JP2002060887A - Method for manufacturing high purity bearing steel - Google Patents

Method for manufacturing high purity bearing steel

Info

Publication number
JP2002060887A
JP2002060887A JP2000250147A JP2000250147A JP2002060887A JP 2002060887 A JP2002060887 A JP 2002060887A JP 2000250147 A JP2000250147 A JP 2000250147A JP 2000250147 A JP2000250147 A JP 2000250147A JP 2002060887 A JP2002060887 A JP 2002060887A
Authority
JP
Japan
Prior art keywords
bearing steel
ppm
less
producing
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000250147A
Other languages
Japanese (ja)
Inventor
Tomonori Yamaguchi
智則 山口
Takashi Kano
隆 狩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2000250147A priority Critical patent/JP2002060887A/en
Publication of JP2002060887A publication Critical patent/JP2002060887A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide high purity bearing steel in which Ti-type inclusions, particularly particles of TiN, which are supposed to greatly affect the acoustic characteristics of balls for miniature bearing can be refined. SOLUTION: Bearing steel containing, as impurities, <=10 ppm, preferably <=7 ppm, Ti and >=50 ppm, preferably <=30 ppm, N is continuously cast into a billet. The billet is heated at >=1,200 deg.C, preferably about 1,240 deg.C, for >=1 h to undergo soaking treatment. By this procedure, the billet can be made virtually free from the presence of TiN particles of >=7.5 μm length. The continuous casting is carried out at an extra low velocity of <=0.4 m/min drawing rate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Tiの炭窒化物が
微細な状態で存在する超清浄軸受鋼の製造方法に関す
る。この超清浄軸受鋼は、とくに音響特性が改善されて
いる。
The present invention relates to a method for producing an ultraclean bearing steel in which Ti carbonitrides are present in a fine state. This ultra-clean bearing steel has particularly improved acoustic properties.

【0002】[0002]

【従来の技術】軸受鋼の用途のひとつであるミニチュア
ベアリング用ボールは、良好な音響特性をもつこと、す
なわち使用中に異音を発生しないことがしばしば要求さ
れる。異音の発生原因は微小な介在物の存在にあること
がわかったので、介在物がきわめて少ない超清浄軸受鋼
の製造が試みられている。
BACKGROUND OF THE INVENTION Balls for miniature bearings, one of the uses of bearing steel, are often required to have good acoustic characteristics, that is, not to generate abnormal noise during use. Since it has been found that the cause of the abnormal noise is the presence of minute inclusions, production of ultra-clean bearing steel with extremely few inclusions has been attempted.

【0003】音響特性に影響する介在物としては、アル
ミナ系(Al23)介在物、酸化物複合系(MgO・A
23・CaO)介在物およびチタン系(TiC,Ti
N)介在物が知られていて、それぞれ含有量を低減する
ための努力がなされている。前二者に対しては、脱ガス
の強化、介在物の形態制御、連続鋳造における非汚染鋳
造技術の探求などがあり、後者に対しては、原料の吟味
に加え、脱Tiと脱ガスによるTiN量の制御などがそ
れである。VAR(真空アーク再溶解)、ESR(エレ
クトロスラグ再溶解)あるいはトリプルメルトなどの特
殊な溶解法もあり、これらによれば、ほぼ所望の製品が
得られるが、コスト面での不利は免れないから、やはり
通常の溶解−精錬のプロセスにより超清浄軸受鋼を製造
することが望まれる。
[0003] Inclusions that affect the acoustic characteristics include alumina (Al 2 O 3 ) inclusions and oxide composite (MgO · A) inclusions.
l 2 O 3 .CaO) inclusions and titanium-based (TiC, Ti
N) Inclusions are known and efforts have been made to reduce their content. For the former two, there are enhancement of degassing, control of inclusion morphology, search for non-contamination casting technology in continuous casting, etc. For the latter, in addition to examination of raw materials, Controlling the amount of TiN, etc. is such. There are also special melting methods such as VAR (vacuum arc remelting), ESR (electroslag remelting) or triple melt, which can provide almost the desired product, but inevitably suffer from disadvantages in cost. It is also desirable to produce ultra-clean bearing steel by a conventional melting-refining process.

【0004】[0004]

【発明が解決しようとする課題】本発明は、ミニチュア
ベアリング用ボールの音響特性にとって、酸化物系介在
物の量が低減されるに従いクローズアップされてきた、
Ti炭窒化物の粒子を微細にした、超清浄軸受鋼の製造
方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been focused on the acoustic characteristics of balls for miniature bearings as the amount of oxide-based inclusions is reduced.
An object of the present invention is to provide a method for producing ultra-clean bearing steel in which Ti carbonitride particles are made fine.

【0005】[0005]

【課題を解決するための手段】この目的を達成する本発
明の超清浄軸受鋼の製造方法は、Tiの炭窒化物が微細
な状態で存在する超清浄軸受鋼を製造する方法であっ
て、軸受鋼に必要な合金成分を含有し、かつ、分塊圧延
に先立つ均熱温度においてTiNが実質上固溶する限度
内に[%Ti]×[%N]の値を低減した合金組成をも
つ軸受鋼を、連続鋳造により鋳片に鋳造し、この鋳片
を、均熱温度としては固溶平衡温度以上の温度をえら
び、均熱時間としてはTiの拡散速度に基づいて決定さ
れる、TiNの再固溶のために粒子の径が減少するに足
りる時間をえらんだ均熱を施して、その後に分塊圧延お
よび後続の圧延を行なうことを特徴とする。
According to the present invention, there is provided a method for producing an ultra-clean bearing steel, comprising the steps of: It has an alloy composition that contains the necessary alloy components for the bearing steel and that reduces the value of [% Ti] x [% N] within the limit where TiN substantially dissolves at the soaking temperature prior to slab rolling. The bearing steel is cast into a slab by continuous casting, and the slab is selected to have a temperature equal to or higher than the solid solution equilibrium temperature as the soaking temperature, and the soaking time is determined based on the diffusion rate of TiN. Is characterized by performing soaking for a period of time sufficient for reducing the particle diameter for re-solid solution of, followed by slab rolling and subsequent rolling.

【0006】より具体的にいえば、上記の製造方法は、
Ti:10ppm以下、好ましくは7ppm以下、N:50pp
m以下、好ましくは30ppm以下、の軸受け鋼の鋳片を、
1200℃以上、好ましくは1240℃程度の温度に1
時間以上加熱する均熱処理を施すことにより、長さが
7.5μm以上のTiN粒子が実質上存在しないように
した超清浄軸受鋼の製造方法である。
[0006] More specifically, the above-mentioned manufacturing method comprises:
Ti: 10 ppm or less, preferably 7 ppm or less, N: 50 pp
m or less, preferably 30 ppm or less, a slab of bearing steel,
1200 ° C. or higher, preferably about 1240 ° C.
This is a method for producing ultra-clean bearing steel in which TiN particles having a length of 7.5 μm or more are substantially absent by performing a soaking process of heating for at least one hour.

【0007】[0007]

【発明の実施形態】Ti:10ppm以下、N:50ppm以
下の条件は、[%Ti]×[%N]の値で決定されるT
iN生成量を抑える上で、満たすべきものである。均熱
温度を1200℃以上とするのは、代表的なTi=4pp
m、かつN=30ppmの条件において、TiNがこの温度
において固溶するからである。このことは、図1に示す
実験結果から証明された。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The condition of Ti: 10 ppm or less and N: 50 ppm or less is determined by the value of [% Ti] × [% N].
This must be satisfied in order to suppress the iN generation amount. It is typical that the soaking temperature is set to 1200 ° C. or more because Ti = 4 pp.
This is because, under the conditions of m and N = 30 ppm, TiN forms a solid solution at this temperature. This was proved from the experimental results shown in FIG.

【0008】図1は、上記したTi=4ppm、かつN=
30ppmの鋳片の、1180℃または1240℃に各6
時間加熱したのちの、Ti系介在物の粒度別の分布を、
鋳造ままのものと比較したグラフであって、長さが7.
5μm以上のTi系介在物(主体はTi炭窒化物)粒子
が、1180℃の加熱ではほとんど改善されていない
(31個→27個)のに対し、1240℃の加熱により
顕著に減少した(2個)ことを示している。
FIG. 1 shows that Ti = 4 ppm and N =
30 ppm slabs at 1180 ° C or 1240 ° C
After heating for hours, the distribution of Ti-based inclusions by particle size is
7 is a graph in comparison to an as-cast one, with a length of 7.
Although the Ti-based inclusions (mainly Ti carbonitride) particles of 5 μm or more were hardly improved by heating at 1180 ° C. (31 → 27), they were significantly reduced by heating at 1240 ° C. (2 ).

【0009】各[%Ti]および[%N]に応じたTi
N固溶温度の計算値の代表例を示せば、次のとおりであ
る。Ti(ppm) N(ppm) TiN固溶温度(℃) 3 30 1207 4 20 1224 4 30 1248 4 50 1281 4 60 1293 5 30 1262 5 40 1281 5 50 1295 6 20 1248 6 40 1293 6 50 1308 7 40 1303 7 50 1318
[0009] Ti corresponding to each [% Ti] and [% N]
A typical example of the calculated value of the N solid solution temperature is as follows. Ti (ppm) N (ppm) TiN solid solution temperature (° C.) 330 1207 4 202 1224 4 30 1248 4 50 1281 4 60 1293 5 30 1262 5 40 1281 5 50 1295 6 20 1248 6 40 1293 6 50 1308 1303 7 50 1318

【0010】本発明は、溶製した軸受鋼を鋳造する手段
として連続鋳造をとり、鋳造を、引き抜き速度0.4m
/分以下の極低速連続鋳造により行なって鋳片とする。
このような極低速連続鋳造は、水冷モールドに注がれた
溶湯の凝固が速やかに進行することを図ったものであっ
て、偏析が改善され、粗大なTi系介在物の生成が減少
することが期待される。
According to the present invention, continuous casting is performed as a means for casting a smelted bearing steel, and the casting is performed at a drawing speed of 0.4 m.
/ Minute / min.
Such ultra-low-speed continuous casting aims at rapidly solidifying the molten metal poured into the water-cooled mold, and improves segregation and reduces generation of coarse Ti-based inclusions. There is expected.

【0011】本発明に至る研究で、発明者らは、粗大な
Ti系介在物は連続鋳造における最終凝固部である濃化
溶鋼部に存在することを知り、その事実に対しては偏析
の影響が大きいと考えた。そして粗大Ti系介在物の生
成メカニズムを、つぎのように推測した。これに基づけ
ば、偏析の度合いは凝固速度に依存する。(デンドライ
ト樹間・先端におけるTi・N・Cの偏析)→(Ti・
N・Cの溶解度積を超える温度までの温度低下)→(T
iC・TiNの晶出)→(晶出TiC・TiNの成長)
In the research leading to the present invention, the inventors have found that coarse Ti-based inclusions are present in the thickened molten steel portion, which is the final solidified portion in continuous casting, and the effect of segregation on this fact. Thought it was big. Then, the generation mechanism of the coarse Ti-based inclusions was estimated as follows. Based on this, the degree of segregation depends on the solidification rate. (Segregation of Ti ・ NC ・ C at dendrite tree / tip) → (Ti ・
Temperature drop to a temperature exceeding the solubility product of N / C) → (T
Crystallization of iC / TiN) → (Growth of crystallized TiC / TiN)

【0012】図2は、引抜速度が0.45m/分の場合
と0.30m/分の場合とで、凝固の様子がどのように
異なるかを比較したものである。極低速連続鋳造であれ
ば、固液温度幅が小さくなり、凝固速度の向上と偏析の
改善が期待できる。
FIG. 2 is a graph showing how the solidification differs between the case where the drawing speed is 0.45 m / min and the case where the drawing speed is 0.30 m / min. In the case of extremely low-speed continuous casting, the solid-liquid temperature width is reduced, and an improvement in the solidification rate and an improvement in segregation can be expected.

【0013】極低速連続鋳造を行なうに当たり、固液温
度差の縮小、凝固速度の向上および偏析の低下をもたら
す操作は、すべて好ましい。具体的には、まずタンディ
ッシュヒーターの使用による低温鋳造があり、これはい
うまでもなく、固液温度差の縮小を意味する。電磁撹拌
も偏析の防止に有用であるが、とくに円形鋳型を使用し
て丸鋳片を鋳造する場合に適用すると、撹拌が効果的に
行なえる。適切な中心固相率における軽圧下は偏析の改
善につながり、二次冷却の強化は急速な凝固を引き起こ
す。これらの操作は、1種または2種以上、なるべく多
くを、上記の極低速連続鋳造に付加して実施することが
望ましい。
[0013] In performing ultra-low speed continuous casting, all operations that reduce the solid-liquid temperature difference, improve the solidification rate, and reduce segregation are preferable. Specifically, first, there is a low-temperature casting using a tundish heater, which obviously means a reduction in the solid-liquid temperature difference. Electromagnetic stirring is also useful for preventing segregation, but when it is applied to the casting of round slabs using a circular mold, stirring can be performed effectively. Light reduction at an appropriate central solids fraction leads to improved segregation, and enhanced secondary cooling causes rapid solidification. It is desirable to carry out one or more of these operations, as much as possible, in addition to the above-mentioned extremely low speed continuous casting.

【0014】本発明の方法において、分塊圧延により得
られたブルームを再度均熱温度に加熱する工程を付加す
れば、TiNを主体とするTi系介在の微細化の目的
は、いっそうよく達成できる。分塊圧延により軸受鋼の
組織は細分化されており、その加工による微細化は容易
になるからである。
[0014] In the method of the present invention, if the step of heating the bloom obtained by the slab rolling to the soaking temperature again is added, the object of miniaturization of Ti-based inclusions mainly composed of TiN can be further achieved. . This is because the structure of the bearing steel is subdivided by the slab rolling, and the refinement by the processing is facilitated.

【0015】本発明の製造方法によりTiNの粒子を微
細化することができる軸受鋼は、合金組成についていえ
ば、一般に、重量で、C:0.6〜1.5%,Si:
2.0%以下,Mn:2.0%以下,Ni:0〜2.0
%,Cr:0.3〜5.0%およびMo:0〜1.0%
を含有し、Ti:10ppm以下、好ましくは7ppm以下、
N:50ppm以下、好ましくは30ppm以下であって、残
部が実質上Feからなるものである。
[0015] The bearing steel which can make the particles of TiN fine by the production method of the present invention generally has a C: 0.6 to 1.5% by weight and a Si:
2.0% or less, Mn: 2.0% or less, Ni: 0 to 2.0
%, Cr: 0.3-5.0% and Mo: 0-1.0%
And Ti: 10 ppm or less, preferably 7 ppm or less,
N: 50 ppm or less, preferably 30 ppm or less, with the balance substantially consisting of Fe.

【0016】[0016]

【実施例】下記の合金組成を有する軸受鋼(このTiN
固溶温度は、前記のように1240℃)を溶製し、引抜
速度0.45m/分または0.30m/分で連続鋳造
し、径350mmの丸鋳片を得た。 C Si Mn Cr Mo Ti N Fe 1.0% 0.25% 0.45% 1.5% 0.1% 3ppm 20ppm 残部
EXAMPLE A bearing steel having the following alloy composition (this TiN
The solid solution temperature was 1240 ° C. as described above, and continuous casting was performed at a drawing speed of 0.45 m / min or 0.30 m / min to obtain a round slab having a diameter of 350 mm. CSiMnCrMoTiNFe 1.0% 0.25% 0.45% 1.5% 0.1% 3ppm 20ppm Remainder

【0017】2種の丸鋳片について、1260℃×10
時間の均熱処理を施したのち、横断方向および中心部に
おける軸方向のTi系介在物を、3μm以上、5μm以
上および7.5μm以上の大きさ別に調べた。その結果
を、図3(比較例)および図4(実施例)に示す。
For the two types of round slabs, 1260 ° C. × 10
After performing the soaking process for a long time, the Ti-based inclusions in the transverse direction and the axial direction in the central portion were examined by size of 3 μm or more, 5 μm or more, and 7.5 μm or more. The results are shown in FIG. 3 (Comparative Example) and FIG. 4 (Example).

【0018】[0018]

【発明の効果】本発明の方法で軸受鋼を製造すれば、そ
の中のTiNを中心とするTi系介在物の粒子を微細化
することができる。この軸受鋼を材料にして、HDD部
品などに需要の多い、音響特性のすぐれたミニチュアベ
アリング用ボールを製造することができる。
When the bearing steel is manufactured by the method of the present invention, the particles of Ti-based inclusions centering on TiN therein can be refined. Using this bearing steel as a material, a ball for a miniature bearing having excellent acoustic characteristics, which is in great demand for HDD parts and the like, can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 軸受鋼の鋳片(Ti=4ppm、N=30ppm)
を1180℃または1240℃に各6時間加熱したのち
の、Ti系介在物の粒度別の分布を、鋳造ままのものと
比較したグラフ。
Fig. 1 Slab of bearing steel (Ti = 4ppm, N = 30ppm)
Is a graph comparing the distribution of Ti-based inclusions by particle size after being heated to 1180 ° C. or 1240 ° C. for 6 hours, respectively, as compared with the as-cast.

【図2】 本発明で採用する極低速連続鋳造を説明する
ための、水冷モールド付近の概念的な縦断面図で、引抜
速度が0.45m/分の場合と0.30m/分の場合と
を比較した図。
FIG. 2 is a conceptual longitudinal sectional view showing a vicinity of a water-cooled mold for explaining an extremely low-speed continuous casting employed in the present invention, wherein a drawing speed is 0.45 m / min and a drawing speed is 0.30 m / min. FIG.

【図3】 本発明の比較例のデータであって、径350
mmの丸鋳片を引抜速度0.45m/分で連続鋳造した場
合の、横断方向および軸方向中心部のTi系介在物の寸
法および個数を示すグラフ。
FIG. 3 shows data of a comparative example of the present invention, wherein the diameter is 350;
The graph which shows the size and the number of Ti type | system | group inclusions of the transverse direction and the axial direction center part at the time of continuously casting a round cast piece of mm at a drawing speed of 0.45 m / min.

【図4】 本発明の実施例のデータであって、径350
mmの丸鋳片を引抜速度0.30m/分で連続鋳造した場
合の、横断方向および軸方向中心部のTi系介在物の寸
法および個数を示すグラフ。
FIG. 4 shows data of an embodiment of the present invention, wherein the diameter is 350;
The graph which shows the size and the number of Ti type | system | group inclusion of the center part of a transverse direction and an axial direction at the time of continuously casting the round cast piece of mm at a drawing speed of 0.30 m / min.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B22D 11/12 B22D 11/12 C 11/128 350 11/128 350A 11/20 11/20 A 11/22 11/22 B // C22C 38/00 301 C22C 38/00 301Z 38/58 38/58 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) B22D 11/12 B22D 11/12 C 11/128 350 11/128 350A 11/20 11/20 A 11/22 11/22 B // C22C 38/00 301 C22C 38/00 301Z 38/58 38/58

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 Tiの炭窒化物が微細な状態で存在する
超清浄軸受鋼を製造する方法であって、軸受鋼に必要な
合金成分を含有し、かつ、分塊圧延に先立つ均熱温度に
おいてTiNが実質上固溶する限度内に[%Ti]×
[%N]の値を低減した合金組成をもつ軸受鋼を、連続
鋳造により鋳片に鋳造し、この鋳片または鋳塊を、均熱
温度としては固溶平衡温度以上の温度をえらび、均熱時
間としてはTiの拡散速度に基づいて決定される、Ti
Nの再固溶のためその粒子の径が減少するに足りる時間
をえらんだ均熱を施して、その後に分塊圧延および後続
の圧延を行なうことを特徴とする超清浄軸受鋼の製造方
法。
1. A method for producing an ultra-clean bearing steel in which Ti carbonitrides are present in a fine state, comprising an alloy component necessary for the bearing steel, and a soaking temperature prior to slab rolling. [% Ti] × within the limit where TiN substantially dissolves
A bearing steel having an alloy composition with a reduced [% N] value is cast into a slab by continuous casting, and the slab or ingot is selected to have a temperature equal to or higher than a solid solution equilibrium temperature as a soaking temperature. The thermal time is determined based on the diffusion rate of Ti.
A method for producing an ultra-clean bearing steel, characterized in that a soaking is carried out for a time sufficient for reducing the diameter of the particles due to re-dissolution of N, followed by slab rolling and subsequent rolling.
【請求項2】 Ti:10ppm以下、N:50ppm以下の
軸受け鋼の鋳片を、1200℃以上の温度に1時間以上
加熱する均熱処理を施し、長さが7.5μm以上のTi
N粒子が実質上存在しない軸受鋼を得る請求項1の超清
浄軸受鋼の製造方法。
2. A soaking slab of bearing steel having a titanium content of 10 ppm or less and a nitrogen content of 50 ppm or less is subjected to a soaking process of heating to a temperature of 1200 ° C. or more for 1 hour or more, and a Ti having a length of 7.5 μm or more.
2. The method for producing ultra-clean bearing steel according to claim 1, wherein a bearing steel substantially free of N particles is obtained.
【請求項3】 軸受鋼の鋳造を、引抜速度0.4m/分
以下の極低速連続鋳造により行なって鋳片とする請求項
1の超清浄軸受鋼の製造方法。
3. The method for producing ultra-clean bearing steel according to claim 1, wherein the casting of the bearing steel is carried out by continuous casting at a very low speed at a drawing speed of 0.4 m / min or less to produce cast slabs.
【請求項4】 極低速連続鋳造を行なうに当たり、タン
ディッシュヒーターの使用による低温鋳造、円形鋳型の
使用とそれに対する電磁撹拌、適切な中心固相率におけ
る軽圧下、および二次冷却の強化の1種または2種以上
を付加して実施する請求項3の超清浄軸受鋼の製造方
法。
4. In carrying out extremely low-speed continuous casting, one of low-temperature casting by using a tundish heater, use of a circular mold and electromagnetic stirring thereto, low pressure at an appropriate central solid phase ratio, and enhancement of secondary cooling. 4. The method for producing ultra-clean bearing steel according to claim 3, wherein the method is performed by adding one or more kinds.
【請求項5】 分塊圧延後のブルームまたはビレットを
再度均熱温度に加熱する工程を付加した請求項1ないし
4のいずれかの超清浄軸受鋼の製造方法。
5. The method for producing an ultraclean bearing steel according to claim 1, further comprising a step of heating the bloom or billet after the bulk rolling to the soaking temperature again.
【請求項6】 軸受鋼が、重量で、C:0.6〜1.5
%,Si:2.0%以下,Mn:2.0%以下,Ni:
0〜2.0%,Cr:0.3〜5.0%およびMo:0
〜1.0%を含有し、Ti:10ppm以下、N:50ppm
以下であって、残部が実質上Feからなる合金組成を有
するものである請求項1ないし5のいずれかの超清浄軸
受鋼の製造方法。
6. The bearing steel has a C: 0.6 to 1.5 by weight.
%, Si: 2.0% or less, Mn: 2.0% or less, Ni:
0 to 2.0%, Cr: 0.3 to 5.0%, and Mo: 0
-1.0%, Ti: 10 ppm or less, N: 50 ppm
The method for producing an ultra-clean bearing steel according to any one of claims 1 to 5, wherein the remainder has an alloy composition substantially consisting of Fe.
【請求項7】 軸受鋼中の、Ti:7ppm以下、N:3
0ppm以下である請求項6の超清浄軸受鋼の製造方法。
7. Ti: 7 ppm or less, N: 3 in bearing steel
The method for producing ultra-clean bearing steel according to claim 6, wherein the content is 0 ppm or less.
JP2000250147A 2000-08-21 2000-08-21 Method for manufacturing high purity bearing steel Pending JP2002060887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000250147A JP2002060887A (en) 2000-08-21 2000-08-21 Method for manufacturing high purity bearing steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000250147A JP2002060887A (en) 2000-08-21 2000-08-21 Method for manufacturing high purity bearing steel

Publications (1)

Publication Number Publication Date
JP2002060887A true JP2002060887A (en) 2002-02-28

Family

ID=18739774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000250147A Pending JP2002060887A (en) 2000-08-21 2000-08-21 Method for manufacturing high purity bearing steel

Country Status (1)

Country Link
JP (1) JP2002060887A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010082662A (en) * 2008-09-30 2010-04-15 Kobe Steel Ltd Forged product and crankshaft manufactured from the forged product
CN107208214A (en) * 2015-01-23 2017-09-26 株式会社神户制钢所 The bearing steel material and bearing parts of rolling contact fatigue excellent
CN109128063A (en) * 2018-09-14 2019-01-04 武汉钢铁有限公司 The method that TiN is mingled in the control slab of high-strength steel containing Ti

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010082662A (en) * 2008-09-30 2010-04-15 Kobe Steel Ltd Forged product and crankshaft manufactured from the forged product
CN107208214A (en) * 2015-01-23 2017-09-26 株式会社神户制钢所 The bearing steel material and bearing parts of rolling contact fatigue excellent
CN109128063A (en) * 2018-09-14 2019-01-04 武汉钢铁有限公司 The method that TiN is mingled in the control slab of high-strength steel containing Ti
CN109128063B (en) * 2018-09-14 2021-06-01 武汉钢铁有限公司 Method for controlling TiN inclusions in Ti-containing high-strength steel casting blank

Similar Documents

Publication Publication Date Title
KR100921311B1 (en) Casting method of modified copper alloy using the master alloy for use in modifying copper alloy
KR20020028890A (en) Copper sputtering target assembly and method of making same
JPH02503331A (en) Magnesium alloy with high mechanical resistance and manufacturing method by rapid solidification of the alloy
CN114369736B (en) Nickel-based high-temperature alloy capable of improving use proportion of return materials and smelting process
CA2597248C (en) Method for casting titanium alloy
CN112831692B (en) Aluminum-manganese alloy strip and preparation method thereof
US4808374A (en) Method for producing aluminum alloy castings and the resulting product
CN114393181A (en) Ultrahigh-strength plastic-tough high manganese steel, assembled frog thereof and preparation method
JP3548709B2 (en) Method for producing semi-solid billet of Al alloy for transportation equipment
CN113528880A (en) Grain refiner for rare earth magnesium alloy, preparation method and method for preparing rare earth magnesium alloy by using grain refiner
JP2002060887A (en) Method for manufacturing high purity bearing steel
JPH06287661A (en) Production of smelted material of refractory metal
JP2989060B2 (en) Low oxygen Ti-Al alloy and method for producing the same
JPH10158756A (en) Method for molding semi-molten metal
JP2002060886A (en) Method for manufacturing high purity bearing steel
JPH08176810A (en) Production of aluminum-high melting point metal alloy ingot and target material
JP2011012300A (en) Copper alloy and method for producing copper alloy
US20060225818A1 (en) Process for casting a beta-titanium alloy
JPS5887236A (en) Manufacture of heat resistant aluminum alloy conductor
JP2002275561A (en) Gold or gold-alloy material for thin film deposition and its manufacturing method, and hearth ingot using the gold or gold alloy and its manufacturing method
JPS63313635A (en) Production of high strength al pipe stock for heat exchanger
JPH02147148A (en) Production of case hardening steel product
JP2553967B2 (en) Ultra-high cleanliness stainless steel manufacturing method
JP3802796B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
JPH05311281A (en) Cu-fe alloy for adding to copper alloy and its manufacture