JP2002062162A - Magnetic pole position detector - Google Patents

Magnetic pole position detector

Info

Publication number
JP2002062162A
JP2002062162A JP2000247737A JP2000247737A JP2002062162A JP 2002062162 A JP2002062162 A JP 2002062162A JP 2000247737 A JP2000247737 A JP 2000247737A JP 2000247737 A JP2000247737 A JP 2000247737A JP 2002062162 A JP2002062162 A JP 2002062162A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic pole
stator
pole position
position detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000247737A
Other languages
Japanese (ja)
Other versions
JP3395147B2 (en
Inventor
Shoji Oiwa
昭二 大岩
Kazuo Onishi
和夫 大西
Masashi Yamamoto
昌史 山本
Shinji Shimizu
信司 清水
Yoji Unoki
洋治 鵜木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Advanced Motor Corp
Original Assignee
Nidec Servo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Servo Corp filed Critical Nidec Servo Corp
Priority to JP2000247737A priority Critical patent/JP3395147B2/en
Publication of JP2002062162A publication Critical patent/JP2002062162A/en
Application granted granted Critical
Publication of JP3395147B2 publication Critical patent/JP3395147B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Control Of Stepping Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method which detects the magnetic pole positions of a multipolar rotor driving a polyphase stepping motor as a polyphase brushless DC motor and obtains a precise communication signal at low cost. SOLUTION: This magnetic pole position detector is characterized by that its detector rotor core is manufactured equivalently to a rotor part structure used for a hybrid type stepping motor to be detected and its stator main magnetic pole is manufactured equivalently to a stator part structure, and performs detection in the form of an electric signal by applying magnetic flux variation that the stator main magnetic pole has to a magnetic transducing element through a magnetism collection chip by using magnetic resistance variation depending upon how much the tip projection of the stator main magnetic pole facing the outer peripheral projection of the detector rotor core across a gap overlaps.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、多相ステップモータを
多相ブラシレスDCモータとして駆動するための多極ロ
ータの磁極位置検出方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting a magnetic pole position of a multi-pole rotor for driving a multi-phase step motor as a multi-phase brushless DC motor.

【0002】[0002]

【従来の技術】従来、ステップモータの回転運動は、指
令する入力パルスの周波数により規定されるが、大きな
負荷の加速や高速回転するような場合にはロータの回転
運動が指令パルスに正しく追従出来なくなり脱調が生
じ、ロータの回転は異常振動を伴う重大欠点がある。ま
た、近年ステップモータの閉ループ駆動が採用されてい
るがこれらは脱調の発生条件を低減しているのみで原理
的解決には至っていないものが多い。
2. Description of the Related Art Conventionally, the rotational motion of a step motor is defined by the frequency of an input pulse to be commanded. However, when a large load is accelerated or the motor rotates at high speed, the rotational motion of the rotor can correctly follow the command pulse. The loss of synchronism causes a serious disadvantage that the rotation of the rotor is accompanied by abnormal vibration. In recent years, closed-loop driving of step motors has been adopted, but in many cases, only the conditions for occurrence of step-out are reduced, and many of them have not been solved in principle.

【0003】上述したステップモータの脱調を避けるた
めに、ステップモータをブラシレスDCモータとして運
転できれば両者の長所が生かせ、起動時や急激な負荷変
動時にも安定した回転を確保出来る。
If the stepping motor can be operated as a brushless DC motor in order to avoid the step-out of the stepping motor described above, the advantages of both can be utilized, and stable rotation can be ensured even at the time of starting or a sudden load change.

【0004】ステップモータをブラシレスDCモータと
して運転するには、ロータの磁極位置を検出し,モータ
巻線に適切な通電角を与えるコミュテーション信号が必
要である。ハイブリッド形のステップモータ軸にエンコ
ーダを直結し、エンコーダ信号をモータのロータ磁極位
置と同期させ,コミュテーション信号とすることでブラ
シレスDCモータとして運転する方法が多く提案されて
いる。また、高価なエンコーダでなく、安価なホール素
子をコミュテーションセンサとして用い、多極ロータの
位置を検出する方法が実開昭57−34758,実開昭
63−124083,特開平7−174583,特開平
9−201206公報のように提案されている。
[0004] In order to operate a step motor as a brushless DC motor, a commutation signal for detecting a magnetic pole position of a rotor and giving an appropriate energizing angle to a motor winding is required. Many methods have been proposed in which an encoder is directly connected to a hybrid type step motor shaft, an encoder signal is synchronized with a rotor magnetic pole position of the motor, and a commutation signal is used to operate as a brushless DC motor. Further, a method of detecting the position of the multi-pole rotor using an inexpensive Hall element as a commutation sensor instead of an expensive encoder is disclosed in Japanese Utility Model Laid-Open Publication No. Sho 57-34758, Japanese Utility Model Laid-Open Publication No. Sho 63-124083, It is proposed as in Japanese Unexamined Patent Publication No. 9-201206.

【0005】[0005]

【発明が解決しようとする課題】モータの低振動化には
ステップ角を非常に小さくすることが有利であるが、ブ
ラシレスDCモータとして見るとロータ磁極数が非常に
大きくなる。例えばステップ角0.6゜の3相ステップモ
ータでは200極に相当する。DCブラシレスモータとし
て運転するには、この200極のロータ磁極位置を精度よ
く検出する必要がある。
To reduce the vibration of the motor, it is advantageous to make the step angle extremely small. However, when viewed as a brushless DC motor, the number of rotor magnetic poles becomes very large. For example, a three-phase step motor having a step angle of 0.6 ° corresponds to 200 poles. In order to operate as a DC brushless motor, it is necessary to accurately detect the position of the 200-pole rotor magnetic pole.

【0006】上述のステップモータとエンコーダのシス
テムでは、エンコーダ信号をコミュテーション信号に利
用するためエンコーダの出力パルス位置とモータのロー
タ磁極位置を一致させる必要がある。しかしながら、磁
極数が非常に大きくなると、モータのロータ軸とエンコ
ーダ連結の機械角度の位置決め精度が出ない。また,ス
テップ角の比較的大きなモータでも調整に時間がかか
る。
In the above-described step motor / encoder system, in order to use the encoder signal as a commutation signal, it is necessary to match the output pulse position of the encoder with the rotor magnetic pole position of the motor. However, when the number of magnetic poles is very large, the positioning accuracy of the mechanical angle between the rotor shaft of the motor and the encoder is not obtained. Further, it takes time to adjust even a motor having a relatively large step angle.

【0007】図8はホール素子を用いる上述の特開平7
−174583公報の概要である。モータ軸102にス
テップモータ103の磁極数に等しい極数の着磁を外周
に施した磁気ドラム101をモータ軸102に固定し,
角度をずらした2個のセンサコア104,105で集磁
しホール素子106で磁束変化を検出している。この方
式でも、磁気ドラム101の磁極とモータロータ磁極位
置を一致させる必要があり機械角度位置決め精度の問題
が残る。また、2個の磁性体107,108の位置合わ
せも煩わしい。その他の考案,実開昭57−3475
8,実開昭63−124083,特開平9−20120
6も上述と同じようにNS多極のマグネットが必要であ
り,何らかの形でモータロータとの位置合わせ調整が必
要である。本発明は上述の問題を解決して、精度良いコ
ミュテーション信号を得る磁極位置検出器を安価に提供
することにある。
FIG. 8 shows the above-mentioned Japanese Patent Application Laid-Open No.
It is an outline of -174583 publication. A magnetic drum 101 in which the number of magnetic poles equal to the number of magnetic poles of the step motor 103 is applied to the outer periphery of the motor shaft 102 is fixed to the motor shaft 102.
The magnetic flux is collected by the two sensor cores 104 and 105 whose angles are shifted, and the Hall element 106 detects a change in magnetic flux. Even in this method, it is necessary to match the magnetic pole position of the magnetic drum 101 with the motor rotor magnetic pole position, and the problem of the mechanical angle positioning accuracy remains. Also, the positioning of the two magnetic members 107 and 108 is troublesome. Other devices, actual implementation 57-3475
8, Japanese Utility Model Application Laid-Open No. 63-124083, JP-A-9-20120
6 also requires an NS multi-pole magnet, as described above, and requires some form of alignment adjustment with the motor rotor. An object of the present invention is to solve the above-mentioned problems and to provide a magnetic pole position detector for obtaining an accurate commutation signal at low cost.

【0008】[0008]

【課題を解決するための手段】本発明に成る磁極位置検
出器は、検出対象のハイブリッド形多相ステップモータ
に使用されているロータ部分構造と等価なロータコア
と,ステータ部分構造と等価に製作した固定子主磁極
を,ロータコア外周突起と空隙を介して対向させる。ロ
ータコア外周突起部と固定子主磁極の先端突起の重なり
具合による磁気抵抗変化を利用して,固定子主磁極に生
じる磁束変化を,磁気変換素子に与え、電気信号として
検出するものである。
SUMMARY OF THE INVENTION A magnetic pole position detector according to the present invention is manufactured to be equivalent to a rotor core equivalent to a rotor partial structure used for a hybrid type multi-phase stepping motor to be detected and to a stator partial structure. The stator main magnetic pole is opposed to the outer periphery protrusion of the rotor core via a gap. The change in magnetic flux generated in the stator main magnetic pole is applied to the magnetic transducer by utilizing the change in magnetic resistance due to the degree of overlap between the outer periphery of the rotor core and the tip protrusion of the stator main magnetic pole, and is detected as an electric signal.

【0009】磁気変換素子にホール素子を使用すると,
回転子外周突起から出る磁力は回転子磁極が単極である
ためDC電圧が重畳した電圧出力となる。この重畳電圧
は,ホール素子の温度特性により大きく変化するため,
そのままロータの位置センサとして使用することは不可
能である。そこで電気角で180°位相のずれた第二の
ホール素子を配置し,基準となる第一のホール素子と第
二のホール素子の出力電圧を比較することで,余分な重
畳電圧を除去する方法が考えられる。
When a Hall element is used as a magnetic transducer,
The magnetic force emerging from the rotor outer peripheral projection is a voltage output on which a DC voltage is superimposed because the rotor magnetic pole is a single pole. Since this superimposed voltage greatly changes depending on the temperature characteristics of the Hall element,
It is impossible to use it as it is as a rotor position sensor. Therefore, a method of arranging a second Hall element that is 180 ° out of phase by an electrical angle and comparing the output voltages of the first Hall element and the second Hall element as a reference, thereby removing an excessive superimposed voltage. Can be considered.

【0010】モータのロータと磁極位置検出器の回転子
の部品は同一であり,モータ軸に対して同一角度に容易
に保持できる。また,モータの固定子と磁極位置検出器
の固定子主磁極の部品は同一であり,ある基準点に対し
て同一角度に容易に保持できる。上記の様にモータと磁
極位置検出器は高精度に位置決めでき,モータの通電相
切換位置を一致させる調整作業は不要となる。
The components of the rotor of the motor and the rotor of the magnetic pole position detector are the same and can be easily held at the same angle with respect to the motor shaft. Further, the components of the stator of the motor and the main pole of the stator of the magnetic pole position detector are the same, and can be easily held at the same angle with respect to a certain reference point. As described above, the motor and the magnetic pole position detector can be positioned with high precision, and the adjustment work for matching the energized phase switching positions of the motor is not required.

【0011】[0011]

【実施例】以下図面によって本発明の第一の実施例につ
いて説明する。図1は,モータと一体に搭載した本発明
の磁極位置検出器の断面図であり,A部が磁極位置検出
器であり,B部はハイブリッド形のステップモータ(以
下モータと称する)である。B部のモータのロータ部構
造は,外周に歯状突起を備えた第一のモータロータコア
12と,外周の歯状突起の凹凸位置を逆にした第二のモ
ータロータコア13との間に単極着磁したモータ永久磁
石14を挟持した構成となっている。15はモータ巻
線,16はモータステータコアであり巻線15が施され
ている。5はモータ回転軸4を保持するボールベアリン
グ,11はモータハウジング,17はモータ組み立て用
のネジである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a magnetic pole position detector of the present invention mounted integrally with a motor. Part A is a magnetic pole position detector, and part B is a hybrid type step motor (hereinafter referred to as a motor). The rotor part structure of the motor at the part B has a single-pole structure between a first motor rotor core 12 having teeth on the outer periphery and a second motor rotor core 13 having inverted teeth on the outer periphery. The configuration is such that a magnetized motor permanent magnet 14 is sandwiched. Reference numeral 15 denotes a motor winding, and reference numeral 16 denotes a motor stator core on which the winding 15 is provided. 5 is a ball bearing for holding the motor rotation shaft 4, 11 is a motor housing, and 17 is a screw for assembling the motor.

【0012】本発明に係わるA部の磁極位置検出部にお
いて,1は軸方向に単極着磁された検出器永久磁石,2
は外周に歯状突起の凹凸を有する検出器ロータコア,3
はロータプレート,モータ回転軸4に検出器永久磁石1
と検出器ロータコア2とロータプレート3を固定したも
のが回転子である。また,6は内周に歯状突起の凹凸を
有する検出器ステータコアの主磁極となる固定子主磁極
である。また,8は磁性材料からなる集磁チップ,9は
磁界強度を電気信号に変換するホール素子群,10はホ
ール素子群9を搭載するプリント基板である。磁極位置
検出部の検出器ロータコアとモータ部の第一のモータロ
ータコア12,第二のモータロータコア13とは同一金
型でプレス加工したもので,厚さは異なるが平面形状は
全く同一である。また同じように、磁極位置検出部の固
定子主磁極6とモータ部のモータステータコア16は同
一金型でプレス加工したもので,厚さは異なるが平面形
状は全く同一である。
In the magnetic pole position detecting section of section A according to the present invention, 1 is a detector permanent magnet which is unipolarly magnetized in the axial direction, 2
Is a detector rotor core having teeth-shaped protrusions on the outer periphery, 3
Is a rotor plate, a motor rotating shaft 4 and a detector permanent magnet 1
The rotor in which the rotor core 2 and the rotor plate 3 are fixed is a rotor. Reference numeral 6 denotes a stator main magnetic pole serving as a main magnetic pole of a detector stator core having irregularities of toothed protrusions on the inner periphery. Reference numeral 8 denotes a magnetic flux collection chip made of a magnetic material, 9 denotes a Hall element group for converting a magnetic field intensity into an electric signal, and 10 denotes a printed circuit board on which the Hall element group 9 is mounted. The detector rotor core of the magnetic pole position detecting section and the first motor rotor core 12 and the second motor rotor core 13 of the motor section are formed by pressing using the same mold, and have different thicknesses but identical planar shapes. Similarly, the stator main magnetic pole 6 of the magnetic pole position detecting unit and the motor stator core 16 of the motor unit are formed by pressing with the same mold, and have different thicknesses but the same planar shape.

【0013】図2は,3相の磁極位置検出器であり,外
周に歯状突起の凹凸を有する検出器ロータコア2からな
る回転子と,空隙を介して円環状検出器ステータコアの
内周に歯状突起の凹凸を有する固定子主磁極6とホール
素子群9の位置関係を示すものである。20は検出ステ
ータコアの外周円環状ヨークである。本図では,固定子
主磁極6の磁極数は12であり,固定子主磁極位置はa
〜lとなっている。回転子の回転により,固定子磁極位
置aに対してbでは,上述の空隙の磁気抵抗変化が電気
角で60°遅れて現れる。同様に固定子主磁極位置c〜
lは順次電気角60°遅れている。したがって,電気角
120°位相差の3相信号U,V,Wを検出するには,
固定子主磁極位置aにU相ホール素子9−uを,固定子
主磁極位置cにV相ホール素子9−vを,固定子主磁極
位置eにW相ホール素子9−wを配置すればよい。
FIG. 2 shows a three-phase magnetic pole position detector, in which a rotor composed of a detector rotor core 2 having teeth-shaped projections on the outer periphery and a tooth on the inner periphery of an annular detector stator core via a gap. 3 shows a positional relationship between a stator main magnetic pole 6 having projections and depressions and a Hall element group 9. Reference numeral 20 denotes an outer peripheral annular yoke of the detection stator core. In this figure, the number of magnetic poles of the stator main magnetic pole 6 is 12, and the position of the stator main magnetic pole is a.
~ L. Due to the rotation of the rotor, the above-described change in magnetic resistance of the air gap appears at an electrical angle of 60 ° behind b at the stator magnetic pole position a. Similarly, stator main magnetic pole positions c to
1 is sequentially delayed by 60 electrical degrees. Therefore, to detect the three-phase signals U, V, and W having a phase difference of 120 electrical degrees,
If the U-phase Hall element 9-u is arranged at the stator main magnetic pole position a, the V-phase Hall element 9-v is arranged at the stator main magnetic pole position c, and the W-phase Hall element 9-w is arranged at the stator main magnetic pole position e. Good.

【0014】図3−1,3−2は,検出器永久磁石1か
らの磁束ループを示すもので,検出器永久磁石1から出
た磁束は,ロータプレート3を通り,固定子主磁極6上
に配置された集磁チップ8に集中する。更に、内周先端
に歯状突起を有する第一の固定子主磁極6を通り、空隙
を介し検出器ロータコア2の外周歯状突起を通り,検出
器永久磁石1に戻る。また、ホール素子9を集磁チップ
8上で空隙を介してロータプレート3に対向させる。図
3−1,3−2は検出器ロータコアと固定子主磁極間の
空隙の磁気抵抗が最も小さい状態を示し,磁性体円板の
回転移動に従って,空隙の磁気抵抗は大小に変化し,そ
の結果としてホール素子9に印加される磁界強度も大小
に変化する。図3−3は固定子主磁極を電磁鋼板の積層
構造で製作し、積層用のハーフパンチ凸部を集磁チップ
として使用する一体化構造を示すもので、組み立てが容
易に出来る。
FIGS. 3A and 3B show a magnetic flux loop from the permanent magnet 1 of the detector. The magnetic flux emitted from the permanent magnet 1 of the detector passes through the rotor plate 3 and on the main magnetic pole 6 of the stator. Is concentrated on the magnetic flux collecting chip 8 disposed at the position. Further, it passes through the first stator main magnetic pole 6 having a toothed projection at the inner peripheral end, passes through the outer peripheral toothed projection of the detector rotor core 2 through the gap, and returns to the detector permanent magnet 1. Further, the Hall element 9 is opposed to the rotor plate 3 on the magnetic flux collecting chip 8 via a gap. FIGS. 3-1 and 3-2 show a state in which the magnetic resistance of the air gap between the detector rotor core and the stator main magnetic pole is the smallest, and the magnetic resistance of the air gap changes according to the rotational movement of the magnetic disk. As a result, the intensity of the magnetic field applied to the Hall element 9 also changes greatly. FIG. 3-3 shows an integrated structure in which the stator main magnetic pole is manufactured in a laminated structure of magnetic steel sheets and the half-punch convex portion for lamination is used as a magnetic flux collecting chip, which can be easily assembled.

【0015】図4は,ホール素子9−uの出力電圧波形
からU相のコミュテーション信号を生成する方法であ
る。41はホール素子9−uの出力電圧波形,42はあ
る基準電圧であり,43はU相のコミュテーション信号
である。このように,検出器永久磁石1が単極に着磁さ
れているため出力電圧波形41はDC電圧が重畳した波
形となる。出力電圧波形41と基準電圧42を比較回路
で処理することでコミュテーション信号43が得られ
る。
FIG. 4 shows a method of generating a U-phase commutation signal from the output voltage waveform of the Hall element 9-u. 41 is an output voltage waveform of the Hall element 9-u, 42 is a certain reference voltage, and 43 is a U-phase commutation signal. As described above, since the detector permanent magnet 1 is magnetized to a single pole, the output voltage waveform 41 is a waveform in which the DC voltage is superimposed. A commutation signal 43 is obtained by processing the output voltage waveform 41 and the reference voltage 42 by a comparison circuit.

【0016】しかしながら,ホール素子群9は温度特性
が悪く,周囲温度の変化で出力電圧が大きく変動する。
図4の44は温度変化した場合のホール素子の出力電圧
であり,45は比較回路出力のコミュテーション信号で
ある。このように,温度によりコミュテーション信号の
H・Lのデューティ比が変化してコミュテーションの精
度を悪化させてしまう。
However, the Hall element group 9 has poor temperature characteristics, and the output voltage greatly fluctuates due to a change in ambient temperature.
In FIG. 4, reference numeral 44 denotes an output voltage of the Hall element when the temperature changes, and reference numeral 45 denotes a commutation signal output from the comparison circuit. As described above, the duty ratio of H and L of the commutation signal changes depending on the temperature, thereby deteriorating the accuracy of commutation.

【0017】そこで図2に示すように,各相の第一のホ
ール素子群9−u,9−v,9−wに対して電気角で1
80°位相のずれた第二のホール素子群9−u’,9−
v’,9−w’を図2のように配置し,各相の第一のホ
ール素子群と第二のホール素子群の出力電圧を比較する
ことで,余分な重畳電圧を除去することが可能となる。
Therefore, as shown in FIG. 2, the first Hall element groups 9-u, 9-v, and 9-w of each phase have an electrical angle of 1 unit.
Second Hall element group 9-u ', 9-
v ′, 9−w ′ are arranged as shown in FIG. 2, and the output voltage of the first Hall element group and the output voltage of the second Hall element group of each phase are compared to remove an unnecessary superimposed voltage. It becomes possible.

【0018】図5は,ホール素子9−u’の出力電圧波
形46とホール素子9−uの出力電圧波形41との交点
からU相のコミュテーション信号43を生成するもの
で,この場合,周囲温度変化に対してホール素子の出力
電圧波形は44,47のようになるが両者の交点位置の
変化はなく,温度変化に対してコミュテーション信号4
3のデューティは変化しない。
FIG. 5 shows the generation of a U-phase commutation signal 43 from the intersection of the output voltage waveform 46 of the Hall element 9-u 'and the output voltage waveform 41 of the Hall element 9-u. The output voltage waveforms of the Hall elements are as shown by 44 and 47 with respect to the temperature change, but there is no change in the position of the intersection between the two, and the commutation signal 4 with respect to the temperature change.
The duty of No. 3 does not change.

【0019】図6は,3相分のコミュテーション信号を
示すもので,48はV相のコミュテーション信号,49
はW相のコミュテーション信号を表し,それぞれ電気角
で120°の位相差信号が生成される。
FIG. 6 shows commutation signals for three phases.
Represents a W-phase commutation signal, and a phase difference signal having an electrical angle of 120 ° is generated.

【0020】また,図1において,モータと磁極位置検
出器を組み立てる際に,第一のモータロータコア12と
検出器ロータコア2の外周歯状突起の凹凸位置を一致さ
せる。また、モータステータコア16と第一の固定子主
磁極6の内周歯状突起凹凸位置,更にU,V,W相の巻
線のあるモータステータコア主磁極とホール素子9−
u,9−v,9−wを一致させて配置することで,モー
タが回転することにより生じる誘起電圧とコミュテーシ
ョン信号の位相関係は図7のようになる。ここで43は
U相のコミュテーション信号出力,50はU相のモータ
誘起電圧波形である。このように,誘起電圧に対して得
られるコミュテーション信号は電気角90°の位相差が
あり,モータ駆動回路内で位相シフト処理を行い最適な
通電位置を決めてモータ巻線に通電する。
In FIG. 1, when assembling the motor and the magnetic pole position detector, the first motor rotor core 12 and the outer peripheral tooth-shaped projections of the detector rotor core 2 are made to coincide with each other. The motor stator core 16 and the first stator main magnetic pole 6 are provided with irregularities on the inner peripheral teeth of the main magnetic pole 6, and the motor stator core main magnetic pole having U, V, and W phase windings and the Hall element 9-.
By arranging u, 9-v, and 9-w so as to match each other, the phase relationship between the induced voltage generated by the rotation of the motor and the commutation signal is as shown in FIG. Here, 43 is a U-phase commutation signal output, and 50 is a U-phase motor induced voltage waveform. As described above, the commutation signal obtained with respect to the induced voltage has a phase difference of 90 electrical degrees, and a phase shift process is performed in the motor drive circuit to determine an optimal energizing position and energize the motor winding.

【0021】また,図3−1において,ホール素子9の
上部にロータプレート3の外周があり,この外周部に検
出器ロータコア2が先端に持つ歯状突起と同数のスリッ
トを設けることで,ホール素子9を通過する磁束変化量
が増加して検出精度があがる。
In FIG. 3A, the outer periphery of the rotor plate 3 is located above the Hall element 9, and the outer periphery is provided with the same number of slits as the number of tooth-like projections at the tip of the detector rotor core 2. The amount of change in magnetic flux passing through the element 9 increases, and the detection accuracy increases.

【0022】また,本発明の実施例では,検出器ロータ
コアとモータロータコア,検出器ステータコアとモータ
ステータコアが同一金型のプレス品で説明したが,モー
タ用と検出器用の部品は大きさが異なっても相似形状に
なっていれば使用可能であることは言うまでもない。
Further, in the embodiment of the present invention, the detector rotor core and the motor rotor core, and the detector stator core and the motor stator core have been described as being the same mold press. However, the parts for the motor and the detector are different in size. It is needless to say that a similar shape can be used.

【0023】また、本発明では,電気角90°位相差の
2相モータ,電気角36°位相差の5相モータでも上述
した3相モータの実施例と同様に適用可能であることも
言うまでもない。
Further, in the present invention, it is needless to say that a two-phase motor having a phase difference of 90 ° electrical angle and a five-phase motor having a phase difference of 36 ° electrical angle can be applied similarly to the above-described embodiment of the three-phase motor. .

【0024】上記実施例の形態に例示した本発明の磁極
位置検出器の特徴について列挙する。 (a)多相ハイブリド形ステップモータの磁極位置をホ
ール素子で安価に検出可能である。 (b)本発明の磁極位置検出器の主要部品は,ハイブリ
ッド形ステップモータの部品と等価であり安価に構成さ
れる。 (c)各固定子主磁極に集磁チップを配置することで,
各固定子主磁極相互間での磁路が形成されず,ホール素
子に磁束が集中し,コミュテーション信号としての精度
が良い。 (d)各相に電気角180°位相差のホール素子を付加
配置し,各相ホール素子出力の交点を検出することで,
ゼロクロス検出と等価になり,温度に対して精度の良い
コミュテーション信号が得られる。 (g)本発明の磁極位置検出器の主要部品は,ハイブリ
ッド形ステップモータの部品と等価であり,位置合わせ
の組み立てが容易であり,モータ誘起電圧との位置合わ
せの後作業が不要である。 (h)本発明に係わる電気部品(ホール素子,IC,抵
抗等)は全て一枚のプリント基板上に配置され接続が容
易であり,小型化されてモータ内に内蔵可能である。 (i)本発明の磁極位置検出器は簡略化された構造で,
高精度に位置を検出可能である。
The features of the magnetic pole position detector of the present invention exemplified in the above embodiment will be enumerated. (A) The position of the magnetic pole of the polyphase hybrid type step motor can be detected at low cost with a Hall element. (B) The main parts of the magnetic pole position detector of the present invention are equivalent to the parts of the hybrid type stepping motor and are constructed at low cost. (C) By arranging a magnetic flux collecting tip on each stator main magnetic pole,
No magnetic path is formed between the stator main magnetic poles, and the magnetic flux concentrates on the Hall element, so that the accuracy as a commutation signal is good. (D) By additionally arranging a Hall element having an electrical angle of 180 ° in each phase and detecting the intersection of the Hall element outputs,
This is equivalent to zero-cross detection, and a commutation signal with high temperature accuracy can be obtained. (G) The main parts of the magnetic pole position detector of the present invention are equivalent to the parts of the hybrid type stepping motor, the assembly of the alignment is easy, and no work is required after the alignment with the motor induced voltage. (H) The electric components (Hall elements, ICs, resistors, etc.) according to the present invention are all arranged on a single printed circuit board, are easily connected, can be miniaturized, and can be built in the motor. (I) The magnetic pole position detector of the present invention has a simplified structure,
The position can be detected with high accuracy.

【0025】[0025]

【発明の効果】以上詳細に説明したごとく,本発明の磁
極位置検出器は,小ステップ角仕様のハイブリド形ステ
ップモータをブラシレスDCモータとして運転する際の
ロータの磁極位置検出を,安価で,組み立て性が良く,
位置検出の精度向上が図れ,簡素化された構造で実現可
能となる。本磁極位置検出器を搭載したモータは,回転
ムラ低減・動作範囲拡大・高効率運転が可能となり用途
を大幅に拡大できる。
As described in detail above, the magnetic pole position detector of the present invention can detect the magnetic pole position of the rotor when the hybrid type step motor having the small step angle is operated as a brushless DC motor at low cost and with low assembly cost. Good
The accuracy of position detection can be improved and can be realized with a simplified structure. Motors equipped with this magnetic pole position detector can reduce rotation unevenness, expand the operating range, and operate with high efficiency, greatly expanding the applications.

【0026】[0026]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に成る3相磁極位置検出器とハイブリッ
ド形ステップモータの構造図
FIG. 1 is a structural diagram of a three-phase magnetic pole position detector and a hybrid type step motor according to the present invention.

【図2】本発明に成る3相磁極位置検出器の平面構造図FIG. 2 is a plan structural view of a three-phase magnetic pole position detector according to the present invention.

【図3】本発明に成る磁極位置検出器の磁束ループを示
す構造図
FIG. 3 is a structural diagram showing a magnetic flux loop of the magnetic pole position detector according to the present invention.

【図4】本発明に成る磁極位置検出器のホール素子の出
力電圧波形図
FIG. 4 is an output voltage waveform diagram of the Hall element of the magnetic pole position detector according to the present invention.

【図5】本発明に成る磁極位置検出器の第一のホール素
子と第二のホール素子の出力電圧波形図
FIG. 5 is an output voltage waveform diagram of a first Hall element and a second Hall element of the magnetic pole position detector according to the present invention.

【図6】本発明に成る磁極位置検出器から生成したコミ
ュテーション信号図
FIG. 6 is a commutation signal diagram generated from the magnetic pole position detector according to the present invention.

【図7】本発明に成る磁極位置検出器から生成したコミ
ュテーション信号図とモータ誘起電圧の関係図
FIG. 7 is a relationship diagram between a commutation signal diagram generated from the magnetic pole position detector according to the present invention and a motor induced voltage.

【図8】従来の磁極位置検出器FIG. 8 shows a conventional magnetic pole position detector.

【符号の説明】[Explanation of symbols]

A・・・磁極位置検出器 B・・・ハイブリッド形ステップモータ a〜l・・・固定子主磁極位置を示す 1・・・検出器永久磁石 2・・・検出器ロータコア 3・・・ロータプレート 4・・・モータ回転軸 5・・・ボールベアリング 6・・・第一の固定子主磁極 8・・・集磁チップ 9・・・ホール素子群 10・・・プリント基板 11・・・モータハウジング 12・・・第一のモータロータコア 13・・・第二のモータロータコア 14・・・モータ永久磁石 15・・・モータ巻線 16・・・モータステータコア 17・・・ネジ 20・・・円環状ヨーク部 41・・・ホール素子9−uの出力電圧波形 42・・・基準電圧 43・・・U相コミュテーション信号 44・・・周囲温度変化によるホール素子9−uの出力
電圧波形 45・・・周囲温度変化によるU相コミュテーション信
号 46・・・ホール素子9−u’の出力電圧波形 47・・・周囲温度変化によるホール素子9−u’の出
力電圧波形 48・・・V相コミュテーション信号 49・・・W相コミュテーション信号 50・・・U相モータ巻線の誘起電圧波形 51・・・ホール素子9−uの出力電圧波形 52・・・U相コミュテーション信号 53・・・周囲温度変化によるホール素子9−uの出力
電圧波形 101・・・磁気ドラム 102・・・モータ軸 103・・・モータ 104・・・第一のセンサコア 105・・・第二のセンサコア 106・・・ホール素子 107・・・第一の磁性体 108・・・第二の磁性体
A: Magnetic pole position detector B: Hybrid type step motor al: Indicates the main magnetic pole position of the stator 1 ... Permanent detector magnet 2 ... Detector rotor core 3 ... Rotor plate 4 ... Motor rotating shaft 5 ... Ball bearing 6 ... First stator main magnetic pole 8 ... Magnetic collecting chip 9 ... Hall element group 10 ... Printed circuit board 11 ... Motor housing 12 ... first motor rotor core 13 ... second motor rotor core 14 ... motor permanent magnet 15 ... motor winding 16 ... motor stator core 17 ... screw 20 ... annular yoke Part 41: Output voltage waveform of Hall element 9-u 42: Reference voltage 43: U-phase commutation signal 44: Output voltage waveform of Hall element 9-u due to change in ambient temperature 45: U-phase commutation signal due to ambient temperature change 46 ... Output voltage waveform of Hall element 9-u '47 ... Output voltage waveform of Hall element 9-u' due to ambient temperature change 48 ... V-phase commutation signal 49: W-phase commutation signal 50: Induced voltage waveform of U-phase motor winding 51: Output voltage waveform of Hall element 9-u 52: U-phase commutation signal 53: Ambient temperature Output voltage waveform of Hall element 9-u due to change 101 ... Magnetic drum 102 ... Motor shaft 103 ... Motor 104 ... First sensor core 105 ... Second sensor core 106 ... Hall element 107: first magnetic body 108: second magnetic body

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H02K 37/04 501 H02P 8/00 303A // H02P 8/00 303 H02K 11/00 C (72)発明者 清水 信司 群馬県桐生市相生町3−93 日本サーボ株 式会社桐生工場内 (72)発明者 鵜木 洋治 群馬県桐生市相生町3−93 日本サーボ株 式会社桐生工場内 Fターム(参考) 2F063 AA01 AA35 BA30 BC06 BD01 BD11 BD16 CA34 CA40 CB01 DA01 DA05 DD06 EA03 GA24 GA40 GA52 GA67 GA69 KA01 LA01 LA19 LA23 2F077 AA11 AA13 FF13 FF34 JJ02 JJ08 NN04 NN21 PP12 PP26 QQ07 VV02 VV33 5H580 CA02 CA12 HH09 HH27 5H611 AA01 BB01 BB10 PP05 QQ03 RR02 UA01 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H02K 37/04 501 H02P 8/00 303A // H02P 8/00 303 H02K 11/00 C (72) Inventor Shinji Shimizu 3-93, Aioicho, Kiryu-shi, Gunma Japan Servo Corporation Kiryu Plant (72) Inventor Yoji Unoki 3-93, Aioicho, Kiryu-shi, Gunma Japan Servo Corporation Kiryu Plant F-term (reference) 2F063 AA01 AA35 BA30 BC06 BD01 BD11 BD16 CA34 CA40 CB01 DA01 DA05 DD06 EA03 GA24 GA40 GA52 GA67 GA69 KA01 LA01 LA19 LA23 2F077 AA11 AA13 FF13 FF34 JJ02 JJ08 NN04 NN21 PP12 PP26 QQ07 VV02 VV33 5H09 CA02H01 BB02H01 A0211

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 外周に複数の歯状突起を設けたロータコ
アとロータコアよりも外径が大きく磁性材料から成る円
形のロータプレート間に,回転軸方向にNSと磁化され
た永久磁石を挟持して回転軸に固着し,ロータコアの外
周にラジアル空隙を介して,その先端に複数個の歯状突
起を備え,歯状突起に発生した磁束を集束させる複数個
の固定子主磁極を円環状ヨークの内周に等間隔に設けた
ステータコアを具備し,固定子主磁極とロータプレート
とを軸方向にスラスト空隙を設けて対向させ配置し,ス
ラスト空隙に磁束を電気信号に変換する磁気変換素子を
軸方向に配置し、ロータコアの回転に応じて変化する固
定子主磁極を通る磁束変化を検出することで検出器ロー
タコアの位置を検出することを特徴とした磁極位置検出
器。
1. A permanent magnet magnetized with NS in the rotation axis direction is sandwiched between a rotor core having a plurality of tooth-shaped protrusions on its outer periphery and a circular rotor plate having a larger outer diameter than the rotor core and made of a magnetic material. A plurality of stator main magnetic poles, which are fixed to the rotating shaft and have a plurality of tooth-shaped protrusions at their ends through radial gaps on the outer periphery of the rotor core, and converge magnetic flux generated in the tooth-shaped protrusions, are connected to the annular yoke. A stator core is provided at equal intervals on the inner circumference, and a stator main magnetic pole and a rotor plate are arranged so as to face each other with a thrust gap in the axial direction. A magnetic pole position detector characterized by detecting the position of a detector rotor core by detecting a change in magnetic flux passing through a stator main magnetic pole that changes in accordance with rotation of a rotor core.
【請求項2】 スラスト空隙に配置された磁気変換素子
の軸方向に,磁性材料からなる集磁チップを配置したこ
とを特徴とする請求項1に記載の磁極位置検出器。
2. The magnetic pole position detector according to claim 1, wherein a magnetic flux collecting tip made of a magnetic material is arranged in an axial direction of the magnetic transducer arranged in the thrust gap.
【請求項3】 ロータコアの外周歯状突起の凹凸と,固
定子主磁極先端の歯状突起の凹凸によるラジアル空隙の
磁気抵抗変化が電気角60°毎の位相差となるように,
固定子主磁極数を3n(nは2以上の偶数)とし,基準
とする固定子主磁極から電気角で60°,120°,1
80°,240°,300°となる位置のスラスト空隙
に6個の磁気変換素子を配置する請求項2に記載の磁極
位置検出器。
3. The magnetic resistance change of the radial gap due to the unevenness of the outer peripheral toothed projection of the rotor core and the unevenness of the toothed projection at the tip of the stator main pole becomes a phase difference every electrical angle of 60 °.
The number of stator main magnetic poles is 3n (n is an even number of 2 or more), and electrical angles of 60 °, 120 °, and 1 from the reference stator main magnetic pole.
The magnetic pole position detector according to claim 2, wherein six magnetic transducers are arranged in the thrust gap at positions of 80 °, 240 °, and 300 °.
【請求項4】 ロータコアの外周歯状突起の凹凸と,固
定子主磁極先端の歯状突起の凹凸によるラジアル空隙の
磁気抵抗変化が電気角90°毎の位相差となるように,
固定子主磁極数を2n(nは2以上の偶数)とし,基準
とする固定子主磁極から電気角で90°,180°,2
70°となる位置のスラスト空隙に4個の磁気変換素子
を配置する請求項2に記載の磁極位置検出器。
4. The method of claim 1, wherein a change in magnetic resistance of the radial gap due to the unevenness of the outer peripheral tooth-shaped protrusion of the rotor core and the unevenness of the tooth-shaped protrusion at the tip of the stator main pole has a phase difference at every electrical angle of 90 °.
The number of stator main magnetic poles is 2n (n is an even number equal to or greater than 2), and the electrical angle is 90 °, 180 °, 2 ° from the reference stator main magnetic pole.
The magnetic pole position detector according to claim 2, wherein four magnetic transducers are arranged in the thrust gap at a position of 70 °.
【請求項5】 ロータコアの外周歯状突起の凹凸と,固
定子主磁極先端の歯状突起の凹凸によるラジアル空隙の
磁気抵抗変化が電気角36°毎の位相差となるように,
固定子主磁極数を5n(nは2以上の偶数)とし,基準
とする固定子主磁極から電気角で36°,72°,10
8°,144°,180°、216°,252°,28
8°,324°となる位置のスラスト空隙に10個の磁
気変換素子を配置する請求項2に記載の磁極位置検出
器。
5. The method of claim 1, wherein a change in magnetic resistance of the radial gap due to the unevenness of the outer peripheral tooth-shaped protrusion of the rotor core and the unevenness of the tooth-shaped protrusion at the tip of the stator main pole has a phase difference every electrical angle of 36 °.
The number of stator main magnetic poles is 5n (n is an even number of 2 or more), and electrical angles of 36 °, 72 °, 10 ° from the reference stator main magnetic pole.
8 °, 144 °, 180 °, 216 °, 252 °, 28
The magnetic pole position detector according to claim 2, wherein ten magnetic transducers are arranged in the thrust gap at positions of 8 ° and 324 °.
【請求項6】 請求項3,4,5において,電気角が1
80°異なる磁気変換素子の各々をペアとし、そのペア
である2個の磁気変換素子の出力電圧波形を比較しクロ
ス点を検出することを特徴とする磁極位置検出器。
6. The method according to claim 3, wherein the electrical angle is 1
A magnetic pole position detector comprising a pair of magnetic transducers that differ by 80 °, and comparing output voltage waveforms of two magnetic transducers in the pair to detect a cross point.
【請求項7】 請求項2において,検出器ステータコア
を電磁鋼板の積層で構成し、積層用のハーフパンチ凸部
を集磁チップ部として、固定子磁極と集磁チップを一体
化したことを特徴とする磁極位置検出器。
7. The stator core according to claim 2, wherein the stator core is formed by laminating electromagnetic steel sheets, and the stator magnetic poles and the magnetic flux collecting chip are integrated by using the laminating half-punch convex portion as a magnetic flux collecting chip portion. Magnetic pole position detector.
【請求項8】 前記磁気変換素子を1枚のプリント基板
上に配置し,各固定子磁極間の隙間に,磁気変換素子の
出力処理回路用の電子部品を搭載すること,を特徴とす
る請求項1〜7に記載の磁極位置検出器。
8. The magnetic transducer according to claim 1, wherein the magnetic transducer is arranged on a single printed circuit board, and an electronic component for an output processing circuit of the magnetic transducer is mounted in a gap between the stator magnetic poles. Item 7. A magnetic pole position detector according to items 1 to 7.
【請求項9】 請求項1〜8に記載の磁極位置検出器を
モータと一体化して組み込んだことを特徴とする磁極位
置検出器。
9. A magnetic pole position detector, wherein the magnetic pole position detector according to claim 1 is integrated with a motor.
【請求項10】 請求項1〜5において,円形のロータ
プレート外周が磁気変換素子上になるように設定し、ロ
ータプレート外周にロータコアと同数の歯状スリットを
設けたことを特徴とする磁極位置検出器。
10. The magnetic pole position according to claim 1, wherein the outer periphery of the circular rotor plate is set to be on the magnetic transducer, and the outer periphery of the rotor plate is provided with the same number of toothed slits as the rotor core. Detector.
JP2000247737A 2000-08-17 2000-08-17 Magnetic pole position detector Expired - Fee Related JP3395147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000247737A JP3395147B2 (en) 2000-08-17 2000-08-17 Magnetic pole position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000247737A JP3395147B2 (en) 2000-08-17 2000-08-17 Magnetic pole position detector

Publications (2)

Publication Number Publication Date
JP2002062162A true JP2002062162A (en) 2002-02-28
JP3395147B2 JP3395147B2 (en) 2003-04-07

Family

ID=18737771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000247737A Expired - Fee Related JP3395147B2 (en) 2000-08-17 2000-08-17 Magnetic pole position detector

Country Status (1)

Country Link
JP (1) JP3395147B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007028811A (en) * 2005-07-19 2007-02-01 Hitachi Ltd Brake control device
EP2587223A2 (en) 2011-10-28 2013-05-01 Sanyo Denki Co., Ltd. Magnetic encoder with improved resolution

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007028811A (en) * 2005-07-19 2007-02-01 Hitachi Ltd Brake control device
EP2587223A2 (en) 2011-10-28 2013-05-01 Sanyo Denki Co., Ltd. Magnetic encoder with improved resolution
US8928313B2 (en) 2011-10-28 2015-01-06 Sanyo Denki Co., Ltd. Magnetic encoder with improved resolution

Also Published As

Publication number Publication date
JP3395147B2 (en) 2003-04-07

Similar Documents

Publication Publication Date Title
US6552453B2 (en) Magnetic pole position detector for an electric motor
JP4692923B2 (en) Resolver device and motor device equipped with resolver device
JPH01286758A (en) Permanent magnet type synchronous motor
JP2002199692A (en) Stepping motor, stepping motor device and its drive method
JP3364562B2 (en) Motor structure
JPH0389899A (en) Stepping motor and recording method of rotor-position signal in same stepping motor
JP4103018B2 (en) Servomotor
JP2008263738A (en) Rotary electric machine
JP2001333560A (en) Magnetic pole position detector
JP3395147B2 (en) Magnetic pole position detector
JP2783546B2 (en) Brushless motor
JP2000092805A (en) Servo motor
JP2001165706A (en) Variable-reluctance type angle detector
JP2021122171A (en) Stepping motor
Bhandari et al. A Novel Variable Reluctance Resolver With Simplified Winding Arrangement and Adaptive PI Controller
JPH118960A (en) Magnetic pole shifting jig and manufacture of rotor using the same
EP0190918A1 (en) Position sensor/tachometer
JPS62163553A (en) 10-phase permanent magnet type stepping motor
JP2001078392A (en) Stepping motor with sensor
JPH0819238A (en) Position detector for motor
JP2004194423A (en) Brushless motor
JPS6134872Y2 (en)
JP2975692B2 (en) Motor pulse signal generator
JPS6223353A (en) Brushless motor
JPH0417557A (en) Single-phase brushless motor having iron core

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees