JP2002066550A - Water processor - Google Patents

Water processor

Info

Publication number
JP2002066550A
JP2002066550A JP2000265983A JP2000265983A JP2002066550A JP 2002066550 A JP2002066550 A JP 2002066550A JP 2000265983 A JP2000265983 A JP 2000265983A JP 2000265983 A JP2000265983 A JP 2000265983A JP 2002066550 A JP2002066550 A JP 2002066550A
Authority
JP
Japan
Prior art keywords
ultrasonic vibrator
water
reaction vessel
ultrasonic
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000265983A
Other languages
Japanese (ja)
Other versions
JP3855624B2 (en
Inventor
Kunio Hashiba
邦夫 橋場
Shinichiro Umemura
晋一郎 梅村
Yutaka Masuzawa
裕 鱒沢
Kenichi Kawabata
健一 川畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000265983A priority Critical patent/JP3855624B2/en
Publication of JP2002066550A publication Critical patent/JP2002066550A/en
Application granted granted Critical
Publication of JP3855624B2 publication Critical patent/JP3855624B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water processor giving germicidal effect to microorganisms in water. SOLUTION: The water processor is provided with a reaction container having first and second parts and having a rotary symmetrical shaft, a first cover covering an opening part on the first part of the reaction container, a second cover covering an opening part on the side of the second part of the reaction container, a first ultrasonic vibrator having the rotary symmetrical shaft which sequentially connects the first ultrasonic vibrator, a first vibration transmission body and a first column and a second ultrasonic vibrator having a rotary symmetrical shaft which sequentially connects the second ultrasonic vibrator, a second vibration transmission body and a second column. The shaft of the first ultrasonic vibrator is aligned with that of the reaction container. The first column is included in the first part and is supported by the first cover. The shaft of the second ultrasonic vibrator is aligned with that of the reaction container. The second column is included in the second part and is supported by the first cover. The first ultrasonic vibrator is driven by the frequency of >=100 kHz and the second ultrasonic vibrator is driven by the frequency of <=100 kHz. Thus, the mechanical destruction operation of cavitation is given to the microorganisms with high probability.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,膜状の水に超音波
によるキャビテーションを発生させ,キャビテーション
の作用によって,水中の微生物などの殺菌を行なう水処
理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water treatment apparatus for generating cavitation by ultrasonic waves in film-form water, and sterilizing microorganisms in the water by the action of cavitation.

【0002】[0002]

【従来の技術】水処理において,従来広く採用されてい
る塩素処理はクリプトスポリジウムなどの耐塩素性に優
れた病原性微生物の殺菌にはあまり有効ではないことが
指摘されている。病原性微生物の殺菌が可能な手段とし
て,例えばヨーロッパ公開特許567225号により,
20kHz以上の超音波によるキャビテーションを利用
した水処理方法が公知である。
2. Description of the Related Art In water treatment, it has been pointed out that chlorination widely used in the past is not very effective in killing pathogenic microorganisms such as Cryptosporidium having excellent chlorine resistance. As means capable of killing pathogenic microorganisms, for example, according to EP-A-567225,
A water treatment method using cavitation by ultrasonic waves of 20 kHz or more is known.

【0003】超音波による水処理方法において殺菌効果
の原因となるキャビテーションは,圧力の変動により水
中に存在する酸素などの気体が核となって,気泡が生じ
る現象である。「超音波技術便覧(新訂版):日刊工業
新聞社,1991年,p.844−p.858」に記載
されているように,キャビテーションによって発生した
気泡が圧壊する際に生じる衝撃圧によって水中の微生物
は機械的に破壊されることが広く知られている。
[0003] Cavitation, which causes a sterilization effect in a water treatment method using ultrasonic waves, is a phenomenon in which a gas such as oxygen existing in water becomes a nucleus due to a change in pressure and bubbles are generated. As described in “Ultrasonic Technology Handbook (New Edition): Nikkan Kogyo Shimbun, 1991, pp. 844-858”, the water generated by cavitation collapses under the impact pressure generated when it collapses. It is widely known that microorganisms are mechanically destroyed.

【0004】[0004]

【発明が解決しようとする課題】キャビテーションの作
用を高い確率で水中の微生物に与え殺菌効率を向上させ
るために,特願平11−182903号,特願2000
−163137において本発明者により,膜状の水にキ
ャビテーションを発生させる水処理装置が示されてい
る。
SUMMARY OF THE INVENTION In order to impart cavitation action to microorganisms in water with a high probability to improve the sterilization efficiency, Japanese Patent Application Nos. 11-182903 and 2000 have been disclosed.
At 163137, the present inventor shows a water treatment apparatus for generating cavitation in film water.

【0005】超音波キャビテーションは100kHz以
下の比較的低い周波数を用いると少ないエネルギーでキ
ャビテーションを発生させることができ,更にキャビテ
ーションの機械的破壊作用も強い。上述のような超音波
による水処理装置においても,100kHz以下の超音
波を用いることが望ましいと考えられるが,何れも単一
の周波数の超音波が用いられている。
[0005] Ultrasonic cavitation can generate cavitation with a small amount of energy if a relatively low frequency of 100 kHz or less is used, and the cavitation has a strong mechanical destruction effect. It is considered desirable to use ultrasonic waves of 100 kHz or less in the above-described ultrasonic water treatment apparatus, but ultrasonic waves of a single frequency are used in each case.

【0006】通常,水中には大きさの異なる気泡が数多
く存在しており,数十μmの半径を有する気泡が最も多
く存在している。このような水中に100kHz以下の
超音波を照射してキャビテーションを発生させると,半
径が数μmから数百μmの気泡は効率よく圧壊して強い
衝撃波が発生するが,径の小さいや径の大きい気泡は圧
壊した際の衝撃力が小さくなるか,あるいは圧壊しなく
なる。
Normally, a large number of bubbles having different sizes are present in water, and most bubbles having a radius of several tens of μm are most present. When cavitation is generated by irradiating ultrasonic waves of 100 kHz or less into such water, bubbles having a radius of several μm to several hundred μm are efficiently crushed and strong shock waves are generated, but a small diameter or a large diameter is generated. Bubbles have a reduced impact force when crushed or do not crush.

【0007】上述の水処理装置では,単一の周波数の超
音波を用いているため,水中に含まれる様々な大きさの
気泡の一部を圧壊している。水中の微生物を効率的に破
壊するには,なるべく多くの気泡を圧壊させて,大きな
衝撃圧を数多くの場所で発生させた方が良い。
In the above-mentioned water treatment apparatus, since ultrasonic waves of a single frequency are used, some bubbles of various sizes contained in the water are crushed. In order to destroy microorganisms in water efficiently, it is better to crush as many bubbles as possible and generate a large impact pressure in many places.

【0008】本発明の目的は,膜状の水にキャビテーシ
ョンを発生させ,水中の微生物を殺菌する水処理装置に
おいて,水中に含まれる様々な大きさの気泡を圧壊さ
せ,強い衝撃圧を数多くの場所で発生させることによっ
て,水中の微生物を効率的に殺菌する水処理装置を提供
することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a water treatment apparatus for generating cavitation in water in a film form and disinfecting microorganisms in the water. It is an object of the present invention to provide a water treatment apparatus for efficiently sterilizing microorganisms in water by generating the water in a place.

【0009】[0009]

【課題を解決するための手段】「超音波技術便覧(新訂
版):日刊工業新聞社,1991年,p.1085−
p.1086」に記載されているように,気泡が振動す
る際にはrectified diffusionによ
り,気泡が成長して大きくなる。この作用は,共振気泡
において最も顕著である。そこで本発明の水処理装置で
は,100kHz以上の周波数の超音波を照射し,re
ctified diffusionによって小さな気
泡を成長させ,100kHz以下の周波数で圧壊し得る
数μm〜数百μmの気泡の存在頻度(密度)を増大させ
る。その後,100kHz以下の超音波を照射すること
により,水中に存在する気泡の多くを圧壊させる。
[Means for Solving the Problems] "Ultrasonic Technology Handbook (New Edition): Nikkan Kogyo Shimbun, 1991, p. 1085-
p. As described in “1086”, when the bubble vibrates, the bubble grows and becomes larger due to the rectified diffusion. This effect is most prominent in resonant bubbles. Therefore, in the water treatment apparatus of the present invention, ultrasonic waves having a frequency of 100 kHz or more are irradiated,
Small bubbles are grown by ctifed diffusion to increase the frequency (density) of bubbles of several μm to several hundred μm that can be crushed at a frequency of 100 kHz or less. Thereafter, by irradiating an ultrasonic wave of 100 kHz or less, many of the bubbles existing in the water are crushed.

【0010】本発明の水処理装置は,回転対称軸を持つ
第1,第2の部分を有し,回転対称軸を持つ反応容器を
具備する。反応容器の第1の部分の側の開口部は,水の
入口を持つ第1の蓋で覆われ,反応容器の第2の部分の
側の開口部は,水の出口を持つ第2の蓋で覆われてい
る。
[0010] The water treatment apparatus of the present invention has first and second portions having a rotationally symmetric axis and a reaction vessel having a rotationally symmetric axis. The opening on the side of the first part of the reaction vessel is covered with a first lid with an inlet for water, and the opening on the side of the second part of the reaction vessel is a second lid with an outlet for water. Covered with.

【0011】第1の超音波振動子と第1の振動伝送体と
第1の円柱とを順に結合してなる回転対称軸を持つ第1
の超音波振動体の第1の円柱が,第1の超音波振動体の
回転対称軸と反応容器の回転対称軸とを一致させて,反
応容器の第1の部分に内包され第1の蓋に支持される。
A first ultrasonic transducer, a first vibration transmitter, and a first cylinder having a rotationally symmetric axis formed by sequentially coupling a first cylinder are connected.
The first cylinder of the ultrasonic vibrator is included in the first portion of the reaction vessel such that the axis of rotational symmetry of the first ultrasonic vibrator coincides with the axis of rotational symmetry of the reaction vessel. Supported by

【0012】第2の超音波振動子と第2の振動伝送体と
第2の円柱とを順に結合してなる回転対称軸を持つ第2
の超音波振動体の第2の円柱が,第2の超音波振動体の
回転対称軸と反応容器の回転対称軸とを一致させて,第
1の円柱の一方の端面と第2の円柱の一方の端面とを対
向させて,反応容器の第2の部分に内包され第2の蓋に
支持される。
A second ultrasonic transducer, a second vibration transmitter, and a second cylinder having a rotationally symmetric axis formed by sequentially coupling the second cylinder;
The second column of the ultrasonic vibrator of the present invention is arranged such that the rotational symmetry axis of the second ultrasonic vibrator and the rotational symmetry axis of the reaction vessel coincide with each other, so that one end face of the first cylinder and the second cylinder have the same shape. The reaction vessel is included in the second portion of the reaction vessel with one end face opposed to the other end face, and is supported by the second lid.

【0013】第1の超音波振動体は100kHz以上の
周波数で駆動され,第2の超音波振動体は100kHz
以下の周波数で駆動される。第1の部分を構成する反応
容器の内面と第1の円柱の側面との間隔を,第1の超音
波振動体の振動の周波数によって定まる水中での音波の
波長の(1/4)以下とし,第2の部分を構成する反応
容器の内面と第2の円柱の側面との間隔を,第2の超音
波振動体の振動の周波数によって定まる水中での音波の
波長の(1/4)以下とする。
The first ultrasonic vibrator is driven at a frequency of 100 kHz or more, and the second ultrasonic vibrator is driven at 100 kHz.
It is driven at the following frequency. The distance between the inner surface of the reaction vessel constituting the first part and the side surface of the first cylinder is (() or less of the wavelength of sound waves in water determined by the frequency of vibration of the first ultrasonic vibrator. The distance between the inner surface of the reaction vessel constituting the second part and the side surface of the second cylinder is not more than (1 /) of the wavelength of sound waves in water determined by the frequency of vibration of the second ultrasonic vibrator. And

【0014】[0014]

【発明の実施の形態】以下,本発明の実施例図を用いて
詳細に説明する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of the present invention.

【0015】図1は本発明の水処理装置の実施例を示す
断面図である。反応容器10は回転対称軸を有し,回転
対称軸をそれぞれ有し隣接する第1の部分11,第2の
部分12を持つ。反応容器10の第1の部分11,第2
の部分12の回転対称軸に垂直な断面は円である。反応
容器10内を水密にするため,第1の部分11の開口部
は第1の蓋21により閉じられ,第2の部分12の開口
部は第2の蓋22により閉じられている。
FIG. 1 is a sectional view showing an embodiment of the water treatment apparatus of the present invention. The reaction vessel 10 has a rotationally symmetric axis, and has a first part 11 and a second part 12 adjacent to each other, each having a rotationally symmetric axis. The first part 11 and the second part
The section of the portion 12 perpendicular to the rotational symmetry axis is a circle. To make the inside of the reaction vessel 10 watertight, the opening of the first part 11 is closed by a first lid 21, and the opening of the second part 12 is closed by a second lid 22.

【0016】第1の蓋21には,図示しない駆動電源に
つながれた第1の超音波振動子313と振動伝送体31
2と円柱311とを順に結合してなる第1の超音波振動
体31が,振動伝送体312に設けられたフランジによ
って結合されている。第1の超音波振動体31は,反応
容器10及び第1の蓋12と同軸に配置され,円柱31
1が反応容器10の第1の部分11に内包されるように
配置される。
The first lid 21 has a first ultrasonic vibrator 313 connected to a drive power supply (not shown) and a vibration transmitter 31.
A first ultrasonic vibrating body 31 formed by sequentially connecting the second and the cylinders 311 is connected by a flange provided on the vibration transmitting body 312. The first ultrasonic vibrator 31 is disposed coaxially with the reaction vessel 10 and the first lid 12 and has a cylindrical shape 31.
1 is arranged so as to be included in the first portion 11 of the reaction vessel 10.

【0017】第2の蓋22には,図示しない駆動電源に
つながれた第2の超音波振動子321と振動伝送体32
2と円柱323とを順に結合してなる第2の超音波振動
体32が,振動伝送体322に設けられたフランジによ
って結合されている。第2の超音波振動体32は反応容
器10及び第2の蓋22と同軸に配置され,円柱323
が反応容器10の第2の部分12に内包されるように配
置される。
The second lid 22 has a second ultrasonic vibrator 321 connected to a drive power supply (not shown) and a vibration transmitter 32.
A second ultrasonic vibrating body 32, which is formed by sequentially connecting the second and the column 323, is connected by a flange provided on the vibration transmitting body 322. The second ultrasonic vibrator 32 is arranged coaxially with the reaction vessel 10 and the second lid 22, and has a column 323.
Is disposed so as to be included in the second portion 12 of the reaction vessel 10.

【0018】配水管411及び412を通り,反応容器
10に入水した水は,第1の蓋21に設けられた配水管
413を通り,先ず反応容器10の第1の部分11に入
水される。超音波振動体31は100kHz以上の周波
数で振動しており,第1の部分11に入水した水は特に
円柱311の側面と反応容器10の内面の間で第1の超
音波振動体31の振動を受け,水中に存在する様々な大
きさの気泡も呼吸振動をする。
The water that has entered the reaction vessel 10 through the water pipes 411 and 412 passes through the water pipe 413 provided in the first lid 21, and first enters the first portion 11 of the reaction vessel 10. The ultrasonic vibrator 31 vibrates at a frequency of 100 kHz or more, and the water that has entered the first portion 11 particularly vibrates between the side surface of the column 311 and the inner surface of the reaction vessel 10. As a result, bubbles of various sizes existing in the water also oscillate.

【0019】「超音波技術便覧(新訂版):日刊工業新
聞社,1991年,p.1085−p.1086」に記
載されているように,この気泡の呼吸振動は非線形振動
であり,比較的小さい大きさの気泡はrectifie
d diffusionの効果によって,大きな気泡に
成長する。従って,水が第1の部分11から第2の部分
12へ移行する際には,数μm〜数百μmの気泡を多く
含む水になっている。
As described in "Ultrasound Technology Handbook (New Edition): Nikkan Kogyo Shimbun, 1991, p.1085-p.1086", the respiratory vibration of this bubble is a non-linear vibration. Bubble of small size is rectify
Due to the effect of d diffusion, the cells grow into large bubbles. Therefore, when the water moves from the first part 11 to the second part 12, the water becomes a water containing many bubbles of several μm to several hundred μm.

【0020】このようにして第2の部分12に流れた水
に,第2の超音波振動体32の振動によって,特に円柱
323の側面と反応容器10の内面の間で100kHz
以下の超音波振動が与えられる。第2の部分12内の水
は100kHz以下の超音波で圧壊し,強い衝撃圧を発
し得る数μm〜数百μmの気泡を数多く含んでいる。こ
のため,水中に存在する微生物は高い確率で効率よく衝
撃圧の作用を受け,機械的に破壊される。
The water flowing to the second portion 12 in this manner is subjected to the vibration of the second ultrasonic vibrator 32, especially between the side surface of the column 323 and the inner surface of the reaction vessel 10 at a frequency of 100 kHz.
The following ultrasonic vibrations are given. The water in the second portion 12 is crushed by an ultrasonic wave of 100 kHz or less, and contains many bubbles of several μm to several hundred μm that can generate a strong impact pressure. For this reason, microorganisms existing in water are subjected to the action of impact pressure with high probability and are mechanically destroyed.

【0021】このようにして,第2の部分12で殺菌処
理された水は,第2の蓋22に設けられた配水管423
を介して,配管422及び421へと排水される。
The water sterilized in the second part 12 in this manner is supplied to the water pipe 423 provided on the second lid 22.
Through the pipes 422 and 421.

【0022】次に,第1の超音波振動体31及び32の
周波数について,図2〜図6を用いて説明する。図2〜
図6は,気泡を球対称と仮定した際の理論解析結果であ
る。気泡の運動方程式は,気泡内の圧力を一様とし,水
の蒸気圧を一定,気泡内外の気体の拡散が無いと仮定と
すると,(数1)となる(「J.B.Kelleran
d M.Miksis:Bubble oscilla
tion oflarge amplitude,Jo
urnal of AcousticsSociety
of America,68巻,2号,1980年,
p.628−p.633」を参照)。
Next, the frequency of the first ultrasonic vibrators 31 and 32 will be described with reference to FIGS. Figure 2
FIG. 6 shows the results of a theoretical analysis when the bubble is assumed to be spherically symmetric. The equation of motion of the bubble is given by (Equation 1), assuming that the pressure inside the bubble is uniform, the vapor pressure of water is constant, and there is no gas diffusion inside and outside the bubble ("JB Kelleran").
dM. Miksis: Bubble oschilla
Tion of offset amplitude, Jo
urnal of Acoustic Society
of America, Vol. 68, No. 2, 1980,
p. 628-p. 633 ").

【0023】[0023]

【数1】 (d2R/dt2){R(1−M)+4m/r00}+ (1/2)(dR/dt)2(3−M) =(1/r0){Pv−(1+M)P0+(1−3kM)(P0+2s/R0)× (R0/R)3k−2s/R−4mRt/R+Psinw(t+R/c0)} …(数1) (数1)で,Rは気泡の半径,R0は気泡の初期半径,
tは時間,Pは音場の圧力振幅,wは音場の各周波数で
ある。r0(=1000kg/m3)は水の密度,m(=
1.31×10-3Pa・s)は水の粘性係数,s(=
7.2×10-2N/m)は水の表面張力,Pv(=1.
227kPa)は水の蒸気圧,c0(=1466m/
s)は水中の音速,k(=1.33)は気体の比熱比,
M(=(dR/dt)/c0)はマッハ数である。
(D 2 R / dt 2 ) {R (1-M) +4 m / r 0 c 0 } + (1/2) (dR / dt) 2 (3-M) = (1 / r 0 ) {P v - (1 + M ) P 0 + (1-3kM) (P 0 + 2s / R 0) × (R 0 / R) 3k -2s / R-4mR t / R + Psinw (t + R / c 0)} ... ( number 1) In (Equation 1), R is the radius of the bubble, R 0 is the initial radius of the bubble,
t is time, P is the pressure amplitude of the sound field, and w is each frequency of the sound field. r 0 (= 1000 kg / m 3 ) is the density of water and m (=
1.31 × 10 −3 Pa · s) is the viscosity coefficient of water, and s (=
7.2 × 10 −2 N / m) is the surface tension of water, P v (= 1.
227 kPa) is the vapor pressure of water, c 0 (= 1466 m /
s) is the speed of sound in water, k (= 1.33) is the specific heat ratio of gas,
M (= (dR / dt) / c 0 ) is the Mach number.

【0024】例えば,殺菌作用を目的とした反応容器1
0の第2の部分12における超音波の周波数を20kH
z(w=3.14×105rad/s),音場の圧力振
幅をP=1.2×105Paと仮定する。
For example, a reaction vessel 1 for the purpose of sterilization
0 in the second part 12 is 20 kHz
z (w = 3.14 × 10 5 rad / s), and the pressure amplitude of the sound field is assumed to be P = 1.2 × 10 5 Pa.

【0025】図2(A)に示した音圧変化に対し,半径
10μmを初期にもつ気泡の半径の時間的変動は図2
(B)のようになり,その時の気泡壁の移動速度は図2
(C)のようになる。図2に示す結果から,気泡は半周
期程度で圧壊し,その時生じる大きな気泡壁の移動速度
の変化により,衝撃波パルスが発生することがわかる。
With respect to the sound pressure change shown in FIG. 2A, the temporal variation of the radius of the bubble having a radius of 10 μm at the beginning is shown in FIG.
(B), and the moving speed of the bubble wall at that time is shown in FIG.
(C). From the results shown in FIG. 2, it can be seen that the bubble collapses in about half a cycle, and a shock wave pulse is generated due to the large change in the moving speed of the bubble wall at that time.

【0026】同様の解析を,気泡の初期の半径を5μ
m,3μm,2μmと変化させて行ない,得られた結果
をそれぞれ図3(A)〜図3(C),図4(A)〜4
(C),図5(A)〜図5(C)に示す。
A similar analysis was performed by setting the initial radius of the bubble to 5 μm.
m, 3 μm, and 2 μm, and the obtained results are shown in FIGS. 3 (A) to 3 (C) and FIGS.
(C) and FIGS. 5 (A) to 5 (C).

【0027】図2から図5に示す結果から,半径10μ
mを初期にもつ気泡と半径5μmを初期にもつ気泡とで
は,気泡の圧壊の時の衝撃圧に余り変化は無い。
From the results shown in FIG. 2 to FIG.
There is little change in the impact pressure at the time of collapse of the bubble between the bubble having an initial m and the bubble having a radius of 5 μm.

【0028】半径3μmを初期にもつ気泡では衝撃圧が
小さくなり,更に半径2μmを初期にもつ気泡では気泡
の圧壊が見られなくなることがわかる。
It can be seen that the impact pressure is small for bubbles having a radius of 3 μm at the beginning, and no collapse of the bubbles is observed for bubbles having a radius of 2 μm at the beginning.

【0029】従って,反応容器10の第2の部分12に
20kHzの超音波を照射する場合,第1の部分11で
半径3μm以下であった気泡を半径5μm程度の気泡に
成長させれば,第2の部分12で圧壊する気泡の存在頻
度(密度)を増大させることができ,殺菌の効率がよく
なる。
Therefore, when irradiating the second part 12 of the reaction vessel 10 with ultrasonic waves of 20 kHz, the bubbles having a radius of 3 μm or less in the first part 11 can be grown into bubbles having a radius of about 5 μm. The presence frequency (density) of the air bubbles to be crushed in the second portion 12 can be increased, and the sterilization efficiency is improved.

【0030】図6(A)〜図6(C)は,音場の圧力振
幅をP=1.2×105Paとし,上述の解析と同様に
仮定し,周波数900kHz,気泡の初期の半径3μm
とした場合の解析結果である。この条件下では,気泡は
徐々に大きくなり,最大半径が7μm程度になる。ま
た,音場の音圧変化と気泡の半径の変化が同位相になっ
ている。このような状態は気泡が共振している状態であ
り,一周期当たりの気泡の半径の変化を見ると,初期の
半径よりも大きな半径となっている時間が,初期半径よ
り小さくなっている時間よりも長い。従って,気泡内に
は水中から気体が拡散してきて,気泡内の圧力が徐々に
上昇し,結果として初期の半径が増加する,いわゆるr
ectified diffusionが生じる。
FIGS. 6 (A) to 6 (C) show that the pressure amplitude of the sound field is P = 1.2 × 10 5 Pa, assuming the same as the above analysis, the frequency is 900 kHz, and the initial radius of the bubble is shown. 3 μm
It is an analysis result when it is set as. Under this condition, the bubbles gradually become larger, and the maximum radius becomes about 7 μm. Also, the change in the sound pressure of the sound field and the change in the radius of the bubble are in phase. Such a state is a state in which the bubble is resonating. Looking at the change in the radius of the bubble per cycle, the time when the radius is larger than the initial radius is smaller than the initial radius. Longer than. Therefore, the gas diffuses from the water into the bubble, and the pressure inside the bubble gradually increases, and as a result, the initial radius increases, that is, so-called r.
Optimized diffusion occurs.

【0031】以上のことから,例えば,第1の部分11
では第1の超音波振動体31を900kHzで振動さ
せ,5μm程度の初期の半径を有する気泡の存在頻度
(密度)を増大させて,第2の部分12で第2の超音波
振動体32を20kHzで振動させ5μm以上の気泡を
圧壊させることにより,効率的な殺菌効果を得ることが
できる。
From the above, for example, the first portion 11
Then, the first ultrasonic vibrator 31 is vibrated at 900 kHz to increase the frequency (density) of bubbles having an initial radius of about 5 μm, and the second ultrasonic vibrator 32 is By vibrating at 20 kHz and crushing bubbles of 5 μm or more, an efficient sterilizing effect can be obtained.

【0032】第1の部分11では比較的小さな気泡を成
長させるので,第1の超音波振動体31の周波数は第2
の超音波振動体32の周波数よりも必然的に高くなる。
第2の超音波振動体32の周波数はキャビテーションの
機械的破壊作用が高い100kHz以下とした方が望ま
しいので,第1の超音波振動体31の周波数は100k
Hz以上とするのが良い。
Since relatively small bubbles grow in the first portion 11, the frequency of the first ultrasonic vibrating body 31 is
Is necessarily higher than the frequency of the ultrasonic vibrator 32.
Since the frequency of the second ultrasonic vibrator 32 is desirably 100 kHz or less, which has a high mechanical destruction effect of cavitation, the frequency of the first ultrasonic vibrator 31 is 100 kHz.
Hz or higher.

【0033】第1の部分11及び第2の部分では気泡が
存在しており,その気泡の振動が激しくなると,水の一
部が気体に変わるため見掛けの水の固有音響インピーダ
ンスが変化する。上述した気泡の理論解析をもとに,例
えば,気泡の初期の半径を4μmとし,この気泡の存在
頻度(密度)が1010個/m3であると仮定して,周波数
25kHzの時の水と気泡との混合流体の時間平均的な
固有音響インピーダンス(ρc)の実部と虚部の値を音
響パワーに対してそれぞれ示すと図7のようになる。
Bubbles are present in the first portion 11 and the second portion, and when the vibrations of the bubbles become intense, a part of the water changes to a gas, so that the apparent acoustic impedance of the apparent water changes. Based on the above-described theoretical analysis of bubbles, for example, assuming that the initial radius of the bubbles is 4 μm and the frequency of occurrence (density) of the bubbles is 10 10 bubbles / m 3 , water at a frequency of 25 kHz is assumed. FIG. 7 shows the values of the real part and the imaginary part of the time-averaged natural acoustic impedance (ρc) of the mixed fluid of air and bubbles with respect to the acoustic power.

【0034】音響パワーの変化に伴い,水と気泡の混合
体の固有音響インピーダンス(ρc)は実部,虚部とも
大きく変化する。本発明の実施例の水処理装置では,反
応容器10内の第1の部分11と第2の部分12では,
気泡の成長と気泡の圧壊という別々の役割分担がされて
いる。第1の部分では気泡を圧壊させる必要はないの
で,音響パワーは少なくてよく,第2の部分12では,
比較的大きな音響パワーが必要である。従って,第1の
部分11に存在する水と気泡との混合体の固有音響イン
ピーダンスと,第2の部分12に存在する水と気泡との
混合体の固有音響インピーダンスは大きく異なってい
る。従って,第1の超音波振動体31及び第2の超音波
振動体32を駆動させるための図示しない駆動電源は,
別々にするのが望ましい。
As the acoustic power changes, the intrinsic acoustic impedance (ρc) of the mixture of water and bubbles greatly changes both in the real part and the imaginary part. In the water treatment apparatus according to the embodiment of the present invention, the first portion 11 and the second portion 12 in the reaction vessel 10 are:
Separate roles are divided between bubble growth and bubble collapse. In the first part, the sound power may be small because it is not necessary to crush the bubbles, and in the second part 12,
Relatively large sound power is required. Therefore, the specific acoustic impedance of the mixture of water and bubbles present in the first part 11 is significantly different from the specific acoustic impedance of the mixture of water and bubbles present in the second part 12. Therefore, a drive power source (not shown) for driving the first ultrasonic vibrator 31 and the second ultrasonic vibrator 32 is
It is desirable to separate them.

【0035】キャビテーションは音圧の変動が大きいと
ころで発生するため,通常は超音波振動面の近傍や定在
波音場の音圧の腹で発生が顕著になるが,水中の気泡は
一様に分布していると考えられるため,円柱311及び
円柱323の側面と反応容器10の内面との間隔はそれ
ぞれ,第1の超音波振動体31及び第2の超音波振動体
32のそれぞれの周波数における水の波長の(1/4)
以下にすることが望ましい。
Cavitation occurs at a place where the sound pressure fluctuates greatly. Therefore, cavitation usually occurs remarkably near the ultrasonic vibration surface or at the antinode of the sound pressure in the standing wave sound field, but bubbles in the water are uniformly distributed. Therefore, the distance between the side surface of the column 311 and the side surface of the column 323 and the inner surface of the reaction vessel 10 is different from that of the water at the respective frequencies of the first ultrasonic oscillator 31 and the second ultrasonic oscillator 32, respectively. (1 /) of the wavelength of
It is desirable to make the following.

【0036】[0036]

【発明の効果】以上説明したように,本発明の水処理装
置では,第1の部分で比較的小さな気泡が成長し,第2
の部分で圧壊して強い衝撃圧を発生し得る気泡の密度が
高くなった水が,第2の部分に流れ,更に超音波振動を
照射されるので,水中の微生物に高い確率でキャビテー
ションの機械的破壊作用を与えることになり,効率的な
殺菌作用を得ることができる。また,小さな気泡を成長
させるので,また,微生物を殺菌する領域の音圧分布が
一様なので,気泡の成長する領域の音圧分布と殺菌領域
中のキャビテーションの発生分布にも斑が無く,効率的
に気泡を成長させ,より効率的に微生物を破壊すること
ができる。
As described above, in the water treatment apparatus of the present invention, relatively small bubbles grow in the first portion and the second portion increases.
Water that has a high density of bubbles that can collapse and generate a strong impact pressure in the area flows to the second part and is further irradiated with ultrasonic vibration. Thus, an effective bactericidal action can be obtained. In addition, since small bubbles are grown, and the sound pressure distribution in the region where microorganisms are sterilized is uniform, there is no unevenness in the sound pressure distribution in the region where bubbles grow and the distribution of cavitation in the sterilized region. Bubble can be grown in the air, and microorganisms can be destroyed more efficiently.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の水処理装置の実施例を示す断面図。FIG. 1 is a sectional view showing an embodiment of a water treatment apparatus of the present invention.

【図2】本発明の実施例に於いて気泡の半径方向の運動
の解析結果を示した図。
FIG. 2 is a diagram showing an analysis result of a radial movement of a bubble in the embodiment of the present invention.

【図3】本発明の実施例に於いて気泡の半径方向の運動
の別の解析結果を示した図。
FIG. 3 is a diagram showing another analysis result of the radial movement of the bubble in the embodiment of the present invention.

【図4】本発明の実施例に於いて気泡の半径方向の運動
の別の解析結果を示した図。
FIG. 4 is a diagram showing another analysis result of the radial movement of the bubble in the embodiment of the present invention.

【図5】本発明の実施例に於いて気泡の半径方向の運動
の別の解析結果を示した図。
FIG. 5 is a diagram showing another analysis result of the radial movement of the bubble in the embodiment of the present invention.

【図6】本発明の実施例に於いて気泡の半径方向の運動
の別の解析結果を示した図。
FIG. 6 is a view showing another analysis result of the radial movement of the bubble in the embodiment of the present invention.

【図7】本発明の実施例に於いて水と気泡との混合体の
固有音響インピーダンスと音響パワーとの関係を示す
図。
FIG. 7 is a diagram showing the relationship between the intrinsic acoustic impedance and acoustic power of a mixture of water and air bubbles in an example of the present invention.

【符号の説明】[Explanation of symbols]

10…反応容器,11…第1の部分,12…第2の部
分,21…第1の蓋,22…第2の蓋,31…第1の超
音波振動体,311…第1の円柱,312…第1の振動
伝送体,313…第1の超音波振動子,32…第2の超
音波振動体,321…第2の超音波振動子,322…第
2の振動伝送体,323…第2の円柱,411〜41
3,421〜423…配管。
DESCRIPTION OF SYMBOLS 10 ... reaction container, 11 ... 1st part, 12 ... 2nd part, 21 ... 1st lid, 22 ... 2nd lid, 31 ... 1st ultrasonic vibrator, 311 ... 1st cylinder, 312: first vibration transmitter, 313: first ultrasonic vibrator, 32: second ultrasonic vibrator, 321: second ultrasonic vibrator, 322: second vibration transmitter, 323 ... Second cylinder, 411-41
3,421-423 ... Piping.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鱒沢 裕 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 川畑 健一 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 Fターム(参考) 4D037 AA02 AB03 BA26 5D019 AA08 BB08 BB18 FF02 GG11 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Hiroshi Masuzawa 1-280 Higashi Koikekubo, Kokubunji-shi, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd. Central Research Laboratory F-term (reference) 4D037 AA02 AB03 BA26 5D019 AA08 BB08 BB18 FF02 GG11

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】第1,第2の部分を有し回転対称軸を持つ
反応容器と,水の入口を有し前記反応容器の前記第1の
部分の側の開口部を覆う第1の蓋と,水の出口を有し前
記反応容器の前記第2の部分の側の開口部を覆う第2の
蓋と,第1の超音波振動子と第1の振動伝送体と第1の
円柱とを順に結合してなる回転対称軸を持つ第1の超音
波振動体と,第2の超音波振動子と第2の振動伝送体と
第2の円柱とを順に結合してなる回転対称軸を持つ第2
の超音波振動体とを有し,前記第1の超音波振動体の前
記回転対称軸と前記反応容器の前記回転対称軸とを一致
させ,前記第1の円柱が前記第1の部分に内包されて前
記第1の蓋に支持され,前記第2の超音波振動体の前記
回転対称軸と前記反応容器の前記回転対称軸とを一致さ
せ,前記第1の円柱の一方の端面と前記第2の円柱の一
方の端面とを対向させ,前記第2の円柱が前記第2の部
分に内包されて前記第1の蓋に支持され,前記第1の超
音波振動体は100kHz以上の周波数で駆動され,前
記第2の超音波振動体は100kHz以下の周波数で駆
動されることを特徴とする水処理装置。
1. A reaction vessel having first and second portions and having a rotationally symmetric axis, and a first lid having an inlet for water and covering an opening on the side of the first portion of the reaction vessel. A second lid having an outlet for water and covering an opening on the side of the second portion of the reaction vessel; a first ultrasonic transducer, a first vibration transmitter, a first cylinder; The first ultrasonic vibrator having a rotationally symmetric axis formed by sequentially coupling the first ultrasonic vibrator, the second ultrasonic vibrator, the second vibration transmitter, and the second cylinder are sequentially coupled by a rotationally symmetric axis. Second
Wherein the axis of rotational symmetry of the first ultrasonic vibrator and the axis of rotational symmetry of the reaction vessel coincide with each other, and the first column is included in the first portion. And supported by the first lid, the rotational symmetry axis of the second ultrasonic vibrator and the rotational symmetry axis of the reaction vessel coincide with each other, and one end face of the first cylinder and the The second column is supported by the first lid with the second column being included in the second portion, and the first ultrasonic vibrator is operated at a frequency of 100 kHz or more. The water treatment apparatus, wherein the second ultrasonic vibrator is driven at a frequency of 100 kHz or less.
【請求項2】請求項1に記載の水処理装置に於いて,前
記第1の部分を構成する前記反応容器の内面と前記第1
の円柱の側面との間隔が,前記第1の超音波振動体の振
動の周波数によって定まる水中での音波の波長の(1/
4)以下であることを特徴とする水処理装置。
2. The water treatment apparatus according to claim 1, wherein an inner surface of the reaction vessel constituting the first portion and the first surface of the reaction vessel.
Of the sound wave in water determined by the frequency of vibration of the first ultrasonic vibrating body is (1/1).
4) A water treatment device characterized by the following.
【請求項3】請求項1又は請求項2に記載の水処理装置
に於いて,前記第2の部分を構成する前記反応容器の内
面と前記第2の円柱の側面との間隔が,前記第2の超音
波振動体の振動の周波数によって定まる水中での音波の
波長の(1/4)以下であることを特徴とする水処理装
置。
3. The water treatment apparatus according to claim 1, wherein an interval between an inner surface of the reaction vessel constituting the second part and a side surface of the second cylinder is equal to the distance of the second column. 2. The water treatment apparatus according to claim 2, wherein the wavelength is not more than (1 /) of the wavelength of sound waves in water determined by the frequency of vibration of the ultrasonic vibrator.
JP2000265983A 2000-08-30 2000-08-30 Water treatment equipment Expired - Fee Related JP3855624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000265983A JP3855624B2 (en) 2000-08-30 2000-08-30 Water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000265983A JP3855624B2 (en) 2000-08-30 2000-08-30 Water treatment equipment

Publications (2)

Publication Number Publication Date
JP2002066550A true JP2002066550A (en) 2002-03-05
JP3855624B2 JP3855624B2 (en) 2006-12-13

Family

ID=18753158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000265983A Expired - Fee Related JP3855624B2 (en) 2000-08-30 2000-08-30 Water treatment equipment

Country Status (1)

Country Link
JP (1) JP3855624B2 (en)

Also Published As

Publication number Publication date
JP3855624B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
US3672823A (en) Method of sterilizing liquids
US5582578A (en) Method for the comminution of concretions
US20080292510A1 (en) System and method for sterilization of a liquid
US10201651B2 (en) Systems and methods for destroying cancer cells in blood
RU2325959C2 (en) Hydrodynamic generator of ultrasonic acoustic vibrations and method of its generating
CN108722326A (en) Vibration component, the cosmetic apparatus with the vibration component and its application method
CN107262451A (en) A kind of operating equipment cleaning equipment based on ultrasonic wave
JP2004525635A5 (en)
JP7385890B2 (en) Non-heat sterilization inactivation system for beverages, etc.
JP7106089B2 (en) Microbubble sterilization system and method for sterilizing seafood, beverages and foods
JP2002066550A (en) Water processor
JP2004275850A (en) Ultrasonic device
JP3840843B2 (en) Water treatment method and apparatus
CN207154294U (en) A kind of operating equipment cleaning equipment based on ultrasonic wave
JP3812286B2 (en) Water treatment equipment
JP2004337800A (en) Ultrasonic cavitation generator
CN209205276U (en) Vibration component and cosmetic apparatus with the vibration component
US20090090675A1 (en) Process to remove salt or bacteria by ultrasound
JP2005186030A (en) Ultrasonic radiator, ultrasonic radiating unit, ultrasonic radiating device, and ultrasonic processing device using the same
KR200193475Y1 (en) Continuous flow type ultrasonic homogenizer
KR200225824Y1 (en) A liquid sterilizer in using ultrasonic wave
KR200261502Y1 (en) A cup apparatus with a ultrasound and vibrated-magnetic field.
KR200311700Y1 (en) A sterilizing apparatus of fluids with ultrasound
US20050058579A1 (en) Acoustic energy transducer
Gallego Juárez Macrosonics: Phenomena, transducers and applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060330

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

LAPS Cancellation because of no payment of annual fees