JP2002062358A - Method for polishing sintered body crystal and particle detector using polished fluorescent substance - Google Patents

Method for polishing sintered body crystal and particle detector using polished fluorescent substance

Info

Publication number
JP2002062358A
JP2002062358A JP2000248331A JP2000248331A JP2002062358A JP 2002062358 A JP2002062358 A JP 2002062358A JP 2000248331 A JP2000248331 A JP 2000248331A JP 2000248331 A JP2000248331 A JP 2000248331A JP 2002062358 A JP2002062358 A JP 2002062358A
Authority
JP
Japan
Prior art keywords
polishing
sintered body
fluorescent substance
polishing method
phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000248331A
Other languages
Japanese (ja)
Inventor
Masanari Takaguchi
雅成 高口
Hiroshi Kakibayashi
博司 柿林
Masaya Iwaki
正哉 岩木
Toshiki Shinno
俊樹 新野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
RIKEN Institute of Physical and Chemical Research
Original Assignee
Hitachi Ltd
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, RIKEN Institute of Physical and Chemical Research filed Critical Hitachi Ltd
Priority to JP2000248331A priority Critical patent/JP2002062358A/en
Publication of JP2002062358A publication Critical patent/JP2002062358A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To mirror polish a cadmium oxysulfide fluorescent substance of a sintered body ceramics with a reduced number of dents/bumps and pores. SOLUTION: In polishing the cadmium oxysulfide fluorescent substance of the sintered body ceramics, diamond fine particles are used as an abrasive powder, and a tin face plate is used as an abrasive plate. Thereafter, the fluorescent substance is combined with a photodetector. Particles are brought into the fluorescent substance, and a light generated by the fluorescent substance is detected by the photodetector. A mirror face, without dents/bumps and pores on a surface, is obtained in this manner. Since the fluorescence generates no irregular reflection inside, when the mirror face is provided to the particle detector, fluorescence can be collected efficiently, and moreover, a resolution can be improved for the fluorescene having image information in comparison with, when the fluorescent substance is not ground.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、焼結体結晶の研磨
方法および高感度な粒子線検出を可能とする検出器に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for polishing a crystal of a sintered body and a detector which enables highly sensitive particle beam detection.

【0002】[0002]

【従来の技術】固体材料の研磨は様々な材料につき極め
て多く行われており、また研磨メカニズム等も様々に研
究されている。例えば、サイエンスフォーラム社編の
「CMPのサイエンス」(1997年出版)や、光技術コンタ
クトvol.29,No12(1991)674ページ等には、金属・セラミ
ックス材料を始め、最先端半導体材料の研磨方法につい
て多くの記述がなされている。通常研磨は、研磨材(砥
粒)と研磨板(定盤、ポリシャ)、研磨液(水を含む)を用
い、対象物をこれらに擦り付けることによりなされる。
上記文献においては、研磨材として、シリカ系(酸化ア
ルミ系)、アルミナ系(酸化アルミ系)、酸化セリウム、
ダイヤモンド粒子等の粉体材料が紹介されている。シリ
カ系はシリコン半導体、アルミナ系は金属材料、酸化セ
リウムはレンズ等のガラス材料の鏡面研磨に広く用いら
れてきた。次に研磨板としては、石英ガラス、ベークラ
イト、多孔質テフロン(登録商標)、ポリウレタン、硬
質ガラス、鉄板、銅板、スズ板、鉛板、杉板等が紹介さ
れている。さらに研磨液には水や潤滑油の他、水酸化カ
リウム溶液などが紹介されている。これらを組合せ、研
磨する方法としては、単純に研磨粉を水で溶いて研磨板
上に置き、ここに対象物を擦り合わせる、所謂、機械的
微小切削作用を応用した方法の他、この機械的作用に研
磨液の化学的溶去作用を重畳させたメカニカルケミカル
ポリシングや、機械的作用により誘起される化学反応を
利用したメカノケミカルポリシング等が紹介されてい
る。こうした方法では、例えばコロイド状のシリカ系研
磨粉にpH10程度の水酸化カリウム溶液研磨液を用いて研
磨を行い、シリコンウエハ等を鏡面かつ無歪で研磨が可
能となる。研磨方法は上記条件の組合せで無数にあると
言える。
2. Description of the Related Art Polishing of a solid material is performed extremely frequently for various materials, and various studies have been made on a polishing mechanism and the like. For example, “Science of CMP” edited by Science Forum (published in 1997) and “Optical Technology Contact vol. 29, No. 12 (1991), p. Many descriptions have been made. Usually, polishing is performed by using an abrasive (abrasive grains), a polishing plate (a surface plate, a polisher), and a polishing liquid (including water) and rubbing an object against them.
In the above literature, as an abrasive, silica (aluminum oxide), alumina (aluminum oxide), cerium oxide,
Powder materials such as diamond particles are introduced. Silicas have been widely used for mirror polishing of silicon semiconductors, aluminas for metal materials, and cerium oxides for glass materials such as lenses. Next, as a polishing plate, quartz glass, bakelite, porous Teflon (registered trademark), polyurethane, hard glass, iron plate, copper plate, tin plate, lead plate, cedar plate and the like are introduced. Further, as the polishing liquid, potassium hydroxide solution and the like are introduced in addition to water and lubricating oil. As a method of combining these and polishing, other than a method of applying a so-called mechanical micro-cutting action, in which a polishing powder is simply dissolved in water and placed on a polishing plate, and the object is rubbed therewith. There are introduced mechanical chemical polishing in which the chemical dissolution action of the polishing liquid is superimposed on the action, and mechanochemical polishing using a chemical reaction induced by the mechanical action. In such a method, for example, a colloidal silica-based polishing powder is polished by using a potassium hydroxide solution polishing solution having a pH of about 10 to polish a silicon wafer or the like with a mirror surface and without distortion. It can be said that there are countless polishing methods in combination of the above conditions.

【0003】一方、本出願で研磨対象にしようと考える
材料は、プラセオジウム、セリウム、フッ素が微量添加
してあるカドリニウムオキサルファイド(Gd2O2S;gado
linium oxysulfide;以下GOSという)である。計測装
置により電子線やイオン線等の粒子線の強度やエネルギ
ーを測定する際、一度粒子線を蛍光体等で光線に変換
し、半導体検出器や光電子増倍管のような光検出器で検
知する方法が一般的だが、ここで高感度な計測を行うた
めには、エネルギー変換効率の良い、即ち大発光量を有
する蛍光体を用いるのが得策である。このような蛍光体
として近年開発されたのが、先に述べたGOSである。
この蛍光体は、日本応用物理学会英文誌第30号371-37
3ページに開示されているように、50×50×200μm程度
の大きさの微小な単結晶が焼き固められた焼結体蛍光体
(セラミックスシンチレータ)である。なお、この材料に
ついて、平坦度の良い鏡面研磨方法を示した例は全くな
い。
On the other hand, a material considered to be polished in the present application is cadmium oxide (Gd 2 O 2 S; gado) containing a small amount of praseodymium, cerium, and fluorine.
linium oxysulfide (hereinafter referred to as GOS). When measuring the intensity and energy of particle beams such as electron beams and ion beams with a measuring device, the particle beams are once converted into light beams by a phosphor, etc., and detected by a photodetector such as a semiconductor detector or a photomultiplier tube. However, in order to perform high-sensitivity measurement, it is advisable to use a phosphor having good energy conversion efficiency, that is, a phosphor having a large light emission amount. The aforementioned GOS has been recently developed as such a phosphor.
This phosphor is available from The Japan Society of Applied Physics, No. 30, 371-37
As disclosed on page 3, a sintered phosphor in which a small single crystal with a size of about 50 × 50 × 200 μm is baked and hardened
(Ceramic scintillator). It should be noted that there is no example showing a mirror polishing method with good flatness for this material.

【0004】[0004]

【発明が解決しようとする課題】ところが、上記研磨技
術においては、以下の課題があることを本発明者は見出
した。
However, the present inventor has found that the above-mentioned polishing technique has the following problems.

【0005】すなわち、研磨方法は、上述した条件の組
合せで無数にあるが、最適な方法は、対象物の材質、構
造の他、使用目的によって異なってくる。従って、GO
Sのように比較的近年に開発された構造が複雑な材料に
ついては、実験的決定が重要である。特に解決すべき課
題は、研磨後の表面の平坦度である。例えば内部で生成
された蛍光を光検出器で検知する際など、蛍光を乱反射
させることなく外部に取り出す必要があり、蛍光体表面
の平坦度が重要である場合が多いが、本出願においても
平坦度の高い研磨方法を提示していく。ここで平坦度に
ついては、表面の高低差はもちろんのこと、GOSのよ
うな焼結体セラミックス(多結晶)材料の場合には、結晶
粒界の欠損(ポア)の有無が重要な要素である。
That is, there are countless polishing methods in combination with the above-mentioned conditions, but the optimum method differs depending on the material and structure of the object and the purpose of use. Therefore, GO
Experimental determination is important for relatively complicated materials such as S that have been developed in recent years. A particular problem to be solved is the flatness of the surface after polishing. For example, when fluorescence generated inside is detected by a photodetector, it is necessary to take out the fluorescence without irregular reflection, and in many cases, the flatness of the phosphor surface is important. We will present a highly polished method. Here, regarding the flatness, in the case of a sintered ceramic (polycrystalline) material such as GOS, the presence or absence of crystal grain boundary defects (pores) is an important factor as well as the difference in surface height. .

【0006】本発明の目的は、焼結体の研磨面の平坦性
を向上させることのできる技術を提供することにある。
An object of the present invention is to provide a technique capable of improving the flatness of a polished surface of a sintered body.

【0007】また、本発明の目的は、焼結体の結晶粒界
の欠損を低減することのできる技術を提供することにあ
る。
Another object of the present invention is to provide a technique capable of reducing defects at crystal grain boundaries of a sintered body.

【0008】また、本発明の目的は、高感度・高解像度
で粒子検出・撮像を行うことのできる技術を提供するこ
とにある。
Another object of the present invention is to provide a technique capable of detecting and imaging particles with high sensitivity and high resolution.

【0009】本発明の前記ならびにその他の目的と新規
な特徴は、本明細書の記述および添付図面から明らかに
なるであろう。
The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings.

【0010】[0010]

【課題を解決するための手段】本願において開示される
発明のうち、代表的なものの概要を簡単に説明すれば、
次のとおりである。
SUMMARY OF THE INVENTION Among the inventions disclosed in the present application, the outline of a representative one will be briefly described.
It is as follows.

【0011】すなわち、本発明は、高発光量蛍光体材料
として、焼結体セラミックスの焼結体結晶のGOSに着
目し、研磨粉としてダイヤモンド微粒子、研磨板として
すず面板を用いるものである。これにより鏡面研磨を施
し、表面の高低差と結晶粒界欠損(ポア)量とを抑えるこ
とができる。
That is, the present invention focuses on the GOS of a sintered body crystal of a sintered ceramic as a phosphor material having a high light emission, and uses diamond fine particles as a polishing powder and a tin plate as a polishing plate. As a result, mirror polishing is performed, and the difference in surface height and the amount of crystal grain boundary defects (pores) can be suppressed.

【0012】また、本発明は、上記のように研磨した蛍
光体と光検出器を組合せ、粒子線を蛍光体に入射させ、
発生した蛍光を光検出器で検知するものである。
Further, the present invention combines the phosphor polished as described above with a photodetector, and allows a particle beam to be incident on the phosphor.
The generated fluorescence is detected by a photodetector.

【0013】[0013]

【発明の実施の形態】図1に本発明の一実施例として、
研磨作業で用いる道具構成を示す。図1上部は図1下部
に示した各種部品を上から見た図である。固定ジグ10
0に研磨したいと考えるGOS(Gd2O2S;gadolinium o
xysulfide)101を接着剤102を用いて固定する。
ここで接着剤102としては、加熱・冷却により脱着可
能となるパラフィン等が適当である。こうしてGOS1
01を固定した後、固定ジグを更にジグガイド103内
に挿入する。研磨板104上には研磨粉105を塗布
し、ジグガイド103を用いてGOS101を研磨板1
04や研磨粉105にこすり付けるように動かすことで
研磨を行う。ここでジグガイド103の内径は固定ジグ
100の外径よりわずかに大きい程度とし、研磨作業中
に内部で固定ジグ100が遊ばないようにする。またジ
グガイド103の研磨板104への接触部分は半径を取
手部よりなるべく大きくすることにより、GOS101
と研磨板104の平行関係を常に高精度に維持できるよ
うにする。
FIG. 1 shows an embodiment of the present invention.
The tool configuration used in the polishing operation is shown. The upper part of FIG. 1 is a view of the various components shown in the lower part of FIG. 1 as viewed from above. Fixing jig 10
GOS (Gd 2 O 2 S; gadolinium o)
(xysulfide) 101 is fixed using an adhesive 102.
Here, as the adhesive 102, paraffin or the like which can be detached by heating and cooling is suitable. Thus GOS1
After fixing 01, the fixing jig is further inserted into the jig guide 103. A polishing powder 105 is applied on the polishing plate 104, and the GOS 101 is applied to the polishing plate 1 using a jig guide 103.
Polishing is carried out by rubbing the polishing pad 104 or the polishing powder 105. Here, the inner diameter of the jig guide 103 is slightly larger than the outer diameter of the fixed jig 100 so that the fixed jig 100 does not play inside during the polishing operation. The radius of the contact portion of the jig guide 103 with the polishing plate 104 is set to be as large as possible for the GOS 101 by making the radius larger than that of the handle portion.
And the polishing plate 104 can always maintain the parallel relationship with high precision.

【0014】既に述べたとおり、GOSは多結晶体であ
るため、シリコンウエハやガラスレンズ等と同様の研磨
方法では表面が著しく凹凸になる。この様子を図2を用
いて説明する。図2(a)は研磨後のGOSを研磨面側か
ら観察した図であり、図2(b)は図2(a)の任意位置での
断面方向からの図である。GOS試料50は各々が単結
晶である多くの粒子51から構成される。粒子51は、
前記日本応用物理学会英文誌に記載されているとおり、
平均的に50×200×200μm程度の立方体であり、GOS
はこれら粒子が様々な方向に焼結させられた多結晶体で
ある。各粒子の研磨速度は結晶方位によって異なるた
め、これが著しく現れる組み合わせの研磨板と研磨粉を
用いた研磨後は、図2(b)のように表面に著しい凹凸が
現れる。多結晶体であるため、粒子間には結晶の不連続
接触面である粒界52があり、ここは研磨粉や研磨液が
浸透しやすい為、一般的に研磨速度が増大している。特
に粒界が3重、4重に集まるポイントは著しく深い穴
(ポア)、即ち欠損53が発生する。例えば電子線を初め
とする放射線を照射し、内部で生成された蛍光を光検出
器で検知する際など、蛍光を乱反射させることなく外部
に取り出す必要があり、蛍光体表面の平坦度が重要であ
る場合が多いが、研磨時に発生する表面凹凸や欠損はこ
うした応用を大きく妨げる原因となる。従って本発明で
は、様々な組み合わせの研磨板と研磨粉を用い、実験的
に平坦な研磨の可能性を探索した。検討した研磨方法を
表1に纏める。
As described above, since GOS is a polycrystalline material, the surface thereof becomes significantly uneven by a polishing method similar to that of a silicon wafer or a glass lens. This will be described with reference to FIG. FIG. 2A is a diagram in which the GOS after polishing is observed from the polished surface side, and FIG. 2B is a diagram in a cross-sectional direction at an arbitrary position in FIG. 2A. The GOS sample 50 is composed of many particles 51 each of which is a single crystal. Particles 51
As described in the English journal of the Japan Society of Applied Physics,
It is a cube of about 50 × 200 × 200 μm on average and GOS
Is a polycrystalline body in which these particles are sintered in various directions. Since the polishing rate of each particle differs depending on the crystal orientation, after polishing using a combination of a polishing plate and polishing powder in which this is remarkably exhibited, remarkable irregularities appear on the surface as shown in FIG. Since it is a polycrystalline body, there is a grain boundary 52 between the grains, which is a discontinuous contact surface of the crystal. Since the polishing powder and the polishing solution easily penetrate into the grain boundary 52, the polishing rate is generally increased. In particular, the point where the grain boundaries gather three or four times is a markedly deep hole
(Pore), that is, a defect 53 occurs. For example, when irradiating with radiation such as an electron beam and detecting fluorescence generated inside with a photodetector, it is necessary to take out the fluorescence without diffuse reflection, and the flatness of the phosphor surface is important. In many cases, surface irregularities or defects generated during polishing greatly hinder such applications. Therefore, in the present invention, the possibility of flat polishing was experimentally searched for using various combinations of polishing plates and polishing powder. Table 1 summarizes the studied polishing methods.

【0015】[0015]

【表1】 上述したコロイド状のシリカ系、アルミナ系、酸化セリ
ウム、ダイヤモンド粒子等に適当と思われる研磨板を組
み合わせた。このうちのコロイド状のシリカ系を研磨粉
とした実験では、研磨液にpH10-KOH水溶液を用い、メカ
ノケミカル研磨を実施した。また、ダイヤモンド粒子に
よる研磨では、研磨液として中性の潤滑油脂を用いた。
その他の研磨は全て研磨液として水を用いた。以下、研
磨後のGOS表面を撮影した光学顕微鏡写真(写真倍率
×50)を用い、研磨結果を評価していく。研磨粉、研磨
板の組み合わせは表1に示した通りであり、研磨時間は
いずれも12分である。
[Table 1] The above-mentioned colloidal silica-based, alumina-based, cerium oxide, diamond particles and the like were combined with a polishing plate considered suitable. In the experiment using the colloidal silica as the polishing powder, mechanochemical polishing was performed using a pH10-KOH aqueous solution as a polishing liquid. In polishing with diamond particles, a neutral lubricating oil was used as a polishing liquid.
All other polishing used water as a polishing liquid. Hereinafter, the polishing results will be evaluated using an optical microscope photograph (magnification: 50) of the GOS surface after polishing. Combinations of the polishing powder and the polishing plate are as shown in Table 1, and the polishing time is 12 minutes in each case.

【0016】表1より、時間と共に凹凸が大きくなる場
合が多いことから、微結晶の結晶面方位の違いにより研
磨速度に差が生じ、この結果、表面に凹凸が発生するも
のと考えられる。また、コロイド状シリカは、粒子も小
さく、シリコンウエハの鏡面研磨に実績のある方法だ
が、アルカリ性研磨液を用いていることからも結晶方位
に対する研磨速度の異方性が大きく、焼結体セラミック
ス、すなわち多結晶体であるGOSには不向きな研磨法
であることがわかった。本実験で最も優れた研磨特性を
示した方法は、研磨粉に粒径1μm程度以下のダイヤモ
ンド粉を用い、研磨板にスズ面板を用いた場合であっ
た。この研磨粉は硬度が高いため、皮革樹脂類とは相性
が良くなく、より硬度があり且つ柔軟性に富むスズ面板
を用いた実験とした。用いたダイヤモンド粉は油脂状の
ペーストに溶け込ませてあり、この油脂が研磨液の役割
を担っていると考えられる。この場合試料表面の凹凸は
ほとんど認められず、ポアも極めて小さく少量であっ
た。研磨精度は光学顕微鏡像で観察でき、最大ポアサイ
ズは40μmであることが分かる。撮像素子の画素サイズ
から判断すると、本実施例のようにポアの最大大きさが
50μm以下になるまで研磨を持続することが一般に必要
である。尚、研磨表面状態の観察には、本実施例のよう
な光学顕微鏡観察のほか、表面に金属薄膜を蒸着して導
電性を保って電子顕微鏡観察する方法も挙げられる。
From Table 1, it can be considered that the irregularities often increase with time, so that the polishing rate differs due to the difference in the crystal plane orientation of the microcrystal, and as a result, irregularities occur on the surface. Colloidal silica has a small particle size and is a proven method for mirror polishing of silicon wafers.However, since an alkaline polishing liquid is used, the anisotropy of the polishing rate with respect to the crystal orientation is large, and sintered ceramics, That is, it was found that the polishing method was not suitable for the polycrystalline GOS. The method showing the best polishing characteristics in this experiment was a case where diamond powder having a particle size of about 1 μm or less was used as the polishing powder and a tin face plate was used as the polishing plate. Since this abrasive powder had high hardness, it was not compatible with leather resins, and an experiment was conducted using a tin face plate having higher hardness and flexibility. The used diamond powder was dissolved in a fat-like paste, and it is considered that this fat and oil plays a role of a polishing liquid. In this case, almost no irregularities were observed on the sample surface, and the pores were extremely small and small. The polishing accuracy can be observed with an optical microscope image, and it can be seen that the maximum pore size is 40 μm. Judging from the pixel size of the image sensor, the maximum size of the pore is
It is generally necessary to continue polishing until it is less than 50 μm. The observation of the polished surface state includes, in addition to the observation with an optical microscope as in the present embodiment, a method in which a metal thin film is vapor-deposited on the surface and observed with an electron microscope while maintaining conductivity.

【0017】次に、こうして研磨して得た鏡面を有する
GOS蛍光体を用いた粒子検出器の一例を示す。GOS
蛍光体は大発光量が特長であり、これを用いることによ
り、入射粒子が電子線、イオン線、原子線、分子線、光
子線(X線やγ線を含む)、その他の素粒子線、何れにお
いても高感度検出器を実現できる。図3には、透過電子
顕微鏡(TEM;Transmission Electron Microscope)像
を撮影するカメラに本出願の蛍光体を適用した例を示
す。電子顕微鏡1において、電子線源2から放射された
電子線3は、対物レンズ10により試料9に照射され
る。電子線3は、試料9において結晶構造や組成等を反
映した回折などの相互作用を受け、予め薄膜化された試
料9を透過する。透過した電子線3は中間レンズ、投射
レンズ等の電子レンズ8でガラス窓5上に薄膜化され、
鏡面研磨されたGOS蛍光体4上に結像される。図3
(a)ではレンズ6を用いた撮像管7による撮像法を、図
3(b)ではオプティカルファイバプレート11を介した
電荷結合素子(CCD;Charge Coupled Device)12による
撮像を図示した。ここでオプティカルファイバプレート
11は光ファイバの束のことである。何れの場合でも薄
膜化され、鏡面研磨され、真空中に設置されたGOS蛍
光体4において電子線像を光像に変換し、この光像を撮
像する。通常電子線3強度は微弱であり、また、信号強
度を得るために電子線源2から多くの電子線3を引き出
すと、試料9に対する照射ダメージが大きくなり不都合
である。従って、S/Nの優れた像を得るためには、電子
線を光に変換する効率の大きい、即ち発光量の大きな蛍
光体が重要であり、この点でGOS蛍光体は好都合であ
る。しかしGOS蛍光体は焼結体セラミックスであるた
め表面の凹凸が大きく、図4右側に示したように、入射
した電子線3が表面で散乱され、さらに発光点14から
発生した蛍光のうちかなりの光線が表面に薄く成膜した
アルミニウムなどの光反射膜13で乱反射され、この結
果、ガラス窓5より下に設置される光検出器で効率のよ
い集光ができず、さらに蛍光体で生成された像の解像度
が低下するという問題があった。そこで本出願に記載し
た研磨法により凹凸やポアの少ない鏡面研磨を行うこと
により上記問題を解決し、図4左側に示したように、効
率のよい集光と高解像度の実現を可能とした。
Next, an example of a particle detector using a GOS phosphor having a mirror surface obtained by polishing as described above will be described. GOS
Phosphors are characterized by a large light emission, and by using this, incident particles can be electron beams, ion beams, atomic beams, molecular beams, photon beams (including X-rays and γ-rays), other elementary particles, In any case, a highly sensitive detector can be realized. FIG. 3 shows an example in which the phosphor of the present application is applied to a camera that captures a transmission electron microscope (TEM) image. In the electron microscope 1, an electron beam 3 emitted from an electron beam source 2 is applied to a sample 9 by an objective lens 10. The electron beam 3 receives an interaction such as diffraction reflecting a crystal structure, a composition, and the like in the sample 9 and transmits through the sample 9 which has been thinned in advance. The transmitted electron beam 3 is thinned on the glass window 5 by an electron lens 8 such as an intermediate lens or a projection lens.
An image is formed on the mirror-polished GOS phosphor 4. FIG.
3A illustrates an imaging method using the imaging tube 7 using the lens 6, and FIG. 3B illustrates imaging using a charge coupled device (CCD) 12 via an optical fiber plate 11. Here, the optical fiber plate 11 is a bundle of optical fibers. In any case, the electron beam image is converted into a light image by the GOS phosphor 4 which is thinned, mirror-polished, and placed in a vacuum, and this light image is captured. Normally, the intensity of the electron beam 3 is weak, and if a large amount of the electron beam 3 is extracted from the electron beam source 2 in order to obtain a signal intensity, the irradiation damage to the sample 9 increases, which is inconvenient. Therefore, in order to obtain an image having an excellent S / N ratio, a phosphor having a high efficiency of converting an electron beam into light, that is, a phosphor having a large amount of light emission is important, and in this regard, a GOS phosphor is advantageous. However, since the GOS phosphor is a sintered ceramic, its surface has large irregularities. As shown on the right side of FIG. 4, the incident electron beam 3 is scattered on the surface. Light rays are irregularly reflected by a light reflecting film 13 made of aluminum or the like which is thinly formed on the surface. As a result, efficient light collection cannot be performed by a photodetector provided below the glass window 5, and furthermore, light generated by a phosphor is generated. There is a problem that the resolution of the image is reduced. Therefore, the above problem was solved by performing mirror polishing with few irregularities and pores by the polishing method described in the present application, and as shown on the left side of FIG. 4, efficient light collection and high resolution were realized.

【0018】以上は、入射粒子が電子である電子顕微鏡
を例にとったが、他の粒子線の場合も同様である。次に
は入射粒子が光子である例として、図5に医療用に用い
られるX線撮影の例を示す。通常X線撮影では、X線発
生装置34から発生されるX線36を被検者35に照射
し、透過したX線をフィルムもしくはカメラにて撮影す
る。本実施の形態はカメラ撮影の例を示している。透過
したX線はそのままでは波長が短すぎるためにカメラ4
3で検知することがでぎない。そこで、初めにGOS蛍
光体38にて可視光近辺の波長を持った光線42に変換
し、これが直接または光反射膜37を経由して、光学レ
ンズ41によりカメラ43の撮像面上に結像される。従
って、X線の保持している像情報が蛍光体で光像に変換
されるため、事情は図3、4に示した実施の形態と同様
である。
Although the electron microscope in which the incident particles are electrons has been described above as an example, the same applies to other particle beams. Next, as an example in which the incident particles are photons, FIG. 5 shows an example of X-ray imaging used for medical purposes. In normal X-ray photography, X-rays 36 generated from an X-ray generator 34 are irradiated on a subject 35, and transmitted X-rays are photographed with a film or a camera. This embodiment shows an example of camera shooting. Since the transmitted X-rays have too short a wavelength, the camera 4
It is difficult to detect with 3. Therefore, first, the light is converted into a light beam 42 having a wavelength near visible light by the GOS phosphor 38, and this is formed on the imaging surface of the camera 43 by the optical lens 41 directly or through the light reflection film 37. You. Therefore, since the image information held by the X-rays is converted into an optical image by the phosphor, the situation is the same as in the embodiment shown in FIGS.

【0019】[0019]

【発明の効果】本願によって開示される発明のうち、代
表的なものによって得られる効果を簡単に説明すれば、
以下の通りである。 (1).本発明によれば、高発光量蛍光体材料として、焼結
体セラミックスの焼結体結晶のGOSに着目し、研磨粉
としてダイヤモンド微粒子、研磨板としてすず面板を用
いることにより、焼結体の研磨面の平坦性を向上させる
ことが可能となる。 (2).本発明によれば、高発光量蛍光体材料として、焼結
体セラミックスの焼結体結晶のGOSに着目し、研磨粉
としてダイヤモンド微粒子、研磨板としてすず面板を用
いることにより、焼結体の結晶粒界の欠損を低減するこ
とが可能となる。 (3).本発明によれば、上記蛍光体を用い、光検出器と組
み合わせることで、高感度・高解像度で粒子検出・撮像
を行うことが可能となる。
Advantageous effects obtained by typical ones of the inventions disclosed by the present application will be briefly described as follows.
It is as follows. (1) According to the present invention, focusing on the GOS of a sintered body crystal of a sintered ceramic as a high emission phosphor material, diamond fine particles are used as polishing powder, and a tin face plate is used as a polishing plate. The flatness of the polished surface of the aggregate can be improved. (2) According to the present invention, focusing on GOS of a sintered body crystal of a sintered ceramic as a phosphor material having a high light emission, using diamond fine particles as a polishing powder and a tin face plate as a polishing plate, firing is performed. It is possible to reduce the loss of crystal grain boundaries of the compact. (3) According to the present invention, by using the above-described phosphor and combining it with a photodetector, it becomes possible to perform particle detection and imaging with high sensitivity and high resolution.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態である研磨方法でカドリ
ニウムオキサルファイド焼結体を研磨する方法を示した
説明図である。
FIG. 1 is an explanatory view showing a method for polishing a cadmium oxide sulfide body by a polishing method according to an embodiment of the present invention.

【図2】(a)および(b)は、本発明者らが検討した
研磨後のカドリニウムオキサルファイド表面・断面状態
を示した説明図である。
FIGS. 2 (a) and (b) are explanatory views showing the surface and cross-sectional state of cadmium oxalfide after polishing studied by the present inventors.

【図3】(a)および(b)は、本発明の一実施の形態
である鏡面研磨したカドリニウムオキサルファイド蛍光
体を透過電子顕微鏡の像撮影用検出器に適用した例を示
す説明図である。
3 (a) and 3 (b) are explanatory views showing an example in which a mirror-polished cadmium oxide phosphide phosphor according to an embodiment of the present invention is applied to an image capturing detector of a transmission electron microscope. is there.

【図4】本発明の一実施の形態である鏡面研磨したカド
リニウムオキサルファイド蛍光体および未研磨カドリニ
ウムオキサルファイド蛍光体における入射電子線と蛍光
の発生・伝播を示す説明図である。
FIG. 4 is an explanatory diagram showing generation and propagation of an incident electron beam and fluorescence in a mirror-polished cadmium oxide phosphide and an unpolished cadmium oxide phosphide according to an embodiment of the present invention.

【図5】本発明の他の実施の形態である鏡面研磨したカ
ドリニウムオキサルファイド蛍光体をX線診断装置の像
撮影用検出器に適用した例を示す説明図である。
FIG. 5 is an explanatory diagram showing an example in which a mirror-polished cadmium oxide phosphide, which is another embodiment of the present invention, is applied to an imaging detector of an X-ray diagnostic apparatus.

【符号の説明】[Explanation of symbols]

1 電子顕微鏡 2 電子線源 3 電子線 4 カドリニウムオキサルファイド蛍光体 5 ガラス窓 6 レンズ 7 撮像管 8 電子レンズ 9 試料 10 対物レンズ 11 オプティカルファイバプレート 12 電荷結合素子(CCD) 13 光反射膜 14 発光点 34 X線発生装置 35 被検者、 36 X線 37 光反射膜 38 カドリニウムオキサルファイド蛍光体 39 透明電極、 41 光学レンズ 42 光線 43 カメラ 50 カドリニウムオキサルファイド試料 51 粒子、 52 粒界 53 欠損 100 固定ジグ 101 カドリニウムオキサルファイド 102 接着剤 103 ジグガイド 104 研磨板 105 研磨粉 REFERENCE SIGNS LIST 1 electron microscope 2 electron beam source 3 electron beam 4 cadmium oxide phosphide 5 glass window 6 lens 7 imaging tube 8 electron lens 9 sample 10 objective lens 11 optical fiber plate 12 charge-coupled device (CCD) 13 light reflection film 14 light emission Point 34 X-ray generator 35 Subject, 36 X-ray 37 Light reflecting film 38 Cadolinium oxalphide phosphor 39 Transparent electrode, 41 Optical lens 42 Light beam 43 Camera 50 Cadolinium oxalphide sample 51 Particle, 52 Grain boundary 53 Defect REFERENCE SIGNS LIST 100 Fixing jig 101 Cadolinium oxalide 102 Adhesive 103 Jig guide 104 Polishing plate 105 Polishing powder

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09K 11/00 C09K 11/00 E 5C036 11/84 CPD 11/84 CPD G01T 1/29 G01T 1/29 A H01J 29/18 H01J 29/18 M 37/244 37/244 (72)発明者 柿林 博司 東京都国分寺市東恋ヶ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 岩木 正哉 埼玉県和光市広沢2番1号 理化学研究所 内 (72)発明者 新野 俊樹 埼玉県和光市広沢2番1号 理化学研究所 内 Fターム(参考) 2G088 EE29 EE30 FF12 GG10 GG16 GG20 JJ05 JJ37 LL15 3C058 AA07 AA09 CA05 CB01 DA02 4C093 AA01 CA02 CA31 EB01 EB04 EB20 EB30 4H001 CA08 XA08 XA16 XA64 YA09 YA58 YA59 5C033 NN03 NN04 NP08 5C036 AA01 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C09K 11/00 C09K 11/00 E 5C036 11/84 CPD 11/84 CPD G01T 1/29 G01T 1/29 A H01J 29/18 H01J 29/18 M 37/244 37/244 (72) Inventor Hiroshi Kakibayashi 1-280 Higashi Koigabo, Kokubunji-shi, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd. (72) Inventor Masaya Iwaki Wako-shi, Saitama 2-1, Hirosawa RIKEN (72) Inventor Toshiki Niino 2-1 Hirosawa, Wako-shi, Saitama F-term (reference) 2G088 EE29 EE30 FF12 GG10 GG16 GG20 JJ05 JJ37 LL15 3C058 AA07 AA09 CA05 CB01 DA02 4C093 AA01 CA02 CA31 EB01 EB04 EB20 EB30 4H001 CA08 XA08 XA16 XA64 YA09 YA58 YA59 5C033 NN03 NN04 NP08 5C036 AA01

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 研磨粉と研磨板と研磨液とを用いた焼結
体結晶の面研磨において、研磨面の凹凸高さと焼結体結
晶粒界で発生する欠損大きさを抑えるために、研磨粉と
してダイヤモンド微粒子、研磨板としてすず面板を用い
ることを特徴とする研磨方法。
In a surface polishing of a sintered body crystal using a polishing powder, a polishing plate and a polishing liquid, polishing is performed in order to suppress unevenness height of a polished surface and a size of a defect generated at a crystal grain boundary of a sintered body. A polishing method using diamond fine particles as powder and a tin plate as a polishing plate.
【請求項2】 請求項1記載の焼結体結晶は、母材料が
カドリニウムオキサルファイドであることを特徴とする
研磨方法。
2. A polishing method according to claim 1, wherein the base material of the sintered body crystal is cadmium oxide.
【請求項3】 請求項2記載のカドリニウムオキサルフ
ァイドには、プラセオジウム、セリウム、フッ素が添加
してあることを特徴とする研磨方法。
3. The polishing method according to claim 2, wherein praseodymium, cerium, and fluorine are added to the cadmium oxide sulfide.
【請求項4】 請求項2記載のカドリニウムオキサルフ
ァイドの研磨において、焼結体結晶粒界で発生する欠損
の最大大きさが50μm以下になるまで研磨を持続するこ
とを特徴とする研磨方法。
4. The polishing method according to claim 2, wherein the polishing is continued until the maximum size of a defect generated at a crystal grain boundary of the sintered body becomes 50 μm or less.
【請求項5】 請求項4記載の欠損を観察する手段とし
て、光学顕微鏡もしくは電子顕微鏡を用いることを特徴
とする研磨方法。
5. A polishing method using an optical microscope or an electron microscope as a means for observing the defect according to claim 4.
【請求項6】 請求項1記載の研磨方法において、研磨
液が、水もしくはそれ以外の中性液であることを特徴と
する研磨方法。
6. The polishing method according to claim 1, wherein the polishing liquid is water or another neutral liquid.
【請求項7】 請求項6載の中性液において、その酸ア
ルカリ度は、ペーハー値で6〜8の間にあることを特徴
とする研磨方法。
7. The polishing method according to claim 6, wherein the acid alkalinity of the neutral solution is between 6 and 8 in terms of pH.
【請求項8】 粒子線を光に変換する蛍光体として請求
項1記載の研磨方法にて研磨した蛍光体と、該光を検知
する光検出器と、該光を該光検出器に伝達する部材を有
することを特徴とする粒子検出器。
8. A phosphor polished by the polishing method according to claim 1 as a phosphor for converting a particle beam into light, a photodetector for detecting the light, and transmitting the light to the photodetector. A particle detector comprising a member.
【請求項9】 請求項8記載の光検出器は、2次元光強
度分布を検知できる撮像素子であることを特徴とする粒
子検出器。
9. The particle detector according to claim 8, wherein the photodetector is an image sensor capable of detecting a two-dimensional light intensity distribution.
【請求項10】 請求項9記載の撮像素子は、撮像管や
電荷結合素子であることを特徴とする粒子検出器。
10. The particle detector according to claim 9, wherein the image pickup device is an image pickup tube or a charge-coupled device.
JP2000248331A 2000-08-18 2000-08-18 Method for polishing sintered body crystal and particle detector using polished fluorescent substance Pending JP2002062358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000248331A JP2002062358A (en) 2000-08-18 2000-08-18 Method for polishing sintered body crystal and particle detector using polished fluorescent substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000248331A JP2002062358A (en) 2000-08-18 2000-08-18 Method for polishing sintered body crystal and particle detector using polished fluorescent substance

Publications (1)

Publication Number Publication Date
JP2002062358A true JP2002062358A (en) 2002-02-28

Family

ID=18738257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000248331A Pending JP2002062358A (en) 2000-08-18 2000-08-18 Method for polishing sintered body crystal and particle detector using polished fluorescent substance

Country Status (1)

Country Link
JP (1) JP2002062358A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011060166A2 (en) * 2009-11-12 2011-05-19 Saint-Gobain Cermics & Plastics, Inc. Scintillation pixel design and method of operation
JP2012026821A (en) * 2010-07-22 2012-02-09 Toshiba Corp Surface flattening method of scintillator and scintillator member
JP2013026152A (en) * 2011-07-25 2013-02-04 Hitachi High-Technologies Corp Electron microscope
US9519207B2 (en) 2011-12-27 2016-12-13 Nichia Corporation Wavelength converting device and light emitting device using the same
JP2019164302A (en) * 2018-03-20 2019-09-26 株式会社タムラ製作所 Wavelength conversion member and wavelength conversion element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011060166A2 (en) * 2009-11-12 2011-05-19 Saint-Gobain Cermics & Plastics, Inc. Scintillation pixel design and method of operation
WO2011060166A3 (en) * 2009-11-12 2011-09-01 Saint-Gobain Cermics & Plastics, Inc. Scintillation pixel design and method of operation
CN102597805A (en) * 2009-11-12 2012-07-18 圣戈本陶瓷及塑料股份有限公司 Scintillation pixel design and method of operation
US8324583B2 (en) 2009-11-12 2012-12-04 Saint-Gobain Ceramics & Plastics, Inc. Scintillation pixel design and method of operation
JP2012026821A (en) * 2010-07-22 2012-02-09 Toshiba Corp Surface flattening method of scintillator and scintillator member
JP2013026152A (en) * 2011-07-25 2013-02-04 Hitachi High-Technologies Corp Electron microscope
US9519207B2 (en) 2011-12-27 2016-12-13 Nichia Corporation Wavelength converting device and light emitting device using the same
JP2019164302A (en) * 2018-03-20 2019-09-26 株式会社タムラ製作所 Wavelength conversion member and wavelength conversion element

Similar Documents

Publication Publication Date Title
JP4705709B2 (en) Transparent solid scintillator material
US6391434B1 (en) Composite scintillator material and method of manufacture
CN106154302B (en) A kind of ray detection flat panel detector scintillator panel and preparation method thereof
CN102243318B (en) X-ray scintillator optical imaging system
US10520527B2 (en) Miniature device for ultra high sensitivity and stability probing in vacuum
JP2011508202A (en) Radiation sensitive detector with scintillator in composite resin
CN1643399A (en) X-ray detector
JPH0517224A (en) Preparation of yttria-gadolinia ceramic scintillator using hydroxide coprecipitation method
JP2006328397A (en) Fluorescent additive, fluorescent screen and imaging assembly
JP2002541461A (en) High resolution imaging using optically transparent phosphors
JPWO2004029657A1 (en) Phosphor sheet for radiation detector, and radiation detector and radiation inspection apparatus using the same
JP2016045183A5 (en)
JP5535670B2 (en) Manufacturing method of radiation image detector
WO1993001693A1 (en) Imaging system for mammography employing electron trapping materials
JP2002062358A (en) Method for polishing sintered body crystal and particle detector using polished fluorescent substance
WO2019017425A1 (en) Optical element for radiological imaging device, radiological imaging device, and x-ray imaging device
Martin et al. New High Stopping Power Thin Scintillators Based on ${\rm Lu} _ {2}{\rm O} _ {3} $ and ${\rm Lu} _ {3}{\rm Ga} _ {5-{\rm x}}{\rm In} _ {\rm x}{\rm O} _ {12} $ for High Resolution X-ray Imaging
KR20210081147A (en) Dual Radiation Detector Having Stack of Curved Scintillator
Graafsma et al. Detectors for synchrotron tomography
JP2013515829A (en) A crystalline scintillator comprising a rare earth halide and having a polished reactive surface
TW201727262A (en) Charged particle radiation measuring method and charged particle radiation measuring device
Fakra et al. Scintillator detectors for scanning transmission X‐ray microscopes at the advanced light source
JPH10160852A (en) Radiation detector
JPH11151663A (en) Abrading device and method
Moewes et al. Soft X-ray stimulated luminescence microscopy and spectroscopy on Gd2O2S: Pr3+ and (Y, Gd) 2O3: Eu3+ ceramics

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031201

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040604

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081014