JP2002063897A - Manufacturing method of alkaline battery - Google Patents

Manufacturing method of alkaline battery

Info

Publication number
JP2002063897A
JP2002063897A JP2000248470A JP2000248470A JP2002063897A JP 2002063897 A JP2002063897 A JP 2002063897A JP 2000248470 A JP2000248470 A JP 2000248470A JP 2000248470 A JP2000248470 A JP 2000248470A JP 2002063897 A JP2002063897 A JP 2002063897A
Authority
JP
Japan
Prior art keywords
active material
core
binder
solvent
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000248470A
Other languages
Japanese (ja)
Inventor
Mikiaki Tadokoro
幹朗 田所
Teruhiko Imoto
輝彦 井本
Tetsuyuki Murata
徹行 村田
Yasuhiko Ikeda
康彦 池田
Takashi Yamaguchi
隆志 山口
Yasumasa Kondo
泰正 近藤
Kiyoshi Morita
潔 森田
Makoto Ochi
誠 越智
Kousuke Satoguchi
功祐 里口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000248470A priority Critical patent/JP2002063897A/en
Priority to TW090120191A priority patent/TW518783B/en
Priority to US09/931,051 priority patent/US6824571B2/en
Priority to CNB011242388A priority patent/CN1275346C/en
Priority to EP01119917A priority patent/EP1180808A3/en
Publication of JP2002063897A publication Critical patent/JP2002063897A/en
Priority to HK02105188.9A priority patent/HK1043442B/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-quality alkaline battery which can prevent falling-off of active materials by increasing adhesive strength onto a core body of an active material layer on an opposite side, where an active material layer is scraped off. SOLUTION: Hydrogen storage alloy slurry obtained by adding hydrogen storage alloy powder 12a to polyethylene oxide(PEO) powder as a binder 12b and a suitable amount of water (solvent for the binder) and kneading them is applied on both sides of a metal core body (active material holder) 11 made of punching metal, and then dried. Furthermore, after an active material layer 13 is removed from the core body 11 with a means such as cutting, a prescribe amount of water (solvent for the binder) is sprayed on the cut face (expose face of the core body 11) to adhere water, and then is dried, to obtain a hydrogen storage alloy electrode 10 arranged on the outermost side of an electrode group.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、セパレータを介し
て正極板と負極板を積層した電極群を備えたアルカリ蓄
電池の製造方法に係り、特に、電極群の最外側に配置さ
れる電極の芯体が露出するとともにこの露出した芯体が
金属製外装缶に接触するように収納されるアルカリ蓄電
池の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an alkaline storage battery having an electrode group in which a positive electrode plate and a negative electrode plate are laminated with a separator interposed therebetween, and more particularly to a method for manufacturing an electrode core disposed on the outermost side of the electrode group. The present invention relates to a method for manufacturing an alkaline storage battery in which a body is exposed and the exposed core body is housed in contact with a metal outer can.

【0002】[0002]

【従来の技術】近年、小型携帯機器の増加に伴い、充放
電が可能な二次電池(蓄電池)の需要が高まっており、
特に、機器の小型化、薄型化、スペース効率化に伴い、
大容量の蓄電池が得られるニッケル−水素蓄電池の需要
が急速に高まった。この種のニッケル−水素蓄電池は、
図3に示されるように、活物質に水酸化ニッケルを使用
する正極板51と、活物質に水素吸蔵合金を使用する負
極板52とをセパレータ53を介して積層された電極群
50aがアルカリ電解液とともに金属製外装缶(電池ケ
ース)55内に収納され、金属製外装缶55を密封して
ニッケル−水素蓄電池50となる。負極板52は活物質
を保持する芯体52aの両面に水素吸蔵合金からなる活
物質スラリーを塗着して形成されている。
2. Description of the Related Art In recent years, demand for secondary batteries (storage batteries) that can be charged and discharged has increased with the increase in small portable devices.
In particular, as devices become smaller, thinner, and more space efficient,
The demand for nickel-hydrogen storage batteries, which can provide large-capacity storage batteries, has increased rapidly. This type of nickel-metal hydride battery is
As shown in FIG. 3, an electrode group 50a in which a positive electrode plate 51 using nickel hydroxide as an active material and a negative electrode plate 52 using a hydrogen storage alloy as an active material are laminated with a separator 53 interposed therebetween is used for alkaline electrolysis. The nickel-hydrogen storage battery 50 is housed in a metal outer can (battery case) 55 together with the liquid, and the metal outer can 55 is sealed. The negative electrode plate 52 is formed by applying an active material slurry made of a hydrogen storage alloy to both surfaces of a core 52a holding an active material.

【0003】このような構造のニッケル−水素蓄電池5
0は、正極板51が満充電されたときに発生する酸素ガ
スがセパレータ53を透過し、負極板52に拡散して負
極板52の劣化が甚だしくなる弊害がある。特に、正極
板51と対向しない負極板52の活物質層52b、即
ち、金属製外装缶55と対向する電極群50aの最外側
に配置された負極板52の活物質層52bの劣化が甚だ
しくなる。これは、電極群50aの最外側に配置された
負極板52の活物質層52bは正極板51と対向しない
ため、充電時においては、中間に配置された負極板52
よりも充電反応の進行が遅れることによるものである。
このため、正極板51が満充電になって酸素ガスが発生
する時には、中間に配置された負極板52に比べて水素
の吸蔵量が少ない状態で酸素アタックを受けることとな
って、劣化が甚だしくなり、電池のサイクル特性が低下
する。
A nickel-hydrogen storage battery 5 having such a structure
In the case of 0, there is a problem that oxygen gas generated when the positive electrode plate 51 is fully charged passes through the separator 53 and diffuses into the negative electrode plate 52, so that the negative electrode plate 52 is significantly deteriorated. In particular, the active material layer 52b of the negative electrode plate 52 that does not face the positive electrode plate 51, that is, the active material layer 52b of the negative electrode plate 52 that is disposed on the outermost side of the electrode group 50a that faces the metal outer can 55 is significantly deteriorated. . This is because the active material layer 52b of the negative electrode plate 52 disposed on the outermost side of the electrode group 50a does not face the positive electrode plate 51, and therefore, during charging, the negative electrode plate 52
This is due to the fact that the progress of the charging reaction is delayed.
For this reason, when the positive electrode plate 51 is fully charged and oxygen gas is generated, it receives an oxygen attack in a state where the amount of hydrogen absorbed is smaller than that of the negative electrode plate 52 disposed in the middle, and the deterioration is extremely large. And the cycle characteristics of the battery deteriorate.

【0004】また、正極板51と対向しない最外側の負
極板52の活物質層52bは、充放電のときに、水素の
吸蔵放出反応を効率よくしない電気化学的に活性度の低
い領域となるので、実質的に有効に利用されない活物質
層となる。電池ケース55の内部に活物質が有効に利用
されない領域ができることは、電池にとって極めて大切
な体積エネルギー密度を低下させる欠点がある。特に、
ニッケル−水素蓄電池は、負極板に酸素ガスを吸収させ
て密閉構造とするために、負極板の極板容量を正極板よ
りも大きく設計しているので、有効に利用されない部分
ができると、体積エネルギー密度が相当に低下すること
となる。
The active material layer 52b of the outermost negative electrode plate 52 that does not face the positive electrode plate 51 is a region of low electrochemical activity that does not make hydrogen storage and release reactions efficient during charging and discharging. Therefore, the active material layer is not substantially used effectively. The formation of a region in which the active material is not effectively used inside the battery case 55 has a disadvantage of lowering the volume energy density which is extremely important for the battery. In particular,
Nickel-hydrogen storage batteries are designed so that the negative electrode plate absorbs oxygen gas to form a sealed structure, so that the negative electrode plate has a larger electrode plate capacity than the positive electrode plate. The energy density will drop considerably.

【0005】そこで、図4に示されるように、セパレー
タ63を介して正極板61と負極板62とを積層した電
極群60aを電池ケース65に収納配置するとともに、
電極群60aの最外側に配置された負極板62の正極板
61と対向する側には活物質を塗着し、正極板61と対
向しなくて電池ケース65と対向する側には活物質が存
在しないようにして芯体露出面62bを形成したニッケ
ル−水素蓄電池60が、特開平10−255834号公
報において提案されるようになった。このような構成と
することにより、電極群60aの最外側に配置された負
極板62は正極板の間に配置される中間の負極板62よ
りも活物質量が半分となり、中間の負極板62の極板容
量よりも小さくなる。
Therefore, as shown in FIG. 4, an electrode group 60a in which a positive electrode plate 61 and a negative electrode plate 62 are laminated via a separator 63 is housed and arranged in a battery case 65.
An active material is applied to a side of the negative electrode plate 62 disposed on the outermost side of the electrode group 60a facing the positive electrode plate 61, and an active material is applied to a side not facing the positive electrode plate 61 but facing the battery case 65. A nickel-hydrogen storage battery 60 in which the core exposed surface 62b is formed without being present has been proposed in Japanese Patent Application Laid-Open No. H10-255834. With such a configuration, the amount of the active material of the negative electrode plate 62 disposed on the outermost side of the electrode group 60a is half that of the intermediate negative electrode plate 62 disposed between the positive electrode plates. It becomes smaller than the board capacity.

【0006】電極群の最外側に配置され、かつ電池ケー
スと対向する側は、正極板と対向しないために、電気化
学的に活性度の低い領域となり、水素の吸蔵放出反応を
効率よくおこなわないが、上記のように電極群の最外側
に配置される側の活物質層が存在しないようにして芯体
露出面62bを形成したニッケル−水素電池60は、正
極板61の間に配置される中間の負極板62に活物質を
分配して付加できるようになるため、有効に利用されな
い部分ができることが防止でき、体積エネルギー密度が
低下することが防止できるようになる。
Since the outermost side of the electrode group and the side facing the battery case do not face the positive electrode plate, the area becomes electrochemically low in activity and does not efficiently perform the hydrogen storage / release reaction. However, as described above, the nickel-hydrogen battery 60 in which the core exposed surface 62b is formed without the active material layer on the outermost side of the electrode group is disposed between the positive electrode plates 61. Since the active material can be distributed and added to the intermediate negative electrode plate 62, it is possible to prevent a portion that is not effectively used from being formed, thereby preventing a reduction in volume energy density.

【0007】また、上記のように電極群の最外側に配置
される側の活物質層が存在しないようにして芯体露出面
62bを形成したニッケル−水素電池60は、露出面と
なる芯体62aは電極群60aを被覆する金属カバーの
作用をするため、電極群60aを電池ケース65内に容
易に挿入できるようになり、活物質の脱落を有効に防止
できるようになる。これは、金属カバーの作用をする芯
体62aは、パンチングメタル等の導電性の板材である
ので、電極群60aを電池ケース65に挿入するときに
電極群60aの最外側の活物質が剥ぎ取られて脱落する
ようなことが生じなくなるためである。さらに、電池ケ
ース65の内面に芯体62aを直接電気接触させること
ができるので、高率放電特性も改善できるようになる。
The nickel-hydrogen battery 60 in which the core exposed surface 62b is formed without the active material layer on the outermost side of the electrode group as described above, Since 62a functions as a metal cover that covers the electrode group 60a, the electrode group 60a can be easily inserted into the battery case 65, and the active material can be effectively prevented from falling off. This is because the core body 62a acting as a metal cover is a conductive plate material such as punched metal, so that when the electrode group 60a is inserted into the battery case 65, the outermost active material of the electrode group 60a is peeled off. This is because it does not occur that it falls off. Further, since the core body 62a can be brought into direct electrical contact with the inner surface of the battery case 65, the high-rate discharge characteristics can be improved.

【0008】[0008]

【発明が解決しようとする課題】ところで、この種の芯
体露出面を形成した電極を製造するには、活物質スラリ
ーの芯体への塗着時に芯体露出面となる側に活物質スラ
リーを塗着しないようにする方法と、芯体の両面に活物
質スラリーを塗着した後、芯体露出面となる側に塗着さ
れた活物質を除去する方法との二種類がある。
By the way, in order to manufacture an electrode having such a core exposed surface, an active material slurry is applied to a side which becomes the core exposed surface when the active material slurry is applied to the core. And a method in which the active material slurry is applied to both surfaces of the core, and then the active material applied to the exposed side of the core is removed.

【0009】ここで、芯体の両面に活物質スラリーを塗
着した部分と、片面のみに活物質スラリーを塗着した部
分を一枚の芯体に形成する場合、予め、芯体露出面とな
る部分に活物質スラリーを塗着しないような方法を採用
すると、圧延時に両面塗着部分(全体の厚みが厚い)は
圧延されるが、片面塗着部分(全体の厚みが薄い)は圧
延されないという事態が生じて生産性が低下するという
問題を生じた。一方、芯体の両面に活物質スラリーを塗
着した後、芯体露出面となる側に塗着された活物質を除
去する方法においては、全体の厚みが均一であるために
全体が均一に圧延されて上記のような問題は生じない。
[0009] Here, when the core is formed with a portion where the active material slurry is applied to both surfaces and a portion where only one surface is coated with the active material slurry, the core-exposed surface is previously determined. If a method is adopted in which the active material slurry is not applied to the part, the two-sided coated part (the whole thickness is thick) is rolled during rolling, but the one-side coated part (the whole thickness is thin) is not rolled. This caused a problem that productivity was reduced. On the other hand, in the method in which the active material slurry is applied to both surfaces of the core and then the active material applied to the exposed side of the core is removed, the entire thickness is uniform because the entire thickness is uniform. Rolling does not cause the above problems.

【0010】しかしながら、活物質スラリーを塗着した
後、芯体露出面となる側に塗着された活物質を除去する
方法においては、乾燥、圧延後に芯体露出面を形成する
ために活物質層に刃を当てるなどの手段により、活物質
が塗着された片側の活物質層を削り落として活物質を除
去するようにしている。このため、乾燥後に硬化した活
物質層を削り落とす作業が面倒であるとともに、活物質
層が削り落とされた反対側の活物質層の芯体への接着強
度が不十分となって、活物質の脱落に起因する品質低下
が生じるという問題を生じた。
However, after the active material slurry is applied, the active material applied to the exposed side of the core is removed. In this method, after drying and rolling, the active material is formed to form the exposed core. The active material is removed by shaving off the active material layer on one side to which the active material has been applied, such as by applying a blade to the layer. For this reason, it is troublesome to scrape off the hardened active material layer after drying, and the adhesive strength to the core of the active material layer on the opposite side from which the active material layer has been shaved is insufficient. There is a problem that the quality is deteriorated due to the falling off of the steel.

【0011】そこで、本発明は上記問題点を解消するた
めになされたものであって、活物質層が削り落とされた
反対側の活物質層の芯体への接着強度を強くして、活物
質の脱落を防止できるようにして、高品質なアルカリ蓄
電池が得られるようにすることを目的とするものであ
る。
The present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to increase the adhesive strength to the core of the active material layer on the opposite side from which the active material layer has been shaved off. An object of the present invention is to provide a high-quality alkaline storage battery by preventing a substance from falling off.

【0012】[0012]

【課題を解決するための手段およびその作用・効果】上
記目的を達成するため、本発明のアルカリ蓄電池の製造
方法は、芯体の両面に活物質とバインダーとこのバイン
ダーの溶媒とからなる活物質スラリーを塗着する塗着工
程と、活物質スラリーが塗着された電極を乾燥させる乾
燥工程と、芯体の露出面を形成する側の活物質を除去す
る活物質除去工程と、芯体の露出面側からバインダーの
溶媒を付着させる溶媒付着工程とを備えるようにしてい
る。
Means for Solving the Problems and Action / Effect thereof To achieve the above object, a method for manufacturing an alkaline storage battery according to the present invention is directed to an active material comprising an active material, a binder and a solvent for the binder on both surfaces of a core. A coating step of coating the slurry, a drying step of drying the electrode coated with the active material slurry, an active material removal step of removing the active material on the side forming the exposed surface of the core, And a solvent adhering step of adhering the solvent of the binder from the exposed surface side.

【0013】活物質スラリーが塗着された電極を乾燥さ
せると、乾燥(この場合の乾燥は生産性を上げるために
高温となる)時に、活物質層に含有される水分の移動に
伴ってバインダー(活物質スラリー中に添加されたバイ
ンダー)が電極表面(乾燥面側)に移動して固結するこ
ととなり、電極中心部に配置された芯体近傍の活物質層
中のバインダー量が減少する。このため、芯体と活物質
との接着力が低下して活物質が脱落しやすくなる。
When the electrode coated with the active material slurry is dried, when the electrode is dried (in this case, the temperature of the drying is increased to increase the productivity), the binder contained in the active material layer is moved with the movement of water contained in the active material layer. The (binder added in the active material slurry) moves to the electrode surface (dry surface side) and solidifies, and the amount of the binder in the active material layer near the core disposed at the center of the electrode decreases. . For this reason, the adhesive force between the core and the active material is reduced, and the active material is easily dropped.

【0014】ところが、本発明のように、芯体の露出面
側からバインダーの溶媒(例えば、水溶性のバインダー
の場合は水)を付着させるようにすると、芯体に穿孔さ
れた多数の開孔を通してバインダーの溶媒が通過し、除
去されない活物質層中にバインダーの溶媒が浸透して、
固結したバインダーが再溶解し、芯体近傍のバインダー
の濃度が増大することとなる。この後に乾燥(この場合
の乾燥は室温で行うため低温となる)させると、芯体と
芯体近傍の活物質との接着力が強固になるため、芯体近
傍の活物質層は剥がれにくくなり、活物質の脱落が防止
できるようになる。
However, as in the present invention, when a binder solvent (for example, water in the case of a water-soluble binder) is adhered from the exposed surface side of the core, a large number of holes formed in the core are formed. The binder solvent passes through, the binder solvent penetrates into the active material layer that is not removed,
The solidified binder is redissolved, and the concentration of the binder near the core increases. After that, when the substrate is dried (in this case, drying is performed at room temperature and the temperature is low), the adhesive force between the core and the active material in the vicinity of the core becomes strong, so that the active material layer in the vicinity of the core becomes difficult to peel off. As a result, the fall of the active material can be prevented.

【0015】また、本発明のアルカリ蓄電池の製造方法
は、芯体の両面に活物質とバインダーとこのバインダー
の溶媒とからなる活物質スラリーを塗着する塗着工程
と、活物質スラリーが塗着された電極を乾燥させる乾燥
工程と、芯体の露出面が形成される活物質層側からバイ
ンダーの溶媒を付着させる溶媒付着工程と、芯体の露出
面を形成する側の活物質を除去する活物質除去工程とを
備えるようにしている。
Further, the method for manufacturing an alkaline storage battery of the present invention comprises a coating step of coating an active material slurry comprising an active material, a binder and a solvent of the binder on both surfaces of a core, A drying step of drying the formed electrode, a solvent adhering step of adhering a binder solvent from the active material layer side on which the exposed surface of the core is formed, and removing the active material on the side forming the exposed surface of the core. An active material removing step is provided.

【0016】このように、後に芯体の露出面が形成され
る活物質層側からバインダーの溶媒(例えば、水溶性の
バインダーの場合は水)を付着させるようにすると、バ
インダーの溶媒は芯体近傍まで拡散するとともに、拡散
した溶媒の一部は芯体に穿孔された多数の開孔を通して
通過して、除去されない活物質層中に浸透する。する
と、乾燥(この場合の乾燥は生産性を上げるために高温
となる)時に水分の移動に伴って電極表面(乾燥面側)
に移動して固結したバインダーが再溶解して芯体近傍ま
で拡散するようになる。この後、乾燥(この場合の乾燥
は室温で行うため低温となる)を行うと、芯体まで拡散
したバインダーが固結するため、芯体と活物質層との接
着が強固になって、芯体近傍の活物質層は剥がれにくく
なる。
As described above, when a binder solvent (for example, water in the case of a water-soluble binder) is adhered from the active material layer side on which the exposed surface of the core is formed later, the solvent of the binder is Along with the diffusion to the vicinity, a part of the diffused solvent passes through a large number of openings formed in the core body and permeates into the active material layer that is not removed. Then, at the time of drying (the drying in this case is a high temperature to increase productivity), the surface of the electrode (dry surface side) is accompanied by the movement of moisture.
And the binder solidified is redissolved and diffuses to the vicinity of the core. After that, when drying is performed (in this case, drying is performed at room temperature and the temperature is low), the binder diffused to the core is solidified, so that the adhesion between the core and the active material layer becomes strong, The active material layer near the body is less likely to peel off.

【0017】これにより、後にバインダーの溶媒を付着
させた側の活物質を除去しても、除去されなかった活物
質層の芯体近傍の活物質は芯体に強固に固着した状態が
維持でき、活物質の脱落が防止できるようになる。この
場合、活物質除去工程を溶媒付着工程の後、バインダー
の溶媒を付着された電極が未乾燥の状態で行うようにす
ると、除去部の活物質層は柔らかくなっているため、容
易に活物質を除去することができるようになって、活物
質の除去作業が容易になる。
Thus, even if the active material on the side where the solvent of the binder is adhered is later removed, the active material in the vicinity of the core of the active material layer which has not been removed can be maintained in a state of being firmly fixed to the core. As a result, the fall of the active material can be prevented. In this case, if the electrode to which the solvent of the binder is attached is performed in an undried state after the solvent attaching step in the active material removing step, the active material layer in the removed portion is softened, so that the active material is easily removed. Can be removed, and the work of removing the active material is facilitated.

【0018】そして、溶媒付着工程においてバインダー
を含有した溶液(バインダーとバインダーの溶媒)を芯
体の露出面に付着させるようにすると、バインダーを含
有した溶液は芯体に穿孔された多数の開孔を通して除去
されない活物質層中に浸透するようになる。また、バイ
ンダーを含有した溶液を芯体の露出面を形成する側の活
物質層に付着させるようにすると、芯体近傍まで拡散す
るとともに、拡散した溶液の一部は芯体に穿孔された多
数の開孔を通して通過して、除去されない活物質層中に
浸透する。これにより、芯体近傍の活物質層のバインダ
ーの含有量が増加するようになるため、芯体と芯体近傍
の活物質とが一層強固に固着するようになる。この結
果、活物質が芯体から剥がれ落ちることが防止できるよ
うになって、より一層、活物質の脱落が防止できるよう
になる。
When a solution containing a binder (a binder and a solvent for the binder) is allowed to adhere to the exposed surface of the core in the solvent adhering step, the solution containing the binder contains a large number of holes formed in the core. It penetrates into the active material layer which is not removed through. In addition, when the solution containing the binder is attached to the active material layer on the side forming the exposed surface of the core, the solution diffuses to the vicinity of the core, and a part of the diffused solution is formed in a large number of holes perforated in the core. And penetrates into the active material layer which is not removed. This increases the content of the binder in the active material layer near the core, so that the core and the active material near the core are more firmly fixed. As a result, the active material can be prevented from peeling off from the core, and the active material can be further prevented from falling off.

【0019】また、芯体の露出面あるいは芯体の露出面
を形成する側の活物質層に所定量のバインダーの溶媒あ
るいはバインダーを含有する溶液を付着させるようにす
るためには、バインダーの溶媒あるいはバインダーを含
有する溶液を噴霧により付着させるようにするのが望ま
しい。さらに、一般的に金属製外装缶は負極外部端子を
兼用するため、芯体露出面を形成する電極としては電気
化学的に水素の吸蔵・放出を可逆的に行うことができる
水素吸蔵合金を活物質とする水素吸蔵合金電極であるこ
とが望ましい。
In order to allow a predetermined amount of a solvent of a binder or a solution containing a binder to adhere to the exposed surface of the core or the active material layer on the side forming the exposed surface of the core, the solvent of the binder is required. Alternatively, it is desirable to apply a solution containing a binder by spraying. Further, in general, a metal outer can also serves as a negative electrode external terminal, so that a hydrogen storage alloy capable of electrochemically storing and releasing hydrogen is used as an electrode forming an exposed surface of the core. It is desirable that the material is a hydrogen storage alloy electrode.

【0020】[0020]

【発明の実施の形態】以下に、本発明を水素吸蔵合金電
極に適用した場合の一実施の形態を図1および図2に基
づいて説明する。なお、図1は電極の芯体(パンチング
メタル)に形成された孔の周囲に活物質が付着した状態
を拡大して模式的に示す断面図であり、図1(a)は実
施例1の電極を示す断面図であり、図1(b)は実施例
2の電極を示す断面図であり、図1(c)は実施例3の
電極を示す断面図であり、図1(d)は比較例の電極を
示す断面図である。また、図2は活物質の脱落試験を行
うために活物質層に碁盤目状の切溝を入れた状態を模式
的に示す斜視図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a hydrogen storage alloy electrode will be described below with reference to FIGS. FIG. 1 is an enlarged cross-sectional view schematically showing a state in which an active material is attached around a hole formed in a core (punched metal) of an electrode. FIG. FIG. 1B is a cross-sectional view illustrating an electrode according to a second embodiment, FIG. 1C is a cross-sectional view illustrating an electrode according to a third embodiment, and FIG. It is sectional drawing which shows the electrode of a comparative example. FIG. 2 is a perspective view schematically showing a state in which a grid-like kerf is formed in the active material layer in order to perform a drop test of the active material.

【0021】1.水素吸蔵合金粉末の作製 MmNi3.4Co0.8Al0.2Mn0.6(なお、Mmはミッ
シュメタルである)となるように市販の各金属元素(M
m,Ni,Co,Al,Mn)を秤量して混合する。こ
のものを高周波溶解炉に投入して溶解させた後、鋳型に
流し込み、冷却してMmNi3.4Co0.8Al0.2Mn0.6
からなる水素吸蔵合金の塊(インゴット)を作製した。
この水素吸蔵合金の塊を粗粉砕した後、不活性ガス雰囲
気中で平均粒径が50μm程度になるまで機械的に粉砕
して、水素吸蔵合金粉末を作製した。
1. Preparation of hydrogen storage alloy powder Commercially available metal elements (Mm Ni 3.4 Co 0.8 Al 0.2 Mn 0.6 (Mm is a misch metal))
m, Ni, Co, Al, Mn) are weighed and mixed. This was put into a high-frequency melting furnace to be melted, poured into a mold, cooled, and cooled to MmNi 3.4 Co 0.8 Al 0.2 Mn 0.6.
(Ingot) of a hydrogen storage alloy composed of
The lump of the hydrogen storage alloy was roughly pulverized, and then mechanically pulverized in an inert gas atmosphere until the average particle diameter became about 50 μm to prepare a hydrogen storage alloy powder.

【0022】2.水素吸蔵合金電極の作製 (1)実施例1 上述のようにして作製した水素吸蔵合金粉末99質量%
に、結着剤(バインダー)としてポリエチレンオキサイ
ド(PEO)粉末を水素吸蔵合金粉末質量に対して1質
量%と、適量の水(バインダー(PEO)の溶媒)を加
えて混練して、水素吸蔵合金スラリーを作製した。つい
で、表面にニッケルメッキが施されて開孔11aが設け
られたパンチングメタルからなる金属芯体(活物質保持
体)11の両面に水素吸蔵合金スラリーを塗着して、活
物質層12,13を形成した活物質塗着電極とした。こ
の後、乾燥(例えば、60℃で20分間)させ、厚みが
0.6mmになるように圧延して乾燥圧延電極10とし
た。なお、水素吸蔵合金スラリーの塗着量は圧延後の水
素吸蔵合金密度が5g/cm3となるように調整した。
2. Production of hydrogen storage alloy electrode (1) Example 1 99 mass% of hydrogen storage alloy powder produced as described above
Then, polyethylene oxide (PEO) powder as a binder is added with 1% by mass based on the mass of the hydrogen storage alloy powder, and an appropriate amount of water (solvent of the binder (PEO)) is added and kneaded, and the mixture is kneaded. A slurry was prepared. Next, a hydrogen-absorbing alloy slurry is applied to both surfaces of a metal core (active material holding body) 11 made of a punching metal having a surface provided with an opening 11a by nickel plating, and the active material layers 12 and 13 are coated. Was formed on the active material-coated electrode. Thereafter, the electrode was dried (for example, at 60 ° C. for 20 minutes), and was rolled to a thickness of 0.6 mm to obtain a dry rolled electrode 10. The amount of the hydrogen storage alloy slurry applied was adjusted so that the density of the hydrogen storage alloy after rolling was 5 g / cm 3 .

【0023】ついで、得られた乾燥圧延電極10の片側
の活物質層13を切削などの手段により芯体11から除
去した後、切削面(芯体11の露出面)側から所定量
(例えば、切削面が湿る程度の量)の水(バインダー
(PEO)の溶媒)を噴霧して、切削面に水を付着させ
た。この後、乾燥(例えば、室温(約25℃)で30分
間放置)させて電極群の最外側に配置される実施例1の
水素吸蔵合金電極10を作製した。
Next, after the active material layer 13 on one side of the obtained dry rolled electrode 10 is removed from the core body 11 by cutting or the like, a predetermined amount (for example, from the cut surface (exposed surface of the core body 11) side) Water (a solvent of a binder (PEO)) was sprayed in such an amount that the cut surface was moistened to adhere water to the cut surface. Thereafter, the electrode was dried (for example, left at room temperature (about 25 ° C.) for 30 minutes) to produce the hydrogen-absorbing alloy electrode 10 of Example 1 disposed on the outermost side of the electrode group.

【0024】なお、切削面に水を付着させると、図1
(a)に示すように、付着した水(バインダーの溶媒)
は芯体11に穿孔された多数の開孔11aを通過して、
芯体11の近傍の活物質層12に水が浸透する。これに
より、活物質層12内で固結したバインダー12bが再
溶解して、芯体11の近傍まで拡散する。再溶解したバ
インダー12bが乾燥されることにより固結して、芯体
11と活物質粒子12aが強固に固着するとともに、活
物質粒子12a,12a同士も強固に固着するようにな
る。
When water is adhered to the cutting surface, FIG.
As shown in (a), attached water (solvent of binder)
Passes through a number of apertures 11a drilled in the core body 11,
Water permeates the active material layer 12 near the core 11. As a result, the binder 12 b solidified in the active material layer 12 is redissolved and diffuses to the vicinity of the core 11. The remelted binder 12b is solidified by drying, so that the core 11 and the active material particles 12a are firmly fixed, and the active material particles 12a, 12a are also firmly fixed to each other.

【0025】(2)実施例2 上述の実施例1と同様にして水素吸蔵合金スラリーを作
製した後、表面にニッケルメッキを施されて開孔21a
が設けられたパンチングメタルからなる金属芯体(活物
質保持体)21の両面に水素吸蔵合金スラリーを塗着し
て、活物質層22,23を形成した活物質塗着電極とし
た。この後、乾燥(例えば、60℃で20分間)させ、
厚みが0.6mmになるように圧延して乾燥圧延電極2
0とした。なお、水素吸蔵合金スラリーの塗着量は圧延
後の水素吸蔵合金密度が5g/cm3となるように調整
した。
(2) Example 2 After preparing a hydrogen storage alloy slurry in the same manner as in Example 1 described above, the surface was plated with nickel to form openings 21a.
A hydrogen storage alloy slurry was applied to both surfaces of a metal core (active material holding member) 21 made of a punching metal provided with the above, thereby forming an active material coated electrode in which active material layers 22 and 23 were formed. After this, it is dried (for example, at 60 ° C. for 20 minutes),
Rolled to a thickness of 0.6 mm and dried and rolled electrode 2
0 was set. The amount of the hydrogen storage alloy slurry applied was adjusted so that the density of the hydrogen storage alloy after rolling was 5 g / cm 3 .

【0026】ついで、得られた乾燥圧延電極20の片側
の活物質層23を切削などの手段により芯体21から除
去した後、切削面(芯体21の露出面)側から所定量
(例えば、切削面が湿る程度の量)のPEOの0.5%
水溶液(バインダー(PEO)とバインダーの溶媒)を
噴霧して、切削面にPEOの水溶液を付着させた。この
後、乾燥(例えば、室温(約25℃)で30分間放置)
させて電極群の最外側に配置される実施例2の水素吸蔵
合金電極20を作製した。
Next, after the active material layer 23 on one side of the obtained dry rolled electrode 20 is removed from the core 21 by a means such as cutting, a predetermined amount (for example, from the cut surface (exposed surface of the core 21)) 0.5% of PEO)
An aqueous solution (a binder (PEO) and a solvent for the binder) was sprayed to adhere the aqueous solution of PEO to the cut surface. Thereafter, drying (for example, leaving at room temperature (about 25 ° C.) for 30 minutes)
In this way, a hydrogen storage alloy electrode 20 of Example 2 disposed outside the electrode group was produced.

【0027】なお、切削面にPEOの0.5%水溶液を
付着させると、図1(b)に示すように、付着したPE
Oの水溶液は芯体21に穿孔された多数の開孔21aを
通過して、芯体21の近傍の活物質層22にPEOの水
溶液が浸透する。これにより、活物質層22内で固結し
たバインダー22bが再溶解して、芯体21の近傍まで
拡散する。再溶解したバインダー22bが乾燥されるこ
とにより、芯体21と活物質粒子22aが一層強固に固
着するとともに、活物質粒子22a,22a同士もより
一層強固に固着するようになる。
When a 0.5% aqueous solution of PEO is adhered to the cut surface, as shown in FIG.
The aqueous solution of O passes through a large number of openings 21 a formed in the core 21, and the aqueous solution of PEO permeates the active material layer 22 near the core 21. Thereby, the binder 22 b solidified in the active material layer 22 is redissolved and diffuses to the vicinity of the core 21. By drying the re-dissolved binder 22b, the core 21 and the active material particles 22a are more firmly fixed, and the active material particles 22a, 22a are also more firmly fixed.

【0028】(3)実施例3 上述の実施例1と同様にして水素吸蔵合金スラリーを作
製した後、表面にニッケルメッキを施されて開孔31a
が設けられたパンチングメタルからなる金属芯体(活物
質保持体)31の両面に水素吸蔵合金スラリーを塗着し
て、活物質層32,33を形成した活物質塗着電極とし
た。この後、乾燥(例えば、60℃で20分間)させ、
厚みが0.6mmになるように圧延して乾燥圧延電極3
0とした。なお、水素吸蔵合金スラリーの塗着量は圧延
後の水素吸蔵合金密度が5g/cm3となるように調整
した。
(3) Embodiment 3 A hydrogen-absorbing alloy slurry was prepared in the same manner as in Embodiment 1 described above, and the surface was plated with nickel to form an opening 31a.
A hydrogen storage alloy slurry was applied to both surfaces of a metal core (active material holding body) 31 made of a punching metal provided with the above, thereby forming an active material coated electrode in which active material layers 32 and 33 were formed. After this, it is dried (for example, at 60 ° C. for 20 minutes),
Rolled to a thickness of 0.6 mm and dried and rolled electrode 3
0 was set. The amount of the hydrogen storage alloy slurry applied was adjusted so that the density of the hydrogen storage alloy after rolling was 5 g / cm 3 .

【0029】ついで、得られた乾燥圧延電極30の活物
質層(後に切削されて除去される活物質層)33側に所
定量(例えば、活物質層33の表面が湿る程度量)の水
(バインダー(PEO)の溶媒)を噴霧して、活物質層
33に水を付着させた。この後、活物質層33を切削な
どの手段により芯体31から除去して、切削面(芯体3
1の露出面)を形成した後、乾燥(例えば、室温(約2
5℃)で30分間放置)させて電極群の最外側に配置さ
れる実施例3の水素吸蔵合金電極30を作製した。
Next, a predetermined amount of water (for example, an amount that makes the surface of the active material layer 33 wet) is placed on the active material layer (the active material layer which is later cut and removed) 33 of the obtained dry rolled electrode 30. (Solvent of binder (PEO)) was sprayed to attach water to the active material layer 33. Thereafter, the active material layer 33 is removed from the core body 31 by means such as cutting, and the cut surface (core body 3) is removed.
1 (exposed surface) and then dried (for example, at room temperature (about 2
(5 ° C.) for 30 minutes to produce a hydrogen-absorbing alloy electrode 30 of Example 3 disposed on the outermost side of the electrode group.

【0030】なお、活物質層33に水を含有させると、
活物質層33は柔らかくなるので、含有した水分が乾燥
しないうちに切削すると、切削作業が容易になる。ま
た、水を含有した活物質層33を除去して芯体31の露
出面を形成すると、図1(c)に示すように、活物質層
33へ付着した水は活物質層33内に拡散して浸透する
とともに、拡散した水の一部は芯体31に穿孔された多
数の開孔31aを通過して、活物質層32内へも拡散し
て浸透する。これにより、活物質層33内および活物質
層32内で固結したバインダー32bは再溶解し、各活
物質層33,32に拡散する。この結果、乾燥時に芯体
31と活物質粒子32aとが強固に固着するとともに、
活物質粒子32a,32a同士も強固に固着するように
なる。
When water is contained in the active material layer 33,
Since the active material layer 33 becomes soft, the cutting operation is facilitated if cutting is performed before the contained moisture is dried. When the exposed surface of the core body 31 is formed by removing the active material layer 33 containing water, the water attached to the active material layer 33 diffuses into the active material layer 33 as shown in FIG. As a result, a part of the diffused water passes through a large number of openings 31a formed in the core body 31 and diffuses and penetrates into the active material layer 32 as well. Thereby, the binder 32b solidified in the active material layer 33 and the active material layer 32 is redissolved and diffused into the active material layers 33 and 32. As a result, the core 31 and the active material particles 32a are firmly fixed during drying, and
The active material particles 32a also firmly adhere to each other.

【0031】(4)比較例 一方、上述の実施例1と同様にして水素吸蔵合金スラリ
ーを作製した後、表面にニッケルメッキを施されて開孔
41aが設けられたパンチングメタルからなる金属芯体
(活物質保持体)41の両面に水素吸蔵合金スラリーを
塗着して、活物質層42,43を形成した活物質塗着電
極とした。この後、乾燥(例えば、60℃で20分間)
させ、厚みが0.6mmになるように圧延して乾燥圧延
電極40とした。なお、水素吸蔵合金スラリーの塗着量
は圧延後の水素吸蔵合金密度が5g/cm3となるよう
に調整した。ついで、この乾燥圧延電極40の活物質層
43を切削などの手段により芯体41から除去して、電
極群の最外側に配置される比較例の水素吸蔵合金電極4
0を作製した。
(4) Comparative Example On the other hand, after preparing a hydrogen-absorbing alloy slurry in the same manner as in Example 1 described above, a metal core body made of a punched metal having a surface provided with an opening 41a plated with nickel. (Active material holding member) 41 was coated with a hydrogen storage alloy slurry on both surfaces to form active material coated electrodes in which active material layers 42 and 43 were formed. Thereafter, drying (for example, at 60 ° C. for 20 minutes)
It rolled so that thickness might be set to 0.6 mm, and it was set as the dry rolled electrode 40. The amount of the hydrogen storage alloy slurry applied was adjusted so that the density of the hydrogen storage alloy after rolling was 5 g / cm 3 . Next, the active material layer 43 of the dry rolled electrode 40 is removed from the core body 41 by means such as cutting, and the hydrogen storage alloy electrode 4 of the comparative example disposed on the outermost side of the electrode group is removed.
0 was produced.

【0032】3.水素吸蔵合金電極の強度試験 ついで、上述のようにして作製した実施例1,2,3の
水素吸蔵合金電極10,20,30と比較例の水素吸蔵
合金電極40とをそれぞれ10枚ずつ用いて、これらの
各電極10,20,30,40の活物質層12,22,
32,42のそれぞれの表面に対して約30度の角度に
カッターを保持した。ついで、カッターの刃先に250
g程度の荷重が掛かるようにして、図2に示すように、
各活物質層12,22,32,42を切るように切溝
x,yを引いた。なお、各切溝x,yの間隔は1mm間
隔とし、各切溝x,yをそれぞれ10本ずつ互いに直角
に交差するように引いた。これにより、碁盤目状に10
0個の升目が形成された。
3. Strength Test of Hydrogen Storage Alloy Electrode Then, the hydrogen storage alloy electrodes 10, 20, and 30 of Examples 1, 2, and 3 and the hydrogen storage alloy electrode 40 of the comparative example, which were manufactured as described above, were each used by ten. , Active material layers 12, 22, of each of these electrodes 10, 20, 30, 40.
The cutter was held at an angle of about 30 degrees with respect to each of the 32, 42 surfaces. Next, add 250
g so that a load of about g is applied, as shown in FIG.
Cut grooves x and y were cut so as to cut through the respective active material layers 12, 22, 32 and 42. The interval between the cut grooves x and y was 1 mm, and ten cut grooves x and y were drawn so as to cross each other at right angles. As a result, 10
Zero cells were formed.

【0033】ついで、上述のようにして碁盤目状に10
0個の升目が形成された各電極10,20,30,40
をそれぞれ10枚ずつ用いて、これらの各活物質層1
2,22,32,42の塗着面と垂直方向に高さが約1
00mmの位置から、各電極10,20,30,40を
それぞれ自由落下させる落下試験を3回繰り返して行っ
た後、各電極10,20,30,40に形成された升目
の脱落個数を数えて、その平均値を求めると下記の表1
に示すような結果となった。
Then, as described above, the 10
Each electrode 10, 20, 30, 40 on which zero cells are formed
Of each of these active material layers 1
The height is approximately 1 in the direction perpendicular to the coating surface of 2, 22, 32, 42.
From the position of 00 mm, a drop test in which the electrodes 10, 20, 30, and 40 are freely dropped is repeated three times, and the number of dropped squares formed on the electrodes 10, 20, 30, and 40 is counted. Table 1 below shows the average value.
The result was as shown in the figure.

【0034】[0034]

【表1】 [Table 1]

【0035】上記表1の結果から明らかなように、実施
例1,2,3の水素吸蔵合金電極10,20,30の升
目の脱落個数は比較例の水素吸蔵合金電極40の升目の
脱落個数より少ないことが分かる。これは、実施例1の
水素吸蔵合金電極10のように、芯体11の露出面に水
(バインダー(PEO)の溶媒)を付着させると、図1
(a)に示すように、付着した水(バインダーの溶媒)
が芯体11に穿孔された多数の開孔11aを通過し、芯
体11の近傍の活物質層12に水が浸透して、活物質層
12内で固結したバインダー12bが再溶解し、芯体1
1の近傍まで拡散する。再溶解したバインダー12bが
乾燥されることにより固結して、芯体11と活物質粒子
12aが強固に固着するとともに、活物質粒子12a,
12a同士も強固に固着するようになったためと考えら
れる。
As is clear from the results in Table 1, the number of dropped cells of the hydrogen storage alloy electrodes 10, 20, and 30 of Examples 1, 2, and 3 is the number of dropped cells of the hydrogen storage alloy electrode 40 of the comparative example. It turns out that it is less. As shown in FIG. 1, when water (solvent of a binder (PEO)) is adhered to the exposed surface of the core 11 as in the hydrogen storage alloy electrode 10 of the first embodiment.
As shown in (a), attached water (solvent of binder)
Passes through a large number of holes 11a formed in the core 11, water permeates the active material layer 12 near the core 11, and the binder 12b solidified in the active material layer 12 is redissolved. Core 1
Diffusion to the vicinity of 1. The re-dissolved binder 12b is solidified by drying, so that the core 11 and the active material particles 12a are firmly fixed, and the active material particles 12a,
It is considered that 12a also firmly adhered to each other.

【0036】また、実施例2の水素吸蔵合金電極20の
ように、芯体21の露出面にPEOの水溶液を付着させ
ると、図1(b)に示すように、付着したPEOの水溶
液は芯体21に穿孔された多数の開孔21aを通過し、
芯体21の近傍の活物質層22にPEOの水溶液が浸透
して、活物質層22内で固結したバインダー22bが再
溶解し、芯体21の近傍まで拡散する。再溶解したバイ
ンダー22bが乾燥されることにより、芯体21と活物
質粒子22aが一層強固に固着するとともに、活物質粒
子22a,22a同士もより一層強固に固着するように
なったためと考えられる。
When an aqueous solution of PEO is adhered to the exposed surface of the core body 21 as in the hydrogen storage alloy electrode 20 of Example 2, as shown in FIG. Passing through a number of openings 21a drilled in the body 21,
The aqueous solution of PEO penetrates into the active material layer 22 near the core 21, and the binder 22 b solidified in the active material layer 22 is redissolved and diffuses to the vicinity of the core 21. This is considered to be because the core 21 and the active material particles 22a are more firmly fixed by drying the re-dissolved binder 22b, and the active material particles 22a, 22a are more firmly fixed to each other.

【0037】さらに、実施例3の水素吸蔵合金電極30
のように、活物質層33に水を付着させた後、活物質層
33を除去して芯体31の露出面を形成すると、図1
(c)に示すように、活物質層33へ付着した水は活物
質層33内に拡散して浸透するとともに、拡散した水の
一部は芯体31に穿孔された多数の開孔31aを通過し
て、活物質層32内へも拡散して浸透する。これによ
り、活物質層33内および活物質層32内で固結したバ
インダー32bは再溶解し、各活物質層33,32に拡
散する。この結果、乾燥時に芯体31と活物質粒子32
aとが強固に固着するとともに、活物質粒子32a,3
2a同士も強固に固着するようになったためと考えられ
る。この場合、活物質層33の含水時に活物質層33は
柔らかくなるので、含有した水分が乾燥しないうちに活
物質層33を切削すると、切削作業が容易になる。
Further, the hydrogen storage alloy electrode 30 of the third embodiment
As shown in FIG. 1, after water is attached to the active material layer 33, the active material layer 33 is removed to form an exposed surface of the core 31.
As shown in (c), the water adhering to the active material layer 33 diffuses into and penetrates into the active material layer 33, and a part of the diffused water passes through the many openings 31 a formed in the core 31. It passes through and diffuses and penetrates into the active material layer 32 as well. Thereby, the binder 32b solidified in the active material layer 33 and the active material layer 32 is redissolved and diffused into the active material layers 33 and 32. As a result, the core 31 and the active material particles 32 are dried at the time of drying.
a is firmly fixed, and the active material particles 32a, 3
It is considered that 2a also firmly adhered to each other. In this case, when the active material layer 33 contains water, the active material layer 33 is softened. Therefore, if the active material layer 33 is cut before the contained water is dried, the cutting operation becomes easy.

【0038】なお、上述した実施の形態においては、バ
インダー(結着剤)として水溶性のポリエチレンオキサ
イド(PEO)を用いる例について説明したが、バイン
ダーとしてはPEO以外の他の水溶性バインダー、ある
いは有機溶媒に溶解する有機バインダーを用いるように
してもよい。なお、有機バインダーを用いる場合、芯体
露出面あるいは活物質層に噴霧する溶媒は有機溶媒にす
る必要がある。
In the above-described embodiment, an example in which water-soluble polyethylene oxide (PEO) is used as a binder (binder) has been described. An organic binder that dissolves in a solvent may be used. When an organic binder is used, the solvent to be sprayed on the exposed surface of the core or the active material layer needs to be an organic solvent.

【0039】また、上述した実施の形態においては、水
素吸蔵合金としてMmNi3.4Co0 .8Al0.2Mn0.6
用いる例について説明したが、水素吸蔵合金としてはT
i−Ni系あるいはLa(もしくはMm)−Ni系の多
元合金から適宜選択して使用することができる。また、
上述した実施の形態においては、機械的に粉砕した水素
吸蔵合金を用いる例について説明したが、アトマイズ法
により作製した水素吸蔵合金を用いてもよい。
Further, in the above embodiment, description has been made of an example of using the MmNi 3.4 Co 0 .8 Al 0.2 Mn 0.6 as the hydrogen storage alloy, the hydrogen storage alloy T
An i-Ni-based or La (or Mm) -Ni-based multi-element alloy can be appropriately selected and used. Also,
In the above-described embodiment, an example in which a mechanically pulverized hydrogen storage alloy is used has been described. However, a hydrogen storage alloy manufactured by an atomizing method may be used.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 電極の芯体(パンチングメタル)に形成され
た孔の周囲に活物質が付着した状態を拡大して模式的に
示す断面図であり、図1(a)は実施例1の電極を示す
断面図であり、図1(b)は実施例2の電極を示す断面
図であり、図1(c)は実施例3の電極を示す断面図で
あり、図1(d)は比較例の電極を示す断面図である。
FIG. 1 is an enlarged cross-sectional view schematically showing a state in which an active material is attached around a hole formed in a core (punching metal) of an electrode. FIG. FIG. 1B is a cross-sectional view showing an electrode of Example 2, FIG. 1C is a cross-sectional view showing an electrode of Example 3, and FIG. It is sectional drawing which shows the electrode of an example.

【図2】 活物質の脱落試験を行うために活物質層に碁
盤目状の切溝を入れた状態を模式的に示す斜視図であ
る。
FIG. 2 is a perspective view schematically showing a state in which a grid-like kerf is formed in an active material layer in order to perform a drop test of the active material.

【図3】 従来例の電極群を外装缶に収納した状態を模
式的に示す断面図である。
FIG. 3 is a cross-sectional view schematically showing a state in which a conventional electrode group is housed in an outer can.

【図4】 最外側に配置された電極の活物質を保持する
芯体の露出面が形成された電極群を外装缶に収納した状
態を模式的に示す断面図である。
FIG. 4 is a cross-sectional view schematically showing a state in which an electrode group provided with an exposed surface of a core holding an active material of an electrode disposed on the outermost side is housed in an outer can.

【符号の説明】[Explanation of symbols]

10,20,30,40…水素吸蔵合金電極、11,2
1,31,41…芯体(活物質保持体)、11a,21
a,31a,41a…開孔、12a,22a,32a,
42a…活物質粒子、12b,22b,32b,42b
…バインダー
10, 20, 30, 40 ... hydrogen storage alloy electrode, 11, 12
1, 31, 41 ... core body (active material holding body), 11a, 21
a, 31a, 41a ... apertures, 12a, 22a, 32a,
42a: Active material particles, 12b, 22b, 32b, 42b
…binder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村田 徹行 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 池田 康彦 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 山口 隆志 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 近藤 泰正 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 森田 潔 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 越智 誠 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 里口 功祐 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H017 AA02 AS01 AS10 BB08 HH05 5H028 AA05 AA07 BB06 BB07 CC08 CC10 CC13 CC24 5H050 AA01 AA07 BA14 CA03 CB17 DA03 DA04 FA05 FA08 GA02 GA10 GA12 GA22 HA12  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toruyuki Murata 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Yasuhiko Ikeda 2-5-2 Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd. (72) Takashi Yamaguchi 2-5-5, Keihanhondori, Moriguchi-shi, Osaka 2-5 Sanyo Electric Co., Ltd. (72) Inventor Yasumasa Kondo 2, Keihanhondori, Moriguchi-shi, Osaka 5-5-5 Sanyo Electric Co., Ltd. (72) Inventor Kiyoshi Morita 2-5-5 Sanyo Electric Co., Ltd. (72) Inventor Makoto Ochi Keihanmoto, Moriguchi, Osaka 2-5-5, Sanyo Electric Co., Ltd. (72) Kosuke Satoguchi 2-5-5, Keihanhondori, Moriguchi-shi, Osaka F-term in Sanyo Electric Co., Ltd. 5H017 AA02 AS01 AS10 BB08 HH 05 5H028 AA05 AA07 BB06 BB07 CC08 CC10 CC13 CC24 5H050 AA01 AA07 BA14 CA03 CB17 DA03 DA04 FA05 FA08 GA02 GA10 GA12 GA22 HA12

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 セパレータを介して正・負極が積層され
る電極群を備えるとともに、該電極群の最外側に配置さ
れる電極の芯体が露出して該露出した芯体が金属製外装
缶に接触するように収納されるアルカリ蓄電池の製造方
法であって、 前記芯体の両面に活物質とバインダーと該バインダーの
溶媒とからなる活物質スラリーを塗着する塗着工程と、 前記活物質スラリーが塗着された電極を乾燥させる乾燥
工程と、 前記芯体の露出面を形成する側の活物質を除去する活物
質除去工程と、 前記芯体の露出面側から前記バインダーの溶媒を付着さ
せる溶媒付着工程とを備えたことを特徴とするアルカリ
蓄電池の製造方法。
1. An electrode group in which positive and negative electrodes are stacked via a separator, and a core of an electrode disposed on the outermost side of the electrode group is exposed, and the exposed core is a metal outer can. A method of manufacturing an alkaline storage battery housed so as to be in contact with the active material, wherein an application step of applying an active material slurry comprising an active material, a binder, and a solvent for the binder to both surfaces of the core body; A drying step of drying the electrode to which the slurry is applied; an active material removing step of removing an active material on a side forming an exposed surface of the core; and adhering a solvent of the binder from the exposed surface of the core. And a solvent adhering step.
【請求項2】 セパレータを介して正・負極が積層され
る電極群を備えるとともに、該電極群の最外側に配置さ
れる電極の芯体が露出して該露出した芯体が金属製外装
缶に接触するように収納されるアルカリ蓄電池の製造方
法であって、前記芯体の両面に活物質とバインダーと該
バインダーの溶媒とからなる活物質スラリーを塗着する
塗着工程と、 前記活物質スラリーが塗着された電極を乾燥させる乾燥
工程と、 前記芯体の露出面が形成される活物質層側から前記バイ
ンダーの溶媒を付着させる溶媒付着工程と、 前記芯体の露出面を形成する側の活物質を除去する活物
質除去工程とを備えたことを特徴とするアルカリ蓄電池
の製造方法。
2. An electrode group in which positive and negative electrodes are stacked via a separator, and a core of an electrode disposed on the outermost side of the electrode group is exposed, and the exposed core is a metal outer can. A method for producing an alkaline storage battery housed so as to be in contact with the active material, wherein an application step of applying an active material slurry comprising an active material, a binder, and a solvent for the binder to both surfaces of the core; A drying step of drying the electrode on which the slurry is applied; a solvent adhering step of adhering the solvent of the binder from the active material layer side on which the exposed surface of the core is formed; and forming an exposed surface of the core. An active material removing step of removing the active material on the side of the alkaline storage battery.
【請求項3】 前記活物質除去工程を前記溶媒付着工程
の後、前記バインダーの溶媒を付着された電極が未乾燥
の状態で行うようにしたことを特徴とする請求項2に記
載のアルカリ蓄電池の製造方法。
3. The alkaline storage battery according to claim 2, wherein the step of removing the active material is performed after the step of attaching the solvent, in a state where the electrode to which the solvent of the binder is attached is undried. Manufacturing method.
【請求項4】 前記溶媒付着工程における溶媒はバイン
ダーを含有していることを特徴とする請求項1から請求
項3のいずれかに記載のアルカリ蓄電池の製造方法。
4. The method for producing an alkaline storage battery according to claim 1, wherein the solvent in the solvent adhering step contains a binder.
【請求項5】 前記溶媒付着工程における溶媒の付着は
噴霧により行うことを特徴とする請求項1から請求項4
のいずれかに記載のアルカリ蓄電池の製造方法。
5. The method according to claim 1, wherein the step of attaching the solvent in the solvent attaching step is performed by spraying.
The method for producing an alkaline storage battery according to any one of the above.
【請求項6】 前記電極は電気化学的に水素の吸蔵・放
出を可逆的に行うことができる水素吸蔵合金を活物質と
する水素吸蔵合金電極であることを特徴とする請求項1
から請求項5のいずれかに記載のアルカリ蓄電池の製造
方法。
6. The electrode according to claim 1, wherein the electrode is a hydrogen storage alloy electrode using a hydrogen storage alloy capable of electrochemically storing and releasing hydrogen reversibly as an active material.
A method for producing an alkaline storage battery according to any one of claims 1 to 5.
JP2000248470A 2000-08-18 2000-08-18 Manufacturing method of alkaline battery Pending JP2002063897A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000248470A JP2002063897A (en) 2000-08-18 2000-08-18 Manufacturing method of alkaline battery
TW090120191A TW518783B (en) 2000-08-18 2001-08-17 Hydrogen absorbing alloy electrode, manufacturing method thereof, and alkaline storage battery equipped with the hydrogen absorbing alloy electrode
US09/931,051 US6824571B2 (en) 2000-08-18 2001-08-17 Hydrogen absorbing alloy electrode, manufacturing method thereof, and alkaline storage battery equipped with the hydrogen absorbing alloy electrode
CNB011242388A CN1275346C (en) 2000-08-18 2001-08-17 Hydrogen absorption alloy electrode and its producing method, and alkaline accumulator mounted with said hydrogen absorption alloy electrode
EP01119917A EP1180808A3 (en) 2000-08-18 2001-08-17 Hydrogen absorbing alloy electrode, manufacturing method thereof, and alkaline storage battery equipped with the hydrogen absorbing alloy electrode
HK02105188.9A HK1043442B (en) 2000-08-18 2002-07-12 Manufacturing method of alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000248470A JP2002063897A (en) 2000-08-18 2000-08-18 Manufacturing method of alkaline battery

Publications (1)

Publication Number Publication Date
JP2002063897A true JP2002063897A (en) 2002-02-28

Family

ID=18738371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000248470A Pending JP2002063897A (en) 2000-08-18 2000-08-18 Manufacturing method of alkaline battery

Country Status (1)

Country Link
JP (1) JP2002063897A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113745446A (en) * 2020-05-27 2021-12-03 北京小米移动软件有限公司 Electrode paste preparation process, electrode paste and lithium battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113745446A (en) * 2020-05-27 2021-12-03 北京小米移动软件有限公司 Electrode paste preparation process, electrode paste and lithium battery
CN113745446B (en) * 2020-05-27 2023-08-22 北京小米移动软件有限公司 Electrode slurry preparation process, electrode slurry and lithium battery

Similar Documents

Publication Publication Date Title
JP3568052B2 (en) Porous metal body, method for producing the same, and battery electrode plate using the same
JP3831525B2 (en) battery
JP4024254B2 (en) Non-aqueous electrolyte secondary battery
US6033805A (en) Nickel-hydrogen secondary battery and process for producing electrode therefor
JP2001035499A (en) Electricity collecting base board for electrode of alkaline secondary battery, electrode using same, and alkaline secondary battery incorporating the electrode
JPH10270013A (en) Electrode for nonaqueous electrolyte secondary battery and its manufacture
JP2005353575A (en) Negative electrode for nonaqueous electrolyte secondary battery and its manufacturing method
CN113299883A (en) Negative plate and lithium ion battery comprising same
JP2002231221A (en) Lithium secondary battery electrode of separator, these manufacturing method, and lithium secondary battery using the same
JP4986465B2 (en) Nickel metal hydride storage battery
JP2002260646A (en) Manufacturing method of electrode for alkaline storage battery
JP4498772B2 (en) Alkaline storage battery and its manufacturing method
US6824571B2 (en) Hydrogen absorbing alloy electrode, manufacturing method thereof, and alkaline storage battery equipped with the hydrogen absorbing alloy electrode
JP3649909B2 (en) battery
JP2002063897A (en) Manufacturing method of alkaline battery
JP3906342B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and method for producing the same
JP3402335B2 (en) Nickel electrode
JP2005093297A (en) Hydrogen storage alloy powder and its manufacturing method, hydrogen storage alloy electrode and nickel-hydrogen storage battery using the electrode
JP2009187700A (en) Secondary battery and its manufacturing method
JP2002222653A (en) Positive electrode collector for alkali secondary battery and its manufacturing method, and positive electrode using the collector
JP2002246032A (en) Collector substrate for electrode for alkaline secondary battery, electrode using the same, and alkaline secondary battery with electrode assembled therein
JP2002042860A (en) Manufacturing method for alkaline storage battery
JP2003317796A (en) Storage battery
JP4056207B2 (en) Method for producing alkaline storage battery
JP3897527B2 (en) Non-sintered nickel positive electrode for alkaline storage battery, method for producing the same, and alkaline storage battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080805