JP2002060891A - Steel having excellent toughness in heat affected zone - Google Patents
Steel having excellent toughness in heat affected zoneInfo
- Publication number
- JP2002060891A JP2002060891A JP2000242366A JP2000242366A JP2002060891A JP 2002060891 A JP2002060891 A JP 2002060891A JP 2000242366 A JP2000242366 A JP 2000242366A JP 2000242366 A JP2000242366 A JP 2000242366A JP 2002060891 A JP2002060891 A JP 2002060891A
- Authority
- JP
- Japan
- Prior art keywords
- toughness
- steel
- affected zone
- weld
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、建築、土木、海洋
構造物、パイプ、造船、貯槽等の各分野で使用される鋼
材に係わり、特に溶接熱影響部靱性に優れた鋼材に関す
る。なお、本発明でいう鋼材は、厚鋼板、形鋼、棒鋼、
鋼管を含むものとする。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel material used in various fields such as construction, civil engineering, marine structures, pipes, shipbuilding, and storage tanks, and more particularly to a steel material having excellent weld heat affected zone toughness. In addition, the steel material referred to in the present invention is a steel plate, a section steel, a steel bar,
It shall include steel pipes.
【0002】[0002]
【従来の技術】建築、土木、海洋構造物等の各分野で使
用される鋼材は、一般に、溶接接合により所望の形状の
構造物に仕上げられている。構造物の安全性の観点か
ら、使用する鋼材の母材靱性はもちろん溶接部靱性に優
れることが要求される。その際、最も問題となるのは、
溶接部、特にボンド部の靱性である。ボンド部は、溶融
点直下の高温に晒され、オーステナイトの結晶粒が最も
粗大化する。そして、引き続いての冷却により、マルテ
ンサイトや上部ベイナイトに変態しやすくなる。マルテ
ンサイト組織や上部ベイナイト組織は脆弱な組織であ
り、マルテンサイト組織や上部ベイナイト組織が生成す
ることにより、ボンド部靱性が劣化する。2. Description of the Related Art Generally, steel materials used in various fields such as construction, civil engineering, and marine structures are finished to have a desired shape by welding. From the viewpoint of the safety of the structure, it is required that the steel to be used be excellent not only in base metal toughness but also in weld toughness. The most problematic is that
The toughness of the weld, especially the bond. The bond is exposed to a high temperature just below the melting point, and the austenite crystal grains are most coarsened. And, by the subsequent cooling, it is easy to transform into martensite or upper bainite. The martensite structure and the upper bainite structure are fragile structures, and the formation of the martensite structure and the upper bainite structure deteriorates the bond part toughness.
【0003】このような溶接部の靱性劣化を防止する方
法として大きく分けて、(1)介在物、析出物を利用
し、オーステナイト粒の粗大化を抑制する、(2)変態
後の組織を高靱化組織とする、の2つの方法が考えられ
ている。介在物、析出物を利用し、オーステナイト粒の
粗大化を抑制する方法(上記した(1))の例として
は、例えば、特開昭60−184663号公報には、C:0.03〜
0.1 %、Mn:0.4 〜2.0 %、Si:0.1 %以下とし、Ti:
0.002 〜0.02%、希土類元素(REM ):0.003 〜0.05
%、Al:0.04〜0.10%を含有させることにより、入熱10
0kJ/cm以上の大入熱溶接においても十分な溶接部の低温
靱性を有する大入熱溶接用低温用高張力鋼板が開示され
ている。[0003] As a method for preventing such toughness deterioration of the welded portion, it can be roughly divided into (1) using inclusions and precipitates to suppress the coarsening of austenite grains, and (2) improving the structure after transformation. Two methods have been considered: a toughened structure. As an example of the method of suppressing coarsening of austenite grains by using inclusions and precipitates ((1) described above), for example, Japanese Patent Application Laid-Open No.
0.1%, Mn: 0.4 to 2.0%, Si: 0.1% or less, Ti:
0.002 to 0.02%, rare earth element (REM): 0.003 to 0.05
%, Al: 0.04 ~ 0.10%, heat input 10
A low-temperature high-strength steel sheet for large heat input welding having sufficient low-temperature toughness of a weld even in large heat input welding of 0 kJ / cm or more is disclosed.
【0004】また、変態後の組織を高靱化組織とする方
法(上記(2))の例としては、例えば、特公昭59−11
658 号公報には、Cを0.03%以下、Siを0.05〜0.40%、
Mn:0.70〜2.50%にして、大入熱溶接継手靱性に特に有
効なNiを2.0 〜12.0%添加し、sol Alを0.005 〜0.090
%、(P+S)を0.015 %以下、(N+O)を0.009%
以下にすることにより、優れた低温靱性を有し、高能率
溶接が可能な鋼を製造し得るとした高能率溶接低温用鋼
が開示されている。特公昭59−11658 号公報に記載され
た技術は、有害な不純物であるP,S,NおよびOを一
定量以下に厳しく低減し、低温靱性に有効なNi量を一定
範囲で含有させるとともに、大入熱溶接時の溶接熱影響
部(HAZ)の島状マルテンサイト量を一定量以下にす
るため、C,Nを低減するというものである。As an example of the method (2) described above, in which the transformed structure is made to have a toughened structure, for example, Japanese Patent Publication No. 59-11
No. 658 discloses that C is 0.03% or less, Si is 0.05 to 0.40%,
Mn: 0.70 to 2.50%, 2.0 to 12.0% of Ni, which is particularly effective for high heat input weld joint toughness, and 0.005 to 0.090 of sol Al
%, (P + S) 0.015% or less, (N + O) 0.009%
A high-efficiency welding low-temperature steel that can produce a steel having excellent low-temperature toughness and capable of high-efficiency welding is disclosed below. The technique described in JP-B-59-11658 strictly reduces P, S, N and O, which are harmful impurities, to a certain amount or less, and contains an effective amount of Ni for low-temperature toughness in a certain range. In order to reduce the amount of island martensite in the weld heat affected zone (HAZ) at the time of large heat input welding, C and N are reduced.
【0005】また、特公昭61−39392 号公報には、低C
化(0.005 〜0.03%)、Nb添加(0.005 〜0.05%)およ
び低P化(<0.005 %)し、Niを0.5 〜4.0 %含み、さ
らにTiを0.002 〜0.02%、Caを0.0005〜0.005 %含有す
る低温用鋼が開示されている。この低温用鋼は、溶接部
とくにボンド部での低温靱性に優れ、かつCOD値にば
らつきが非常に少なく、しかも安価でより低温靱性に安
定して優れる性能を有するとされる。Further, Japanese Patent Publication No. 61-39392 discloses a low C
(0.005 to 0.03%), Nb added (0.005 to 0.05%) and low P (<0.005%), containing 0.5 to 4.0% Ni, 0.002 to 0.02% Ti, 0.0005 to 0.005% Ca A low temperature steel is disclosed. This low-temperature steel is said to be excellent in low-temperature toughness in a welded part, particularly in a bond part, has very little variation in COD value, and is inexpensive and has a stable and excellent low-temperature toughness.
【0006】また、特開昭61−143517号公報では、低C
化(0.005 〜0.05%)するとともに少量のTiを添加し、
さらにNbもしくはVを添加した鋼を、仕上げ圧延終了温
度を900 〜600 ℃の範囲内となるように熱間圧延し、仕
上げ圧延終了後直ちに急冷し、その後焼戻す、いわゆる
直接焼入れ−焼戻し処理を適用する、低温用高強度鋼板
の製造方法が開示されている。この低温用高強度鋼板
は、降伏強さ46kgf/mm2以上、引張強さ53kgf/mm2 以上
の高強度を有し、とくに板厚50mm以上の厚肉材として溶
接部を含めた低温靱性が優れるとしている。Japanese Patent Application Laid-Open No. 61-143517 discloses a low C
(0.005 to 0.05%) and a small amount of Ti
Further, the steel to which Nb or V is added is hot-rolled so that the finish rolling end temperature is in the range of 900 to 600 ° C., quenched immediately after the finish rolling is completed, and then tempered, so-called direct quenching-tempering treatment. A method for manufacturing a high-strength steel sheet for low temperature to be applied is disclosed. The low-temperature high-strength steel sheet, the yield strength of 46kgf / mm 2 or more, a tensile strength of 53kgf / mm have 2 or more high strength, particularly low temperature toughness, including welds as thickness 50mm or more thick material It is said to be excellent.
【0007】また、特開昭61−143517号公報に記載され
た技術では、溶接部靱性を最も良好にするNi量は1.0 〜
4.0 %であるとしている。また、特公平6-49898 号公報
には、低C化(0.005 〜0.05%)、低Ceq化(0.36%以
下)するとともに、Ti、Nbを含有(Ti:0.005 〜0.020
%、Nb:0.020 %超0.10%以下)する鋼を、制御圧延
し、Ar3−40℃〜Ar3+40℃の温度で圧延を終了し、2
℃/s以上の冷却速度で400 〜600 ℃の温度まで加速冷却
して、島状マルテンサイトの生成を抑制する溶接熱影響
部の靱性に優れた低温用高降伏点鋼の製造方法が開示さ
れている。According to the technique described in Japanese Patent Application Laid-Open No. 61-143517, the amount of Ni for making the weld toughness the best is 1.0 to 1.0.
It is 4.0%. In Japanese Patent Publication No. 6-49898, the C content is reduced (0.005 to 0.05%), the Ceq is reduced (0.36% or less), and Ti and Nb are contained (Ti: 0.005 to 0.020%).
%, Nb: more than 0.020% and 0.10% or less) is rolled by controlled rolling, and the rolling is completed at a temperature of Ar 3 −40 ° C. to Ar 3 + 40 ° C.
A method for producing a high yield point steel for low temperature with excellent toughness of the weld heat affected zone, which suppresses the formation of island-like martensite, by accelerated cooling to a temperature of 400 to 600 ° C. at a cooling rate of not less than 400 ° C./s. ing.
【0008】[0008]
【発明が解決しようとする課題】しかしながら、特公昭
59−11658 号公報に記載された技術では、溶接部靱性を
向上させるために、高価なNiを多量に添加し、かつ不純
物元素を低減する必要があり、製造コストが増加し、経
済的に不利になるという問題があった。また、特開昭60
−184663号公報に記載された技術では、Tiの窒化物や希
土類元素(REM )の硫酸化物などを有効に微細分散させ
て、大入熱溶接時においても十分な溶接部の低温靱性を
得ようとするものであるが、TiN の一部が高温で再溶解
し、固溶Nが増加するため、熱影響部の靱性が低下する
という問題に加えて、REM の硫酸化物等のREM 系介在物
が凝集粗大化を起こしやすく、粗大な介在物が破壊の起
点となり靱性を劣化させるという問題があった。[Problems to be solved by the invention]
In the technique described in JP-A-59-11658, it is necessary to add a large amount of expensive Ni and reduce impurity elements in order to improve the toughness of the welded portion, which increases the manufacturing cost and is economically disadvantageous. There was a problem of becoming. In addition, JP 60
According to the technique described in Japanese Patent No. -184633, it is possible to obtain a sufficient low-temperature toughness of a welded portion even in large heat input welding by effectively and finely dispersing a nitride of Ti or a sulfate of a rare earth element (REM). However, in addition to the problem that part of TiN is redissolved at high temperature and solute N increases, the toughness of the heat-affected zone decreases, and in addition, REM-based inclusions such as REM sulfates However, there is a problem that coarse inclusions are liable to cause agglomeration and coarse inclusions become a starting point of fracture and deteriorate toughness.
【0009】また、特開昭61−143517号公報に記載され
た技術では、B無添加であり、TiNの一部が高温で再溶
解し、フリーNが増加するため、溶接金属近傍の靱性向
上が図れないという問題があった。また、特公昭61−39
392 号公報に記載された技術では、B無添加であり、Ti
Nの一部が高温で再溶解し、フリーNが増加するため、
溶接金属近傍の靱性向上が図れないという問題に加え
て、Pを0.005 %未満に低減するために非常にコストの
かかる特殊な方法で精錬する必要があり、経済的に不利
となるという問題があった。In the technique described in Japanese Patent Application Laid-Open No. 61-143517, B is not added, a part of TiN is redissolved at high temperature, and free N increases, so that the toughness near the weld metal is improved. There was a problem that can not be achieved. Also, Japanese Patent Publication No. 61-39
In the technique described in Japanese Patent Publication No. 392, B is not added and Ti is added.
Since part of N redissolves at high temperature and free N increases,
In addition to the problem that the toughness cannot be improved in the vicinity of the weld metal, it is necessary to perform refining by a very expensive special method to reduce P to less than 0.005%, which is disadvantageous economically. Was.
【0010】また、特公平6-49898 号公報に記載された
技術では、母材の島状マルテンサイトの生成を抑制しよ
うとするものであるが、大入熱溶接による溶接熱影響部
で島状マルテンサイトの新たな生成が避けられず、溶接
熱影響部靱性が劣化するという問題があった。本発明
は、上記した従来技術の問題を解決し、安価で、100kJ/
cm以上という大入熱溶接の溶接熱影響部靱性に優れる鋼
材を提案することを目的とする。In the technique described in Japanese Patent Publication No. 6-49898, an attempt is made to suppress the formation of island-like martensite in the base material. There is a problem that new generation of martensite is unavoidable and the toughness of the heat affected zone is deteriorated. The present invention solves the above-mentioned problems of the prior art, and is inexpensive, 100 kJ /
It is an object of the present invention to propose a steel material having excellent heat affected zone toughness of large heat input welding of not less than cm.
【0011】[0011]
【課題を解決するための手段】本発明者らは、上記した
課題を達成するために、介在物、析出物を利用したオー
ステナイト粒の細粒化による手段以外の溶接部靱性の向
上方法について、鋭意考究した。その結果、Cが濃化し
た硬質の島状マルテンサイトの生成を制御することによ
り、極低炭素鋼材の溶接部靱性を顕著に向上できること
に想到した。本発明者らの検討によれば、C:0.03質量
%未満の極低炭素系鋼材における島状マルテンサイト量
は、鋼材に含有されるMn、Ni含有量に著しく影響され、
Mn、Ni含有量をある範囲に調整してはじめて優れた溶接
部靱性を示すことがわかった。Means for Solving the Problems In order to achieve the above-mentioned object, the present inventors have proposed a method for improving the toughness of a welded portion other than a method of refining austenite grains using inclusions and precipitates. I studied diligently. As a result, they have found that by controlling the generation of hard island-like martensite in which C is enriched, the weld toughness of the ultra-low carbon steel material can be significantly improved. According to the study of the present inventors, the amount of island martensite in an ultra-low carbon steel material having a C content of less than 0.03% by mass is significantly affected by the Mn and Ni contents contained in the steel material,
It was found that excellent weld toughness was exhibited only when the Mn and Ni contents were adjusted within a certain range.
【0012】まず、本発明の基礎になった実験結果につ
いて説明する。熱力学計算ソフトであるThermo-Calc を
用いて得られた、フェライト中の最大C固溶量に及ぼす
Mn、Ni量の影響を図1に示す。横軸は、Fe−C−1.5 %
Ni系におけるMn量、Fe−C−1.4 %Mn系におけるNi量で
ある。図1から、Mn、Ni含有量により、フェライト中の
最大C固溶量が大きく変化し、Mn、Ni含有量の増加とと
もにフェライト中の最大C固溶量が低下することがわか
る。このことから、本発明者らは、溶接熱影響部におい
て溶接熱サイクルの冷却中に変態したフェライトから未
変態のオーステナイトへ排出されるカーボン量がMn、Ni
含有量とともに増加し、島状マルテンサイトの生成量が
増加するものと考え、Mn、Ni含有量を調整することによ
り、島状マルテンサイトの生成を制御できるという知見
を得た。First, the experimental results on which the present invention is based will be described. Influence on maximum C solid solution in ferrite obtained using Thermo-Calc which is thermodynamic calculation software
FIG. 1 shows the effect of the amounts of Mn and Ni. The horizontal axis is Fe-C-1.5%
These are the Mn content in the Ni system and the Ni content in the Fe-C-1.4% Mn system. From FIG. 1, it can be seen that the maximum C solid solution amount in the ferrite greatly changes depending on the Mn and Ni contents, and the maximum C solid solution amount in the ferrite decreases as the Mn and Ni contents increase. From this, the present inventors have found that the amount of carbon discharged from the transformed ferrite to untransformed austenite during the cooling of the welding heat cycle in the welding heat-affected zone is Mn, Ni
It is thought that the amount of island martensite increases with the content and that the amount of island martensite increases, and it was found that the adjustment of the Mn and Ni contents can control the formation of island martensite.
【0013】つぎに、本発明者らは、これらの知見を基
に、島状マルテンサイトの生成に及ぼすMn、Ni含有量の
影響について確認した。質量%で、C:0.02%、Si:0.
20%、Mn:1.4 %、Al:0.03%、Ti:0.01%、B:0.00
1 %を基本成分とし、Ni含有量を0〜3%の範囲で変化
させた鋼素材、およびC:0.02%、Si:0.20%、Mn:0.
9 %、Al:0.03%、Ti:0.01%、B:0.001 %を基本成
分とし、Ni:1.5 %を含有する鋼素材を用い、これら鋼
素材を、1150℃に加熱した後、未再結晶域で累積圧下
率:50%以上、圧延終了温度:850℃とする熱間圧延を
施し、16mm厚の厚鋼板とした。Next, based on these findings, the present inventors confirmed the effect of the Mn and Ni contents on the formation of island martensite. In mass%, C: 0.02%, Si: 0.
20%, Mn: 1.4%, Al: 0.03%, Ti: 0.01%, B: 0.00
A steel material containing 1% as a basic component and having a Ni content varied in the range of 0 to 3%, C: 0.02%, Si: 0.20%, Mn: 0.
9%, Al: 0.03%, Ti: 0.01%, B: 0.001%, and using Ni: 1.5% as a base material. After heating these steel materials to 1150 ° C, unrecrystallized area Then, hot rolling was performed at a cumulative rolling reduction of 50% or more and a rolling end temperature of 850 ° C. to obtain a 16 mm thick steel plate.
【0014】これら厚鋼板から、再現熱サイクル試験片
を採取し、最高加熱温度:1400℃、800 から500 ℃の冷
却時間:110sの溶接再現熱サイクルを付与した。溶接再
現熱サイクル付与後の試験片について、生成した島状マ
ルテンサイトの面積率を求めた。これらの結果を、島状
マルテンサイト面積率とNi含有量の関係として図2に示
す。From these thick steel plates, reproducible heat cycle test pieces were sampled, and subjected to a reproducible heat cycle of welding at a maximum heating temperature of 1400 ° C. and a cooling time of 800 to 500 ° C .: 110 s. The area ratio of the generated island-like martensite was determined for the test piece after the welding reproduction heat cycle was applied. These results are shown in FIG. 2 as the relationship between the area ratio of island martensite and the Ni content.
【0015】図2から、島状マルテンサイト面積率は、
Ni含有量とともに増加しており、フェライト中のC固溶
量の変化と対応していることが推察できる。ついで、上
記した溶接再現熱サイクルを付与した試験片から、JIS
4号衝撃試験片を採取し、延性脆性破面遷移温度( vT
rs)を求めた。その結果を、図3に示す。From FIG. 2, the area ratio of the island martensite is
It can be inferred that it increases with the Ni content and corresponds to the change in the amount of C solid solution in ferrite. Then, from the test specimen to which the above-mentioned welding reproduction thermal cycle was given, JIS
No. 4 impact test specimen was collected and subjected to ductile brittle fracture transition temperature (vT
rs). The result is shown in FIG.
【0016】図3から、Ni含有量、さらにはMn含有量を
所定値以下とすることにより、溶接部靱性の向上が可能
であることが推察できる。なお、これらのことから、本
発明者らは、Mn、Niの過度の添加はともにフェライト中
のCの固溶限を低下させて島状マルテンサイトを増加さ
せるため、Mn+Ni含有量の総量を規制する必要があると
の知見を得た。From FIG. 3, it can be inferred that it is possible to improve the weld toughness by setting the Ni content and further the Mn content to a predetermined value or less. From these facts, the present inventors restricted the total amount of Mn + Ni content because excessive addition of Mn and Ni both reduced the solid solubility limit of C in ferrite and increased island martensite. I learned that it is necessary to do it.
【0017】本発明は、上記した知見に基づいて、さら
に検討を加えて完成されたものである。すなわち、本発
明は、mass%で、C:0.03%未満、Si:0.50%以下、M
n:0.6〜1.2 %、Ni:1.0 〜2.3 %、Al:0.005 〜0.10
%、Ti:0.005 〜0.02%、B:0.0005〜0.0030%を含
み、かつMn、Niを次(1)式 Ni≦−2Mn+4.0 ………(1) (ここで、Ni、Mn:各元素の含有量(mass%))を満足
するように含有し、残部Feおよび不可避的不純物からな
る組成を有することを特徴とする溶接熱影響部靱性に優
れる鋼材であり、また、本発明は、前記組成に加えさら
に、mass%で、Nb:0.005 〜0.04%、V:0.005 〜0.04
%のうちから選ばれた1種または2種を含有するのが好
ましく、また、本発明では、前記各組成に加えてさら
に、Ca:0.0005〜0.005 %を含有することが好ましい。The present invention has been completed based on the above-mentioned findings and further studies. That is, according to the present invention, in mass%, C: less than 0.03%, Si: 0.50% or less, M
n: 0.6 to 1.2%, Ni: 1.0 to 2.3%, Al: 0.005 to 0.10
%, Ti: 0.005 to 0.02%, B: 0.0005 to 0.0030%, and Mn and Ni are represented by the following formula (1): Ni ≦ −2Mn + 4.0 (1) (where Ni, Mn: each element) Content (mass%)), and has excellent toughness in the weld heat-affected zone, characterized by having a composition comprising the balance of Fe and unavoidable impurities. In addition to the composition, by mass%, Nb: 0.005 to 0.04%, V: 0.005 to 0.04%
%, And preferably contains one or two kinds selected from the above-mentioned compositions. In the present invention, it is preferable that the composition further contains 0.0005 to 0.005% of Ca in addition to the above-mentioned components.
【0018】[0018]
【発明の実施の形態】まず、本発明鋼材の組成限定理由
について説明する。なお、質量%は単に%と記す。 C:0.03%未満 Cは、鋼材の母材および溶接部の組織を支配する重要な
元素であり、本発明では、平衡状態でパーライト相の生
成をなくし、かつ溶接熱影響部においても靭性を劣化さ
せる島状マルテンサイトの生成を抑制するために、Cは
0.03%未満とした。なお、靱性の観点からは0.01%以上
含有するのが好ましい。First, the reasons for limiting the composition of the steel material of the present invention will be described. In addition, mass% is simply described as%. C: less than 0.03% C is an important element that controls the structure of the base metal and the welded portion of the steel material. In the present invention, the formation of the pearlite phase in the equilibrium state is eliminated, and the toughness is deteriorated even in the weld heat affected zone. In order to suppress the formation of island martensite,
It was less than 0.03%. From the viewpoint of toughness, the content is preferably 0.01% or more.
【0019】Si:0.50%以下 Siは、精錬時の脱酸剤として必要であるが、0.50%を超
えて含有すると母材靭性が著しく劣化する。このため、
Siは0.50%以下に限定した。 Mn:0.6 〜1.2 % Mnは、鋼材の強度を増加させる元素であり、所望の鋼材
の強度を確保するためには、少なくとも0.6 %の含有を
必要とする。また、Mnは、フェライト中の固溶C量を低
下させ、島状マルテンサイトを増加させる作用を有する
元素であり、1.2 %を超える過度の含有は島状マルテン
サイトの生成を促進し、溶接部靭性を劣化させる。この
ため、Mnは0.6 %を下限とし、1.2 %を上限とした。Si: 0.50% or less Si is required as a deoxidizing agent at the time of refining, but if it exceeds 0.50%, the base material toughness is significantly deteriorated. For this reason,
Si was limited to 0.50% or less. Mn: 0.6 to 1.2% Mn is an element that increases the strength of a steel material, and at least 0.6% must be contained in order to secure the desired strength of the steel material. Mn is an element having the effect of decreasing the amount of solute C in ferrite and increasing the amount of island martensite. Excess of more than 1.2% promotes the formation of island martensite, and Deteriorates toughness. Therefore, the lower limit of Mn is set to 0.6% and the upper limit is set to 1.2%.
【0020】Ni:1.0 〜2.3 % Niは、鋼材の強度および靱性を向上させるとともに、フ
ェライト中の固溶C量を低下させ、島状マルテンサイト
を増加させる作用を有する元素であり、所望の鋼材の強
度、靱性を確保するためには、少なくとも1.0 %の含有
を必要とするが、2.3 %を超える過度の含有は島状マル
テンサイトの生成を促進し、溶接部靭性を劣化させる。
このため、Niは1.0 %を下限とし、2.3 %を上限とし
た。Ni: 1.0 to 2.3% Ni is an element having an effect of improving the strength and toughness of the steel material, reducing the amount of solute C in ferrite, and increasing the amount of island martensite. In order to ensure the strength and toughness of the steel, the content of at least 1.0% is required, but an excessive content exceeding 2.3% promotes the formation of island martensite and deteriorates the weld toughness.
Therefore, the lower limit of Ni is 1.0% and the upper limit is 2.3%.
【0021】Ni≦−2Mn+4.0 ………(1) ここに、Ni、Mn:各元素の含有量(%) 本発明では、Ni、Mnは、上記した範囲内で、かつ島状マ
ルテンサイトの生成を抑制するために、(1)式を満足
するように調整する。Ni、Mn含有量が(1)式を満足し
ないと、溶接部靱性が顕著に劣化する。なお、極低炭素
域では、島状マルテンサイトの生成には、Mnの方が大き
な効果を及ぼす。このため、島状マルテンサイトの生成
抑制のためには、低Mn、高Niとするのが好ましい。Ni ≦ −2Mn + 4.0 (1) where, Ni and Mn: content (%) of each element In the present invention, Ni and Mn are in the above-mentioned range and in the form of island martensite. Is adjusted to satisfy the expression (1) in order to suppress the generation of. If the contents of Ni and Mn do not satisfy the expression (1), the toughness of the welded portion is significantly deteriorated. In the extremely low carbon region, Mn has a greater effect on the formation of island martensite. For this reason, in order to suppress the formation of island-like martensite, it is preferable to use low Mn and high Ni.
【0022】Ni、Mn含有量と、溶接ボンド部靱性との関
係を図5に示す。図5は、Ni、Mn含有量が変化した極低
炭素系鋼材の試験片を用いて、図4に示す形状の開先加
工を施し、入熱100kJ/cmのサブマージアーク溶接により
溶接継手を作成し、その溶接継手ボンド部からシャルピ
ー衝撃試験片(JIS 4号試験片)を採取し、試験温度−
50℃でのシャルピー吸収エネルギー vE-50 を求め、溶
接ボンド部の靭性をNi含有量とMn含有量の関係で評価し
たものである。図中の数字が溶接ボンド部のシャルピー
吸収エネルギー vE-50 (J)である。FIG. 5 shows the relationship between the contents of Ni and Mn and the toughness of the weld bond. Fig. 5 shows the use of a test piece of ultra-low carbon steel with varied contents of Ni and Mn to form a bevel with the shape shown in Fig. 4 and create a welded joint by submerged arc welding with a heat input of 100 kJ / cm. Then, a Charpy impact test specimen (JIS No. 4 test specimen) was taken from the welded joint bond part, and the test temperature-
The Charpy absorbed energy vE- 50 at 50 ° C. was determined, and the toughness of the weld bond was evaluated based on the relationship between the Ni content and the Mn content. The numbers in the figure are the Charpy absorbed energy vE- 50 (J) of the weld bond.
【0023】Ni、Mnが、上記したMn:0.6 〜1.2 %、N
i:1.0 〜2.3 %の範囲内で、かつ(1)式を満足する
範囲内ではじめて、高い vE-50 値を示す。この範囲を
外れると低い vE-50 値しか示さず溶接部靱性が劣化す
る。このようなことから、(1)式を満足するMn、Ni含
有量に限定した。 Al:0.005 〜0.10% Alは、脱酸剤として作用し、本発明では0.005 %以上の
含有を必要とする。一方、0.10%を超えて含有すると、
鋼中にAl酸化物系介在物が増加し、母材靭性を低下させ
る。このため、Alは0.005 〜0.10%の範囲に限定した。Ni and Mn are as described above: Mn: 0.6 to 1.2%, N
i: A high vE- 50 value is exhibited only within the range of 1.0 to 2.3% and within the range satisfying the expression (1). Outside this range, a low vE -50 value is exhibited and the weld toughness deteriorates. For these reasons, the Mn and Ni contents satisfying the expression (1) are limited. Al: 0.005 to 0.10% Al acts as a deoxidizing agent, and the present invention requires a content of 0.005% or more. On the other hand, if the content exceeds 0.10%,
Al oxide-based inclusions increase in steel and reduce the base metal toughness. For this reason, Al was limited to the range of 0.005 to 0.10%.
【0024】Ti:0.005 〜0.02% Tiは、Nと結合し鋼中の固溶Nを低減し、固溶B量の増
加に寄与しBの強度上昇効果を確保する作用を有してい
る。このような効果は0.005 %以上の含有で認められ
る。一方、0.02%を超える含有は、粗大な析出物を形成
し、母材の靭性を損なう。このため、Tiは0.005 〜0.02
%の範囲に限定した。Ti: 0.005 to 0.02% Ti combines with N to reduce the amount of solute N in the steel, contributes to an increase in the amount of solute B, and has the effect of ensuring the effect of increasing the strength of B. Such an effect is recognized at a content of 0.005% or more. On the other hand, when the content exceeds 0.02%, coarse precipitates are formed and the toughness of the base material is impaired. Therefore, Ti is 0.005 to 0.02
%.
【0025】B:0.0005〜0.0030% Bは、極低炭素鋼において組織をベイニティック・フェ
ライト組織とし、強度を上昇させる重要な元素であり、
本発明では、0.0005%以上の含有を必要とする。一方、
0.0030%を超えて含有しても、顕著な効果が得られな
い。このため、Bは0.0005〜0.0030%の範囲に限定し
た。B: 0.0005% to 0.0030% B is an important element for increasing the strength by forming a bainitic ferrite structure in a very low carbon steel.
In the present invention, 0.0005% or more is required. on the other hand,
Even if the content exceeds 0.0030%, no remarkable effect is obtained. For this reason, B was limited to the range of 0.0005 to 0.0030%.
【0026】Nb:0.005 〜0.04%、V:0.005 〜0.04%
のうちから選ばれた1種または2種Nb、Vはいずれも、
鋼材を強化する強化元素として有効な元素であり、必要
に応じ選択して含有できる。このような効果を発揮する
ためには、Nb、Vいずれも0.005 %以上の含有を必要と
する。一方、Nb、Vとも、0.04%を超える含有は溶接熱
影響部靭性を劣化させる。このため、Nb:0.005 〜0.04
%、V:0.005 〜0.04%に限定するのが好ましい。Nb: 0.005 to 0.04%, V: 0.005 to 0.04%
One or two Nb and V selected from
It is an effective element as a strengthening element for strengthening steel, and can be selected and contained as necessary. In order to exert such an effect, it is necessary that both Nb and V are contained at 0.005% or more. On the other hand, if both Nb and V contain more than 0.04%, the toughness of the weld heat affected zone deteriorates. Therefore, Nb: 0.005 to 0.04
%, V: preferably limited to 0.005 to 0.04%.
【0027】Ca:0.0005〜0.005 % Caは、Sの固定による靭性改善効果がある元素であり、
必要に応じ含有できる。このような効果を発揮させるた
めにはなくとも0.0005%以上含有するのが好ましいが、
0.005 %を超えて含有しても効果が飽和する。このた
め、本発明では、Caは0.0005〜0.005 %の範囲に限定す
るのが好ましい。Ca: 0.0005-0.005% Ca is an element having an effect of improving toughness by fixing S,
It can be contained as needed. In order to exhibit such an effect, it is preferable to contain at least 0.0005%,
Even if the content exceeds 0.005%, the effect is saturated. For this reason, in the present invention, Ca is preferably limited to the range of 0.0005 to 0.005%.
【0028】上記した組成の溶鋼を、転炉、電気炉、真
空溶解炉等通常の方法で溶製し、連続鋳造法、造塊法な
どの通常公知の鋳造方法でスラブ等の圧延用素材とする
のが好ましい。ついで、圧延用素材は、1000〜1300℃の
温度に再加熱されるか、あるいは再加熱されることな
く、 700℃以上の温度で圧延を終了する熱間圧延を施さ
れ、圧延後、空冷あるいは加速冷却を施され、製品(鋼
材)とされる。なお、熱間圧延条件は、とくに限定され
るものではないが、未再結晶領域で累積圧下率50%以上
の圧延を施す制御圧延を行うのが好ましい。The molten steel having the above-described composition is melted by a usual method such as a converter, an electric furnace, a vacuum melting furnace and the like, and is rolled with a rolling material such as a slab by a generally known casting method such as a continuous casting method or an ingot casting method. Is preferred. Then, the rolling material is re-heated to a temperature of 1000 to 1300 ° C., or hot-rolled to end the rolling at a temperature of 700 ° C. or more without being re-heated. After accelerated cooling, it is made into a product (steel material). The hot rolling conditions are not particularly limited, but it is preferable to perform controlled rolling in which rolling is performed at a cumulative draft of 50% or more in the unrecrystallized region.
【0029】[0029]
【実施例】次に、本発明の効果を実施例に基づいて説明
する。表1に示す組成の鋼塊を1150℃に加熱したのち、
未再結晶域で累積圧下率50%以上の圧下を加え、 800℃
以上で圧延を終了して、20mmの鋼板とした。得られた鋼
板について、引張試験、シャルピー衝撃試験を実施し
た。Next, the effects of the present invention will be described based on embodiments. After heating the steel ingot having the composition shown in Table 1 to 1150 ° C,
Apply a rolling reduction of 50% or more in the unrecrystallized area, 800 ℃
The rolling was completed as described above to obtain a 20 mm steel sheet. The obtained steel plate was subjected to a tensile test and a Charpy impact test.
【0030】引張試験は、各鋼板の板厚中央部から、JI
S 4 号引張試験片を採取し、降伏強さYS、引張強さTS、
伸びElを求めた。シャルピー衝撃試験は、各鋼板の板厚
中央部から、JIS 4 号衝撃試験片を採取し、エネルギー
遷移温度( vTrE )を求めた。また、各鋼板から採取し
た継手用試験片に、図4に示す形状の開先加工を施し、
入熱100kJ/cmのサブマージアーク溶接により、溶接継手
を作成した。これら溶接継手から切欠き位置をボンド部
とするJIS 4号衝撃試験片を採取し、試験温度−50℃で
シャルピー衝撃試験を実施し、吸収エネルギー vE-50
を求めた。なお、溶接継手のボンド部近傍について、2
段エッチング法を用い、走査型電子顕微鏡により組織を
観察し、島状マルテンサイト量を測定した。The tensile test was carried out from the center of the thickness of each steel sheet using JI
S No. 4 tensile test specimen was collected and yield strength YS, tensile strength TS,
The elongation El was determined. In the Charpy impact test, a JIS No. 4 impact test piece was sampled from the center of the thickness of each steel sheet, and the energy transition temperature (vTr E ) was determined. In addition, a joint test piece having the shape shown in FIG.
Welded joints were made by submerged arc welding with a heat input of 100 kJ / cm. A JIS No. 4 impact test piece with the notch position as the bond part was sampled from these welded joints, and a Charpy impact test was conducted at a test temperature of -50 ° C, and the absorbed energy vE- 50
I asked. In the vicinity of the bond portion of the weld joint, 2
The structure was observed by a scanning electron microscope using a step etching method, and the amount of island martensite was measured.
【0031】これらの結果を表2に示す。The results are shown in Table 2.
【0032】[0032]
【表1】 [Table 1]
【0033】[0033]
【表2】 [Table 2]
【0034】本発明例は、引張強さTS 490MPa 級の強度
と−78℃以下のエネルギー遷移温度vTrE を有し、母材
の低温靱性に優れるうえ、さらに溶接熱影響部での島状
マルテンサイト量が少なく、入熱100kJ/cmのサブマージ
アーク溶接継手ボンド部の vE-50 が100 J以上と、大
入熱溶接を施しても優れた溶接熱影響部靭性を有する鋼
材となっている。これに対し、本発明の範囲を外れる比
較例は、 vTrE が−56℃以上と母材靱性が劣化している
か、あるいは溶接ボンド部の vE-50 が27J以下と、溶
接熱影響部靱性が劣化している。The example of the present invention has a tensile strength of TS 490 MPa class, an energy transition temperature vTr E of −78 ° C. or less, is excellent in low-temperature toughness of the base material, and has an island-like martensite in the heat affected zone of welding. With a small amount of sites and a vE- 50 of the bond portion of the submerged arc welded joint with a heat input of 100 kJ / cm of 100 J or more, it is a steel material having excellent weld heat affected zone toughness even when large heat input welding is performed. On the other hand, the comparative examples out of the scope of the present invention show that the base metal toughness is degraded when vTr E is −56 ° C. or more, or the weld heat affected zone toughness is vE -50 of the weld bond portion being 27 J or less. Has deteriorated.
【0035】[0035]
【発明の効果】以上説明したように、本発明によれば、
溶接熱影響部での島状マルテンサイトの生成が抑制さ
れ、大入熱溶接を施されても優れた溶接熱影響部靱性を
有する鋼材を安価に製造でき、溶接能率を顕著に向上で
きるという、産業上格段の効果を奏する。As described above, according to the present invention,
The formation of island-like martensite in the weld heat affected zone is suppressed, steel materials having excellent weld heat affected zone toughness can be manufactured at low cost even when subjected to large heat input welding, and the welding efficiency can be significantly improved. It has a remarkable industrial effect.
【図1】フェライト中の最大C固溶量とNi、Mn量の関係
を示すグラフである。FIG. 1 is a graph showing the relationship between the maximum C solid solution amount in ferrite and the amounts of Ni and Mn.
【図2】再現溶接ボンド部の島状マルテンサイトの面積
率とNi、Mn量の関係を示すグラフである。FIG. 2 is a graph showing the relationship between the area ratio of island martensite in a reproduced weld bond portion and the amounts of Ni and Mn.
【図3】再現溶接ボンド部の延性脆性破面遷移温度( v
Trs)とNi、Mn量の関係を示すグラフである。Fig. 3 Ductile brittle fracture transition temperature (v
4 is a graph showing the relationship between (Trs) and the amounts of Ni and Mn.
【図4】溶接継手の製作に使用した開先形状を示す断面
図である。FIG. 4 is a sectional view showing a groove shape used for manufacturing a welded joint.
【図5】入熱 100kJ/cm のサブマージアーク溶接継手の
溶接ボンド部の vE-50 に及ぼすNi、Mn量の関係を示す
図である。FIG. 5 is a view showing the relationship between the amounts of Ni and Mn exerted on vE- 50 of a weld bond portion of a submerged arc welded joint having a heat input of 100 kJ / cm 2.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 川端 文丸 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 天野 虔一 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Bunmaru Kawabata 1-chome, Mizushima Kawasaki-dori, Kurashiki-shi, Okayama Pref. 1-chome (without address) Inside Kawasaki Steel Corporation Mizushima Works
Claims (3)
有し、残部Feおよび不可避的不純物からなる組成を有す
ることを特徴とする溶接熱影響部靱性に優れる鋼材。 記 Ni≦−2Mn+4.0 ………(1) ここで、Ni、Mn:各元素の含有量(mass%)1. mass%, C: less than 0.03%, Si: 0.50% or less, Mn: 0.6 to 1.2%, Ni: 1.0 to 2.3%, Al: 0.005 to 0.10%, Ti: 0.005 to 0.02%, B : A steel material containing 0.0005 to 0.0030%, containing Mn and Ni so as to satisfy the following formula (1), and having a composition consisting of a balance of Fe and unavoidable impurities; . Note Ni ≦ −2Mn + 4.0 (1) where, Ni, Mn: content of each element (mass%)
0.005 〜0.04%、V:0.005 〜0.04%のうちから選ばれ
た1種または2種を含有することを特徴とする請求項1
に記載の溶接熱影響部靱性に優れる鋼材。2. In addition to the above composition, Nb:
2. The composition according to claim 1, wherein the composition contains one or two selected from 0.005 to 0.04% and V: 0.005 to 0.04%.
A steel material having excellent toughness in the heat-affected zone of the welding described in 1.
0.0005〜0.005 %を含有することを特徴とする請求項1
または2に記載の溶接熱影響部靱性に優れる鋼材。3. The composition according to claim 1, further comprising:
2. The composition according to claim 1, which contains 0.0005 to 0.005%.
Or a steel material excellent in the toughness of the weld heat-affected zone according to 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000242366A JP3546820B2 (en) | 2000-08-10 | 2000-08-10 | Steel with excellent weld heat affected zone toughness |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000242366A JP3546820B2 (en) | 2000-08-10 | 2000-08-10 | Steel with excellent weld heat affected zone toughness |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002060891A true JP2002060891A (en) | 2002-02-28 |
JP3546820B2 JP3546820B2 (en) | 2004-07-28 |
Family
ID=18733397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000242366A Expired - Fee Related JP3546820B2 (en) | 2000-08-10 | 2000-08-10 | Steel with excellent weld heat affected zone toughness |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3546820B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150057998A (en) | 2013-11-19 | 2015-05-28 | 신닛테츠스미킨 카부시키카이샤 | Steel sheet |
-
2000
- 2000-08-10 JP JP2000242366A patent/JP3546820B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150057998A (en) | 2013-11-19 | 2015-05-28 | 신닛테츠스미킨 카부시키카이샤 | Steel sheet |
Also Published As
Publication number | Publication date |
---|---|
JP3546820B2 (en) | 2004-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5476763B2 (en) | High tensile steel plate with excellent ductility and method for producing the same | |
JPH0127128B2 (en) | ||
JP5509685B2 (en) | Ultra-high heat input welded heat-affected zone toughness low yield ratio high-tensile thick steel plate and its manufacturing method | |
JP2002235114A (en) | Method for producing thick high tensile strength steel excellent in toughness of high heat input weld zone | |
JP2005068519A (en) | Method for producing high strength thick steel plate for building structure, having excellent toughness to super-large heat input welding-affected zone | |
JPH10306316A (en) | Production of low yield ratio high tensile-strength steel excellent in low temperature toughness | |
JP4096839B2 (en) | Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone | |
JP2005187853A (en) | Method for producing high strength thick steel plate excellent in toughness in extra-high heat input welded-heat affected part | |
JP2009235549A (en) | Method for producing low yield ratio high tension thick steel plate excellent in toughness at super-high heat input welding affected part | |
JP2002256379A (en) | Steel for high heat input welding | |
JP5157387B2 (en) | Method for manufacturing thick-walled, high-strength, high-toughness steel pipe material with high deformability | |
JPH1068016A (en) | Production of extra thick wide flange shape | |
JP4539100B2 (en) | Super high heat input welded heat affected zone | |
JP3546820B2 (en) | Steel with excellent weld heat affected zone toughness | |
JP4105990B2 (en) | High strength welded structural steel with excellent low temperature toughness of large heat input weld HAZ and method for producing the same | |
JP4105989B2 (en) | High strength welded structural steel excellent in both base metal toughness and weld zone HAZ toughness and method for producing the same | |
JP2005226080A (en) | Method of producing high tensile strength thick steel plate having excellent weldability and low temperature toughness | |
JP4299743B2 (en) | High strength steel for high strength welded structure with excellent base metal toughness and super high heat input weld HAZ toughness, and its manufacturing method | |
JP4762450B2 (en) | Method for producing high strength welded structural steel with excellent base metal toughness and weld zone HAZ toughness | |
JP4105991B2 (en) | High strength welded structural steel with excellent high heat input weld HAZ toughness and method for producing the same | |
JPS6293312A (en) | Manufacture of high tensile steel stock for stress relief annealing | |
JPS6256518A (en) | Production of high strength steel sheet for high heat input welding | |
JP2006241510A (en) | Steel for high strength welded structure having excellent low temperature toughness in high heat input weld haz and its production method | |
JP7381838B2 (en) | steel plate | |
JP7260779B2 (en) | High strength steel plate for high heat input welding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040323 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040405 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080423 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090423 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100423 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100423 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110423 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110423 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120423 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130423 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130423 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140423 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |