JP2002066934A - Electroforming sharp-edged grinding wheel and method of manufacturing the same - Google Patents

Electroforming sharp-edged grinding wheel and method of manufacturing the same

Info

Publication number
JP2002066934A
JP2002066934A JP2000264446A JP2000264446A JP2002066934A JP 2002066934 A JP2002066934 A JP 2002066934A JP 2000264446 A JP2000264446 A JP 2000264446A JP 2000264446 A JP2000264446 A JP 2000264446A JP 2002066934 A JP2002066934 A JP 2002066934A
Authority
JP
Japan
Prior art keywords
thin blade
electroformed thin
recrystallized
cutting edge
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000264446A
Other languages
Japanese (ja)
Other versions
JP4337249B2 (en
Inventor
Tsutomu Takahashi
務 高橋
Makoto Chokai
誠 鳥海
Naoto Suzuki
直人 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2000264446A priority Critical patent/JP4337249B2/en
Publication of JP2002066934A publication Critical patent/JP2002066934A/en
Application granted granted Critical
Publication of JP4337249B2 publication Critical patent/JP4337249B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)
  • Laser Beam Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To heat-treat an edge part along a specified width with precision, and restrain thermal deformation of the edge part in the heat treatment. SOLUTION: The edge part 11 of an electroforming sharp-edged grinding wheel 10 including super-abrasive grains dispersed in a metallic bonding phase is formed with a plurality of slits 14 at prescribed intervals. A grinding region 12 extending inward to within 2 mm of a tip of the edge part 11 is irradiated with a laser for the heat treatment with the electroforming sharp-edged grinding wheel 10 rotated, so that a recrystallized structure is formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はシリコンやフェライ
ト等の被削材を切断加工したり溝入れ加工するため等に
用いられる電鋳薄刃砥石及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electroformed thin blade used for cutting or grooving a work material such as silicon or ferrite, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】シリコンやGaAs、フェライト等の被
削材を高精度に切断加工したり溝入れ加工するのに用い
られる薄刃ブレード等の工具として電鋳薄刃砥石があ
る。このような電鋳薄刃砥石の一例として図7に示すも
のがあり、この電鋳薄刃砥石1は、NiやCo、或いは
これらの合金等からなる金属めっき相中にダイヤモンド
やcBN等の超砥粒が分散配置されてなるリング形状と
されている。この電鋳薄刃砥石1は厚さ数十μm〜数百
μmの板状をなしている。そしてこの電鋳薄刃砥石1は
軸線回りに回転する砥石軸2の小径軸部3に嵌挿された
一対の取り付け用フランジ4,4間に挟まれた状態で、
ナット5によって砥石軸2に締め込まれて固定されてい
る。この砥石軸2を軸線まわりに回転させることにより
電鋳薄刃砥石1の外周縁1aでシリコン等の被削材を切
断加工することになる。
2. Description of the Related Art As a tool such as a thin blade used for cutting or grooving a work material such as silicon, GaAs or ferrite with high precision, there is an electroformed thin blade grindstone. FIG. 7 shows an example of such an electroformed thin blade grindstone. This electroformed thin blade grindstone 1 has superabrasive grains such as diamond and cBN in a metal plating phase made of Ni, Co, or an alloy thereof. Are arranged in a ring shape. The electroformed thin blade 1 has a plate shape with a thickness of several tens μm to several hundred μm. The electroformed thin blade whetstone 1 is sandwiched between a pair of mounting flanges 4 and 4 fitted into a small diameter shaft portion 3 of a whetstone shaft 2 rotating around an axis.
The nut 5 is fastened and fixed to the grinding wheel shaft 2. By rotating the grindstone shaft 2 around the axis, a workpiece such as silicon is cut at the outer peripheral edge 1a of the electroformed thin blade grindstone 1.

【0003】ところでこのような電鋳薄刃砥石1は、N
iめっき等に微少量含まれるイオウの影響によってNi
やNi合金等による金属めっき相の硬度がHv=500
〜750にまで増加するためにその機械的強度と剛性が
高く、薄肉であっても切断加工等に用いることができ
た。しかしながら、このような電鋳薄刃砥石1にあって
は金属めっき相の硬度が高いために、切断加工時に超砥
粒の摩滅が進んでも金属めっき相の摩耗速度が遅く超砥
粒が容易に脱落しないために自生発刃作用を十分に発揮
できず、切れ味が低下し切断加工精度が低下するという
欠点があった。そこで、電鋳薄刃砥石1の刃先の外周面
を放電加工等によって200℃以上の温度で熱処理する
ことでNiめっき等でなる金属めっき相の研削に関与す
る刃先部の組織を再結晶化して金属めっき相を軟質化す
るとともに脆化させる技術が提案されている。これによ
って被削材の切断加工時に金属めっき相の摩耗除去が促
進されて超砥粒の摩耗に応じてこれが金属めっき相と共
に脱落して新たな超砥粒が露出することで切れ味を高く
維持できる。
[0003] By the way, such an electroformed thin blade 1 is made of N
Due to the effect of sulfur contained in a very small amount in i-plating etc., Ni
Hardness of metal plating phase of Hv = 500
Since the mechanical strength and rigidity were high because of the increase to 7750, it could be used for cutting or the like even if it was thin. However, in such an electroformed thin blade wheel 1, since the hardness of the metal plating phase is high, the wear rate of the metal plating phase is low even if the superabrasive grains are worn out during cutting, and the superabrasive grains easily fall off. Therefore, there is a disadvantage that the self-propelled cutting action cannot be sufficiently exerted, the sharpness is reduced, and the cutting accuracy is reduced. Therefore, the outer peripheral surface of the cutting edge of the electroformed thin blade grindstone 1 is subjected to heat treatment at a temperature of 200 ° C. or more by electric discharge machining or the like to recrystallize the structure of the cutting edge portion involved in the grinding of the metal plating phase made of Ni plating or the like, thereby reducing the metal content. Techniques for softening and embrittlement of a plating phase have been proposed. This promotes abrasion removal of the metal plating phase during cutting of the work material, and according to the wear of the superabrasive grains, falls off together with the metal plating phase to expose new superabrasive grains, thereby maintaining a high sharpness. .

【0004】[0004]

【発明が解決しようとする課題】しかしながら、放電加
工機等によって金属めっき相の刃先部を全周に亘って加
熱する場合、入熱量のコントロールが困難であり、熱処
理の領域が刃先部の外周縁から研削に関与する領域の所
定幅に満たなければ切断加工が進むと切れ味低下を起こ
しやすく、研削に関与する領域の所定幅を越えて加熱す
ると電鋳薄刃砥石1自体の強度低下を来しやすいという
問題がある。また金属めっき相の刃先部を熱処理するこ
とで加熱した部分が変形し易く、刃先部が全周に亘って
歪むことになって、切断加工時の被削材の切断代が大き
くなる上に高精度な切断加工等ができなくなってしまう
という問題もある。
However, when the cutting edge of the metal plating phase is heated over the entire circumference by an electric discharge machine or the like, it is difficult to control the amount of heat input, and the heat treatment area is limited to the outer peripheral edge of the cutting edge. If the cutting width is less than the predetermined width of the region involved in the grinding, the sharpness is likely to decrease when the cutting process proceeds, and if the heating is performed beyond the predetermined width of the region involved in the grinding, the strength of the electroformed thin blade grindstone 1 itself tends to decrease. There is a problem. In addition, the heated portion is easily deformed by heat-treating the cutting edge portion of the metal plating phase, and the cutting edge portion is distorted over the entire circumference, so that the cutting allowance of the work material at the time of cutting is increased and the cutting edge is increased. There is also a problem that accurate cutting and the like cannot be performed.

【0005】本発明は、このような実情に鑑みて、刃先
部を所定幅に亘って精密に熱処理できるようにした電鋳
薄刃砥石及びその製造方法を提供することを目的とす
る。また本発明の他の目的は刃先部の熱処理の際に熱変
形を抑制できるようにした電鋳薄刃砥石及びその製造方
法を提供することにある。
[0005] In view of such circumstances, an object of the present invention is to provide an electroformed thin blade grindstone capable of precisely heat-treating a blade edge portion over a predetermined width and a method of manufacturing the same. Another object of the present invention is to provide an electroformed thin blade grindstone capable of suppressing thermal deformation at the time of heat treatment of a blade edge portion, and a method of manufacturing the same.

【0006】[0006]

【課題を解決するための手段】本発明に係る電鋳薄刃砥
石は、金属結合相中に超砥粒を分散配置してなる電鋳薄
刃砥石において、刃先部をレーザ光で熱処理して再結晶
組織としたことを特徴とする。NiやCoまたはこれら
の合金等からなる金属めっき相を200℃以上に加熱す
ることで、金属めっき相が軟質化すると共にその結晶粒
界にNi−Sの金属化合物を形成して脆化するために、
研削時に超砥粒の摩耗に応じて金属めっき相の摩耗が促
進してその自生発刃作用が向上する。特に刃先部にレー
ザ光を照射することでポイント照射を行えるために刃先
部の熱処理範囲を所定幅に精密に設定でき、電鋳薄刃砥
石の全周に亘って研削に関与する領域のみを高精度に再
結晶化できる。また再結晶組織は刃先部の先端から刃先
部に直交する方向に2mm以下の幅に亘って形成されて
いてもよい。切断などの研削に関与する領域のみを再結
晶組織とする。
According to the present invention, there is provided an electroformed thin blade grinding wheel in which superabrasive grains are dispersed in a metal bonding phase. It is characterized by having an organization. Heating a metal plating phase made of Ni, Co or an alloy thereof to 200 ° C. or more softens the metal plating phase and forms a Ni—S metal compound at the crystal grain boundaries to embrittle. To
At the time of grinding, the wear of the metal plating phase is promoted in accordance with the wear of the superabrasive grains, and the spontaneous cutting action is improved. In particular, since the point irradiation can be performed by irradiating the cutting edge with laser light, the heat treatment range of the cutting edge can be set precisely to a predetermined width, and only the area involved in grinding over the entire circumference of the electroformed thin blade grinding wheel is highly accurate. Can be recrystallized. Further, the recrystallized structure may be formed over a width of 2 mm or less in a direction perpendicular to the cutting edge from the tip of the cutting edge. Only the region involved in grinding such as cutting is a recrystallized structure.

【0007】また刃先部の延在方向に沿って所定間隔で
スリットが形成され、これらスリットで分断された刃先
部の領域に再結晶組織が形成されていてもよい。刃先部
がスリットで分断されているために熱処理時における放
熱性が高くて刃先部の熱変形が小さく、高精度で切れ味
のよい研削が行える。
[0007] Further, slits may be formed at predetermined intervals along the extending direction of the blade edge portion, and a recrystallized structure may be formed in a region of the blade edge portion divided by these slits. Since the cutting edge is divided by the slit, the heat dissipation during the heat treatment is high, the thermal deformation of the cutting edge is small, and highly precise and sharp grinding can be performed.

【0008】また本発明による電鋳薄刃砥石は、金属結
合相中に超砥粒を分散配置してなる電鋳薄刃砥石におい
て、刃先部の延在方向に沿って所定間隔でスリットを形
成した後、刃先部を加熱して熱処理して刃先部の外周側
に所定幅の再結晶組織を形成してなることを特徴とす
る。レーザ光照射等によって刃先部を加熱するに先だっ
て、スリットを形成することで加熱時に刃先部の熱がス
リットによって効率良く放熱され、しかも熱歪みが生じ
てもスリットで仕切られた外周片単位に歪みが生じるた
めに外周方向に連続する大きな歪みは発生せず、刃先部
のスリットで仕切られた領域の熱変形を抑えて精度の良
い熱加工ができる。
In the electroformed thin blade grinding wheel according to the present invention, in the electroformed thin blade grinding wheel in which super-abrasive grains are dispersed in a metal bonding phase, slits are formed at predetermined intervals along the extending direction of the cutting edge. The cutting edge is heated and heat-treated to form a recrystallized structure having a predetermined width on the outer peripheral side of the cutting edge. Prior to heating the cutting edge by laser light irradiation, etc., by forming a slit, the heat of the cutting edge is efficiently radiated by the slit during heating, and even if thermal distortion occurs, it is distorted in units of the outer peripheral piece partitioned by the slit As a result, a large distortion that continues in the outer peripheral direction does not occur, and thermal deformation of a region partitioned by the slit of the cutting edge portion is suppressed, so that accurate thermal processing can be performed.

【0009】また本発明による電鋳薄刃砥石は、金属結
合相中に超砥粒を分散配置してなる電鋳薄刃砥石におい
て、刃先部の両面の一方の面に所定間隔で再結晶組織を
構成する第一再結晶部を形成し、他方の面の前記第一再
結晶部の間に再結晶組織を構成する第二再結晶部を形成
することで、刃先部の周方向両面に第一及び第二再結晶
部が交互に配列されてなることを特徴とする。刃先部の
両面を順次例えばレーザー光照射することで刃先部の厚
み方向両面に交互に第一または第二再結晶部が形成され
るために、刃先部両面の熱歪みを同一化して交互に配列
することになり、刃先部の内部応力のバランスをとるこ
とができ電鋳薄刃砥石の熱変形によるそりを抑制でき
る。この場合、刃先部の一方の面にレーザー光を所定間
隔で照射して再結晶組織(第一再結晶部)とし、次に他
方の面よりレーザー光を再結晶していない部分に所定間
隔で照射して再結晶組織(第二再結晶部)にしてもよ
い。また本発明の電鋳薄刃砥石は、金属結合相中に超砥
粒を分散配置してなる電鋳薄刃砥石において、刃先部に
再結晶組織からなる軟質の再結晶部と非再結晶部が交互
に存在するようにしたことを特徴とする。刃先部に例え
ばレーザー光を所定間隔で照射して軟質な再結晶部と硬
質の非再結晶部(電着状態)とが交互に存在すること
で、再結晶部の円周方向長さを制御して砥石の耐摩耗性
の制御が可能となる。再結晶部の円周方向長さを長くす
ることによって砥石の金属結合相の耐摩耗性を低減で
き、自生発刃性を高めることができる。
The electroformed thin blade grinding wheel according to the present invention is an electroformed thin blade grinding wheel in which superabrasive grains are dispersed and arranged in a metal binding phase, wherein a recrystallized structure is formed at a predetermined interval on one of both surfaces of a blade edge portion. By forming a first recrystallized portion to be formed, by forming a second recrystallized portion constituting a recrystallized structure between the first recrystallized portion on the other surface, the first and second on both circumferential surfaces of the cutting edge portion. The second recrystallized portions are alternately arranged. Since the first or second recrystallized portion is alternately formed on both surfaces in the thickness direction of the blade portion by sequentially irradiating both surfaces of the blade portion, for example, by irradiating a laser beam, the heat distortion on both surfaces of the blade portion is made identical and alternately arranged. Therefore, the internal stress of the cutting edge can be balanced, and the warpage due to the thermal deformation of the electroformed thin blade can be suppressed. In this case, one surface of the blade edge is irradiated with laser light at a predetermined interval to form a recrystallized structure (first recrystallized portion), and then, at a predetermined interval from the other surface to a portion where the laser light has not been recrystallized. Irradiation may be performed to obtain a recrystallized structure (second recrystallized portion). Further, the electroformed thin blade wheel of the present invention is an electroformed thin blade wheel in which super-abrasive grains are dispersed and arranged in a metal bonding phase, wherein a soft recrystallized portion having a recrystallized structure and a non-recrystallized portion having a recrystallized structure are alternately provided at a cutting edge. Is characterized in that it exists. The circumferential length of the recrystallized portion is controlled by irradiating the cutting edge portion with a laser beam at a predetermined interval, for example, so that a soft recrystallized portion and a hard non-recrystallized portion (electrodeposited state) are alternately present. Thus, the wear resistance of the grindstone can be controlled. By increasing the length of the recrystallized portion in the circumferential direction, the wear resistance of the metal binder phase of the grindstone can be reduced, and the spontaneous cutting performance can be enhanced.

【0010】また本発明による電鋳薄刃砥石の製造方法
は、電鋳薄刃砥石を所定速度で回転させつつ刃先部にレ
ーザ光を照射して外周側の所定幅を再結晶化させてなる
ことを特徴とする。刃先部にレーザ光を照射させつつ電
鋳薄刃砥石を回転させることで、レーザ光照射部が照射
後に光路から外れて短時間の加熱後に順次冷却され、刃
先部の熱歪みを抑えて再結晶化でき、電鋳薄刃砥石の回
転速度によってレーザ光による入熱量を制御できる。ま
たレーザ光の照射に先だって電鋳薄刃砥石の外周側には
所定間隔でスリットを形成してもよい。レーザ光照射時
の放熱がスリットで一層進み、刃先部の熱歪みを一層抑
制できる。
Further, the method of manufacturing an electroformed thin blade grindstone according to the present invention is characterized in that a predetermined width on an outer peripheral side is recrystallized by irradiating a laser beam to a cutting edge while rotating the electroformed thin blade grindstone at a predetermined speed. Features. By rotating the electroformed thin blade whetstone while irradiating the cutting edge with laser light, the laser light irradiating part deviates from the optical path after irradiation and is cooled down after heating for a short period of time. The amount of heat input by the laser beam can be controlled by the rotation speed of the electroformed thin blade grindstone. Prior to the laser beam irradiation, slits may be formed at predetermined intervals on the outer peripheral side of the electroformed thin blade grindstone. The heat radiation at the time of laser beam irradiation is further advanced by the slit, and the thermal distortion of the cutting edge can be further suppressed.

【0011】またレーザー光の集光径を100〜100
0μmの範囲であって砥石厚みの2〜10倍としてもよ
い。レーザー光の集光径を100〜1000μmであっ
て砥石厚みの2〜10倍とすることにより、刃先部のレ
ーザー照射による再結晶部及びその近傍の熱歪みを低減
でき砥石の変形を抑制できる。ここで集光径が1000
μmを越えると刃先部の入熱量が大きく熱処理部及び周
辺の影響も含めて熱量のコントロールが難しい。100
μmより小さいと熱処理面とその反応面の熱処理状態の
差が大きく、薄刃砥石(ブレード)の変形を生じ易い。
また薄刃砥石に好適なレーザー光の集光径は2〜10倍
である。また刃先部の最外周から順次内周側に向かって
同心円状またはスパイラル状に熱処理するようにしても
よい。レーザー熱処理を最外周から開始して同心円若し
くは螺旋状に順次内周に向かってレーザー熱処理を行う
と薄刃砥石の変形が少ない。内周から外周に向かってレ
ーザー熱処理を行うとスタートポイントの入熱量の制御
が難しいと共にレーザー照射部とその周辺で大きな熱膨
張差を生じ、大きな曲がりを生じ易く更に曲がったとこ
ろにレーザー照射が順次行われるため、その湾曲は加速
される。最外周からスタートすると、熱歪みが発生して
も最外周からの距離が小さいために放熱性が高くて曲げ
モーメントが小さく初期レーザー熱処理した予熱でその
内周側が予め予熱されるため、その後のレーザー熱処理
による熱影響部の熱歪み緩和作用が働き変形が少ない。
Further, the condensing diameter of the laser beam is set to 100 to 100.
It may be in the range of 0 μm and 2 to 10 times the thickness of the grindstone. By setting the condensing diameter of the laser beam to 100 to 1000 μm and 2 to 10 times the thickness of the grindstone, thermal distortion in the recrystallized portion and its vicinity due to laser irradiation of the cutting edge can be reduced, and deformation of the grindstone can be suppressed. Here the focusing diameter is 1000
If it exceeds μm, the heat input to the cutting edge is so large that it is difficult to control the heat including the heat-treated part and its surroundings. 100
If it is smaller than μm, the difference between the heat-treated state of the heat-treated surface and the heat-treated state thereof is large, and the thin blade tends to be deformed.
The diameter of the laser beam suitable for the thin blade is 2 to 10 times. Also, heat treatment may be performed concentrically or spirally from the outermost periphery of the blade edge portion toward the inner periphery side. When the laser heat treatment is started from the outermost periphery and is sequentially performed concentrically or spirally toward the inner periphery, the deformation of the thin blade grindstone is small. When the laser heat treatment is performed from the inner circumference to the outer circumference, it is difficult to control the heat input amount at the start point, and a large difference in thermal expansion occurs between the laser irradiation part and the surrounding area. As it does, its curvature is accelerated. Starting from the outermost circumference, even if thermal strain occurs, the distance from the outermost circumference is small, so the heat dissipation is high, the bending moment is small, and the inner circumference side is preheated by the initial heating pre-heated laser. The heat-affected zone due to the heat treatment acts to reduce the thermal strain, resulting in less deformation.

【0012】[0012]

【発明の実施の形態】以下、本発明による電鋳薄刃砥石
の実施形態について添付図面を参照しながら説明する。
図1は実施の形態による電鋳薄刃砥石の平面図、図2は
電鋳薄刃砥石にレーザ光を照射する状態を示す構成図で
ある。本実施の形態による電鋳薄刃砥石10は、ダイヤ
モンドやcBN等の超砥粒が金属めっき相中に分散配置
されており、金属めっき相はNi、Co、またはこれら
の合金等からなっていて、しかもイオウが超砥粒を含む
全重量に対して0.01〜0.3重量%含まれている。
この電鋳薄刃砥石10は平面視円環状をなす板状とさ
れ、その厚みは例えば数十μm〜数百μmの範囲とされ
ている。しかもその刃先部11は外周縁11aから径方
向内側に例えば2mm以内の範囲に亘って金属めっき相
の再結晶組織が形成され、研削領域12を構成する。そ
して刃先部11の外周縁11aから径方向内側に向けて
複数のスリット14…が円形の外周縁11aに沿って所
定間隔で形成されている。このスリット14は好ましく
は研削領域12よりも径方向内側に延びて形成されてい
る。隣り合うスリット14、14で仕切られた刃先部1
1は刃先片16を構成する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an electroformed thin blade grindstone according to the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a plan view of an electroformed thin blade grindstone according to an embodiment, and FIG. 2 is a configuration diagram showing a state in which laser light is irradiated on the electroformed thin blade grindstone. In the electroformed thin blade grindstone 10 according to the present embodiment, superabrasive grains such as diamond and cBN are dispersed and arranged in a metal plating phase, and the metal plating phase is made of Ni, Co, or an alloy thereof, Moreover, sulfur is contained in an amount of 0.01 to 0.3% by weight based on the total weight including the superabrasive grains.
The electroformed thin blade grindstone 10 is formed in a plate shape having an annular shape in plan view, and has a thickness in a range of, for example, several tens μm to several hundreds μm. In addition, the recrystallized structure of the metal plating phase is formed in the blade edge portion 11 radially inward from the outer peripheral edge 11a, for example, within a range of 2 mm or less, and forms the grinding region 12. A plurality of slits 14 are formed at predetermined intervals along the circular outer peripheral edge 11a from the outer peripheral edge 11a of the blade edge portion 11 toward the radial inside. The slit 14 is preferably formed to extend radially inward from the grinding area 12. Blade edge 1 partitioned by adjacent slits 14, 14
1 constitutes the blade tip 16.

【0013】スリット14の数は電鋳薄刃砥石10の外
周縁11aの長さによるが、例えば8条以上、好ましく
は16条以上とする。スリット14の数が増大すれば熱
処理時の熱変形は抑制できるが刃先部11の剛性が低下
する欠点があり、逆にスリット14の数が少ないと刃先
部11の熱変形が長く大きくなって精度低下を来すこと
になる。尚、スリット14の長さは研削領域12の幅以
下であってもよい。この場合でもスリット14の内側縁
部が研削領域12の基端側縁部近くであれば熱処理によ
る熱歪みの悪影響は少ない。
The number of the slits 14 depends on the length of the outer peripheral edge 11a of the electroformed thin blade grindstone 10, but is, for example, 8 or more, preferably 16 or more. If the number of the slits 14 increases, the thermal deformation during the heat treatment can be suppressed, but there is a disadvantage that the rigidity of the cutting edge portion 11 is reduced. Will result in a decline. Note that the length of the slit 14 may be equal to or less than the width of the grinding area 12. Even in this case, if the inner edge of the slit 14 is near the base edge of the grinding region 12, the adverse effect of thermal distortion due to the heat treatment is small.

【0014】次に実施の形態による電鋳薄刃砥石10の
製造方法について説明する。先ずめっきされる金属に対
して剥離性の処理がなされたステンレス製の基板に砥石
の原型形状をなす部分を残してマスキングを施し、脱脂
等の清浄化処理を施す。次にこの基板をめっき浴槽内の
めっき液中に浸漬する。めっき液はダイヤモンド等の超
砥粒を分散させたNi基若しくはCo基とイオウを含む
有機光沢剤を含有する電解めっき液とし、このめっき液
中に基板に対向して陽極板を配設し、基板を陰極に接続
する。この状態で陰極と陽極に通電すると、基板上にN
i合金、Co合金或いはNi−Co合金めっき相が析出
し、このめっき相中に超砥粒が均一に分散された砥粒層
が形成される。砥粒層の厚みが数十μm〜数百μmとな
った状態でめっきを終了する。次いで、この砥粒層を形
成した基板をめっき液から取り出してブラッシング等を
含む水洗処理を施した後、基板から砥粒層を剥離する。
そして得られた砥粒層をパンチング加工等により円形の
砥石形状に成型して更に真円に加工して電鋳薄刃砥石1
0を得る。
Next, a method of manufacturing the electroformed thin blade grindstone 10 according to the embodiment will be described. First, masking is performed on a stainless steel substrate on which the metal to be plated has been subjected to a releasability process, leaving a portion of the original shape of the grindstone, and a cleaning process such as degreasing is performed. Next, the substrate is immersed in a plating solution in a plating bath. The plating solution is an electrolytic plating solution containing an organic brightener containing sulfur and Ni-base or Co-base in which superabrasive grains such as diamond are dispersed, and an anode plate is disposed in the plating bath so as to face the substrate. Connect the substrate to the cathode. When electricity is supplied to the cathode and anode in this state, N
An i-alloy, Co alloy or Ni-Co alloy plating phase is precipitated, and an abrasive layer in which superabrasive grains are uniformly dispersed is formed in the plating phase. The plating is completed when the thickness of the abrasive layer is several tens μm to several hundred μm. Next, the substrate on which the abrasive layer has been formed is taken out of the plating solution and subjected to a washing process including brushing and the like, and then the abrasive layer is peeled from the substrate.
Then, the obtained abrasive layer is formed into a circular whetstone shape by punching or the like, and further processed into a perfect circle to form an electroformed thin blade whetstone 1
Get 0.

【0015】次にこの電鋳薄刃砥石10について切断用
レーザ装置等を用いて刃先部11の外周縁11aから径
方向内側に所定間隔でスリット14…を形成する。そし
て、電鋳薄刃砥石10を図2に示すようにモータに連結
された回転台に設けた一対の例えば円形カップ型をなす
フランジ17,17で挟持して刃先部11を含む外周側
だけを全周に例えば4〜5mm幅でリング状に露出させ
る。その際に電鋳薄刃砥石10はフランジ17、17と
同心円をなすように固定する。そして電鋳薄刃砥石10
の刃先部11の外周縁11a近傍にレーザ光を照射でき
るようにレーザ装置18を配設する。このレーザ装置1
8はろう付け用、はんだ付け用等のレーザ装置を採用で
きる。この状態で、回転台の中心軸回りに電鋳薄刃砥石
10を回転させながらレーザ装置18からレーザ光を照
射して、回転する刃先部11の外周縁11aから径方向
内側に2mm以下の範囲を順次加熱する。レーザ照射に
よる加熱温度は200℃以上500℃までの範囲、例え
ば250℃程度とする。
Next, slits 14 are formed at predetermined intervals on the electroformed thin blade grindstone 10 radially inward from the outer peripheral edge 11a of the blade edge portion 11 using a cutting laser device or the like. As shown in FIG. 2, the electroformed thin blade grindstone 10 is sandwiched between a pair of flanges 17, 17 having a circular cup shape, for example, provided on a rotary table connected to a motor so that only the outer peripheral side including the blade edge portion 11 is entirely covered. It is exposed in a ring shape with a width of, for example, 4 to 5 mm around the circumference. At that time, the electroformed thin blade grindstone 10 is fixed so as to be concentric with the flanges 17 and 17. And electroformed thin blade whetstone 10
The laser device 18 is disposed so that the vicinity of the outer peripheral edge 11a of the cutting edge 11 can be irradiated with laser light. This laser device 1
8 can employ a laser device for brazing, soldering or the like. In this state, the laser beam is emitted from the laser device 18 while rotating the electroformed thin blade grindstone 10 around the center axis of the turntable, and a range of 2 mm or less inward in the radial direction from the outer peripheral edge 11a of the rotating blade edge portion 11. Heat sequentially. The heating temperature by laser irradiation is in a range of 200 ° C. or more and 500 ° C., for example, about 250 ° C.

【0016】これにより刃先部11をスポット的に熱処
理できるから、その加熱領域が再結晶化して再結晶組織
となる。しかも回転する電鋳薄刃砥石10をスポット的
に加熱するから短時間加熱された刃先部11はレーザ光
照射ポイントを直ぐに外れて冷却されるために温度の低
下が早く周辺領域まで再結晶化されることを防止でき
る。同時に刃先部11には所定間隔でスリット14…が
形成されているから、レーザ照射しても各刃先片16の
回転方向前後のスリット14、14でも放熱される。こ
れらの要因により刃先部11は加熱後に効果的に冷却さ
れることになり、刃先部11に熱変形が生じるのを抑制
できる。しかもスリット14のために周方向に大きな熱
歪みが生じることはなく、刃先片16単位で小さな熱歪
みが生じ得るにすぎない。従って幅2mm以内の所定範
囲に亘って全周に高精度に熱処理して再結晶組織からな
る精密な研削領域12を製作でき、この研削領域12が
熱で歪んで波打ったりするのを確実に防止できる。
As a result, the blade edge portion 11 can be heat-treated in a spot manner, so that the heated region is recrystallized to have a recrystallized structure. In addition, since the rotating electroformed thin blade grindstone 10 is heated in a spot manner, the blade edge portion 11 which is heated for a short time is quickly deviated from the laser beam irradiation point and is cooled. Can be prevented. At the same time, the slits 14 are formed at predetermined intervals in the blade edge portion 11, so that even when laser irradiation is performed, heat is also radiated in the slits 14, 14 before and after the rotation direction of each blade edge piece 16. Due to these factors, the cutting edge 11 is effectively cooled after being heated, and the occurrence of thermal deformation of the cutting edge 11 can be suppressed. Moreover, the slit 14 does not cause a large thermal distortion in the circumferential direction, and only a small thermal distortion can be generated in the cutting edge piece 16 unit. Therefore, it is possible to produce a precise grinding region 12 made of a recrystallized structure by heat-treating the entire circumference with high precision over a predetermined range within a width of 2 mm, and it is ensured that the grinding region 12 is distorted by heat and wavy. Can be prevented.

【0017】このようにして得られた電鋳薄刃砥石10
を用いてシリコン等の被削材を切断加工する場合、電鋳
薄刃砥石10を砥石軸2に装着した状態で所定回転速度
で回転させつつ被削材に切り込み刃先部11の研削領域
12で切断加工する。この時、研削領域12は再結晶組
織になっているから他の金属めっき相の組織より軟質化
して脆化されており、超砥粒が研削で摩耗するより早く
再結晶組織の金属めっき相が摩耗して除去され、新たな
超砥粒が露出するために良好な切れ味を継続的に確保で
きる。そのため研削領域12について自生発刃作用を促
進できて良好な切れ味を維持できて優れた研削性能を発
揮できる。しかも研削に関与しない領域では高い剛性が
維持されるので電鋳薄刃砥石の保持強度が高い。
The thus obtained electroformed thin blade grindstone 10
When cutting a work material such as silicon by using a cutting tool, the electroformed thin blade grindstone 10 is mounted on the grindstone shaft 2 and is rotated at a predetermined rotation speed while cutting into the work material to cut at a grinding area 12 of a cutting edge portion 11. Process. At this time, since the grinding region 12 has a recrystallized structure, the structure of the other metal plating phase is softened and embrittled, and the metal plating phase of the recrystallized structure is formed earlier than the superabrasive is worn by grinding. Abrasion is removed and new superabrasive grains are exposed, so that good sharpness can be continuously ensured. Therefore, the self-propelled cutting action of the grinding area 12 can be promoted, good sharpness can be maintained, and excellent grinding performance can be exhibited. In addition, since high rigidity is maintained in a region not involved in grinding, the holding strength of the electroformed thin blade grindstone is high.

【0018】上述のように本実施の形態によれば、刃先
部11の研削領域12の自生発刃作用を促進して良好な
切れ味を維持でき優れた研削性能を発揮できる。また電
鋳薄刃砥石10の製作に際して、再結晶組織を形成する
ための刃先部11の加熱時にスリット14…を設け且つ
電鋳薄刃砥石10を回転させたから、研削領域12の熱
歪みを刃先片16単位で小さく抑えて歪みの少ない高精
度な再結晶組織を製作でき、周辺領域の強度低下をもた
らすおそれがない。
As described above, according to the present embodiment, the spontaneous cutting action of the grinding area 12 of the cutting edge portion 11 is promoted to maintain good sharpness, and excellent grinding performance can be exhibited. When the electroformed thin blade grindstone 10 is manufactured, the slits 14 are provided and the electroformed thin blade grindstone 10 is rotated when the cutting edge portion 11 for forming a recrystallized structure is heated. A high-precision recrystallized structure with less distortion can be manufactured by suppressing the size in units, and there is no possibility that the strength of the peripheral region is reduced.

【0019】本発明の変形例について図3から図6に基
づいて説明するが、実施の形態による電鋳薄刃砥石10
と同一または同様の部分、部品については同一の符号を
用いて説明する。図3は第一の変形例を示す電鋳薄刃砥
石20を示す部分説明図であり、この電鋳薄刃砥石20
は基本構成を実施の形態による電鋳薄刃砥石10と同じ
くしており、その円形の刃先部11の研削領域22は外
周縁11aから径方向内側に略リング状に金属めっき相
の再結晶組織を構成している。尚、刃先部11にはスリ
ット11が設けられていない。この研削領域22はその
周方向にそれぞれ再結晶組織からなる第一再結晶部22
aと第二再結晶部22bとが交互に設けられている。第
一及び第二再結晶部22a、22bは同一の再結晶組織
を構成するが、加熱の方向が上下異なるためにそりの方
向が逆になっている。即ち、図3に示すように刃先部1
1の両側面の一方の面11Aに所定間隔でレーザー光を
照射して第一再結晶部22a…とし、次に他方の面11
Bより第一再結晶部22a,22a間のレーザー光を照
射していない非再結晶部分にレーザー光照射して再結晶
化させることで第二再結晶部22bを第一再結晶部22
aと交互に全周に亘って構成する。
A modified example of the present invention will be described with reference to FIGS. 3 to 6.
The same or similar parts and components as those described above will be described using the same reference numerals. FIG. 3 is a partial explanatory view showing an electroformed thin blade grindstone 20 showing a first modified example.
Has the same basic configuration as the electroformed thin blade grindstone 10 according to the embodiment, and the grinding region 22 of the circular blade edge portion 11 has a recrystallized structure of the metal plating phase in a substantially ring shape radially inward from the outer peripheral edge 11a. Make up. Note that the slit 11 is not provided in the blade edge portion 11. The grinding region 22 has a first recrystallized portion 22 formed of a recrystallized structure in its circumferential direction.
a and the second recrystallization portions 22b are provided alternately. Although the first and second recrystallized portions 22a and 22b have the same recrystallized structure, the directions of the warp are reversed because the directions of heating are different from each other. That is, as shown in FIG.
1 is irradiated with laser light at predetermined intervals to form first recrystallized portions 22a, and then the other surface 11A is irradiated with laser light.
The second recrystallized portion 22b is converted from the first recrystallized portion 22b by irradiating the non-recrystallized portion between the first recrystallized portions 22a, 22a, which has not been irradiated with the laser light, with a laser beam.
It is configured over the entire circumference alternately with a.

【0020】上述の構成を採用したことで、刃先部11
の厚み方向両面11A、11Bの熱歪みを上下両側に交
互に形成にすることにより、刃先部11の内部応力のバ
ランスをとることができ電鋳薄刃砥石20の熱変形によ
るそりを抑制できる。尚、上述の電鋳薄刃砥石20にお
いて、隣り合う第一再結晶部22aと第二再結晶部22
bとの間にスリット14を順次形成してもよく、このよ
うな構成を採用すればレーザー加熱時の放熱性が向上す
るために熱歪みを一層少なくして刃先部11のバランス
と平坦性を向上できる。
By adopting the above configuration, the cutting edge 11
By alternately forming the thermal strains on both sides 11A, 11B in the thickness direction of the upper and lower sides, the internal stress of the cutting edge portion 11 can be balanced, and the warpage due to the thermal deformation of the electroformed thin blade grindstone 20 can be suppressed. In the above-described electroformed thin blade grindstone 20, the adjacent first recrystallized portion 22a and second recrystallized portion 22
The slits 14 may be sequentially formed between the blades 11 and b. If such a configuration is adopted, the heat radiation during laser heating is improved, so that thermal distortion is further reduced, and the balance and flatness of the blade edge portion 11 are improved. Can be improved.

【0021】次に図4は第二変形例を示す電鋳薄刃砥石
の部分平面図である。この電鋳薄刃砥石30では、刃先
部11の一方(または両方)の面11Aにレーザー光を
スポット状に所定間隔で照射し、刃先部11に再結晶組
織からなる再結晶部31と非再結晶部32が周方向に交
互に存在するように構成している。再結晶組部31は再
結晶化されて比較的軟質となり、非再結晶部32は電着
による金属めっき相であるから比較的硬度が高い。この
ような構成としたことで、各再結晶部31の円周方向長
さを制御して電鋳薄刃砥石30の耐摩耗性の制御が可能
となる。例えば再結晶部31の円周方向長さを長くする
ことによって砥石30の金属めっき相の耐摩耗性を低減
でき、自生発刃性を高めることができる。この変形例の
場合においても、スポット状の再結晶部31の周方向両
側、即ち再結晶部31と非再結晶部32との間にスリッ
ト14を順次設けてもよい。
FIG. 4 is a partial plan view of an electroformed thin blade grinding wheel showing a second modification. In this electroformed thin blade grindstone 30, one (or both) surfaces 11A of the cutting edge portion 11 are irradiated with laser light in a spot-like manner at predetermined intervals, and the cutting edge portion 11 is recrystallized with a recrystallized portion 31 having a recrystallized structure. The parts 32 are configured to be present alternately in the circumferential direction. The recrystallized assembly 31 is recrystallized to be relatively soft, and the non-recrystallized portion 32 is relatively high in hardness because it is a metal plating phase by electrodeposition. With such a configuration, the wear resistance of the electroformed thin blade grindstone 30 can be controlled by controlling the circumferential length of each recrystallized portion 31. For example, by increasing the circumferential length of the recrystallization portion 31, the wear resistance of the metal plating phase of the grindstone 30 can be reduced, and the spontaneous cutting performance can be increased. Also in the case of this modification, the slits 14 may be sequentially provided on both sides in the circumferential direction of the spot-shaped recrystallized portion 31, that is, between the recrystallized portion 31 and the non-recrystallized portion 32.

【0022】図5は第三の変形例である電鋳薄刃砥石の
刃先部の部分縦断面図であり、図中、電鋳薄刃砥石40
の刃先部11に照射する照射ポイントでのレーザー光の
集光径を100〜1000μmとし、しかもこの集光径
を電鋳薄刃砥石40の厚みの2〜10倍に設定してもよ
い。このようなレーザー光の集光径を設定することによ
り、刃先部11のレーザー照射による再結晶組織からな
る再結晶部41及びその近傍の熱歪みを低減でき電鋳薄
刃砥石40の変形を抑制できる。ここで集光径が100
0μmを越えると刃先部11への入熱量が大きくなりす
ぎ熱処理部及び周辺の影響も含めて熱量のコントロール
が難しい。100μmより小さいと刃先部11の熱処理
面11Aとその反対側の面11Bの熱処理状態の差が大
きく、電鋳薄刃砥石40の変形を生じ易い。そのため電
鋳薄刃砥石40に好適なレーザー光の集光径は2〜10
倍である。
FIG. 5 is a partial longitudinal sectional view of the cutting edge of an electroformed thin blade grindstone according to a third modification.
The focused diameter of the laser beam at the irradiation point for irradiating the cutting edge 11 may be set to 100 to 1000 μm, and the focused diameter may be set to 2 to 10 times the thickness of the electroformed thin blade grindstone 40. By setting such a condensing diameter of the laser beam, the thermal distortion of the recrystallized portion 41 and the vicinity thereof having the recrystallized structure by the laser irradiation of the cutting edge portion 11 can be reduced, and the deformation of the electroformed thin blade grindstone 40 can be suppressed. . Here, the focusing diameter is 100
If it exceeds 0 μm, the amount of heat input to the blade edge portion 11 becomes too large, and it is difficult to control the amount of heat including the influence of the heat treatment part and the surroundings. If it is smaller than 100 μm, the difference between the heat-treated state of the heat-treated surface 11A of the cutting edge portion 11 and the heat-treated state of the opposite surface 11B is large, and the electroformed thin blade grindstone 40 is likely to be deformed. Therefore, the condensing diameter of the laser beam suitable for the electroformed thin blade grindstone 40 is 2 to 10
It is twice.

【0023】図6(a)は第四の変形例である電鋳薄刃
砥石の刃先部の部分平面図であり、図中、電鋳薄刃砥石
50において、刃先部11の一方の面11Aで最外周の
外周縁11aから順次内周側に向かって刃先部11の形
成幅に亘ってスパイラル状(または同心円状)にレーザ
ーを照射して再結晶組織からなる再結晶部51を形成す
るようにしてもよい。レーザー熱処理を外周縁11aか
ら開始して螺旋状(若しくは同心円状)に順次内周に向
かって行うとスタートポイント51aで外周縁11aか
ら放熱できて電鋳薄刃砥石50の変形が少ない。その
点、同図(b)に示すように刃先部11の内周から外周
に向かってレーザー熱処理を行うとスタートポイント5
1a′の入熱量の制御が難しいと共にレーザー照射部と
その周辺で大きな熱膨張差を生じ、大きな曲がりを生じ
易く更にその外周側の曲がったところにレーザー照射が
順次行われるため、その湾曲は加速される。外周縁11
aをスタートポイント51aとして熱処理をスタートす
ると、熱歪みが発生しても外周縁11aまでの距離が短
いために放熱性がよくて曲げモーメントが小さく初期レ
ーザー熱処理した予熱でその内周側が予め予熱されるた
め、その後のレーザー熱処理による再結晶組織部51に
隣接する熱影響部の熱歪み緩和作用が働き変形が少な
い。尚、第三及び第四変形例においても刃先部11に所
定間隔でスリット14を形成してもよい。上記第一から
第四変形例においてスリット14を刃先部11に形成す
る場合、スリット14形成後にレーザーによる熱処理を
行うことが好ましい。
FIG. 6A is a partial plan view of the cutting edge portion of an electroformed thin blade grindstone according to a fourth modification. In FIG. The laser is irradiated spirally (or concentrically) over the formation width of the cutting edge portion 11 sequentially from the outer peripheral edge 11a toward the inner peripheral side to form a recrystallized portion 51 having a recrystallized structure. Is also good. When the laser heat treatment is started from the outer peripheral edge 11a and spirally (or concentrically) sequentially performed toward the inner periphery, heat can be radiated from the outer peripheral edge 11a at the start point 51a, and the deformation of the electroformed thin blade grindstone 50 is small. In this regard, when the laser heat treatment is performed from the inner circumference to the outer circumference of the cutting edge portion 11 as shown in FIG.
It is difficult to control the amount of heat input of 1a ', and a large difference in thermal expansion occurs between the laser irradiation part and the periphery thereof, so that a large bend is likely to occur. Further, the laser irradiation is sequentially performed at the bend on the outer peripheral side, so the curvature is accelerated. Is done. Outer edge 11
When the heat treatment is started with a as a starting point 51a, even if thermal distortion occurs, the distance to the outer peripheral edge 11a is short, so that the heat radiation is good, the bending moment is small, and the inner peripheral side is preheated by the initial laser heat treatment. Therefore, the heat-affected zone adjacent to the recrystallized structure portion 51 due to the subsequent laser heat treatment acts to reduce the thermal strain, and the deformation is small. In the third and fourth modified examples, the slits 14 may be formed at predetermined intervals in the blade edge portion 11. In the case where the slit 14 is formed in the blade edge portion 11 in the first to fourth modified examples, it is preferable to perform a heat treatment by a laser after the slit 14 is formed.

【0024】[0024]

【発明の効果】以上説明したように、本発明に係る電鋳
薄刃砥石は、刃先部をレーザ光で熱処理して再結晶組織
としたから、金属めっき相が軟質化すると共に脆化する
ために、研削時に自生発刃作用が向上して良好な切れ味
を維持できる。また再結晶組織は刃先部の先端から刃先
部に直交する方向に2mm以下の幅に亘って形成したか
ら、研削領域のみを再結晶組織にして研削時の自生発刃
を促進でき、それより内側の領域では剛性が高く維持で
きるから強度が高い。また刃先部の延在方向に沿って所
定間隔でスリットが形成され、これらスリットで分断さ
れた刃先部の領域に再結晶組織が形成されたから、熱処
理時における刃先部の熱変形が小さく、高精度で切れ味
のよい研削が行える。
As described above, in the electroformed thin blade grindstone according to the present invention, the cutting edge is heat-treated with a laser beam to have a recrystallized structure, so that the metal plating phase becomes soft and brittle. In addition, the self-sharpening action at the time of grinding is improved, and good sharpness can be maintained. In addition, since the recrystallized structure is formed over the width of 2 mm or less in the direction perpendicular to the cutting edge from the tip of the cutting edge, only the grinding region can be recrystallized to promote spontaneous cutting at the time of grinding. Since the rigidity can be maintained high in the region, the strength is high. Slits are formed at predetermined intervals along the direction in which the cutting edge extends, and a recrystallized structure is formed in the cutting edge region divided by these slits. With this, sharp grinding can be performed.

【0025】また本発明による電鋳薄刃砥石は、刃先部
の延在方向に沿って所定間隔でスリットを形成した後、
刃先部を加熱して熱処理して刃先部の外周側に所定幅の
再結晶組織を形成したから、加熱時に刃先部の熱がスリ
ットによって効率良く放熱され、しかも熱歪みが生じて
もスリットで仕切られた刃先片単位で微小な歪みが生じ
るだけで外周方向に連続する大きな歪みは発生せず、刃
先部のスリットで仕切られた領域の熱変形を抑えて精度
の良い熱加工ができる。
In the electroformed thin blade grinding wheel according to the present invention, after forming slits at predetermined intervals along the extending direction of the blade edge portion,
The cutting edge is heated and heat-treated to form a recrystallized structure with a predetermined width on the outer peripheral side of the cutting edge. Thus, the heat of the cutting edge is efficiently dissipated by the slit during heating, and even if thermal distortion occurs, the slit partitions the heat. Only a small distortion is generated in each of the blade edge pieces, and a large continuous distortion in the outer peripheral direction does not occur. Thus, thermal deformation of a region partitioned by the slit of the blade edge portion can be suppressed and accurate thermal processing can be performed.

【0026】また本発明による電鋳薄刃砥石は、刃先部
の両面の一方の面に所定間隔で再結晶組織を構成する第
一再結晶部を形成し、他方の面の前記第一再結晶部の間
に再結晶組織を構成する第二再結晶部を形成すること
で、刃先部の周方向両面に第一及び第二再結晶部が交互
に配列されてなるから、刃先部の厚み方向両面の熱歪み
を同一化して交互に配列することにより、刃先部の内部
応力のバランスをとることができ電鋳薄刃砥石の熱変形
によるそりを抑制できる。また本発明の電鋳薄刃砥石
は、刃先部に再結晶組織からなる軟質の再結晶部と非再
結晶部が交互に存在するようにしたから、再結晶部の円
周方向長さを制御して砥石の耐摩耗性の制御が可能とな
り、再結晶部の円周方向長さを長くすることによって砥
石の金属結合相の耐摩耗性を低減でき、自生発刃性を高
めることができる。
Further, the electroformed thin blade grindstone according to the present invention forms a first recrystallized portion constituting a recrystallized structure at a predetermined interval on one of both surfaces of a cutting edge portion, and the first recrystallized portion on the other surface. By forming the second recrystallized portion constituting the recrystallized structure between, the first and second recrystallized portions are alternately arranged on both circumferential surfaces of the cutting edge portion, so both thickness direction surfaces of the cutting edge portion By alternately arranging the heat distortions of the electroformed thin blades, the internal stress of the cutting edge portion can be balanced, and the warpage due to the thermal deformation of the electroformed thin blade can be suppressed. Further, the electroformed thin blade grindstone of the present invention, since a soft recrystallized portion and a non-recrystallized portion having a recrystallized structure are alternately present at the cutting edge, the circumferential length of the recrystallized portion is controlled. Thus, the wear resistance of the grindstone can be controlled, and by increasing the circumferential length of the recrystallized portion, the wear resistance of the metal bonding phase of the grindstone can be reduced, and the spontaneous cutting ability can be enhanced.

【0027】また本発明による電鋳薄刃砥石の製造方法
は、電鋳薄刃砥石を所定速度で回転させつつ刃先部にレ
ーザ光を照射して外周側の所定幅を再結晶化させたか
ら、刃先部のレーザ光照射部が光路から外れて加熱後に
順次冷却され、刃先部の熱歪みを抑えて再結晶化でき、
電鋳薄刃砥石の回転速度を制御することで刃先部への入
熱量を調整できて適切な再結晶組織を形成できる。また
レーザ光の照射に先だって電鋳薄刃砥石の外周側には所
定間隔でスリットを形成したから、レーザ光照射時の放
熱がスリットで一層進み、刃先部の熱歪みを一層抑制で
きる。
In the method for manufacturing an electroformed thin blade grindstone according to the present invention, a laser beam is applied to the cutting edge while rotating the electroformed thin blade at a predetermined speed to recrystallize a predetermined width on the outer peripheral side. The laser beam irradiating part deviates from the optical path and is sequentially cooled after heating, and can be recrystallized while suppressing thermal distortion of the cutting edge part,
By controlling the rotation speed of the electroformed thin blade grindstone, the amount of heat input to the blade tip can be adjusted, and an appropriate recrystallized structure can be formed. Further, since slits are formed at predetermined intervals on the outer peripheral side of the electroformed thin blade grindstone prior to the irradiation of the laser beam, heat radiation at the time of laser beam irradiation proceeds further by the slit, and the thermal distortion of the blade edge portion can be further suppressed.

【0028】またレーザー光の集光径を100〜100
0μmであって砥石厚みの2〜10倍としたから、刃先
部のレーザー照射による再結晶部及びその近傍の熱歪み
を低減でき砥石の変形を抑制できる。また刃先部の最外
周から順次内周側に向かって同心円状またはスパイラル
状に熱処理するようにしたから、レーザー熱処理を最外
周から開始して順次内周に向かってレーザー熱処理を行
うときの電鋳薄刃砥石の変形が少ない。最外周からスタ
ートすると、熱歪みが発生しても長さがないために曲げ
モーメントが小さく初期レーザー熱処理した予熱でその
内周側が予め予熱されるため、その後のレーザー熱処理
による熱影響部の熱歪み緩和作用が働き変形が少ない。
Further, the focused diameter of the laser beam is set to 100 to 100.
Since it is 0 μm and 2 to 10 times the thickness of the grindstone, thermal distortion in the recrystallized portion and its vicinity due to laser irradiation of the cutting edge can be reduced, and deformation of the grindstone can be suppressed. In addition, since the heat treatment is performed concentrically or spirally from the outermost circumference of the cutting edge part to the inner circumference side, the electroforming is performed when starting the laser heat treatment from the outermost circumference and performing the laser heat treatment sequentially toward the inner circumference. Less deformation of thin blade whetstone. When starting from the outermost circumference, since there is no length even if thermal strain occurs, the bending moment is small and the inner circumference side is preheated in advance by preheating performed by initial laser heat treatment, so thermal distortion of the heat affected zone due to subsequent laser heat treatment The relief action works and there is little deformation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態による電鋳薄刃砥石の平
面図である。
FIG. 1 is a plan view of an electroformed thin blade grindstone according to an embodiment of the present invention.

【図2】 実施の形態による電鋳薄刃砥石を回転台に装
着して回転させつつレーザ光を照射する状態を示す要部
説明図である。
FIG. 2 is a main part explanatory view showing a state in which the electroformed thin blade grindstone according to the embodiment is mounted on a turntable and irradiated with laser light while being rotated.

【図3】 実施の形態の第一変形例による電鋳薄刃砥石
の部分説明図である。
FIG. 3 is a partial explanatory view of an electroformed thin blade grindstone according to a first modification of the embodiment.

【図4】 第二変形例による電鋳薄刃砥石の部分平面図
である。
FIG. 4 is a partial plan view of an electroformed thin blade grindstone according to a second modified example.

【図5】 第三変形例による電鋳薄刃砥石の刃先部の縦
断面図である。
FIG. 5 is a longitudinal sectional view of a cutting edge portion of an electroformed thin blade grindstone according to a third modified example.

【図6】 (a)は第四変形例による電鋳薄刃砥石の部
分平面図、(b)は内周側のスタートポイントを加熱し
た場合の電鋳薄刃砥石の部分縦断面図である。
FIG. 6A is a partial plan view of an electroformed thin blade grindstone according to a fourth modification, and FIG. 6B is a partial longitudinal sectional view of the electroformed thin blade grindstone when a start point on an inner peripheral side is heated.

【図7】 従来の電鋳薄刃砥石を砥石軸に装着した状態
を示す縦断面図である。
FIG. 7 is a longitudinal sectional view showing a state in which a conventional electroformed thin blade grindstone is mounted on a grindstone shaft.

【符号の説明】[Explanation of symbols]

10,20,30,40,50 電鋳薄刃砥石 11 刃先部 11a 外周縁 12 研削領域 14 スリット 16 刃先片 22,31,41,51 再結晶組織部 10, 20, 30, 40, 50 Electroformed thin blade whetstone 11 Blade edge 11a Outer edge 12 Grinding area 14 Slit 16 Blade tip 22, 31, 41, 51 Recrystallized structure

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B24D 5/00 B24D 5/00 P // B23K 101:20 B23K 101:20 (72)発明者 鈴木 直人 福島県いわき市泉町黒須野字江越246−1 三菱マテリアル株式会社いわき製作所内 Fターム(参考) 3C063 AA02 AB03 BA23 BA37 BB02 BC02 BG01 BG07 CC12 CC30 EE31 FF23 4E068 AH00 CA07 DA01 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B24D 5/00 B24D 5 / 00P // B23K 101: 20 B23K 101: 20 (72) Inventor Naoto Suzuki Fukushima 246-1 Egoshi, Kurosuno, Izumi-cho, Iwaki-shi, F-term in Mitsubishi Materials Corporation Iwaki Works 3C063 AA02 AB03 BA23 BA37 BB02 BC02 BG01 BG07 CC12 CC30 EE31 FF23 4E068 AH00 CA07 DA01

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 金属結合相中に超砥粒を分散配置してな
る電鋳薄刃砥石において、刃先部をレーザ光で熱処理し
て再結晶組織としたことを特徴とする電鋳薄刃砥石。
1. An electroformed thin blade wheel in which superabrasive grains are dispersed and arranged in a metal bonding phase, wherein a cutting edge portion is heat-treated with a laser beam to have a recrystallized structure.
【請求項2】 前記再結晶組織は刃先部の先端から刃先
部に直交する方向に2mm以下の幅に亘って形成されて
いることを特徴とする請求項1に記載の電鋳薄刃砥石。
2. The electroformed thin blade wheel according to claim 1, wherein the recrystallized structure is formed over a width of 2 mm or less from a tip of the cutting edge in a direction perpendicular to the cutting edge.
【請求項3】 前記刃先部の延在方向に沿って所定間隔
でスリットが形成され、これらスリットで分断された刃
先部の領域に前記再結晶組織が形成されていることを特
徴とする請求項1または2に記載の電鋳薄刃砥石。
3. A slit is formed at predetermined intervals along a direction in which the cutting edge extends, and the recrystallized structure is formed in a region of the cutting edge divided by the slit. 3. The electroformed thin blade grinding wheel according to 1 or 2.
【請求項4】 金属結合相中に超砥粒を分散配置してな
る電鋳薄刃砥石において、刃先部の延在方向に沿って所
定間隔でスリットを形成した後、前記刃先部を熱処理し
て所定幅の再結晶組織を形成してなる電鋳薄刃砥石。
4. In an electroformed thin blade whetstone in which superabrasive grains are dispersed and arranged in a metal bonding phase, slits are formed at predetermined intervals along the direction in which the blade edge extends, and then the blade edge is heat-treated. An electroformed thin blade whetstone having a recrystallized structure with a predetermined width.
【請求項5】 金属結合相中に超砥粒を分散配置してな
る電鋳薄刃砥石において、刃先部の両面の一方の面に所
定間隔で再結晶組織を構成する第一再結晶部を形成し、
他方の面の前記第一再結晶部の間に再結晶組織を構成す
る第二再結晶部を形成することで、刃先部の周方向両面
に第一及び第二再結晶部が交互に配列されてなることを
特徴とする電鋳薄刃砥石。
5. An electroformed thin blade in which super-abrasive grains are dispersed and arranged in a metal bonding phase, wherein a first recrystallized portion constituting a recrystallized structure is formed at a predetermined interval on one of both surfaces of a blade edge portion. And
By forming a second recrystallized portion constituting the recrystallized structure between the first recrystallized portion on the other surface, the first and second recrystallized portions are alternately arranged on both circumferential surfaces of the cutting edge portion. An electroformed thin blade whetstone characterized by the following.
【請求項6】 金属結合相中に超砥粒を分散配置してな
る電鋳薄刃砥石において、刃先部に再結晶組織からなる
軟質の再結晶部と非再結晶部が交互に存在するようにし
たことを特徴とする電鋳薄刃砥石。
6. An electroformed thin blade in which superabrasive grains are dispersed and arranged in a metal bonding phase, so that soft recrystallized portions having a recrystallized structure and non-recrystallized portions alternately exist at the cutting edge. An electroformed thin blade whetstone.
【請求項7】 金属結合相中に超砥粒を分散配置してな
る電鋳薄刃砥石を、所定速度で回転させつつ刃先部にレ
ーザ光を照射して外周側の所定幅に亘って再結晶化させ
てなる電鋳薄刃砥石の製造方法。
7. An electroformed thin blade made by dispersing superabrasive grains in a metal bonding phase and irradiating a laser beam to a cutting edge while rotating at a predetermined speed to recrystallize over a predetermined width on an outer peripheral side. A method for producing an electroformed thin blade whetstone.
【請求項8】 レーザ光の照射に先だって電鋳薄刃砥石
の外周側には所定間隔でスリットを形成したことを特徴
とする請求項7記載の電鋳薄刃砥石の製造方法。
8. The method of manufacturing an electroformed thin blade according to claim 7, wherein slits are formed at predetermined intervals on an outer peripheral side of the electroformed thin blade before the irradiation of the laser beam.
【請求項9】 レーザー光の集光径が100〜1000
μmであって砥石厚みの2〜10倍であることを特徴と
する請求項7または8に記載の電鋳薄刃砥石の製造方
法。
9. The laser beam focusing diameter is 100 to 1000.
The method for producing an electroformed thin blade wheel according to claim 7 or 8, wherein the thickness is 2 to 10 times the thickness of the wheel.
【請求項10】 刃先部の最外周から順次内周側に向か
って同心状またはスパイラル状に熱処理するようにした
ことを特徴とする請求項7から9のいずれか記載の電鋳
薄刃砥石の製造方法。
10. The electroformed thin blade grinding wheel according to claim 7, wherein heat treatment is performed concentrically or spirally from the outermost periphery of the cutting edge portion toward the inner peripheral side. Method.
JP2000264446A 2000-08-31 2000-08-31 Electroformed thin blade whetstone and manufacturing method thereof Expired - Fee Related JP4337249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000264446A JP4337249B2 (en) 2000-08-31 2000-08-31 Electroformed thin blade whetstone and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000264446A JP4337249B2 (en) 2000-08-31 2000-08-31 Electroformed thin blade whetstone and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002066934A true JP2002066934A (en) 2002-03-05
JP4337249B2 JP4337249B2 (en) 2009-09-30

Family

ID=18751862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000264446A Expired - Fee Related JP4337249B2 (en) 2000-08-31 2000-08-31 Electroformed thin blade whetstone and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4337249B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011251351A (en) * 2010-05-31 2011-12-15 Mitsubishi Materials Corp Thin-edged blade
JP2012223866A (en) * 2011-04-21 2012-11-15 Mitsubishi Materials Corp Method of manufacturing electrocast blade
JP2015057307A (en) * 2014-12-24 2015-03-26 株式会社東京精密 Electrocasting blade production method
JP6046229B1 (en) * 2015-11-02 2016-12-14 株式会社不二Wpc Cutting cutter manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011251351A (en) * 2010-05-31 2011-12-15 Mitsubishi Materials Corp Thin-edged blade
JP2012223866A (en) * 2011-04-21 2012-11-15 Mitsubishi Materials Corp Method of manufacturing electrocast blade
JP2015057307A (en) * 2014-12-24 2015-03-26 株式会社東京精密 Electrocasting blade production method
JP6046229B1 (en) * 2015-11-02 2016-12-14 株式会社不二Wpc Cutting cutter manufacturing method
JP2017087303A (en) * 2015-11-02 2017-05-25 株式会社不二Wpc Manufacturing method for cutter blade

Also Published As

Publication number Publication date
JP4337249B2 (en) 2009-09-30

Similar Documents

Publication Publication Date Title
JP4337249B2 (en) Electroformed thin blade whetstone and manufacturing method thereof
JP4337250B2 (en) Electroformed thin blade whetstone and manufacturing method thereof
JP5976228B2 (en) Dicing blade
JP2007118122A (en) Electroformed thin blade grinding tool
JPS59124574A (en) Preparation of cutting edge
JP2003326464A (en) Cutting wheel and method of manufacturing the wheel
JP5470713B2 (en) Electroformed thin blade whetstone and manufacturing method thereof
JPH0688214B2 (en) Electroformed thin blade grindstone and manufacturing method thereof
JP2002326166A (en) Electrodeposition thin blade grinding wheel, and method for manufacturing the same
JP2013244546A (en) Cutting blade and method of manufacturing the same
JP2004136431A (en) Electroforming thin edge whetstone and its manufacturing method
JPH0692073B2 (en) Electroformed thin blade grindstone and manufacturing method thereof
JP4661025B2 (en) Metal bond grindstone and manufacturing method thereof
JPH11105002A (en) Cutting work chip saw and manufacture thereof
JP2007160505A (en) Method for manufacturing grindstone
JP2008229764A (en) Rotary tool and machining method
JPS62213965A (en) Grinding wheel with electroformed thin cutting edge and its manufacturing method
WO2019064837A1 (en) Electrodeposition grindstone and manufacturing method therefor
JP5840270B2 (en) Cutting blade
JP4222591B2 (en) Grinding wheel for processing ring-shaped member, processing forming method using the same, and cooling medium supply method for processing wheel for ring-shaped member
JPH10315143A (en) Grinding plate for rotary grinding tool
JP2893822B2 (en) Manufacturing method of thin blade whetstone with hub
JPH0970760A (en) Inner circumferential blade grinding wheel having multiple layered abrasive grain structure
JP2003311628A (en) Thin-edged blade and its manufacturing method
JP2008093768A (en) Grinding wheel and metal base

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees