
布している鉄の粒子径が20μm以下であって、鉄成分
及び導電性付与粒子同士の最も近い粒子間距離が0.5
μm以上5μm以下であれば特に限定されるものではな
いが、例えば次のような方法がある。
Next, the manufacturing method will be described. The production method relates to the dispersion state of the iron component and the conductivity-imparting particles, wherein the content of the iron component is 10 ppm or more and 200 ppm or less, the particle diameter of the distributed iron is 20 μm or less, and the iron component and the conductivity-imparting particles are dispersed. The closest distance between particles is 0.5
There is no particular limitation as long as it is not less than μm and not more than 5 μm. For example, the following method is available.

【0028】まず、窒化珪素粉末、焼結助剤、導電性付
与粒子粉末を所定量均一混合した後、造粒、除鉄、成
形、脱脂、焼結する方法である。特に、導電性付与粒子
粉末の均一混合と原料および原料処理工程中より生じる
鉄成分の過度の混入を防ぐことが重要である。そのため
例えば、各原料粉中の鉄成分量を管理し必要以上に含有
させないことが重要である。また、鉄成分量が少ない場
合は所定量添加するなどの処理も必要である。また、鉄
成分および導電性付与粒子の粒子間距離を所定の相対に
するために、窒化珪素中に導電性付与粒子が均一分散で
きる様予め造粒し、所定の分散状態を満たすように必要
量秤量した後に、窒化珪素粉末及び焼結助剤が含まれる
スラリー中に添加し、所定時間混合する方法がある。
First, a predetermined amount of a silicon nitride powder, a sintering aid, and a conductivity imparting particle powder are uniformly mixed, followed by granulation, iron removal, molding, degreasing, and sintering. In particular, it is important to uniformly mix the conductivity-imparting particles and prevent excessive mixing of raw materials and iron components generated during the raw material processing step. Therefore, for example, it is important that the amount of iron component in each raw material powder be controlled and not contained more than necessary. When the amount of iron component is small, a treatment such as adding a predetermined amount is also required. In addition, in order to make the interparticle distance between the iron component and the conductivity-imparting particles a predetermined relative value, granulation is performed in advance so that the conductivity-imparting particles can be uniformly dispersed in silicon nitride, and a necessary amount is satisfied so as to satisfy a predetermined dispersion state. After weighing, there is a method of adding to a slurry containing silicon nitride powder and a sintering aid and mixing for a predetermined time.

【0029】添加混合する際に、均一分散を達成するた
めに例えば次のような方法が有効である。まず、1ロッ
ト分の原料粉末を混合するにあたり、各原料粉末をそれ
ぞれ2分割以上、好ましくは3から5分割して比較的少
量ずつ混合したものを最終的に1つに混ぜ合わせる方法
である。また、上記の処理によって得られたスラリーに
スプレー造粒処理を施し、得られた造粒粉に対して、乾
式除鉄を施し、粉末中に含まれる鉄分を望ましい量にな
るまで除去する方法がある。マグネットローターが一定
の間隔で対向した隙間に造粒粉を流し込み、対向点を結
ぶ空間の磁界が例えば10000ガウス以上30000
ガウス以下程度になる電流・電圧をローターにかけ、こ
の強磁界中で鉄分を除去する。必要に応じて、粉末中に
含まれる鉄成分が望ましい量になるまで、この処理を繰
り返し施こす。特に磁界による鉄成分の除去は最大径が
大きい鉄成分を積極的に除去できるので効果的である。
At the time of addition and mixing, for example, the following method is effective in achieving uniform dispersion. First, when mixing the raw material powder for one lot, each raw material powder is divided into two or more parts, preferably three to five parts, and a relatively small amount is mixed and finally mixed together. Further, there is a method of subjecting the slurry obtained by the above treatment to spray granulation treatment, subjecting the obtained granulated powder to dry iron removal, and removing iron contained in the powder until a desired amount is obtained. is there. The granulated powder is poured into gaps opposed by the magnet rotor at regular intervals, and the magnetic field in the space connecting the opposed points is, for example, 10,000 gauss or more and 30,000 gauss.
The rotor is applied with a current or voltage that is about Gauss or less, and iron is removed in this strong magnetic field. If necessary, this process is repeated until the iron content in the powder reaches a desired amount. In particular, the removal of the iron component by the magnetic field is effective because the iron component having a large maximum diameter can be positively removed.

【0030】このような方法によって粉末を生成すれば
鉄成分の含有量、粒子径および粒子間距離を制御するこ
とができるので、鉄成分の含有量が10ppm以上20
0ppm以下、鉄成分の粒子径が20μm以下で、鉄成
分及び導電性付与粒子同士の最も近い粒子間距離を0.
5μm以上5μm以下にすることが可能となる。
If the powder is produced by such a method, the content of the iron component, the particle diameter and the distance between the particles can be controlled, so that the content of the iron component is 10 ppm to 20 ppm.
0 ppm or less, the particle diameter of the iron component is 20 μm or less, and the closest interparticle distance between the iron component and the conductivity-imparting particles is 0.
The thickness can be set to 5 μm or more and 5 μm or less.

【0031】各原料粉末の大きさは特に限定されるもの
ではないが、窒化珪素粉末の平均粒径は0.2μm以上3μ
m以下、焼結助剤は平均粒径2μm以下が好ましい。ま
た、導電性付与粒子粉末のサイズは平均粒径3μm以
下、好ましくは0.2μm以上2μm以下である。導電性付
与粒子粒子が0.2μm未満であるとベアリングボールに
適用した場合、表面加工時または摺動時に表面から脱粒
し易くなる。一方、3μmを超えるとわずかな凝集だけ
で最大径が5μmを超えてしまうので好ましくない。さ
らには前述の最大径を制御し易いように平均粒径のバラ
ツキが少ない例えば標準偏差1.5μm以下の粉末を用い
ることが好ましい。
Although the size of each raw material powder is not particularly limited, the average particle size of the silicon nitride powder is not less than 0.2 μm and not more than 3 μm.
m or less, and the average particle size of the sintering aid is preferably 2 μm or less. The size of the conductive particles is 3 μm or less in average particle size, preferably 0.2 μm or more and 2 μm or less. When the conductivity-imparting particles are less than 0.2 μm, when the particles are applied to a bearing ball, the particles easily fall off the surface during surface processing or sliding. On the other hand, if it exceeds 3 μm, the maximum diameter will exceed 5 μm with only slight aggregation, which is not preferable. Further, it is preferable to use a powder having a small variation in the average particle diameter, for example, a standard deviation of 1.5 μm or less so that the above-mentioned maximum diameter can be easily controlled.

【0032】さらにベアリングボールとしての摺動特性
を損なわないためには前記サイズを満たしていたとして
も導電性付与粒子粉末としてウイスカーや繊維を用いる
ことは好ましくはなく、粒子状粉末を用いることが望ま
しい。ウイスカーや繊維は、その形状から表面にトゲの
ような凸部を有しておりベアリングボールの表面にこの
ようなものが存在していた場合耐摩耗性を劣化させてし
まう。
Further, in order not to impair the sliding characteristics as a bearing ball, it is not preferable to use whiskers or fibers as the conductivity-imparting particle powder even if the above-mentioned size is satisfied, and it is desirable to use a particulate powder. . Whiskers and fibers have projections such as thorns on the surface due to their shapes, and if such objects are present on the surface of the bearing ball, the wear resistance is degraded.

【0033】成形方法については、窒化珪素製焼結体ま
たはベアリングボールを製造するための方法が適用可能
である。従って、通常の成形方法や静水圧成形(CI
P)などが適用可能であり、ベアリングボールを製造す
る際は静水圧成形が好適である。焼結方法についても窒
化珪素製焼結体並びにベアリングボールを製造するため
の方法が適用可能である。従って、常圧焼結、加圧焼
結、熱間静水圧プレス(HIP)焼結が適用可能であ
り、ベアリングボールを製造する際は常圧焼結または加
圧焼結を行った後にHIP焼結を行うことが好ましい。
以上のような工程を経た後、ベアリングボールとして使
用する場合はJIS規格で定められた表面粗さを得るため
の表面研磨加工を施す。
As a molding method, a method for producing a sintered body made of silicon nitride or a bearing ball can be applied. Therefore, normal molding methods and hydrostatic molding (CI
P) and the like can be applied, and hydrostatic molding is preferable when manufacturing a bearing ball. Regarding the sintering method, a method for manufacturing a sintered body made of silicon nitride and a bearing ball can be applied. Therefore, normal pressure sintering, pressure sintering, and hot isostatic pressing (HIP) sintering can be applied. When manufacturing bearing balls, normal pressure sintering or pressure sintering is performed and then HIP sintering is performed. It is preferable to carry out knotting.
After the above steps, when used as a bearing ball, the surface is polished to obtain the surface roughness specified by the JIS standard.

【0034】[0034]

【実施例】(実施例1〜4、比較例1〜2、参考例1)
導電性付与粒子粉末として平均粒径0.7μm以下(標準
偏差1.3μm以下)の炭化珪素粉末を20wt%、平均粒径0.
9μm(標準偏差1.5μm以下)の酸化チタン粉末を1wt
%、焼結助剤として平均粒径0.8μmの酸化イットリウム
粉末を5wt%、平均粒径0.9μmの酸化アルミニウム粉末
を4wt%、残部平均粒径0.7μmの窒化珪素粉末を用意し
た。各原料粉をそれぞれ3分割して混合して3つの混合粉
末を得た後に、この3つの混合粉末を合せて混合して混
合原料粉末を製造することにより混合原料粉末スラリー
を用意した。次に、混合原料粉スラリーを10000ガ
ウス以上30000ガウス以下の磁界中で処理し、鉄成
分量を変えた混合原料粉末を調整した。このとき混合原
料粉末中の鉄成分量は10ppm以上100ppm以下の範囲であ
ったので、必要に応じ金属鉄を添加して表1に示す鉄成
分量の窒化珪素焼結体を得るための混合原料粉末を調整
した。この混合原料粉末をCIP法により成形し、不活性
雰囲気中1600℃以上1900℃以下の常圧焼結、続いて1600
℃以上1900℃以下の温度でHIP焼結を行い表1に示した
窒化珪素焼結体を作製した。
Examples (Examples 1-4, Comparative Examples 1-2, Reference Example 1)
20 wt% of silicon carbide powder having an average particle diameter of 0.7 μm or less (standard deviation of 1.3 μm or less) as the conductivity-imparting particle powder, and an average particle diameter of 0.
1wt of 9μm (standard deviation 1.5μm or less) titanium oxide powder
%, Yttrium oxide powder having an average particle diameter of 0.8 μm was 5 wt%, aluminum oxide powder having an average particle diameter of 0.9 μm was 4 wt%, and silicon nitride powder having an average particle diameter of 0.7 μm was prepared as a sintering aid. Each raw material powder was divided into three parts and mixed to obtain three mixed powders, and then the three mixed powders were combined and mixed to produce a mixed raw material powder, thereby preparing a mixed raw material powder slurry. Next, the mixed raw material powder slurry was treated in a magnetic field of 10,000 gauss to 30,000 gauss to prepare a mixed raw material powder in which the amount of the iron component was changed. At this time, the amount of the iron component in the mixed raw material powder was in the range of 10 ppm or more and 100 ppm or less. Therefore, the mixed raw material for obtaining the silicon nitride sintered body having the iron component amount shown in Table 1 by adding metallic iron as necessary. The powder was prepared. This mixed raw material powder was molded by the CIP method, and sintered under normal pressure at 1600 ° C. or more and 1900 ° C. or less in an inert atmosphere.
HIP sintering was performed at a temperature of not less than 1900 ° C. and a silicon nitride sintered body shown in Table 1 was produced.

【0035】なお、各実施例はサイズ3×4×40mmの四角
柱状の試料とし、さらにJIS規格で認定されたベアリン
グボールのグレード3に相当する表面研磨加工を施した
ものとする。また、鉄成分および導電性付与粒子同士の
最も近い粒子間距離はいずれも0.5μm以上5μm以
下であった。このような各実施例に対し、電気抵抗値、
電気抵抗値のバラツキ、3点曲げ強度(室温)、熱伝導
率を測定した結果を併せて表1に示した。電気抵抗値は
各試料の上下をラップ加工し同一平面上に2ヶ所電極を
設置し、室温にてその間の抵抗を絶縁抵抗計で測定し
た。熱伝導率は試料を3×3×10mmに追加加工したものを
用いレーザーフレッシュ法により測定した。各測定にお
いては各実施例にかかる試料を100個用意し、その平均
値にて示した。また、電気抵抗値のバラツキについては
平均値に対して最も差の大きかった電気抵抗値を平均値
に対する差としてパーセント(%)で表示した。なお、
各測定値において、本実施例では便宜的に試料形状を四
角柱状としたが、例えば真球状のベアリングボールにつ
いて各特性を測定する場合でも同様にラップ加工を施す
ことにより対応可能である。
In each of the examples, a square column-shaped sample having a size of 3 × 4 × 40 mm was used, and a surface polishing process equivalent to grade 3 of a bearing ball certified by the JIS standard was performed. The closest distance between the iron component and the conductivity-imparting particles was 0.5 μm or more and 5 μm or less. For each such embodiment, the electrical resistance,
Table 1 also shows the results of measuring the variation of the electric resistance value, the three-point bending strength (room temperature), and the thermal conductivity. The electric resistance value was obtained by lapping the top and bottom of each sample, placing two electrodes on the same plane, and measuring the resistance between them at room temperature with an insulation resistance meter. The thermal conductivity was measured by a laser fresh method using a sample which was additionally processed to 3 × 3 × 10 mm. In each measurement, 100 samples according to each example were prepared, and the average value was shown. Regarding the variation of the electric resistance value, the electric resistance value having the largest difference with respect to the average value was expressed as a percentage (%) as the difference with respect to the average value. In addition,
In the present embodiment, the sample shape is a quadratic prism shape for convenience in each measurement value. However, for example, even when measuring each characteristic of a true spherical bearing ball, it can be dealt with by lapping similarly.

【0036】また、各窒化珪素焼結体中の導電性付与粒
子の凝集部の面積率の測定は、各試料を表面粗さRaが0.
01μm以下まで研磨加工を施し研磨面の表面の任意の4
ヶ所(単位面積30μm×30μmに相当する任意の面積)
を選び、各測定個所のカラーマップ(倍率2000倍)を使
用した。比較のために鉄成分の量を過量にしたものを比
較例1として用意した。また、導電性付与粒子を全く添
加しないこと以外は実施例と同様の窒化珪素焼結体を比
較例2とした。
The area ratio of the agglomerated portion of the conductivity-imparting particles in each silicon nitride sintered body was measured by measuring the surface roughness Ra of each sample to 0.
Polishing to less than 01μm and any 4 on the polished surface
Places (arbitrary area equivalent to unit area 30μm × 30μm)
Was selected, and the color map of each measurement location (magnification: 2000 times) was used. For comparison, a sample in which the amount of the iron component was excessive was prepared as Comparative Example 1. Further, a silicon nitride sintered body similar to that of the example except that no conductivity-imparting particles were added was used as comparative example 2.

【0037】[0037]

【表1】 [Table 1]

【0038】表1から分かる通り、本発明の窒化珪素焼
結体は電気抵抗値が107〜102Ω・cmの範囲において3点
曲げ強度は1000MPa以上、熱伝導率は40W/m・k以上であ
ることが分かった。それに対して、比較例1は鉄成分量
が多いことから電気抵抗値のバラツキは小さいものの強
度は低下してしまった。一方、導電性付与粒子を添加し
ない比較例2は電気抵抗値が1010Ω・cm以上であり、熱
伝導性も悪かった。なお、実施例1〜4の窒化珪素焼結
体中の鉄成分および導電性付与粒子同士の最も近い粒子
間距離が0.5μm以上5μm以下のものはいずれも8
0%以上存在していた。また、粒子間距離が0.5μm
以下のものは5%以上15%以下程度であり、凝集部の
最大径はいずれも3μm以下であった。それに対し、比
較例1のものは60%程度であり、しかも粒子間距離
0.5μm未満のものは20%程度あり、凝集部の最大
径は5μmを超えているものもあった。このような電気
抵抗値等の特性を持つ窒化珪素焼結体は後述するハード
ディスクドライブ等の電子機器用ベアリングボールに用
いると静電気による不具合を無くすことが可能となる。
As can be seen from Table 1, the silicon nitride sintered body of the present invention has a three-point bending strength of 1000 MPa or more and a thermal conductivity of 40 W / m · k in an electric resistance value of 10 7 to 10 2 Ω · cm. It turns out that it is above. On the other hand, in Comparative Example 1, since the iron component amount was large, the variation in the electric resistance value was small, but the strength was reduced. On the other hand, Comparative Example 2 in which no conductivity-imparting particles were added had an electric resistance value of 10 10 Ω · cm or more, and poor thermal conductivity. The iron component in the silicon nitride sintered bodies of Examples 1 to 4 and the one in which the closest interparticle distance between the conductivity imparting particles was 0.5 μm or more and 5 μm or less were all 8
More than 0% was present. In addition, the distance between particles is 0.5 μm
The followings were about 5% or more and about 15% or less, and the maximum diameter of the aggregated part was 3 μm or less in each case. On the other hand, those of Comparative Example 1 were about 60%, those having a distance between particles of less than 0.5 μm were about 20%, and those having a maximum diameter of the aggregated part of more than 5 μm. When the silicon nitride sintered body having such characteristics as the electric resistance value is used for a bearing ball for an electronic device such as a hard disk drive to be described later, it is possible to eliminate problems caused by static electricity.

【0039】(実施例5〜8、比較例4〜6、参考例
2)次に、実施例1と同様の製造工程により電気抵抗値
および鉄成分の割合を変えた窒化珪素焼結体からなる直
径2mmのベアリングボールを作製した。各ベアリングボ
ールは表面研磨をグレード3のものとした。各ベアリン
グボールをハードディスクドライブを回転駆動させるた
めのスピンドルモータのベアリング部材に10個一組に
して組込んだ。なお、その他のベアリング部材として、
軸受鋼SUJ2製の回転軸部並びにボール受け部を用いた。
該モータを回転速度8,000rpmと11,000rpmで200時間連続
稼動させたときの静電気による不具合の有無を調べた。
静電気による不具合とは、200時間の連続稼動後にハー
ドディスクドライブが通常通り可動するか否かにより判
定した。なお、各静電気による不具合の有無はハードデ
ィスクドライブを各100台用意し測定を行った。比較の
ために比較例1の窒化珪素焼結体を持ちいたものを比較
例4、比較例2の窒化珪素焼結体を用いたものを比較例
5、電気抵抗値を小さくしたものを比較例6として同様
の測定を行った。その結果を表2に示す。
(Examples 5 to 8, Comparative Examples 4 and 6, Reference Example 2) Next, a silicon nitride sintered body having the same electrical resistance value and different iron component ratios in the same manufacturing process as in Example 1 is used. A bearing ball having a diameter of 2 mm was produced. Each bearing ball had a surface polished grade 3. Each bearing ball was assembled into a set of ten bearing balls in a bearing member of a spindle motor for rotating a hard disk drive. In addition, as other bearing members,
A rotating shaft and a ball bearing made of bearing steel SUJ2 were used.
When the motor was continuously operated at a rotation speed of 8,000 rpm and 11,000 rpm for 200 hours, the presence or absence of a defect due to static electricity was examined.
The malfunction due to static electricity was determined based on whether or not the hard disk drive normally operated after 200 hours of continuous operation. The presence or absence of a defect due to each static electricity was measured by preparing 100 hard disk drives each. For comparison, those having the silicon nitride sintered body of Comparative Example 1 were Comparative Example 4, those using the silicon nitride sintered body of Comparative Example 2 were Comparative Example 5, and those having a reduced electric resistance were Comparative Examples. 6 and the same measurement was performed. Table 2 shows the results.

【0040】[0040]

【表2】 [Table 2]

【0041】表2から分かる通り、本実施例にかかるベ
アリングボールを用いたものは静電気による不具合がな
いことが分かった。それに対し、比較例5は電気抵抗値
が本発明より非情に高いことから静電気による不具合を
発祥してしまった(100台中3台)。また、比較例4
は静電気による不具合は発生しなかったが、ベアリング
ボールの強度が不十分であることから200時間後のベア
リングボールには若干の破損が確認され、あまり長時間
の稼動には向かないことが確認された。これは鉄成分の
割合が多すぎたことためで、その鉄成分が破壊起点にな
ってしまったものであると考えられる。また、比較例6
のものは8,000rpm程度の回転速度では静電気による不具
合は確認されなかったが、11,000rpmではハードディス
クドライブが完全に停止していないものの若干の不具合
を示すもの(100台中1台)が確認されたので「やや
あり」と表記した。これは、電気抵抗値のバラツキが大
きいため電気抵抗値の最も大きなベアリングボールに静
電気が瞬間的に集中してしまったためであると考えられ
る。また、比較例4同様に200時間後にはベアリング
ボールの破損が確認され長時間の摺動には向かないこと
が分かった。
As can be seen from Table 2, it was found that the one using the bearing ball according to the present embodiment did not have any trouble due to static electricity. On the other hand, in Comparative Example 5, since the electric resistance value was relentlessly higher than that of the present invention, a problem caused by static electricity originated (3 out of 100 units). Comparative Example 4
Did not cause any troubles due to static electricity, but the bearing balls were not sufficiently strong due to insufficient strength of the bearing balls after 200 hours. Was. This is considered to be because the ratio of the iron component was too large, and the iron component became a fracture starting point. Comparative Example 6
At 8,000 rpm, no malfunction was detected due to static electricity, but at 11,000 rpm, hard disk drives were not completely stopped, but some malfunctions (one out of 100) were confirmed. It is described as "somewhat." It is considered that this is because static electricity instantaneously concentrated on the bearing ball having the largest electric resistance value because the electric resistance value varied widely. Further, similarly to Comparative Example 4, the damage of the bearing ball was confirmed after 200 hours, and it was found that the bearing ball was not suitable for long-time sliding.

【0042】(実施例9〜13、比較例7〜9)次に、
実施例5〜8および比較例4〜6のベアリングボールを
用いベアリングボールの転がり寿命の測定を行った。な
お、本実施例にかかるベアリングボールは鉄成分および
導電性付与粒子の凝集部の最大径はいずれも5μm以下
であった。また、比較例4のベアリングボールを用いた
比較例7の鉄成分および導電性付与粒子の凝集部の最大
径は9μmであり、比較例6のベアリングボールを用い
た比較例9の鉄成分および導電性付与粒子の凝集部の最
大径は23μmであった。転がり寿命の測定に関しては、
スラスト型軸受試験機を用い、相手材としてSUJ2鋼製の
平板上を回転させる方法で荷重は一球あたり最大接触応
力5.9GPa、回転数1200rpm、タービン油の油浴潤滑条件
下で最高400時間まで行いベアリングボールの表面が剥
離するまでの時間を測定した。その結果を表3に示す。
(Examples 9 to 13, Comparative Examples 7 to 9)
The rolling life of the bearing balls was measured using the bearing balls of Examples 5 to 8 and Comparative Examples 4 and 6. In the bearing ball according to this example, the maximum diameter of the agglomerated portion of the iron component and the conductivity-imparting particles was 5 μm or less. The maximum diameter of the agglomerated portion of the iron component and the conductivity-imparting particles of Comparative Example 7 using the bearing ball of Comparative Example 4 was 9 μm, and the iron component and the conductive material of Comparative Example 9 using the bearing ball of Comparative Example 6. The maximum diameter of the aggregation portion of the property imparting particles was 23 μm. Regarding the measurement of rolling life,
Using a thrust type bearing tester and rotating on a SUJ2 steel plate as the mating material, the load is up to 400 hours under the conditions of maximum contact stress of 5.9 GPa per ball, rotational speed of 1200 rpm, and oil bath lubrication conditions of turbine oil The time required for the surface of the bearing ball to peel was measured. Table 3 shows the results.

【0043】[0043]

【表3】 [Table 3]

【0044】表3から分かる通り、本実施例にかかるベ
アリングボールにおいて鉄成分が本発明の範囲内のもの
は導電性付与粒子のを添加していない比較例8と同等の
優れた転がり寿命を示すことが分かった。それに対し、
比較例7および比較例9のように本発明の範囲外になる
と摺動特性は劣化することが分かった。これは、結果と
して窒化珪素マトリックス中に鉄成分または導電性付与
粒子が多くなりすぎてしまい窒化珪素焼結体の持つ摺動
特性の良さをいかせなくなってしまっためであると言え
る。また、鉄成分および導電性付与粒子の凝集部の最大
径が5μmを超えているため凝集部が破壊起点となって
しまったものと考える。
As can be seen from Table 3, in the bearing balls according to the present example, those having an iron component within the range of the present invention exhibit excellent rolling life equivalent to that of Comparative Example 8 in which no conductive particles were added. I understood that. For it,
As in Comparative Examples 7 and 9, it was found that the sliding characteristics were degraded outside the range of the present invention. It can be said that as a result, the iron component or the conductivity-imparting particles become too large in the silicon nitride matrix, and the good sliding characteristics of the silicon nitride sintered body cannot be maintained. In addition, it is considered that since the maximum diameter of the aggregated portion of the iron component and the conductivity-imparting particles exceeds 5 μm, the aggregated portion has become a fracture starting point.

【0045】(実施例13〜14、比較例10)鉄成分
の粒子径の影響を調べるため、鉄成分の粒子径を変えた
以外は実施例11と同様のベアリングボールを用意し
た。各ベアリングボールに対し、実施例11と同様の転
がり寿命試験を行った。また、併せて圧砕強度、3点曲
げ強度(室温)の測定も行った。圧砕強度の測定は、旧
JIS規格B1501に準じた測定法により、インストロン型試
験機で圧縮加重をかけ、破壊時の荷重を測定することに
より対応した。その結果を表4に示す。
Examples 13 and 14 and Comparative Example 10 In order to investigate the effect of the particle diameter of the iron component, the same bearing balls as in Example 11 were prepared except that the particle diameter of the iron component was changed. The same rolling life test as in Example 11 was performed on each bearing ball. In addition, the crushing strength and the three-point bending strength (room temperature) were also measured. Crushing strength measurement is old
This was addressed by applying a compressive load with an Instron type testing machine and measuring the load at the time of destruction by a measuring method according to JIS standard B1501. Table 4 shows the results.

【0046】[0046]

【表4】 [Table 4]

【0047】表4から分かる通り、鉄成分の粒子径が2
0μm以下、さらには5μm以下のものは転がり寿命に
優れ、かつ圧砕強度も210MPa以上と優れた特性を示すこ
とが分かった。それに対し、本発明の好ましい範囲を外
れている比較例10のものは鉄成分の含有量が本発明の
範囲内であるにも関わらず各特性が劣化することが分か
った。これは大きな鉄成分粒子の粒子径が大きすぎるた
めこの鉄成分粒子が破壊起点になってしまったためであ
ると考えられる。言い換えると、鉄成分の含有量が本発
明の範囲内であっても鉄成分の粒子径が20μmを超える
ようなものは、ベアリングボールに適したものとは言え
ないと言える。
As can be seen from Table 4, the particle diameter of the iron component is 2
It was found that those having a thickness of 0 μm or less, and more preferably 5 μm or less, had excellent rolling life and also exhibited excellent crushing strength of 210 MPa or more. On the other hand, it was found that the properties of Comparative Example 10 out of the preferred range of the present invention were degraded even though the content of the iron component was within the range of the present invention. It is considered that this is because the iron component particles became the starting point of fracture because the particle diameter of the large iron component particles was too large. In other words, if the iron component content is within the range of the present invention, the iron component having a particle size exceeding 20 μm cannot be said to be suitable for bearing balls.

【0048】(実施例15〜16)導電性付与粒子粉末
として平均粒径0.8μm以下(標準偏差1.5μm以下)の
炭化珪素粉末、平均粒径0.9μm(標準偏差1.5μm以
下)の酸化チタン粉末、焼結助剤として平均粒径1.5μ
m以下の酸化イットリウム粉末を5wt%、平均粒径0.8μ
m以下の酸化アルミニウム粉末を3wt%、残部を平均粒径
0.5μmの窒化珪素粉末を用意した。次に、実施例15
として窒化珪素粉末と焼結助剤粉末を混合し、所定量の
炭化珪素粉末および酸化チタン粉末を3回に分割して1
時間間隔を空けて添加混合し、最後に導電性付与粒子が
均一混合された混合原料粉末スラリーを作製した。
(Examples 15 and 16) Silicon carbide powder having an average particle size of 0.8 μm or less (standard deviation of 1.5 μm or less) and titanium oxide powder having an average particle size of 0.9 μm (standard deviation of 1.5 μm or less) were used as the conductive particles. , Average particle size 1.5μ as sintering aid
5% by weight of yttrium oxide powder with an average particle size of 0.8μ
3% by weight of aluminum oxide powder less than m
A 0.5 μm silicon nitride powder was prepared. Next, Example 15
, A silicon nitride powder and a sintering aid powder are mixed, and a predetermined amount of silicon carbide powder and titanium oxide powder are divided into three times to obtain 1
Addition and mixing were performed at intervals, and finally a mixed raw material powder slurry in which the conductivity imparting particles were uniformly mixed was prepared.

【0049】実施例16として、各原料粉末を3分割
し、それぞれ混合した後、全体を混ぜ合わせた混合原料
粉末スラリーを用意した。参考例5として、一度に全て
の原料粉末を混合した混合原料粉末スラリーを用意し
た。この各混合原料スラリーを10000ガウス以上3
0000ガウス以下の磁界中で処理し、鉄成分量を10
〜200ppmの範囲内にした混合原料粉末を調整し
た。この各混合原料粉末をCIP法により成形し、不活
性雰囲気中1740℃常圧焼結、続いて1000気圧1700℃でH
IP焼結を行い直径2mmの窒化珪素製ベアリングボー
ルおよび3×4×40mmの四角柱状の試料を作製した。こ
のような各試料を100個ずつ作製し、鉄成分および/ま
たは導電性付与粒子からなるの凝集部の面積率および凝
集部の最大径を測定した。凝集部の最大径は任意の30μ
m×30μmを4ヶ所測定し、その中にあった最も大きな
凝集部の最大径を示した。その結果を表5に示す。な
お、ここで凝集部とは2000倍の拡大写真で観察した
ときに粒子間距離が0(ゼロ)μm以上0.5μm未満
の範囲内にあるものとした。
In Example 16, each raw material powder was divided into three parts, mixed, and then mixed to prepare a mixed raw material powder slurry. As Reference Example 5, a mixed raw material powder slurry in which all the raw material powders were mixed at once was prepared. Each mixed raw material slurry is 10,000 gauss or more 3
Treated in a magnetic field of 0000 gauss or less to reduce the iron content to 10
A mixed raw material powder within the range of ~ 200 ppm was prepared. Each of the mixed raw material powders was molded by the CIP method, and sintered at 1740 ° C. under normal pressure in an inert atmosphere.
IP sintering was performed to produce a bearing ball made of silicon nitride having a diameter of 2 mm and a square pillar sample having a size of 3 × 4 × 40 mm. One hundred such samples were prepared, and the area ratio of the aggregated portion and the maximum diameter of the aggregated portion composed of the iron component and / or the conductivity-imparting particles were measured. The maximum diameter of the aggregation part is arbitrary 30μ
The measurement was performed at four points of mx 30 µm, and the largest diameter of the largest aggregated portion was found. Table 5 shows the results. Here, the agglomerated portion means that the distance between particles is within a range of 0 (zero) μm or more and less than 0.5 μm when observed with a 2000-times enlarged photograph.

【0050】[0050]

【表5】 [Table 5]

【0051】表5から分かる通り、実施例15または実
施例16の添加混合方法によれば本発明の好ましい形態
を具備する窒化珪素焼結体を作製できることが分かっ
た。それに対し、参考例5では導電性付与粒子の凝集部
が3μm以上20μm以下と一部本発明の好ましい範囲に
入るものもできているが、相対的には大きな凝集部がで
きてしまい易いことが分かった。このような窒化珪素焼
結体では、強度が低下すると共に転がり寿命も低下して
しまうことは前述の実施例の通りである。
As can be seen from Table 5, it was found that the silicon nitride sintered body having the preferred embodiment of the present invention can be produced by the addition and mixing method of Example 15 or Example 16. On the other hand, in Reference Example 5, although the aggregation portion of the conductivity-imparting particles is partially 3 μm or more and 20 μm or less and partially falls within the preferred range of the present invention, a relatively large aggregation portion is likely to be formed. Do you get it. In such a silicon nitride sintered body, the strength is reduced and the rolling life is also reduced, as in the above-described embodiment.

【0052】(実施例17〜26)次に、導電性付与粒
子を表6にある材質に変える以外は実施例2と同一の窒
化珪素焼結体を作製した。作製した各窒化珪素焼結体に
対し、実施例2と同様の測定を行った。
(Examples 17 to 26) Next, the same silicon nitride sintered body as in Example 2 was produced except that the conductivity imparting particles were changed to the materials shown in Table 6. The same measurement as in Example 2 was performed on each of the manufactured silicon nitride sintered bodies.

【0053】[0053]

【表6】 [Table 6]

【0054】表5から分かる通り、導電性付与粒子の材
質を変えたとしても電気抵抗値、3点曲げ強度、熱伝導
率はいずれもすぐれた特性を示すことが分かった。
As can be seen from Table 5, even when the material of the conductivity-imparting particles was changed, the electrical resistance, the three-point bending strength and the thermal conductivity all exhibited excellent characteristics.

【0055】(実施例27〜42)実施例17〜26の
窒化珪素焼結体を用いた以外は実施例10と同じベアリ
ングボールを作製し、実施例13と同様の方法により圧
砕強度および転がり寿命特性を測定した。測定した結
果、いずれのべアリングボールも圧砕強度は210MPa以
上、転がり寿命は400時間以上と優れた特性を示すこと
が分かった。以上のことから本発明の窒化珪素および摺
動部材においては導電性付与粒子の材質を変えたとして
も優れた特性を示すと言える。
(Examples 27 to 42) The same bearing balls as those of Example 10 were produced except that the silicon nitride sintered bodies of Examples 17 to 26 were used, and the crushing strength and the rolling life were obtained in the same manner as in Example 13. The properties were measured. As a result of the measurement, it was found that all the bearing balls exhibited excellent crushing strength of 210 MPa or more and a rolling life of 400 hours or more. From the above, it can be said that the silicon nitride and the sliding member of the present invention exhibit excellent characteristics even when the material of the conductivity imparting particles is changed.

【0056】[0056]

【発明の効果】以上のように本発明の窒化珪素焼結体
は、導電性付与粒子として炭化物粒子および窒化物粒子
を含み、鉄成分の含有量を10ppm以上200ppm
以下に特定することにより、所定の電気抵抗値を具備す
るものである。このような窒化珪素焼結体はハードディ
スクドライブ等の電子機器の摺動部材、例えば回転駆動
させるためのモータに搭載するベアリング部材のベアリ
ングボールに用いた場合、回転駆動に伴う静電気の帯電
を防止することが可能となる。また、導電性付与粒子と
して炭化物等を用いることにより焼結体自体の熱伝導率
を向上させることができるため回転駆動に伴う摩擦熱を
効率よく放熱することも可能となる。さらに電気抵抗値
のバラツキを抑えていることから、回転速度が8000rpm
以上、さらには10000rpm以上と高速回転を行ったとして
も静電気による不具合の発生を効率的に抑制することが
できる。さらに、鉄成分および/または導電性付与粒子
の凝集を防ぐことにより摺動特性等を向上させることが
できる。このような形態にすれば窒化珪素焼結体からな
るベアリングボールは窒化珪素が持つ摺動特性のよさを
必要以上に低減させずに済み、ハードディスクドライブ
などの電子機器に用いた場合、優れた摺動特性を示す。
As described above, the silicon nitride sintered body of the present invention contains carbide particles and nitride particles as conductivity imparting particles, and has an iron component content of 10 ppm to 200 ppm.
By the following specification, a specific electric resistance value is provided. When such a silicon nitride sintered body is used for a sliding member of an electronic device such as a hard disk drive, for example, a bearing ball of a bearing member mounted on a motor for rotationally driving, it prevents electrostatic charging due to rotational driving. It becomes possible. Further, by using a carbide or the like as the conductivity-imparting particles, it is possible to improve the thermal conductivity of the sintered body itself, so that it is possible to efficiently radiate frictional heat due to rotational driving. Furthermore, since the variation of the electric resistance value is suppressed, the rotation speed is 8000 rpm
As described above, even when the motor is rotated at a high speed of 10,000 rpm or more, it is possible to efficiently suppress the occurrence of a problem due to static electricity. Further, the sliding characteristics and the like can be improved by preventing aggregation of the iron component and / or the conductivity-imparting particles. With such a configuration, the bearing balls made of silicon nitride sintered body do not unnecessarily reduce the sliding characteristics of silicon nitride, and when used in electronic devices such as hard disk drives, excellent sliding characteristics are obtained. Shows dynamic characteristics.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 矢部 久雄 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 高尾 実 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 武浪 幸宏 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 福田 悦幸 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 宮下 公哉 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 Fターム(参考) 3J011 AA08 BA08 DA01 KA07 LA01 MA02 SB02 SD03 SE02 3J101 AA02 BA10 EA44 EA72 EA75 FA31 GA53 4G001 BA03 BA09 BA13 BA22 BA32 BA71 BB03 BB09 BB22 BB23 BB24 BB43 BB71 BC43 BC52 BC54 BD03 BD12  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hisao Yabe 8 Shinsugita-cho, Isogo-ku, Yokohama, Kanagawa Prefecture Inside the Toshiba Yokohama Office (72) Minoru Takao 8 Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Stock Company (72) Inventor Yukihiro Takenami Eighteen Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture Inside the Toshiba Yokohama office (72) Inventor Etsuyuki Fukuda Eighth Shin-Sugita-cho, Isogo-ku, Yokohama-shi, Kanagawa (72) Inventor Kimiya Miyashita 8th place Shin-Sugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture F-term (reference) 3J011 AA08 BA08 DA01 KA07 LA01 MA02 SB02 SD03 SE02 3J101 AA02 BA10 EA44 EA72 EA75 FA31 GA53 4G001 BA03 BA09 BA13 BA22 BA32 BA71 BB03 BB09 BB22 BB23 BB24 BB43 BB71 BC43 BC52 BC54 BD03 BD12

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 導電性付与粒子として炭化物粒子と窒化
物粒子を含む窒化珪素焼結体において、鉄成分の含有量
が10ppm以上200ppm以下であり、電気抵抗値が102Ω・cm
以上107Ω・cm以下であることを特徴とする窒化珪素焼
結体。
In a silicon nitride sintered body containing carbide particles and nitride particles as conductivity imparting particles, the iron component content is 10 ppm or more and 200 ppm or less, and the electric resistance value is 10 2 Ω · cm.
A silicon nitride sintered body having a resistivity of at least 10 7 Ω · cm or less.
【請求項2】 該焼結体中に存在する鉄成分の最大径が
20μm以下であることを特徴とする請求項1記載の窒化
珪素焼結体。
2. The maximum diameter of the iron component present in the sintered body is
2. The silicon nitride sintered body according to claim 1, wherein the thickness is 20 μm or less.
【請求項3】 鉄成分及び導電性付与粒子同士の最も近
い粒子間距離が0.5μm以上5μm以下で、任意の断面で
この位置関係を満たす粒子分布が80%以上を占めている
ことを特徴とする請求項1または請求項2記載の窒化珪
素焼結体。
3. The method according to claim 1, wherein the closest interparticle distance between the iron component and the conductivity-imparting particles is 0.5 μm or more and 5 μm or less, and a particle distribution satisfying this positional relationship occupies 80% or more in an arbitrary cross section. The silicon nitride sintered body according to claim 1 or 2, wherein
【請求項4】 該炭化物粒子が4a族,5a族,6a族,7a族
元素、珪素、硼素の炭化物の少なくとも1種以上からな
ることを特徴とする請求項1ないし請求項3のいずれか
に記載の窒化珪素焼結体。
4. The method according to claim 1, wherein said carbide particles are made of at least one of carbides of Group 4a, 5a, 6a and 7a, silicon and boron. The silicon nitride sintered body according to the above.
【請求項5】 該窒化物粒子が4a族元素の窒化物の少な
くとも1種であることを特徴とする請求項1ないし請求
項4のいずれかに記載の窒化珪素焼結体。
5. The silicon nitride sintered body according to claim 1, wherein said nitride particles are at least one kind of a nitride of a Group 4a element.
【請求項6】 該炭化物粒子の平均粒径と該窒化物粒子
の平均粒径の比が、炭化物粒子の平均粒径≦窒化物粒子
の平均粒径であることを特徴とする請求項1ないし請求
項5のいずれかに記載の窒化珪素焼結体。
6. The method according to claim 1, wherein the ratio of the average particle size of the carbide particles to the average particle size of the nitride particles is such that the average particle size of the carbide particles ≦ the average particle size of the nitride particles. The silicon nitride sintered body according to claim 5.
【請求項7】 熱伝導率が40W/m・k以上であることを特
徴とする請求項1ないし請求項6のいずれかに記載の窒
化珪素焼結体。
7. The silicon nitride sintered body according to claim 1, having a thermal conductivity of 40 W / m · k or more.
【請求項8】 請求項1ないし請求項7のいずれかに記
載の窒化珪素焼結体を用いたことを特徴とする摺動部
材。
8. A sliding member using the silicon nitride sintered body according to any one of claims 1 to 7.
【請求項9】 導電性付与粒子として炭化物粒子と窒化
物粒子を含む窒化珪素焼結体において、鉄成分の含有量
が10ppm以上200ppm以下であり、電気抵抗値が107〜102
Ω・cmである窒化珪素焼結体からなることを特徴とする
ベアリングボール。
9. A silicon nitride sintered body containing carbide particles and nitride particles as conductivity imparting particles, wherein the iron component content is 10 ppm or more and 200 ppm or less, and the electric resistance value is 10 7 to 10 2.
A bearing ball comprising a silicon nitride sintered body of Ω · cm.
【請求項10】 ベアリングボールが電子機器に用いる
ためのものであることを特徴とする請求項9記載のベア
リングボール。
10. The bearing ball according to claim 9, wherein the bearing ball is used for an electronic device.
JP2000260280A 2000-08-21 2000-08-30 Silicon nitride sintered body and sliding member using the same Expired - Fee Related JP4567855B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000260280A JP4567855B2 (en) 2000-08-30 2000-08-30 Silicon nitride sintered body and sliding member using the same
US09/927,930 US6642165B2 (en) 2000-08-21 2001-08-13 Wear resistant member for electronic equipment, and bearing and spindle motor therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000260280A JP4567855B2 (en) 2000-08-30 2000-08-30 Silicon nitride sintered body and sliding member using the same

Publications (2)

Publication Number Publication Date
JP2002068846A true JP2002068846A (en) 2002-03-08
JP4567855B2 JP4567855B2 (en) 2010-10-20

Family

ID=18748316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000260280A Expired - Fee Related JP4567855B2 (en) 2000-08-21 2000-08-30 Silicon nitride sintered body and sliding member using the same

Country Status (1)

Country Link
JP (1) JP4567855B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003300780A (en) * 2002-04-04 2003-10-21 Toshiba Corp Wear resistant member made of silicon nitride and production method therefor
WO2005030674A1 (en) 2003-09-25 2005-04-07 Kabushiki Kaisha Toshiba Wear resistant member comprised of silicon nitride and process for producing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111969A (en) * 1984-11-05 1986-05-30 住友電気工業株式会社 Discharge-processable electroconductive silicon nitride sintered body and manufacture
JPS62235260A (en) * 1986-04-04 1987-10-15 株式会社神戸製鋼所 Si3n4 base composite material
JPH02116657A (en) * 1988-10-25 1990-05-01 Toshiba Corp Ceramic sliding member
JPH06122555A (en) * 1992-10-14 1994-05-06 Isuzu Ceramics Kenkyusho:Kk Low frictional ceramic
JPH1065292A (en) * 1996-08-20 1998-03-06 Toshiba Corp Composite circuit board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111969A (en) * 1984-11-05 1986-05-30 住友電気工業株式会社 Discharge-processable electroconductive silicon nitride sintered body and manufacture
JPS62235260A (en) * 1986-04-04 1987-10-15 株式会社神戸製鋼所 Si3n4 base composite material
JPH02116657A (en) * 1988-10-25 1990-05-01 Toshiba Corp Ceramic sliding member
JPH06122555A (en) * 1992-10-14 1994-05-06 Isuzu Ceramics Kenkyusho:Kk Low frictional ceramic
JPH1065292A (en) * 1996-08-20 1998-03-06 Toshiba Corp Composite circuit board

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003300780A (en) * 2002-04-04 2003-10-21 Toshiba Corp Wear resistant member made of silicon nitride and production method therefor
JP4497787B2 (en) * 2002-04-04 2010-07-07 株式会社東芝 Rolling ball
WO2005030674A1 (en) 2003-09-25 2005-04-07 Kabushiki Kaisha Toshiba Wear resistant member comprised of silicon nitride and process for producing the same
EP1669335A1 (en) * 2003-09-25 2006-06-14 Kabushiki Kaisha Toshiba Wear resistant member comprised of silicon nitride and process for producing the same
JPWO2005030674A1 (en) * 2003-09-25 2006-12-07 株式会社東芝 Wear-resistant member made of silicon nitride and method of manufacturing the same
EP1669335A4 (en) * 2003-09-25 2009-04-01 Toshiba Kk Wear resistant member comprised of silicon nitride and process for producing the same
US7521388B2 (en) 2003-09-25 2009-04-21 Kabushiki Kaisha Toshiba Wear resistant member comprised of silicon nitride and process for producing the same
JP5002155B2 (en) * 2003-09-25 2012-08-15 株式会社東芝 Wear-resistant member made of silicon nitride and method of manufacturing the same

Also Published As

Publication number Publication date
JP4567855B2 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
CN102482765B (en) Sputtering target of ferromagnetic material with low generation of particles
JP5752189B2 (en) Silicon nitride sintered body and sliding member using the same
US20020003228A1 (en) Ceramic ball for bearing and ceramic ball bearing using the same
US7196028B2 (en) Sliding device, fluid dynamic pressure bearing, and motor using the same
JP2024019273A (en) Manufacturing method of sliding member made of silicon nitride sintered body
US6642165B2 (en) Wear resistant member for electronic equipment, and bearing and spindle motor therewith
JP4567853B2 (en) Sintered silicon nitride
JP2002068846A (en) Silicon nitride sintered compact, and sliding member and bearing ball using it
JP4874475B2 (en) Abrasion resistant member for electronic equipment, method for producing the same, and bearing for electronic equipment using the same
JP3640910B2 (en) Wear-resistant member for electronic equipment and bearing and spindle motor using the same
JP3611535B2 (en) Wear-resistant member for electronic equipment and bearing and spindle motor using the same
JP2002154877A (en) Silicon nitride sintered compact, and sliding member and bearing ball using the same
JP3910310B2 (en) Manufacturing method of ceramic material, manufacturing method of rolling bearing member, and manufacturing method of cutting tool
JP4828685B2 (en) Silicon nitride sintered body, sliding member using the same, and bearing ball
JP2004161605A (en) Wear-resistant member and its producing method
JP4820505B2 (en) Wear-resistant member for electronic equipment and bearing for electronic equipment using the same
JP4820506B2 (en) Wear-resistant member for electronic equipment and bearing for electronic equipment using the same
JP2002081449A (en) Rolling bearing
JP3833465B2 (en) Rolling element and rolling bearing using the same
JP2001233671A (en) Zirconium oxide sintered compact and ball bearing and bearing member using the same
JP2002029822A (en) Hollow ceramics sintered compact, sliding member using the same and ceramics bearing ball
JP4758522B1 (en) Ferromagnetic sputtering target with less generation of particles
JP2001354481A (en) Silicon nitride sintered compact and wear-resistant member obtained by using the same
JP7472408B2 (en) Silicon nitride sintered body and wear-resistant member using same
JP2001214937A (en) Zirconium oxide bearing ball, bearing member using it, and motor device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050428

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050620

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100709

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100806

R151 Written notification of patent or utility model registration

Ref document number: 4567855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees