JP2002065089A - Method and apparatus for treating nutrient solution of cultivation - Google Patents

Method and apparatus for treating nutrient solution of cultivation

Info

Publication number
JP2002065089A
JP2002065089A JP2000257305A JP2000257305A JP2002065089A JP 2002065089 A JP2002065089 A JP 2002065089A JP 2000257305 A JP2000257305 A JP 2000257305A JP 2000257305 A JP2000257305 A JP 2000257305A JP 2002065089 A JP2002065089 A JP 2002065089A
Authority
JP
Japan
Prior art keywords
electrode
nutrient solution
voltage
carbon
cultivation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000257305A
Other languages
Japanese (ja)
Inventor
Takashi Toki
宇 解
Michio Takeuchi
道雄 竹内
Kiyohiko Yamaya
清彦 山家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maruko and Co Ltd
Original Assignee
Maruko and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruko and Co Ltd filed Critical Maruko and Co Ltd
Priority to JP2000257305A priority Critical patent/JP2002065089A/en
Publication of JP2002065089A publication Critical patent/JP2002065089A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Hydroponics (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide both a method for treating a nutrient solution of cultivation capable of promoting growth of plant and preventing diseases in a low electric power consumption at a low cost since in a conventional method for treating a nutrient solution of cultivation, completely different two kinds of treatments have to be carried out so as to promote the growth of plant and to prevent diseases and the conventional method has a problem of requiring an electric power consumption and a cost and an apparatus for the method. SOLUTION: This method for treating a nutrient solution cultivation comprises allowing a nutrient solution of cultivation to flow into an electrolytic bath 2 equipped with carbon-based electrodes 21, subjecting the nutrient solution to a first electrode treatment for applying 0.9-1.8 V, preferably about 1.6±0.1 V voltage lower than a halogen decomposition voltage value to the nutrient solution, then allowing the nutrient solution to flow into an electrolytic bath 3 equipped with platinum-based compound electrodes 31 and subjecting the nutrient solution to a second electrode treatment for applying 1.5-3.0 V, preferably about 2.4 V voltage to the nutrient solution. This apparatus for carrying out the method is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、植物の養液栽培に
用いられる栽培養液の水質を改質する処理方法及び処理
装置に係り、特に植物の生育促進と病気予防を図ること
ができる栽培養液の処理方法及び処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for improving the quality of water of a cultivated nutrient solution used for hydroponics of plants, and more particularly to a cultivation capable of promoting plant growth and preventing disease. The present invention relates to a nutrient solution treatment method and a treatment device.

【0002】[0002]

【従来の技術】水耕栽培を行う際には、栽培養液の性質
が植物の生育に大きな影響を与える。通常、水はH2
の単一分子の形では存在せず、ある水分子の水素原子
(プラス帯電)は、他の水分子の酸素原子(マイナス帯
電)と電気的な力によって引き合い、クラスターと呼ば
れる最低5分子以上の集団を形成して存在していると考
えられている。
2. Description of the Related Art When performing hydroponic cultivation, the nature of the nutrient solution has a great effect on the growth of plants. Usually water is H 2 O
Hydrogen atoms (positively charged) of one water molecule are attracted to oxygen atoms (negatively charged) of another water molecule by electric force, and at least 5 molecules called clusters It is thought to exist as a group.

【0003】そして、クラスターの大きさが異なる水で
は、その性質も異なると考えられており(参考文献1;
松下和弘,食品工業誌,2,28,1992)、クラスターの小
さい水は、植物の細胞及び組織に吸収され易いため、植
物の生長を促進すると推定されている(参考文献2;松
尾昌樹他,農業及び園芸,70,4,1995)。
[0003] It is considered that water having different cluster sizes also has different properties (Ref. 1;
Kazuhiro Matsushita, Journal of Food Industry, 2, 28, 1992), it is estimated that small cluster water promotes plant growth because it is easily absorbed by plant cells and tissues (Ref. 2; Masaki Matsuo et al., Agriculture and horticulture, 70, 4, 1995).

【0004】また、酸化還元電位(ORP;oxidation-
reduction potential)も植物の生育に影響を与えるこ
とが知られている。酸化還元電位が高く、強い酸化力を
持つ酸性水は、酸化作用で殺菌効果がある反面、植物の
細胞を傷つけ、生育に支障をきたすおそれがあるが、酸
化還元電位の低いアルカリ水は、還元力により過酸化状
態を還元して正常化することにより植物の生育を促進す
ると考えられている(参考文献2)。
In addition, the oxidation-reduction potential (ORP; oxidation-
reduction potential) is also known to affect plant growth. Acid water, which has a high oxidation-reduction potential and strong oxidizing power, has a bactericidal effect due to the oxidizing effect, but it may damage plant cells and hinder growth, but alkaline water with a low oxidation-reduction potential is reduced. It is considered that the growth of plants is promoted by reducing and normalizing the peroxidation state by force (Reference Document 2).

【0005】また、栽培養液中の溶存酸素濃度が高いと
夏場の高温酸欠状態を解消でき、植物の生育を促進する
ことが知られている。
[0005] It is also known that when the dissolved oxygen concentration in the cultivated nutrient solution is high, high-temperature oxygen deficiency in summer can be eliminated and the growth of plants is promoted.

【0006】すなわち、植物の生育促進のためには、ク
ラスターが小さく、酸化還元電位が低く、溶存酸素濃度
が高い栽培養液が適している。また、植物の病気予防の
ためには、養液中の微生物を殺菌することが必要であ
る。
That is, for promoting the growth of plants, cultivation nutrient solutions having small clusters, low oxidation-reduction potential, and high dissolved oxygen concentration are suitable. Further, in order to prevent plant diseases, it is necessary to kill microorganisms in nutrient solutions.

【0007】そのため、従来から、植物の生育促進と病
気予防を目的として、植物の水耕栽培に用いられる栽培
養液の性質を改善する処理が行われている。
[0007] For this reason, conventionally, for the purpose of promoting the growth of plants and preventing diseases, treatment for improving the properties of cultivation nutrient solutions used for hydroponics of plants has been performed.

【0008】生育促進を目的とする従来の栽培養液の処
理方法としては、磁石処理法、電解水添加法、過酸化水
素(H22)添加等がある。磁石処理法は、高磁界磁石
を用いて栽培養液を磁気処理するものであり、栽培養液
のクラスターを小さくして生育促進を図るものである。
[0008] Conventional methods for treating cultivation nutrient solutions for the purpose of promoting growth include a magnet treatment method, an electrolytic water addition method, and the addition of hydrogen peroxide (H 2 O 2 ). The magnet treatment method magnetically treats a cultivation nutrient solution by using a high-field magnet, and aims at promoting growth by reducing clusters of the cultivation solution.

【0009】電解水添加法は、栽培養液のクラスターを
小さくすると共に、酸化還元電位を低減するものであ
る。過酸化水素の添加は、栽培養液中の溶存酸素濃度を
増大するものである。
The electrolytic water addition method reduces the cluster of the cultivation nutrient solution and reduces the oxidation-reduction potential. The addition of hydrogen peroxide increases the concentration of dissolved oxygen in the cultivation nutrient solution.

【0010】病気予防を目的とする従来の栽培養液の処
理方法としては、紫外線照射法、塩素系物質やオゾン等
の薬物添加法が行われている。
As a conventional method of treating a cultivated nutrient solution for the purpose of disease prevention, an ultraviolet irradiation method and a method of adding a drug such as a chlorine-based substance or ozone are used.

【0011】また、これとは別に、電極処理により電気
化学的に微生物を殺菌する方法が検討されている(参考
文献3;T.Matsunaga,Anal.Chem.,56,798,1984)。この
方法では、細胞と、細胞に接触する電極との間で電極反
応が起こることにより細胞が死滅すると考えられてい
る。具体的には、細胞体内のCoA と電極との間で電子移
動が起こってCoA が酸化され、CoA が関与する代謝(ク
エン酸回路でのエネルギー生成等)ができなくなり、一
定時間経過すると菌が死滅すると考えられている。ま
た、参考文献3によれば、0.9V以上の電圧を印加す
ると、ほとんどの菌種に対する殺菌効果が得られること
が報告されている。
[0011] Separately, a method of electrochemically disinfecting microorganisms by electrode treatment has been studied (Ref. 3; T. Matsunaga, Anal. Chem., 56, 798, 1984). In this method, it is considered that the cell is killed by an electrode reaction occurring between the cell and an electrode in contact with the cell. Specifically, electron transfer occurs between CoA in the cell and the electrode, which oxidizes CoA and disables metabolism involving CoA (energy generation in the citric acid cycle, etc.). It is thought to die. In addition, according to Reference 3, it is reported that when a voltage of 0.9 V or more is applied, a bactericidal effect against most bacterial species can be obtained.

【0012】また、電極処理を用いた殺菌方法は、工場
の配管システムや、海洋環境下における海洋生物付着防
止への応用が検討されている(参考文献4;松永是他,
「電気化学的殺菌とその応用」,生物工学,vol.77,23
2)。
Further, application of the sterilization method using the electrode treatment to the piping system of a factory or the prevention of marine organism adhesion in a marine environment has been studied (Reference 4; Matsunaga, et al.,
"Electrochemical sterilization and its application", Biotechnology, vol.77,23
2).

【0013】更にまた、電極処理によって酸化還元電位
が低下することも知られており、これは、磁場処理と同
様に、電圧が印加された電極が発生する電磁力により、
液中に微量なO2 -、OH-が発生することによるものと
推定されている(参考文献5;松崎五三男,機能水の開
発と応用,(株)技術情報センター出版,1999年9
月)。
Further, it is also known that the oxidation-reduction potential is lowered by the electrode treatment, which is caused by the electromagnetic force generated by the electrode to which the voltage is applied, as in the case of the magnetic field treatment.
It is estimated that trace amounts of O 2 and OH are generated in the liquid (Ref. 5; Gozo Matsuzaki, Development and Application of Functional Water, Technical Information Center Publishing Co., Ltd., September 1999).
Month).

【0014】尚、植物栽培の培養液の処理に関する従来
技術としては、平成10年2月17日公開の特開平10
−42728号「植物栽培方法及び植物栽培装置」(出
願人:出光興産株式会社他、発明者:芝義雄他)があ
る。この従来技術は、振動電界、好ましくは高周波の振
動電界で、且つ電界強度が低周波数で周期的に変化する
振動電界を印加した水又は培養液を植物に供給する植物
栽培方法及び植物栽培装置であり、植物の生育を促進さ
せ、その生育促進効果を安定して与えることができるも
のである。
[0014] As a prior art relating to the treatment of a culture solution for plant cultivation, Japanese Patent Application Laid-Open No. Hei 10-1998 published on February 17, 1998 is disclosed.
No. 42728, “Plant cultivation method and plant cultivation apparatus” (applicant: Idemitsu Kosan Co., Ltd. and others; inventor: Yoshio Shiba et al.). This conventional technique is an oscillating electric field, preferably a high-frequency oscillating electric field, and a plant cultivation method and a plant cultivation apparatus for supplying water or culture solution to a plant to which an oscillating electric field whose electric field intensity periodically changes at a low frequency is applied. Yes, it can promote the growth of plants and stably provide the growth promoting effect.

【0015】[0015]

【発明が解決しようとする課題】しかしながら、上記従
来の栽培養液の処理方法は、いずれも生育促進又は殺菌
の一方の効果しかないため、生育促進と殺菌の両方の効
果を得るためには、全く異なる処理を2通り行わなけれ
ばならず、処理が煩雑でコストが高くなってしまうとい
う問題点があった。
However, the conventional methods for treating a cultivating nutrient solution have only one effect of promoting growth or disinfecting. Therefore, in order to obtain both effects of promoting growth and disinfecting, It is necessary to perform two completely different processes, and there is a problem that the process is complicated and the cost is increased.

【0016】また、上記従来の紫外線照射法では、消費
電力が大きく、栽培養液の表面しか殺菌できず、更にキ
レート鉄等の有色成分を添加すると、有色成分により紫
外線が吸収されて殺菌効果が著しく低下するという問題
点があった。
In addition, the conventional ultraviolet irradiation method consumes a large amount of electric power and can sterilize only the surface of the cultivation nutrient solution. Further, when a colored component such as chelate iron is added, ultraviolet rays are absorbed by the colored component and the sterilizing effect is improved. There is a problem that the temperature is significantly reduced.

【0017】また、上記従来の薬物添加法では、殺菌効
果は高いものの、維持コストが高く、特に塩素系物質を
添加した場合には殺菌後に残留した塩素系物質の濾過除
去が必要となり、維持コストが高くなってしまうという
問題点があった。
Further, in the above-mentioned conventional drug addition method, although the bactericidal effect is high, the maintenance cost is high. In particular, when a chlorine-based substance is added, it is necessary to remove the chlorine-based substance remaining after sterilization by filtration. However, there was a problem that it became high.

【0018】本発明は上記実情に鑑みて為されたもの
で、低消費電力及び低コストで、植物の成長促進と病気
予防を図ることができる栽培養液の処理方法及び処理装
置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a method and apparatus for cultivating nutrient solution capable of promoting plant growth and preventing disease with low power consumption and low cost. With the goal.

【0019】[0019]

【課題を解決するための手段】上記従来例の問題点を解
決するための本発明は、栽培養液の処理方法において、
炭素系又は白金系化合物電極に0.9〜3.0Vの電圧
を印加し、栽培養液を直接前記電極と接触させて電極処
理を行うことを特徴としており、薬剤添加や紫外線照射
することなく栽培養液を殺菌すると共に、クラスターを
小さくし、酸化還元電位を低減し、植物の生育促進と病
気予防を図ることができ、処理に要する消費電力及びコ
ストを低減することができる。
SUMMARY OF THE INVENTION The present invention for solving the above-mentioned problems of the prior art comprises a method for treating a cultivated nutrient solution,
A voltage of 0.9 to 3.0 V is applied to a carbon-based or platinum-based compound electrode, and a cultivation nutrient solution is directly contacted with the electrode to perform electrode treatment, without adding a drug or irradiating ultraviolet rays. The cultivation nutrient solution can be sterilized, the clusters can be reduced, the oxidation-reduction potential can be reduced, plant growth can be promoted and disease can be prevented, and power consumption and cost required for treatment can be reduced.

【0020】また、本発明は、複数の炭素系電極又は複
数の白金系化合物電極に0.9〜3.0Vの電圧を印加
し、栽培養液を直接複数の炭素系電極又は白金系化合物
電極に接触させて、多電極処理を行う栽培養液の処理方
法としており、微生物を電極面に接触しやすくさせて、
殺菌効果を向上させることができる。
Further, according to the present invention, a voltage of 0.9 to 3.0 V is applied to a plurality of carbon-based electrodes or a plurality of platinum-based compound electrodes, and the cultivation solution is directly applied to the plurality of carbon-based electrodes or the platinum-based compound electrodes. , A method of treating a cultivation nutrient solution that performs multi-electrode treatment, making it easier for microorganisms to contact the electrode surface,
The bactericidal effect can be improved.

【0021】また、本発明は、炭素系電極への印加電圧
をハロゲン分解電圧未満とする栽培養液の処理方法とし
ており、残留塩素を発生させることなく、栽培養液の殺
菌を行うことができ、残留塩素の除去に要するコストを
不要とすることができる。
Further, the present invention is a method for treating a cultivating nutrient solution in which the voltage applied to the carbon-based electrode is lower than the halogen decomposition voltage, and the cultivating nutrient solution can be sterilized without generating residual chlorine. In addition, the cost required for removing residual chlorine can be eliminated.

【0022】また、本発明は、0.9〜1.8Vの電圧
が印加され、流入された栽培養液と接触して電極処理を
行う炭素系電極を備えた電解槽又は、1.5〜3.0V
の電圧が印加され、流入された栽培養液と接触して電極
処理を行う白金系化合物電極を備えた電解槽を有する栽
培養液の処理装置としており、薬剤添加や紫外線照射す
ることなく栽培養液を殺菌すると共に、クラスターを小
さくし、酸化還元電位を低減し、栽培養液中の溶存酸素
濃度を増大させて、簡便な装置で、植物の生育促進と病
気予防を図ることができ、消費電力及びコストを低減す
ることができる。
The present invention also provides an electrolytic cell provided with a carbon-based electrode which is applied with a voltage of 0.9 to 1.8 V and performs electrode treatment in contact with a cultivating nutrient solution that has flowed in, or an electrolytic cell provided with a carbon electrode of 1.5 to 1.8 V. 3.0V
Voltage is applied, and it is a processing device for cultivating nutrient solution having an electrolytic tank provided with a platinum-based compound electrode that performs electrode treatment in contact with the cultivating nutrient solution that has flowed in. Disinfects the solution, reduces clusters, reduces redox potential, and increases the concentration of dissolved oxygen in the cultivated nutrient solution, allowing simple equipment to promote plant growth and prevent disease and consume Power and cost can be reduced.

【0023】また、本発明は、0.9〜1.8Vの電圧
が印加され、流入された栽培養液と接触して多電極処理
を行う複数の炭素系電極を備えた電解槽又は、1.5〜
3.0Vの電圧が印加され、流入された栽培養液と接触
して多電極処理を行う複数の白金系化合物電極を備えた
電解槽を有する栽培養液の処理装置としているので、微
生物を電極面に接触しやすくさせて、殺菌効果を向上さ
せることができる。
The present invention also provides an electrolytic cell having a plurality of carbon-based electrodes to which a voltage of 0.9 to 1.8 V is applied and which performs a multi-electrode treatment by coming into contact with a cultivating nutrient solution which has flowed in. .5-
Since a voltage of 3.0 V is applied to the cultivation nutrient solution having an electrolytic cell provided with a plurality of platinum-based compound electrodes for performing multi-electrode treatment by contacting the cultivation nutrient solution that has flowed in, the microorganisms are used as electrodes. The surface can be easily contacted, and the sterilizing effect can be improved.

【0024】また、本発明は、炭素系電極に電圧を印加
して栽培養液を電極処理する第1の電極処理を行い、白
金系化合物電極に電圧を印加して、第1の電極処理が為
された栽培養液を電極処理する第2の電極処理を行う栽
培養液の処理方法としており、第1の電極処理により、
薬剤添加や紫外線照射することなく栽培養液を殺菌する
と共に、クラスターを小さくし、酸化還元電位を低減
し、第2の電極処理により栽培養液中の溶存酸素濃度を
増大させて、一連の処理によって植物の生育促進と病気
予防を図ることができ、処理に要する消費電力及びコス
トを低減し、更に第1の電極処理の後で第2の電極処理
を行うことにより水の電気分解によって発生する過酸化
水素と炭素電極との反応を防ぐことができる。
In the present invention, the first electrode treatment is performed by applying a voltage to the carbon-based electrode to perform electrode treatment on the cultivation nutrient solution, and applying a voltage to the platinum-based compound electrode. It is a method of processing a cultivation nutrient solution that performs a second electrode treatment of performing an electrode treatment of the cultivation nutrient solution that has been performed.
A series of treatments that sterilize the cultivation nutrient solution without adding chemicals or irradiate ultraviolet rays, reduce clusters, reduce oxidation-reduction potential, and increase the concentration of dissolved oxygen in the cultivation nutrient solution by the second electrode treatment. This can promote plant growth and prevent disease, reduce power consumption and cost required for the treatment, and generate water electrolysis by performing a second electrode treatment after the first electrode treatment. The reaction between hydrogen peroxide and the carbon electrode can be prevented.

【0025】また、本発明は、電圧を炭素系電極に印加
して栽培養液を電極処理する第1の電解槽と、電圧を白
金系化合物電極に印加して、第1の電解槽から流入され
る栽培養液を電極処理する第2の電解槽とを備えた栽培
養液の処理装置としており、薬剤添加や紫外線照射する
ことなく栽培養液を殺菌すると共に、クラスターを小さ
くし、酸化還元電位を低減し、栽培養液中の溶存酸素濃
度を増大させて、簡便な装置で、植物の生育促進と病気
予防を図ることができ、消費電力及びコストを低減し、
更に第1の電極処理の後で第2の電極処理を行うことに
より水の電気分解によって発生する過酸化水素と炭素電
極との反応を防ぐことができ、更に2つの処理を同一の
装置にて行うことにより処理の効率化やスペースの有効
利用を図ることができる。
The present invention also provides a first electrolytic cell for applying a voltage to a carbon-based electrode to electrode-treat a cultivation solution, and a voltage for applying a voltage to a platinum-based compound electrode to flow from the first electrolytic cell. A cultivating nutrient solution processing device including a second electrolytic cell for electrode-treating a cultivating nutrient solution to be sterilized without adding chemicals or irradiating ultraviolet rays, reducing the size of clusters, and reducing oxidation and reduction. Reduce the potential, increase the dissolved oxygen concentration in the cultivation nutrient solution, with a simple device, can promote plant growth and prevent disease, reduce power consumption and cost,
Further, by performing the second electrode treatment after the first electrode treatment, it is possible to prevent the reaction between hydrogen peroxide generated by the electrolysis of water and the carbon electrode, and to carry out the two treatments with the same apparatus. By doing so, it is possible to increase the efficiency of processing and to effectively use space.

【0026】また、本発明は、炭素系電極を備えた電解
槽において、網状の炭素系電極を栽培養液が流れる方向
に沿って複数重ねて配列すると共に、複数配列された炭
素系電極の電極面を、栽培養液が流れる方向に直角にな
るように配置し、配列された各炭素系電極に対して交互
に正又は負の電圧が印加される第1の電解槽である栽培
養液の処理装置としており、栽培養液と炭素電極との接
触面積を大きくし、微生物を電極に接触させやすくして
殺菌効果を向上させることができる。
Further, the present invention provides an electrolytic cell provided with a carbon-based electrode, in which a plurality of net-like carbon-based electrodes are arranged one on top of the other in the direction in which the cultivating nutrient solution flows, and the electrode of the plurality of arranged carbon-based electrodes is provided. The surface is arranged so as to be perpendicular to the direction in which the cultivation nutrient solution flows, and the cultivation nutrient solution as a first electrolytic cell to which a positive or negative voltage is alternately applied to each of the arranged carbon-based electrodes. Since the treatment device is used, the contact area between the cultivation nutrient solution and the carbon electrode is increased, the microorganisms can be easily brought into contact with the electrode, and the bactericidal effect can be improved.

【0027】[0027]

【発明の実施の形態】本発明の実施の形態について図面
を参照しながら説明する。本発明の栽培養液の処理方法
及び処理装置は、炭素系電極又は白金系化合物電極に
0.9〜3.0Vの電圧を印加して、栽培養液を直接当
該電極に接触させる電極処理を行うものであり、薬剤添
加や紫外線照射することなく栽培養液を殺菌すると共
に、クラスターを小さくし、酸化還元電位を低減し、植
物の生育促進と病気予防を図るものである。
Embodiments of the present invention will be described with reference to the drawings. The method and apparatus for treating a cultivation nutrient solution according to the present invention include an electrode treatment in which a voltage of 0.9 to 3.0 V is applied to a carbon-based electrode or a platinum-based compound electrode to bring the cultivation nutrient solution into direct contact with the electrode. The purpose is to sterilize the cultivation nutrient solution without adding chemicals or irradiating ultraviolet rays, to reduce clusters, reduce oxidation-reduction potential, promote plant growth and prevent disease.

【0028】次に、本発明の実施の形態に係る栽培養液
の処理方法(本方法)及び処理装置(本装置)について
説明する。本発明の実施の形態に係る栽培養液の処理方
法(本方法)及び処理装置(本装置)は、炭素系電極を
用いた電極処理と金属系電極を用いた電極処理とを組み
合わせて行うことにより、低消費電力及び低コストで、
栽培養液及び用水等の栽培養液を小クラスター化し、酸
化還元電位を低下させ、溶存酸素濃度を増大させ、更に
殺菌して、植物の生育促進と病気予防を図ることができ
るものである。
Next, a method (the present method) and a processing apparatus (the present apparatus) of the cultivating nutrient solution according to the embodiment of the present invention will be described. The method for treating a cultivation nutrient solution (the present method) and the treatment apparatus (the present apparatus) according to the embodiment of the present invention are performed by combining an electrode treatment using a carbon-based electrode and an electrode treatment using a metal-based electrode. With low power consumption and low cost,
Cultivating nutrient solution such as cultivating nutrient solution and irrigation water can be made into small clusters to reduce the oxidation-reduction potential, increase dissolved oxygen concentration, and further sterilize to promote plant growth and prevent disease.

【0029】本方法の電極処理は、栽培養液の殺菌と、
小クラスター化と、酸化還元電位の低下を図る第1の処
理と、水を電気分解して溶存酸素濃度を増大させる第2
の処理とを行うものである。尚、第1の処理及び第2の
処理はそれぞれ単独で行っても構わないが、ここでは第
1の処理及び第2の処理を組み合わせた方法及び装置に
ついて説明する。
The electrode treatment of the present method includes sterilization of the cultivation nutrient solution and
A first treatment for reducing the clustering and the oxidation-reduction potential, and a second treatment for increasing the dissolved oxygen concentration by electrolyzing water.
And the processing of. Note that the first processing and the second processing may be performed independently, but a method and an apparatus combining the first processing and the second processing will be described here.

【0030】ここで、炭素電極は、殺菌の効果を得るに
は最適の電極材料であるが、水の電気分解によって発生
した過酸化水素と反応するおそれがあるため、溶存酸素
濃度を増大させるための第2の処理の電極として用いる
のは不適当である。また、第1の処理と第2の処理の順
序を入れ替えて、最初に水の電気分解を行って溶存酸素
濃度を増大させてから殺菌等を行うのも、同様の理由か
ら好ましくない。
Here, the carbon electrode is the most suitable electrode material for obtaining a sterilizing effect, but it is liable to react with hydrogen peroxide generated by the electrolysis of water. It is inappropriate to use it as an electrode in the second treatment. In addition, it is not preferable to perform the sterilization or the like after first performing the electrolysis of water to increase the dissolved oxygen concentration by changing the order of the first treatment and the second treatment, for the same reason.

【0031】そこで、本方法では、炭素系電極(炭素電
極)を用いた第1の電極処理を行って、クラスターを小
さくし、酸化還元電位を低減し、更に殺菌を行い、次
に、金属系電極を用いた第2の電極処理により水を電気
分解して栽培養液中の溶存酸素濃度を増大させるように
している。これにより、第2の処理において発生した過
酸化水素が炭素電極と反応することはない。
Therefore, in the present method, a first electrode treatment using a carbon-based electrode (carbon electrode) is performed to reduce clusters, reduce the oxidation-reduction potential, further sterilize, and Water is electrolyzed by a second electrode treatment using an electrode to increase the dissolved oxygen concentration in the cultivation nutrient solution. Thus, the hydrogen peroxide generated in the second processing does not react with the carbon electrode.

【0032】従来技術で記載したように、栽培養液を電
極処理することにより、小クラスター化、酸化還元電位
の低下、溶存酸素濃度の増大、及び殺菌の効果が得られ
ることは知られている。しかし、栽培養液を調整する水
は、一般には地下水、雨水、川水等の自然水であり、こ
れらの自然水には、塩素イオン(Cl-)が含まれてお
り、塩素イオンを含む水を電極処理すると、陽極にて以
下のように反応して塩素イオンが残留塩素(ClO-
になる可能性がある。 2Cl-→Cl2+2e- Cl2+H2O→ClO-+2H++Cl-
As described in the prior art, it is known that the electrode treatment of a cultivating nutrient solution can provide the effects of clustering, reduction of oxidation-reduction potential, increase of dissolved oxygen concentration, and sterilization. . However, the water for adjusting the cultivation nutrient solution is generally natural water such as groundwater, rainwater, river water, etc. These natural waters contain chlorine ions (Cl ) and contain water containing chlorine ions. When the electrode process, the reaction was chlorine ions is residual chlorine as follows at the anode (ClO -)
Could be 2Cl - → Cl 2 + 2e - Cl 2 + H 2 O → ClO - + 2H + + Cl -

【0033】そして、栽培養液中の残留塩素濃度が高く
なると、栽培植物に害を及ぼすことが知られている。実
験室レベルでは、残留塩素濃度が0.2〜0.5ppmで、栽培
植物は根に傷みを受けることが明らかにされている(参
考文献6;高辻正基編、植物工場ハンドブック、1997年
都東海大学出版社)。
It is known that when the residual chlorine concentration in the cultivated nutrient solution increases, the cultivated plant is harmed. At the laboratory level, it has been shown that cultivated plants suffer root damage when the residual chlorine concentration is 0.2-0.5 ppm (Ref. 6; edited by Masaki Takatsuji, Plant Factory Handbook, 1997, Tohoku University Press) ).

【0034】そこで、栽培養液の電極処理を行って殺菌
や溶存酸素濃度の増大等を図るには、残留塩素の発生を
抑えつつ、目的の効果が得られるよう、電極材料や印加
電圧等の処理条件を最適化する必要がある。
Therefore, in order to sterilize or increase the concentration of dissolved oxygen by performing electrode treatment of the cultivation nutrient solution, it is necessary to control the electrode material and applied voltage so that the desired effect can be obtained while suppressing the generation of residual chlorine. Processing conditions need to be optimized.

【0035】残留塩素は、ハロゲン(塩素)分解電圧よ
りも高い電圧が印加された場合に発生するので、栽培養
液の電極処理は、ハロゲン分解電圧よりも低い電圧で行
わなければならない。また、一般に、ハロゲン分解電圧
は、各種電極材質、ハロゲン(塩素)イオン濃度、溶液
温度等の条件によって異なるものである。
Since residual chlorine is generated when a voltage higher than the halogen (chlorine) decomposition voltage is applied, the electrode treatment of the cultivation nutrient solution must be performed at a voltage lower than the halogen decomposition voltage. In general, the halogen decomposition voltage varies depending on conditions such as various electrode materials, halogen (chlorine) ion concentration, and solution temperature.

【0036】本発明者らは実験の結果、炭素電極を用い
て電圧を印加した場合のハロゲン分解電圧が、金属系電
極を用いた場合のハロゲン分解電圧に比べて高く、残留
塩素が発生し難いことを確認した。
As a result of experiments, the present inventors have found that the halogen decomposition voltage when a voltage is applied using a carbon electrode is higher than the halogen decomposition voltage when a metal electrode is used, and that residual chlorine is less likely to be generated. It was confirmed.

【0037】実験例について具体的に説明する。炭素電
極及び2種の金属系電極を用いて、種々の塩素イオン濃
度におけるハロゲン化合物(塩化物)の分解電圧を測定
した結果について図1、図2、図3を用いて説明する。
図1は、炭素電極を用いた場合のHCl蒸留水溶液の分
解電圧を示すグラフ図であり、図2は、白金系エクセロ
ードBA電極を用いた場合のHCl蒸留水溶液の分解電圧
を示すグラフ図であり、図3は、エクセロードR-2000電
極を用いた場合のHCl蒸留水溶液の分解電圧を示すグ
ラフ図である。
An experimental example will be specifically described. The results of measuring the decomposition voltage of a halogen compound (chloride) at various chlorine ion concentrations using a carbon electrode and two kinds of metal-based electrodes will be described with reference to FIGS. 1, 2, and 3. FIG.
FIG. 1 is a graph showing the decomposition voltage of an HCl distilled aqueous solution when a carbon electrode is used, and FIG. 2 is a graph showing the decomposition voltage of an HCl distilled aqueous solution when a platinum-based Exerode BA electrode is used. In addition, FIG. 3 is a graph showing the decomposition voltage of a distilled HCl aqueous solution when an Exerode R-2000 electrode is used.

【0038】図1〜3の例では、分解しやすい強電解質
であるHClの蒸留水溶液を調整し、炭素電極を用いて
電圧を印加して、分解電圧を測定した。HClの蒸留水
溶液の濃度は、地下水の塩素イオン平均濃度39ppm
と、雨水、河川水等を含む自然水の塩素イオン濃度の上
限値100ppmと、下限値4ppmの3種類の濃度について
測定した。電極面積は170cm2×2、電極間隔は2〜
3mmとした。
In the examples shown in FIGS. 1 to 3, a decomposition aqueous solution of HCl, which is a strong electrolyte which is easily decomposed, was prepared, a voltage was applied using a carbon electrode, and the decomposition voltage was measured. The concentration of the distilled aqueous solution of HCl is 39 ppm, the average concentration of chlorine ions in groundwater.
And the upper limit 100 ppm and the lower limit 4 ppm of the chloride ion concentration of natural water including rainwater, river water, etc., were measured. The electrode area is 170 cm 2 × 2, and the electrode spacing is 2
3 mm.

【0039】図1に示すように、HCl濃度が高くなる
と、分解電圧が低くなって、分解しやすくなる傾向が見
られる。室温で塩素イオン濃度100ppmの場合、炭素
電極を用いると分解電圧は約2V(ボルト)であること
がわかる。
As shown in FIG. 1, when the HCl concentration increases, the decomposition voltage tends to decrease, and the decomposition tends to occur. When the chlorine ion concentration is 100 ppm at room temperature, it can be seen that the decomposition voltage is about 2 V (volt) when a carbon electrode is used.

【0040】また、図2及び図3より、白金系エクセロ
ードBA電極及びエクセロードR-2000電極を用いた場合の
分解電圧は、いずれも約1.5Vであった。
2 and 3, the decomposition voltage was approximately 1.5 V when a platinum-based Exerode BA electrode and an Exerode R-2000 electrode were used.

【0041】ここで、従来技術にて説明したように、電
気化学殺菌法では、0.9V以上の電圧を印加するとほと
んどの菌種に対して殺菌の効果が認められる。従って、
炭素電極、白金系エクセロードBA電極、エクセロードR-
2000電極のいずれの電極を用いても残留塩素を発生させ
ずに、微生物を殺菌することは十分可能であるが、プロ
セスマージンを考慮すると、ハロゲン化合物(HCl)
の分解電圧が最も高かった炭素電極が最適であると考え
られる。以上のことから、本方法では、炭素電極を用い
て第1の電極処理を行って水耕水の小クラスター化、酸
化還元電位の低下、殺菌を図るものとした。
Here, as described in the prior art, in the electrochemical sterilization method, when a voltage of 0.9 V or more is applied, the effect of sterilization can be recognized for most bacterial species. Therefore,
Carbon electrode, Platinum Exelode BA electrode, Exelord R-
It is possible to sterilize microorganisms without generating residual chlorine using any of the 2000 electrodes. However, considering the process margin, halogen compounds (HCl)
The carbon electrode with the highest decomposition voltage is considered optimal. From the above, in the present method, the first electrode treatment was performed using the carbon electrode to achieve small clustering of hydroponic water, reduction of the oxidation-reduction potential, and sterilization.

【0042】次に、本発明者らは液温を考慮した処理電
圧を検討し、第1の電極処理における処理電圧は、0.
9〜1.8Vが適当であり、1.6(±0.1)V程度
が望ましいことを確認した。ここで、実験例について具
体的に説明する。ハロゲン化合物の分解電圧への液温の
影響について図4を用いて説明する。図4は、炭素電極
を用いて液温を変えた場合の100ppmHCl蒸留水溶
液の分解電圧を示すグラフ図である。
Next, the present inventors examined the processing voltage in consideration of the liquid temperature.
It has been confirmed that 9 to 1.8 V is appropriate, and about 1.6 (± 0.1) V is desirable. Here, an experimental example will be specifically described. The effect of the liquid temperature on the decomposition voltage of the halogen compound will be described with reference to FIG. FIG. 4 is a graph showing the decomposition voltage of a 100 ppm HCl distilled water solution when the liquid temperature is changed using a carbon electrode.

【0043】水耕栽培を行う際には、季節によって液温
が変化し、ハロゲン化合物の分解電圧に影響を与える可
能性がある。そこで、炭素電極を用いて、40℃と10
℃の2種類の液温の100ppmHCl蒸留水溶液の分解
電圧を測定した。電極面積は170cm2×2、電極間隔
は2〜3mmとした。
When performing hydroponic cultivation, the liquid temperature changes depending on the season, which may affect the decomposition voltage of the halogen compound. Therefore, at 40 ° C. and 10 ° C. using a carbon electrode.
The decomposition voltage of 100 ppm HCl distilled water solution at two liquid temperatures of ° C. was measured. The electrode area was 170 cm 2 × 2, and the electrode spacing was 2-3 mm.

【0044】図4に示すように、液温40℃の場合、炭
素電極を用いた100ppmHCl蒸留水溶液の分解電圧
は、約1.8Vで、液温10℃の場合には約2.1Vで
あった。また、図1に示したように、室温では約2Vで
あった。従って、液温が上昇する夏場を考慮すると、
1.8V未満の電圧で電極処理を行わなければならず、
更にプロセスマージンを見込むと、0.9〜1.8Vが
適当であり、特に1.6(±0.1)V程度が望まし
い。
As shown in FIG. 4, when the liquid temperature is 40 ° C., the decomposition voltage of a 100 ppm HCl distilled aqueous solution using a carbon electrode is about 1.8 V, and when the liquid temperature is 10 ° C., it is about 2.1 V. Was. Further, as shown in FIG. 1, the voltage was about 2 V at room temperature. Therefore, considering the summer when the liquid temperature rises,
Electrode treatment must be performed at a voltage of less than 1.8V,
Further, in view of the process margin, 0.9 to 1.8 V is appropriate, and particularly, about 1.6 (± 0.1) V is desirable.

【0045】従って、本方法の第1の電極処理の処理条
件は、炭素電極を用いてハロゲン分解電圧未満、好まし
くは1.6±0.1Vで電極処理を行うものとし、処理
時間(栽培養液と電極との接触時間)は、殺菌効果を確
実にするために20分程度又はそれ以上とすることが望
ましい。
Therefore, the processing conditions of the first electrode treatment in the present method are such that the electrode treatment is carried out using a carbon electrode at a voltage lower than the halogen decomposition voltage, preferably 1.6 ± 0.1 V, and the treatment time (cultivation and cultivation) The contact time between the liquid and the electrode) is preferably about 20 minutes or more in order to ensure the sterilization effect.

【0046】尚、炭素電極を用いた場合の水の分解電圧
は、2.5V程度であるため、1.6Vでは水の電気分
解は起こらず、上述した炭素電極と過酸化水素との反応
も起こらないため、1.6Vは炭素電極を用いた電極処
理電圧として適当である。
Since the decomposition voltage of water when a carbon electrode is used is about 2.5 V, water electrolysis does not occur at 1.6 V, and the above-mentioned reaction between the carbon electrode and hydrogen peroxide does not occur. Since this does not occur, 1.6 V is appropriate as an electrode processing voltage using a carbon electrode.

【0047】次に、本発明者らは、溶存酸素濃度を増大
させるための第2の電極処理の条件について検討し、電
極材料としては、白金系化合物電極であるエクセロード
BA電極が適当であり、該電極を用いた場合の処理電圧は
2.4V程度が最適であることを確認した。
Next, the present inventors examined the conditions of the second electrode treatment for increasing the dissolved oxygen concentration, and found that a platinum compound electrode, Exelode, was used as the electrode material.
It was confirmed that a BA electrode was appropriate, and that a processing voltage of about 2.4 V was optimal when this electrode was used.

【0048】ここで、実験結果について具体的に説明す
る。上述したように、炭素電極は酸素発生の目的には適
さないため、白金系エクセロードBA電極及びエクセロー
ドR-2000電極について、適性を検討した。Cl-イオン濃
度100ppmの栽培養液を2種類の電極にて印加電圧を
変えて電極処理を行い、溶存酸素濃度と残留塩素濃度を
計測した。計測を容易にするために処理流量は低流量の
100ml/minとした。電極面積は340cm2、電極間隔
は3mmとした。
Here, the experimental results will be specifically described. As described above, since the carbon electrode is not suitable for the purpose of generating oxygen, the suitability of the platinum-based Exerode BA electrode and Exerode R-2000 electrode was examined. The cultivation nutrient solution having a Cl - ion concentration of 100 ppm was subjected to electrode treatment by changing the applied voltage between two kinds of electrodes, and the dissolved oxygen concentration and the residual chlorine concentration were measured. The processing flow rate was set to a low flow rate of 100 ml / min to facilitate the measurement. The electrode area was 340 cm 2 , and the electrode interval was 3 mm.

【0049】酸素発生用電極の検討結果について図5を
用いて説明する。図5は、白金系エクセロードBA電極及
びエクセロードR-2000電極のそれぞれについて、印加電
圧を変えて電極処理した場合の溶存酸素濃度及び残留塩
素濃度を示すグラフ図である。図5に示すように、エク
セロードBA電極及びエクセロードR-2000電極の両電極と
も、印加電圧が増大すると残留塩素濃度と溶存酸素濃度
が増大する傾向が見られる。溶存酸素濃度については両
電極で大きな差は見られず、同様に増大しているが、残
留塩素濃度については、エクセロードBA電極の方が増大
が小さい。
The examination result of the oxygen generating electrode will be described with reference to FIG. FIG. 5 is a graph showing the concentration of dissolved oxygen and the concentration of residual chlorine in each of the platinum-based Exelode BA electrode and Exelord R-2000 electrode when the electrode treatment was performed while changing the applied voltage. As shown in FIG. 5, both the Exerode BA electrode and the Exerode R-2000 electrode tend to increase the residual chlorine concentration and the dissolved oxygen concentration when the applied voltage increases. The dissolved oxygen concentration did not show a large difference between the two electrodes, and increased similarly, but the residual chlorine concentration increased less with the Exerode BA electrode.

【0050】エクセロードBA電極の場合、2.6Vの電
圧を印加した場合に、溶存酸素濃度は8.3ppmから
9.5ppmにまで増加し、残留塩素濃度は0.11ppmしか増
加しないことから、エクセロードBA電極は栽培養液の処
理用の電極として適していると考えられる。そこで、本
方法では第2の電極処理としてエクセロードBA電極を用
いるようにした。
In the case of the Exelode BA electrode, when a voltage of 2.6 V is applied, the dissolved oxygen concentration increases from 8.3 ppm to 9.5 ppm, and the residual chlorine concentration increases only by 0.11 ppm. It is considered that the load BA electrode is suitable as an electrode for treating a culture nutrient solution. Therefore, in this method, an Exerode BA electrode is used as the second electrode treatment.

【0051】第2の電極処理の処理電圧は、エクセロー
ドBA電極を用いた場合、図5より認められるように、
1.5〜3.0Vの範囲で、残留塩素濃度の増加を抑え
つつ溶存酸素濃度を増大することが可能であり、より好
ましくは、2.2〜2.8V程度で、理想的には2.4
V程度である。
The processing voltage of the second electrode processing is as shown in FIG. 5 when the Exerode BA electrode is used.
In the range of 1.5 to 3.0 V, it is possible to increase the dissolved oxygen concentration while suppressing the increase in the residual chlorine concentration. More preferably, the dissolved oxygen concentration is about 2.2 to 2.8 V, and ideally about 2 to 2.8 V. .4
About V.

【0052】ここでは白金系化合物電極の例としてエク
セロードBA電極を用いたが、これに限らず、残留塩素の
発生が少なく、水の電気分解に伴う電極の副反応が起こ
らず、溶存酸素濃度を増大させる電極材料であれば他の
電極であっても構わない。
Here, an Exerode BA electrode was used as an example of the platinum-based compound electrode. However, the present invention is not limited to this, and the generation of residual chlorine is small. Any other electrode may be used as long as it increases the electrode material.

【0053】すなわち、本方法は、栽培養液に対して、
まず、炭素系電極を用いて、ハロゲン分解電圧未満、す
なわち0.9〜1.8V、好ましくは1.6V±0.1
V程度の電圧を印加して、栽培養液と電極との接触時間
を20分程度又はそれ以上とする第1の電極処理を行
い、次に、エクセロードBA電極等の白金系化合物電極を
用いて、1.5〜3.0V、好ましくは2.2〜2.8
V程度の電圧を印加する第2の電極処理を行うものであ
る。
That is, the present method is applied to a culture solution.
First, using a carbon-based electrode, less than the halogen decomposition voltage, that is, 0.9 to 1.8 V, preferably 1.6 V ± 0.1.
A voltage of about V is applied to perform a first electrode treatment in which the contact time between the cultivation nutrient solution and the electrode is about 20 minutes or more, and then a platinum-based compound electrode such as an Exerode BA electrode is used. 1.5 to 3.0 V, preferably 2.2 to 2.8
The second electrode treatment for applying a voltage of about V is performed.

【0054】そして、本方法では、第1の電極処理によ
って、栽培養液のクラスターを小さくし、酸化還元電位
を低減し、更に殺菌することができ、また、第2の電極
処理によって、栽培養液中の溶存酸素濃度を増大するこ
とができ、植物の生育促進と病気予防の両方の効果を得
ることができるものである。
In the present method, the first electrode treatment can reduce the cluster of the cultivation nutrient solution, reduce the oxidation-reduction potential, and further sterilize the cultivation solution. The dissolved oxygen concentration in the liquid can be increased, and both effects of promoting plant growth and preventing disease can be obtained.

【0055】また、第1の電極処理のみを行っても殺菌
と小クラスター化と酸化還元電位の低減の効果があるた
め、生育促進と病気予防の両方の効果が得られるが、栽
培養液中の溶存酸素濃度を増大させる第2の処理を合わ
せて行うと、夏場の酸欠防止に対して大きな効果が得ら
れるため、生育促進の効果が顕著となる。
Even if only the first electrode treatment is carried out, the effects of sterilization, small clustering and reduction of redox potential can be obtained, so that both effects of promoting growth and preventing disease can be obtained. When the second treatment for increasing the concentration of dissolved oxygen is performed in combination, a great effect is obtained in preventing oxygen deficiency in summer, and the effect of promoting growth is remarkable.

【0056】更に、第1の電極処理では、薬物無添加で
栽培養液を殺菌することができるので、食用植物の栽培
に用いる水耕水の処理には特に適している。また、キレ
ート鉄等の有色成分を添加しても殺菌効果への影響はな
い点においても優れている。
Further, in the first electrode treatment, the cultivation nutrient solution can be sterilized without adding a drug, and thus is particularly suitable for the treatment of hydroponic water used for cultivation of edible plants. It is also excellent in that addition of a colored component such as chelated iron does not affect the bactericidal effect.

【0057】次に、上述した本発明の実施の形態に係る
水耕水の処理方法(本方法)を実現する栽培養液の処理
装置(本装置)について図6を用いて説明する。図6
は、本発明の実施の形態に係る栽培養液の処理装置の概
略構成図である。図6に示すように、本装置は、未処理
栽培養液を貯留するタンク1と、第1の電極処理を行う
電解槽2と、第2の電極処理を行う電界槽3と、栽培養
液が一定の流量で処理装置内を流れるように加圧するポ
ンプ4と、処理済栽培養液を貯留するタンク5とから構
成されている。
Next, an apparatus for cultivating nutrient solution (this apparatus) for realizing the above-described method for treating hydroponic water (this method) according to the embodiment of the present invention will be described with reference to FIG. FIG.
1 is a schematic configuration diagram of a cultivation nutrient solution treatment device according to an embodiment of the present invention. As shown in FIG. 6, the present apparatus comprises a tank 1 for storing untreated cultivation nutrients, an electrolytic tank 2 for performing a first electrode treatment, an electric field tank 3 for performing a second electrode treatment, and a cultivation nutrient solution. The pump comprises a pump 4 for pressurizing the cultivated nutrient solution so as to flow through the processing apparatus at a constant flow rate, and a tank 5 for storing the processed cultivated nutrient solution.

【0058】更に、電解槽2には上述したように第1の
電極処理を行うための複数の炭素系電極21-1〜21-n
が設けられており、炭素系電極21には交互に正又は負
の電圧が印加されている。図6の例では、炭素系電極2
1-1,21-3,…21-nは正電圧が印加されている陽極
であり、炭素系電極21-2,21-4,…は負電圧が印加
されている陰極である。
Further, a plurality of carbon-based electrodes 21-1 to 21-n for performing the first electrode treatment are provided in the electrolytic cell 2 as described above.
Is provided, and a positive or negative voltage is alternately applied to the carbon-based electrode 21. In the example of FIG.
, 21-n are anodes to which a positive voltage is applied, and carbon-based electrodes 21-2, 21-4, ... are cathodes to which a negative voltage is applied.

【0059】微生物の殺菌を行うには、電極と微生物と
が接触して電子の移動が起こることが必要である。そこ
で、本装置では、栽培養液と炭素電極との接触面積を大
きくするために、炭素系電極21を、網状に形成された
網電極としている。
In order to sterilize microorganisms, it is necessary that the electrodes and the microorganisms come into contact with each other to transfer electrons. Therefore, in the present apparatus, in order to increase the contact area between the cultivation nutrient solution and the carbon electrode, the carbon-based electrode 21 is a net electrode formed in a net shape.

【0060】更に、図6に示したように、複数の炭素系
電極21を各電極面が平行になるようにして、垂直に積
み重ねた構造とすることにより、炭素系電極21に微生
物を確実に接触させて死滅させるようにしている。ま
た、網電極とすることにより、複数の炭素系電極21を
積層しても軽量ですむようにしている。
Further, as shown in FIG. 6, a plurality of carbon-based electrodes 21 are vertically stacked so that each electrode surface is parallel to each other, so that microorganisms can be surely applied to the carbon-based electrodes 21. They are killed by contact. In addition, by using a mesh electrode, even if a plurality of carbon-based electrodes 21 are stacked, the weight can be reduced.

【0061】また、電解層3には、第2の電極処理とし
て水の電気分解を行うための白金系電極31a及び31
bが設けられており、白金系電極31aには正電圧が印
加され、白金系電極31bには負電圧が印加されてい
る。ここでは、上述した実験結果に基づいて白金系電極
31a,31bとしてエクセロードBA電極を用いている
が、溶存酸素濃度を増大させ、残留塩素の発生が少な
く、且つ電極自身が反応しないものであれば他の電極材
料であっても構わない。
The platinum layer electrodes 31a and 31a for electrolyzing water as a second electrode treatment are provided on the electrolytic layer 3.
b is provided, a positive voltage is applied to the platinum-based electrode 31a, and a negative voltage is applied to the platinum-based electrode 31b. Here, an Exerode BA electrode is used as the platinum-based electrodes 31a and 31b based on the above-described experimental results. However, any electrode may be used in which the dissolved oxygen concentration is increased, the generation of residual chlorine is small, and the electrodes themselves do not react. Any other electrode material may be used.

【0062】そして、上記構成の本装置では、タンク1
に貯留された未処理の栽培養液は、タンク下部に設けら
れた出水口からパイプを介して流出し、ポンプ4によっ
て加圧されて一定流量で電解槽2及び電解槽3を通過す
る。ここで、殺菌効果を確実にするために電解槽2にお
ける処理時間が20分程度となるよう、ポンプ4にて流
量を調節する。
In the apparatus having the above configuration, the tank 1
The untreated cultivation nutrient solution stored in the tank flows out from a water outlet provided at the lower part of the tank via a pipe, is pressurized by a pump 4, and passes through the electrolytic cells 2 and 3 at a constant flow rate. Here, in order to ensure the sterilization effect, the flow rate is adjusted by the pump 4 so that the processing time in the electrolytic cell 2 becomes about 20 minutes.

【0063】そして、電解槽2においては、栽培養液が
炭素系電極21の網目の隙間を通り抜ける際に、栽培養
液中の微生物や菌が炭素系電極21に接触して、死滅す
る。それと共に、電極が発生する電磁力により、水のク
ラスターを小さくし、更に酸化還元電位を低減させる。
In the electrolytic cell 2, when the cultivating nutrient solution passes through the mesh of the carbon-based electrode 21, microorganisms and bacteria in the cultivating nutrient solution contact the carbon-based electrode 21 and die. At the same time, the electromagnetic force generated by the electrodes reduces water clusters and further reduces the oxidation-reduction potential.

【0064】このとき、炭層系電極21への印加電圧を
1.6V±0.1Vに保持すれば、十分な殺菌効果を得
ると共に残留塩素の発生を許容範囲内に抑えることがで
きるものである。また、冬場等、液温が低い場合には、
炭素電極への印加電圧をハロゲン分解電圧未満で1.6
Vよりも高くして処理の効率化を図っても構わない。
At this time, if the voltage applied to the coalbed electrode 21 is maintained at 1.6 V ± 0.1 V, a sufficient sterilizing effect can be obtained and the generation of residual chlorine can be suppressed within an allowable range. . Also, when the liquid temperature is low, such as in winter,
When the voltage applied to the carbon electrode is less than the halogen decomposition voltage, 1.6
V may be set higher to increase the processing efficiency.

【0065】そして、殺菌、小クラスター化、及び酸化
還元電位が低減された栽培養液は、電解槽2の上部に設
けられた流出口から電解槽3に流入し、白金系電極31
a及び31bの間を通り抜ける。このとき、白金系電極
31a及び31bに電圧が印加されていると、水の電気
分解が起こり、酸素が発生して栽培養液中の溶存酸素濃
度を増大させる。
Then, the cultivation nutrient solution having a sterilized, small cluster, and reduced oxidation-reduction potential flows into the electrolytic cell 3 from an outlet provided at the upper part of the electrolytic cell 2, and the platinum-based electrode 31 is formed.
Pass between a and 31b. At this time, when a voltage is applied to the platinum-based electrodes 31a and 31b, electrolysis of water occurs, and oxygen is generated to increase the dissolved oxygen concentration in the cultivation nutrient solution.

【0066】上述したように、白金系電極31に印加す
る電圧を2.4Vに設定すれば、溶存酸素濃度は十分増
大し、残留塩素の発生は許容濃度内となるよう抑制する
ことが可能である。
As described above, when the voltage applied to the platinum-based electrode 31 is set to 2.4 V, the dissolved oxygen concentration is sufficiently increased, and the generation of residual chlorine can be suppressed to be within the allowable concentration. is there.

【0067】そして、電解槽2及び電界槽3において処
理された栽培養液は、タンク5に貯留され、植物栽培の
栽培養液や用水として用いられるものである。尚、処理
済液をタンク5に貯留せずに、そのまま植物の培養容器
に流出させるようにしても構わない。
The cultivated nutrient solution treated in the electrolytic cell 2 and the electric field tank 3 is stored in a tank 5 and used as a cultivated nutrient solution for plant cultivation and water. In addition, you may make it flow out to a culture container of a plant as it is, without storing the processed liquid in the tank 5.

【0068】本発明の実施の形態に係る栽培養液の処理
方法及び処理装置によれば、栽培養液を、炭素電極を備
えた電解槽2に流入して、ハロゲン分解電圧値未満の
0.9〜1.8V、好ましくは1.6±0.1V程度の
電圧を印加する第1の電極処理を行い、次に白金系化合
物電極を備えた電解槽3に流入して、1.5〜3.0V
の電圧、好ましくは2.2〜2.8Vの電圧を印加する
第2の電極処理を行うようにしているので、第1の電極
処理によって、水のクラスターを小さくし、酸化還元電
位をある程度低減し、第2の電極処理によって溶存酸素
濃度を増大させることにより植物の生育促進を図ること
ができ、また、第1の電極処理によって栽培養液を殺菌
して植物の病気予防を図ることができる効果がある。
According to the method and the apparatus for treating a cultivating nutrient solution according to the embodiment of the present invention, the cultivating nutrient solution flows into the electrolytic cell 2 provided with the carbon electrode, and the cultivating nutrient solution is supplied to the electrolytic cell 2 having a carbon decomposition voltage of less than 0.1. The first electrode treatment is performed by applying a voltage of about 9 to 1.8 V, preferably about 1.6 ± 0.1 V, and then flows into the electrolytic cell 3 provided with a platinum-based compound electrode, and is subjected to 1.5 to 1.5 V. 3.0V
, And preferably a voltage of 2.2 to 2.8 V is applied, so that the first electrode treatment reduces water clusters and reduces the oxidation-reduction potential to some extent. However, the growth of the plant can be promoted by increasing the dissolved oxygen concentration by the second electrode treatment, and the cultivation nutrient solution can be sterilized by the first electrode treatment to prevent the disease of the plant. effective.

【0069】また、本方法及び本装置によれば、第1の
処理と第2の処理はいずれも電極処理であるため、紫外
線照射や薬剤投与を行うのに比べて装置構成及び処理の
流れを簡単にすることができ、コストを低減できる効果
がある。
Further, according to the present method and the present apparatus, since both the first processing and the second processing are electrode processing, the apparatus configuration and the flow of the processing can be reduced as compared with the case where ultraviolet irradiation or drug administration is performed. It can be simplified and has the effect of reducing costs.

【0070】また、本方法及び本装置によれば、処理電
圧は数ボルト程度ですむので、紫外線照射等に比べて消
費電力を大幅に削減することができ、更に、装置維持管
理も容易であり、コストを低減することができるもので
ある。
Further, according to the present method and the present apparatus, since the processing voltage is only several volts, the power consumption can be greatly reduced as compared with the case of irradiation with ultraviolet rays, and the maintenance of the apparatus is easy. And cost can be reduced.

【0071】また、本装置によれば、第1の電極処理を
行う電解槽2における炭素系電極21を網電極とし、栽
培養液が複数の電極を通り抜けるように、複数の炭素系
電極21を電極面が平行になるように、栽培養液の流れ
に沿って積み重ねた構造としているので、栽培養液と炭
素系電極21との接触面積を大きくし、微生物や細菌を
電極に接触させ易くし、殺菌効果を向上させることがで
きる効果がある。
Further, according to the present apparatus, the carbon-based electrode 21 in the electrolytic cell 2 for performing the first electrode treatment is used as a mesh electrode, and the plurality of carbon-based electrodes 21 are connected so that the cultivation nutrient solution passes through the plurality of electrodes. Since the electrode surfaces are parallel to each other and are stacked along the flow of the culture nutrient solution, the contact area between the culture nutrient solution and the carbon-based electrode 21 is increased, so that microorganisms and bacteria can be easily brought into contact with the electrode. There is an effect that the sterilization effect can be improved.

【0072】また、電解槽2における炭素系電極21を
網電極とすることにより、重量を軽減し、装置の移動や
設置を容易にすることができる効果がある。
Further, by using the carbon-based electrode 21 in the electrolytic cell 2 as a mesh electrode, there is an effect that the weight can be reduced and the apparatus can be easily moved and installed.

【0073】更に、低温環境下で、溶存酸素濃度増大の
処理が不要な場合には、電解槽3を取り外して電解槽2
のみで処理を行うことも可能であり、必要に応じて電解
槽3を容易に着脱でき、便利であると共に、消費電力を
より低減できるものである。
Further, when it is not necessary to increase the dissolved oxygen concentration in a low temperature environment, the electrolytic cell 3 is removed and the electrolytic cell 2 is removed.
It is also possible to carry out the treatment only with the electrolytic cell 3, and the electrolytic cell 3 can be easily attached and detached as necessary, which is convenient and can further reduce the power consumption.

【0074】また、第1の処理及び第2の処理は、それ
ぞれ単独で行っても効果が得られるが、組み合わせて行
うことにより、処理の効率化や、装置コストの低減、ス
ペースの有効利用を図ることができる効果がある。
The first processing and the second processing can obtain the effect even if they are performed independently. However, by performing the processing in combination, it is possible to increase the processing efficiency, reduce the apparatus cost, and effectively use the space. There is an effect that can be achieved.

【0075】[0075]

【実施例】本方法及び本装置の実施例について説明す
る。滅菌蒸留水により植物栽培用養液((株)東洋興産
製、野菜用栽培養液濃縮液、EC;2.0ms/cm、液温約21
℃)を調整し、培養した大腸菌(JM105)等を、用意し
た植物栽培用養液に混入した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present method and the present apparatus will be described. Nutrient solution for plant cultivation with sterile distilled water (Toyo Kosan Co., Ltd., concentrated solution for vegetable cultivation solution, EC; 2.0 ms / cm, liquid temperature about 21
C.), and cultured E. coli (JM105) and the like were mixed into the prepared nutrient solution for plant cultivation.

【0076】上述した本装置を用いて、第1の電極処理
を行う電解槽(第1の電解槽)にて炭素系電極間に1.
6(±0.1V)の定電圧を印加し、流量37ml/minで
栽培養液を処理した。
Using the above-described apparatus, 1. an electrolytic cell (first electrolytic cell) for performing the first electrode treatment is provided between the carbon-based electrodes.
A constant voltage of 6 (± 0.1 V) was applied, and the culture solution was treated at a flow rate of 37 ml / min.

【0077】更に、第1の電解槽にて処理された栽培養
液を、第2の電極処理を行う電解槽(第2の電解槽)に
流入し、白金系化合物電極としてエクセローBA電極を用
い、電極間に2.4Vの定電圧を印加して第2の電極処
理を行った。
Further, the cultivation nutrient solution treated in the first electrolytic cell flows into an electrolytic cell (second electrolytic cell) for performing the second electrode treatment, and an Excello BA electrode is used as a platinum-based compound electrode. The second electrode treatment was performed by applying a constant voltage of 2.4 V between the electrodes.

【0078】処理前後の栽培養液を以下に述べる方法で
測定し、評価した。まず、処理前後の栽培養液を酸素原
子核の磁気共鳴(17O−NMR)分光測定により評価し
た。磁気共鳴装置は、JEOL社製、AL-400型を用い
た。17O−NMR分光測定により得られた結果を表1に
示す。
The cultivated nutrient solution before and after the treatment was measured and evaluated by the method described below. First, magnetic resonance oxygen nucleus the culture solution before and after the treatment (17 O-NMR) was evaluated by spectrophotometry. As the magnetic resonance apparatus, AL-400 manufactured by JEOL was used. Table 1 shows the results obtained by 17 O-NMR spectroscopy.

【0079】[0079]

【表1】 [Table 1]

【0080】一般に、様々な水の17O−NMR分光測定
を行うと、クラスターが小さい水ほど、17O−NMR分
光測定のスペクトルの線巾が狭く、クラスターが大きく
なるほどスペクトルの線巾が広くなる。表1に示したよ
うに、栽培養液のスペクトルの線巾は、処理前は78Hz
であるが、本方法及び本装置を用いた電極処理後は48
Hzであり、処理後の栽培養液のくラスターが小さくなっ
たことを明らかにした。
In general, when 17 O-NMR spectroscopy of various kinds of water is performed, the smaller the cluster, the narrower the spectrum line width of the 17 O-NMR spectroscopy, and the larger the cluster, the wider the spectrum line width. . As shown in Table 1, the line width of the cultivation nutrient solution spectrum was 78 Hz before the treatment.
However, after electrode treatment using the present method and the present apparatus, 48
Hz, which revealed that the size of the nutrient solution after treatment became smaller.

【0081】次に、処理前後の栽培養液のサンプルを平
板コロニー培養法により菌数を測定した。第1の電解槽
における処理前後の栽培養液中の菌濃度の変化と殺菌率
を表2に示した。
Next, the number of bacteria was measured by a plate colony culturing method for samples of the cultivated nutrient solution before and after the treatment. Table 2 shows the change in the bacterial concentration in the cultivation nutrient solution before and after the treatment in the first electrolytic cell and the sterilization rate.

【0082】[0082]

【表2】 [Table 2]

【0083】表2に示すように、栽培養液中に混入した
大腸菌(JM105)に対して、殺菌率97.3%と高い殺菌効
果を明らかにした。
As shown in Table 2, the bactericidal effect against Escherichia coli (JM105) mixed in the cultivation nutrient solution was as high as 97.3%.

【0084】次に、処理前の栽培養液と第2の電極処理
後の栽培養液のサンプルの溶存酸素濃度を溶存酸素測定
計(HORIBA社製、D-25型)により測定した。処理前の栽
培養液と、第2の電極処理後の栽培養液の溶存酸素濃度
を表3に示す。
Next, the dissolved oxygen concentration of the sample of the cultivated nutrient solution before the treatment and the sample of the cultivated nutrient solution after the second electrode treatment were measured by a dissolved oxygen meter (HORIBA D-25 type). Table 3 shows the dissolved oxygen concentration of the cultivation nutrient solution before the treatment and the cultivation nutrient solution after the second electrode treatment.

【0085】[0085]

【表3】 [Table 3]

【0086】表3に示すように、第2の電極処理によ
り、溶存酸素濃度は増大することが確認された。
As shown in Table 3, it was confirmed that the concentration of dissolved oxygen was increased by the second electrode treatment.

【0087】次に、処理前後の栽培養液のサンプルのpH
値(HORIBA社製、F-22型pH測定計を用いる)、電気伝導
度(YOKOVGAWA、MODEL SC82 EC測定計を用いる)、酸化
還元電位(HORIBA社製、F-22型ORP測定計を用いる)と
いった栽培養液の基本技術指標を測定した。処理前後の
栽培養液のpH値、電気伝導度、酸化還元電位の測定値を
表4に示す。
Next, the pH of the culture nutrient solution sample before and after the treatment was measured.
Value (using HORIBA F-22 type pH meter), electrical conductivity (using YOKOVGAWA, MODEL SC82 EC meter), oxidation-reduction potential (using HORIBA F-22 type ORP meter) The basic technical index of the cultivation nutrient solution was measured. Table 4 shows the measured values of the pH value, electric conductivity, and oxidation-reduction potential of the cultivation nutrient solution before and after the treatment.

【0088】[0088]

【表4】 [Table 4]

【0089】表4に示すように、処理前後で栽培養液の
pH値及び電気伝導度は大きな差は見られなかったが、酸
化還元電位はある程度低減した。
As shown in Table 4, before and after the treatment,
Although there was no significant difference in pH value and electrical conductivity, the oxidation-reduction potential was reduced to some extent.

【0090】これらの評価から、本方法及び本装置にて
栽培養液を処理すると、第1の電極処理により水を小ク
ラスター化し、酸化還元電位を低減し、第2の電極処理
により溶存酸素濃度を増大させることができ、それによ
って植物の生育促進を図ることができるものである。
From these evaluations, when the cultivation nutrient solution is treated by the present method and the present apparatus, water is made into small clusters by the first electrode treatment, the oxidation-reduction potential is reduced, and the dissolved oxygen concentration is decreased by the second electrode treatment. Can be increased, whereby plant growth can be promoted.

【0091】また、本方法及び本装置によれば、第1の
電極処理によって栽培養液を殺菌して、植物の病気予防
を図ることができるものである。
According to the present method and the present apparatus, the cultivation nutrient solution can be sterilized by the first electrode treatment to prevent plant diseases.

【0092】[0092]

【発明の効果】本発明によれば、において、炭素系又は
白金系化合物電極に0.9〜3.0Vの電圧を印加し、
栽培養液を直接前記電極と接触させて電極処理を行う栽
培養液の処理方法としているので、薬剤添加や紫外線照
射することなく栽培養液を殺菌すると共に、クラスター
を小さくし、酸化還元電位を低減し、植物の生育促進と
病気予防を図ることができ、処理に要する消費電力及び
コストを低減することができる効果がある。
According to the present invention, a voltage of 0.9 to 3.0 V is applied to a carbon-based or platinum-based compound electrode,
Since the cultivation nutrient solution is treated by directly contacting the cultivation nutrient with the electrode to perform the electrode treatment, the cultivation nutrient solution is sterilized without adding a chemical or irradiating ultraviolet rays, and the clusters are reduced to reduce the oxidation-reduction potential. Thus, plant growth promotion and disease prevention can be achieved, and the power consumption and cost required for treatment can be reduced.

【0093】また、本発明によれば、複数の炭素系電極
又は複数の白金系化合物電極に0.9〜3.0Vの電圧
を印加し、栽培養液を直接複数の炭素系電極又は白金系
化合物電極に接触させて、多電極処理を行う栽培養液の
処理方法としているので、微生物を電極面に接触しやす
くさせて、殺菌効果を向上させることができる効果があ
る。
Further, according to the present invention, a voltage of 0.9 to 3.0 V is applied to a plurality of carbon-based electrodes or a plurality of platinum-based compound electrodes, and the cultivation nutrient solution is directly applied to the plurality of carbon-based electrodes or platinum-based electrodes. Since the method is a method for treating a cultivation nutrient solution in which a multi-electrode treatment is performed by contacting with a compound electrode, there is an effect that microorganisms can be easily brought into contact with the electrode surface and a bactericidal effect can be improved.

【0094】また、本発明によれば、炭素系電極への印
加電圧をハロゲン分解電圧未満とする栽培養液の処理方
法としているので、残留塩素を発生させることなく、栽
培養液の殺菌を行うことができ、残留塩素の除去に要す
るコストを不要とすることができる効果がある。
Further, according to the present invention, since the cultivation nutrient solution is treated in such a manner that the voltage applied to the carbon-based electrode is lower than the halogen decomposition voltage, the cultivation nutrient solution is sterilized without generating residual chlorine. This has the effect of eliminating the cost required for removing residual chlorine.

【0095】また、本発明によれば、0.9〜1.8V
の電圧が印加され、流入された栽培養液と接触して電極
処理を行う炭素系電極を備えた電解槽又は、1.5〜
3.0Vの電圧が印加され、流入された栽培養液と接触
して電極処理を行う白金系化合物電極を備えた電解槽を
有する栽培養液の処理装置としているので、薬剤添加や
紫外線照射することなく栽培養液を殺菌すると共に、ク
ラスターを小さくし、酸化還元電位を低減し、栽培養液
中の溶存酸素濃度を増大させて、簡便な装置で、植物の
生育促進と病気予防を図ることができ、消費電力及びコ
ストを低減することができる効果がある。
Further, according to the present invention, 0.9 to 1.8 V
Voltage is applied, and an electrolytic cell provided with a carbon-based electrode for performing electrode treatment by contacting the grown nutrient solution or 1.5 to
A voltage of 3.0 V is applied, and the apparatus is a cultivating nutrient solution treatment apparatus having an electrolytic tank provided with a platinum-based compound electrode that performs electrode treatment by contacting with the infused cultivating nutrient solution. To sterilize cultivation nutrients without reducing the size of clusters, reduce oxidation-reduction potential, and increase the concentration of dissolved oxygen in cultivation nutrients, to promote plant growth and prevent disease with simple equipment This has the effect of reducing power consumption and cost.

【0096】本発明によれば、炭素系電極に電圧を印加
して栽培養液を電極処理する第1の電極処理を行い、白
金系化合物電極に電圧を印加して、第1の電極処理が為
された栽培養液を電極処理する第2の電極処理を行う栽
培養液の処理方法としているので、第1の電極処理によ
り、薬剤添加や紫外線照射することなく栽培養液を殺菌
すると共に、クラスターを小さくし、酸化還元電位を低
減し、第2の電極処理により栽培養液中の溶存酸素濃度
を増大させて、一連の処理によって植物の生育促進と病
気予防を図ることができ、処理に要する消費電力及びコ
ストを低減し、更に第1の電極処理の後で第2の電極処
理を行うことにより水の電気分解によって発生する過酸
化水素と炭素電極との反応を防ぐことができる効果があ
る。
According to the present invention, the first electrode treatment is performed by applying a voltage to the carbon-based electrode to apply electrode treatment to the cultivation nutrient solution and applying a voltage to the platinum-based compound electrode. Since the method is a method of treating a cultivation nutrient solution in which a second electrode treatment is performed to perform an electrode treatment of the cultivation nutrient solution, the first electrode treatment sterilizes the cultivation nutrient solution without adding chemicals or irradiating ultraviolet rays. The clusters are reduced, the oxidation-reduction potential is reduced, the concentration of dissolved oxygen in the cultivation nutrient solution is increased by the second electrode treatment, and a series of treatments can promote plant growth and prevent disease. The required power consumption and cost can be reduced, and further, by performing the second electrode treatment after the first electrode treatment, it is possible to prevent the reaction between hydrogen peroxide generated by the electrolysis of water and the carbon electrode. is there.

【0097】また、本発明によれば、電圧を炭素系電極
に印加して栽培養液を電極処理する第1の電解槽と、電
圧を白金系化合物電極に印加して、第1の電解槽から流
入される栽培養液を電極処理する第2の電解槽とを備え
た栽培養液の処理装置としているので、薬剤添加や紫外
線照射することなく栽培養液を殺菌すると共に、クラス
ターを小さくし、酸化還元電位を低減し、栽培養液中の
溶存酸素濃度を増大させて、簡便な装置で、植物の生育
促進と病気予防を図ることができ、消費電力及びコスト
を低減し、更に第1の電極処理の後で第2の電極処理を
行うことにより水の電気分解によって発生する過酸化水
素と炭素電極との反応を防ぐことができ、更に2つの処
理を同一の装置にて行うことにより処理の効率化やスペ
ースの有効利用を図ることができる効果がある。
Further, according to the present invention, a first electrolytic cell for applying a voltage to a carbon-based electrode to electrode-treat a cultivating nutrient solution, and a first electrolytic cell for applying a voltage to a platinum-based compound electrode. And a second electrolytic cell for electrode-treating the cultivation nutrient flowing from the cultivation nutrient, so that the cultivation nutrient can be sterilized without adding chemicals or irradiating ultraviolet rays, and the cluster can be reduced. By reducing the oxidation-reduction potential and increasing the dissolved oxygen concentration in the cultivation nutrient solution, it is possible to promote plant growth and prevent disease with a simple device, reduce power consumption and cost, and By performing the second electrode treatment after the electrode treatment of the above, it is possible to prevent the reaction between hydrogen peroxide generated by the electrolysis of water and the carbon electrode, and to perform the two treatments in the same apparatus. Efficient processing and effective use of space There is an effect that can Rukoto.

【0098】また、本発明によれば、炭素系電極を備え
た電解槽において、網状の炭素系電極を栽培養液が流れ
る方向に沿って複数重ねて配列すると共に、複数配列さ
れた炭素系電極の電極面を、栽培養液が流れる方向に直
角になるように配置し、配列された各炭素系電極に対し
て交互に正又は負の電圧が印加される栽培養液の処理装
置としているので、栽培養液と炭素電極との接触面積を
大きくし、微生物を電極に接触させやすくして殺菌効果
を向上させることができる効果がある。
Further, according to the present invention, in an electrolytic cell provided with a carbon-based electrode, a plurality of net-like carbon-based electrodes are arranged so as to overlap with each other in a direction in which a cultivating nutrient solution flows, and a plurality of arranged carbon-based electrodes are arranged. The electrode surface is arranged so as to be perpendicular to the direction in which the cultivation nutrient solution flows, and the cultivation nutrient solution treatment device in which a positive or negative voltage is alternately applied to each of the arranged carbon-based electrodes. This has the effect of increasing the contact area between the cultivation nutrient solution and the carbon electrode, making it easier for microorganisms to come into contact with the electrode, and improving the bactericidal effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】炭素電極を用いた場合のHCl蒸留水溶液の分
解電圧を示すグラフ図である。
FIG. 1 is a graph showing the decomposition voltage of a distilled HCl aqueous solution when a carbon electrode is used.

【図2】白金系エクセロードBA電極を用いた場合のHC
l蒸留水溶液の分解電圧を示すグラフ図である。
FIG. 2 HC using platinum-based Exelode BA electrode
It is a graph which shows the decomposition voltage of 1 distilled water solution.

【図3】エクセロードR-2000電極を用いた場合のHCl
蒸留水溶液の分解電圧を示すグラフ図である
FIG. 3 HCl using Exerode R-2000 electrode
It is a graph which shows the decomposition voltage of a distilled aqueous solution.

【図4】炭素電極を用いて液温を変えた場合の100pp
mHCl蒸留水溶液の分解電圧を示すグラフ図である。
FIG. 4 100 pp when liquid temperature is changed using a carbon electrode
FIG. 3 is a graph showing the decomposition voltage of a distilled aqueous solution of mHCl.

【図5】白金系エクセロードBA電極及びエクセロードR-
2000電極について、印加電圧を変えて電極処理した場合
の溶存酸素濃度及び残留塩素濃度を示すグラフ図であ
る。
Fig. 5 Platinum Exelode BA electrode and Exelord R-
FIG. 4 is a graph showing the dissolved oxygen concentration and the residual chlorine concentration when electrode treatment was performed for 2000 electrodes while changing the applied voltage.

【図6】本発明の実施の形態に係る栽培養液の処理装置
の概略構成図である。
FIG. 6 is a schematic configuration diagram of a cultivation nutrient solution treatment device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…タンク(未処理液)、 2…電解槽、 21…炭素
系電極、 3…電解槽、 31…白金系化合物電極、
4…ポンプ、 5…タンク(処理済液)
DESCRIPTION OF SYMBOLS 1 ... tank (unprocessed liquid), 2 ... electrolytic cell, 21 ... carbon-based electrode, 3 ... electrolytic cell, 31 ... platinum-based compound electrode,
4 ... Pump, 5 ... Tank (processed liquid)

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C25B 15/02 302 C25B 15/02 302 Fターム(参考) 2B314 MA30 MA46 PA13 PA20 4D061 DA02 DB01 DB20 EA02 EB04 EB14 EB18 EB29 EB30 EB35 4K011 AA15 AA16 DA01 4K021 AA01 BA02 BB03 BC01 CA06 CA08 DA06 DA09 DA13 DC01 DC13 DC15 Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat II (reference) C25B 15/02 302 C25B 15/02 302 F term (reference) 2B314 MA30 MA46 PA13 PA20 4D061 DA02 DB01 DB20 EA02 EB04 EB14 EB18 EB29 EB30 EB35 4K011 AA15 AA16 DA01 4K021 AA01 BA02 BB03 BC01 CA06 CA08 DA06 DA09 DA13 DC01 DC13 DC15

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 炭素系又は白金系化合物電極に0.9〜
3.0Vの電圧を印加し、栽培養液を直接前記電極と接
触させて電極処理を行うことを特徴とする栽培養液の処
理方法。
1. A carbon-based or platinum-based compound electrode comprising 0.9 to
A method for treating a cultivating nutrient solution, comprising applying a voltage of 3.0 V and bringing the cultivating nutrient solution into direct contact with the electrode to perform electrode treatment.
【請求項2】 複数の炭素系電極又は複数の白金系化合
物電極に0.9〜3.0Vの電圧を印加し、栽培養液を
直接前記複数の炭素系電極又は白金系化合物電極に接触
させて、多電極処理を行うことを特徴とする栽培養液の
処理方法。
2. A voltage of 0.9 to 3.0 V is applied to the plurality of carbon-based electrodes or the plurality of platinum-based compound electrodes, and the cultivation solution is brought into direct contact with the plurality of carbon-based electrodes or the platinum-based compound electrodes. And a multi-electrode treatment.
【請求項3】 炭素系電極への印加電圧をハロゲン分解
電圧未満とすることを特徴とする請求項1又は請求項2
記載の栽培養液の処理方法。
3. The method according to claim 1, wherein a voltage applied to the carbon-based electrode is lower than a halogen decomposition voltage.
The method for treating the cultivated nutrient solution according to the above.
【請求項4】 炭素系電極への印加電圧を0.9〜1.
8Vとすることを特徴とする請求項1又は請求項2記載
の栽培養液の処理方法。
4. The voltage applied to the carbon-based electrode is 0.9-1.
The method for treating a cultivated nutrient solution according to claim 1 or 2, wherein the method is 8V.
【請求項5】 白金系化合物電極への印加電圧を1.5
〜3.0Vとすることを特徴とする請求項1乃至請求項
4記載の栽培養液の処理方法。
5. A voltage applied to a platinum-based compound electrode is 1.5
The method for treating a cultivated nutrient solution according to any one of claims 1 to 4, wherein the voltage is set to ~ 3.0V.
【請求項6】 0.9〜1.8Vの電圧が印加され、流
入された栽培養液と接触して電極処理を行う炭素系電極
を備えた電解槽又は、1.5〜3.0Vの電圧が印加さ
れ、流入された栽培養液と接触して電極処理を行う白金
系化合物電極を備えた電解槽を有することを特徴とする
栽培養液の処理装置。
6. An electrolytic cell provided with a carbon-based electrode to which a voltage of 0.9 to 1.8 V is applied and which performs an electrode treatment by contacting with the cultivation solution that has flowed in, or an electrolytic cell having a voltage of 1.5 to 3.0 V. An apparatus for treating a cultivating nutrient solution, comprising: an electrolytic tank provided with a platinum-based compound electrode that is applied with a voltage and performs an electrode treatment by being brought into contact with the introduced cultivating nutrient solution.
【請求項7】 0.9〜1.8Vの電圧が印加され、流
入された栽培養液と接触して多電極処理を行う複数の炭
素系電極を備えた電解槽又は、1.5〜3.0Vの電圧
が印加され、流入された栽培養液と接触して多電極処理
を行う複数の白金系化合物電極を備えた電解槽を有する
ことを特徴とする栽培養液の処理装置。
7. An electrolytic cell provided with a plurality of carbon-based electrodes to which a voltage of 0.9 to 1.8 V is applied and which performs a multi-electrode treatment by coming into contact with the inoculated cultivation solution, or 1.5 to 3 A cultivation nutrient solution treatment device, comprising: an electrolytic cell provided with a plurality of platinum-based compound electrodes to which a voltage of 0.0 V is applied and which performs a multi-electrode treatment by coming into contact with the introduced cultivation solution.
【請求項8】 炭素系電極を備えた電解槽を有する栽培
養液の処理装置であって、 網状の炭素系電極を栽培養液が流れる方向に沿って複数
重ねて配列すると共に、前記複数配列された炭素系電極
の電極面を、前記栽培養液が流れる方向に直角になるよ
うに配置し、前記炭素系電極の各々に対して交互に正又
は負の電圧が印加されることを特徴とする請求項6又は
請求項7記載の栽培養液の処理装置。
8. An apparatus for treating a cultivating nutrient solution having an electrolytic cell provided with a carbon-based electrode, wherein a plurality of net-like carbon-based electrodes are arranged in an overlapping manner along a flowing direction of the cultivating nutrient solution, and the plurality of arrangements are provided. The electrode surface of the carbon-based electrode was disposed so as to be perpendicular to the direction in which the culture solution flows, and a positive or negative voltage is applied alternately to each of the carbon-based electrodes. The cultivation nutrient solution treatment device according to claim 6 or 7, wherein
【請求項9】 炭素系電極に電圧を印加して栽培養液を
電極処理する第1の電極処理を行い、白金系化合物電極
に電圧を印加して前記第1の電極処理が為された栽培養
液を電極処理する第2の電極処理を行うことを特徴とす
る栽培養液の処理方法。
9. A cultivation method in which a voltage is applied to a carbon-based electrode to perform a first electrode treatment for electrode-treating a cultivation nutrient solution, and a voltage is applied to a platinum-based compound electrode to perform the first electrode treatment. A method for treating a cultivated nutrient solution, comprising performing a second electrode treatment for electrode-treating the nutrient solution.
【請求項10】第1の電極処理における炭素系電極への
印加電圧をハロゲン分解電圧未満とすることを特徴とす
る請求項1記載の栽培養液の処理方法。
10. The method according to claim 1, wherein the voltage applied to the carbon-based electrode in the first electrode treatment is lower than the halogen decomposition voltage.
【請求項11】第1の電極処理における炭素系電極への
印加電圧を0.9〜1.8Vとすることを特徴とする請
求項1記載の栽培養液の処理方法。
11. The method according to claim 1, wherein the voltage applied to the carbon-based electrode in the first electrode treatment is 0.9 to 1.8 V.
【請求項12】第2の電極処理における白金系化合物電
極への印加電圧を1.5〜3.0Vとすることを特徴と
する請求項1乃至請求項3記載の栽培養液の処理方法。
12. The method for treating a cultivated nutrient solution according to claim 1, wherein the voltage applied to the platinum-based compound electrode in the second electrode treatment is 1.5 to 3.0 V.
【請求項13】電圧を炭素系電極に印加して栽培養液を
電極処理する第1の電解槽と、電圧を白金系化合物電極
に印加して前記第1の電解槽から流入される栽培養液を
電極処理する第2の電解槽とを備えたことを特徴とする
栽培養液の処理装置。
13. A first electrolytic cell for applying a voltage to a carbon-based electrode for electrode treatment of a cultivation solution, and a cultivation culture applied from a first electrolytic cell for applying a voltage to a platinum-based compound electrode. An apparatus for treating a cultivated nutrient solution, comprising: a second electrolytic tank for electrode-treating the solution.
【請求項14】第1の電解槽において、網状の炭素系電
極を栽培養液が流れる方向に沿って複数重ねて配列する
と共に、前記複数配列された炭素系電極の電極面を、前
記栽培養液が流れる方向に直角になるように配置し、前
記炭素系電極の各々に対して交互に正又は負の電圧が印
加されることを特徴とする請求項5記載の栽培養液の処
理装置。
14. In the first electrolytic cell, a plurality of net-like carbon-based electrodes are arranged in an overlapping manner along a flowing direction of a cultivation liquid, and the electrode surface of the plurality of arranged carbon-based electrodes is cultivated. The cultivation nutrient solution treatment device according to claim 5, wherein the cultivation nutrient solution is arranged so as to be perpendicular to the direction in which the liquid flows, and a positive or negative voltage is alternately applied to each of the carbon-based electrodes.
JP2000257305A 2000-08-28 2000-08-28 Method and apparatus for treating nutrient solution of cultivation Pending JP2002065089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000257305A JP2002065089A (en) 2000-08-28 2000-08-28 Method and apparatus for treating nutrient solution of cultivation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000257305A JP2002065089A (en) 2000-08-28 2000-08-28 Method and apparatus for treating nutrient solution of cultivation

Publications (1)

Publication Number Publication Date
JP2002065089A true JP2002065089A (en) 2002-03-05

Family

ID=18745782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000257305A Pending JP2002065089A (en) 2000-08-28 2000-08-28 Method and apparatus for treating nutrient solution of cultivation

Country Status (1)

Country Link
JP (1) JP2002065089A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008167691A (en) * 2007-01-11 2008-07-24 Noriomi Watanabe Nutrient solution-circulating cultivation method of zingiber mioga
KR101206008B1 (en) 2010-12-10 2012-11-28 주식회사 지이플러스 Device and Method of disinfecting nutrient solution for plant factory

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008167691A (en) * 2007-01-11 2008-07-24 Noriomi Watanabe Nutrient solution-circulating cultivation method of zingiber mioga
KR101206008B1 (en) 2010-12-10 2012-11-28 주식회사 지이플러스 Device and Method of disinfecting nutrient solution for plant factory

Similar Documents

Publication Publication Date Title
RU2469537C2 (en) Electrochemical device for biocidal treatments in agricultural use
JP4457404B2 (en) Method for adjusting culture solution for hydroponics
CN103459328B (en) Water purification
KR20050013977A (en) Electrochemical sterilizing and bacteriostatic method
JP3568487B2 (en) Water treatment method, water treatment device and hydroponic cultivation system using the same
JPS60105495A (en) Method for promoting bioreaction of microorganism
JP3296812B2 (en) Water treatment method, water treatment apparatus and hydroponic cultivation system using the same
US5951839A (en) Method of producing a water-based fluid having magnetic resonance of a selected material
US20030121798A1 (en) Water treating method, water treating apparatus, and hydroponics system using the apparatus
CN108002605B (en) Method for treating antibiotics in mariculture wastewater
CN108408849A (en) A kind of sea-farming tail water electrochemical sterilization and removal nitrate device
JP4552219B2 (en) Method for adjusting culture medium for hydroponics and method for supplying trace elements
JP2000226680A (en) Production of sterilizing electrolytic water and device therefor
JPS59146994A (en) Treatment of water fertilizer
JP2002065089A (en) Method and apparatus for treating nutrient solution of cultivation
KR100460022B1 (en) Process and apparatus for ammonia removal and disinfection in high density aquaculture system
KR100284282B1 (en) Desalting and disinfection device of food waste
US6361715B1 (en) Method for reducing the redox potential of substances
JP4340472B2 (en) Seaweed treatment method for controlling seaweeds and controlling nobacterial fungi
Suseno et al. The effect of NaCl concentration and process time in continuous electrooxidation technique for degradation of textile dyestuffs
CN211353434U (en) Electrolytic bean sprout culture machine
JP2004298732A (en) Electrolytic device and water treatment device using it, and hydroponic culture system using them
CN219195148U (en) Plasma enhanced diaphragm electrolysis device for preparing spectacle lens disinfectant
CN211035348U (en) Raw material supply device for acidic electrolyzed water generator
CN215798940U (en) electro-Fenton reaction effluent treatment plant