JP2002060559A - Polyethylene resin for container - Google Patents

Polyethylene resin for container

Info

Publication number
JP2002060559A
JP2002060559A JP2000253050A JP2000253050A JP2002060559A JP 2002060559 A JP2002060559 A JP 2002060559A JP 2000253050 A JP2000253050 A JP 2000253050A JP 2000253050 A JP2000253050 A JP 2000253050A JP 2002060559 A JP2002060559 A JP 2002060559A
Authority
JP
Japan
Prior art keywords
polyethylene resin
hlmfr
mfr
resin
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000253050A
Other languages
Japanese (ja)
Other versions
JP3980256B2 (en
Inventor
Kunihiko Ibayashi
邦彦 伊林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Polyolefins Co Ltd
Original Assignee
Japan Polyolefins Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Polyolefins Co Ltd filed Critical Japan Polyolefins Co Ltd
Priority to JP2000253050A priority Critical patent/JP3980256B2/en
Publication of JP2002060559A publication Critical patent/JP2002060559A/en
Application granted granted Critical
Publication of JP3980256B2 publication Critical patent/JP3980256B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a polyethylene resin having excellent heat resistance, rigidity, moldability, stress-cracking resistance or the like so that the composition is applied to a container for a carbonized drink or the like. SOLUTION: This polyethylele resin for a container body or a cap satisfies the following requirements (a) to (d): (a) having 0.5-5 g/10 min MFR at 2.16 kg load; (b) having >=180 g/10 min HLMFR at 21.6 kg load; (c) having >=80 ratio of HLMFR/MFR: (d) >=2 ratio BH/BL of the number BH of short chain branches of a component corresponding to the molecular weight of 2×106-1×107 in eluted components of a high-temperature GPC, to the number BL of the short chain branches of the component corresponding to the molecular weight of 4×104-1.4×105. The polyethylene resin has a high fluidity and is excellent in moldability. As a result, the cycle is shortened and the production efficiency is heightened.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭酸飲料等の液体
などを収容する容器、即ち、その容器本体及び又は蓋に
用いられるポリエチレン樹脂に関し、さらに詳しくは成
形性、高流動性、臭い、耐衝撃性、滑り性、食品安全性
に優れ、かつ充填内容物等に起因して生じる容器内圧に
耐え得る耐ストレスクラック性を有し、かつ高剛性化に
より加熱充填にも耐えうる耐熱性をも有するので、種々
の充填方法でも充填可能とする容器用ポリエチレン樹脂
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a container for accommodating a liquid such as a carbonated beverage, that is, a polyethylene resin used for a container body and / or a lid thereof. It is excellent in impact resistance, slipperiness, food safety, and has stress crack resistance that can withstand the internal pressure of the container caused by the filling contents, and also has heat resistance that can withstand heat filling due to high rigidity. The present invention relates to a polyethylene resin for containers that can be filled even by various filling methods.

【0002】[0002]

【従来の技術】従来、清涼飲料水、炭酸飲料水等の容器
としては、容器本体としてポリエチレンテレフタレート
(PET)製のものが、その蓋(キャップ)としてアル
ミニウム金属製のものが広く用いられている。通常、蓋
は容器口部に螺合等の係止手段で係止される。近年、リ
サイクル性等の環境保全の観点から蓋にポリオレフィン
の適用が検討されている。しかも、ポリオレフィンであ
ると、軽量化、低価格化を図れる他、臭いやブリードア
ウトも殆どなく、飲食品用の容器として適している。そ
の際、ポリオレフィンの中でも、特に炭酸飲料水用のキ
ャップとしては、ポリエチレンは容器内圧によりストレ
スクラックが発生するおそれがあるので、ポリプロピレ
ンが用いられることが多い。また、飲料水等内容物によ
っては加熱充填する場合、加熱内容物の熱によりポリエ
チレンが軟化する恐れがあるので、このような点からも
耐熱性及び剛性の高いポリプロピレンが使われている。
2. Description of the Related Art Conventionally, as containers for soft drinks, carbonated drinks and the like, those made of polyethylene terephthalate (PET) as a container body and those made of aluminum metal as a lid (cap) have been widely used. . Normally, the lid is locked to the container mouth by locking means such as screwing. In recent years, application of polyolefin to lids has been studied from the viewpoint of environmental conservation such as recyclability. In addition, the use of polyolefin makes it possible to reduce the weight and cost, and has almost no odor or bleed-out, and is suitable as a container for food and drink. At that time, among the polyolefins, particularly as a cap for carbonated drinking water, polypropylene is often used because polyethylene may cause stress cracks due to the internal pressure of the container. In addition, in the case of heating and filling depending on contents such as drinking water, there is a possibility that the polyethylene is softened by heat of the heated contents. Therefore, polypropylene having high heat resistance and rigidity is used from such a point.

【0003】[0003]

【発明が解決しようとする課題】しかし近年、成形サイ
クルを短縮して、生産効率を上げるという要求が高くな
っている。そこで、高流動性のポリオレフィンにて射出
成形または圧縮成形を行う試みがなされるようになり、
ポリエチレンが、ポリプロピレンに比べて融点が低いた
め、成形サイクルを短縮できる点で見直されるようにな
った。また、ポリプロピレン製の蓋は滑り性が悪く開栓
トルクが大きくなってしまうが、ポリエチレン製の蓋
は、キャップ開閉時の滑り性も良好であるという利点も
ある。しかし、炭酸飲料容器の蓋用については、上述し
たように、その容器内の圧力によりポリエチレン製キャ
ップではストレスクラック等の問題がある。また、経済
上の理由からキャップの肉厚を薄くすることも要求され
る一方、内圧による変形でシール部からの炭酸ガスの漏
れを防止すべくより高い剛性をも求められており、これ
らの要求を満たすポリエチレン樹脂製の容器蓋は未だ実
現されていない。
However, in recent years, there has been an increasing demand for shortening the molding cycle and increasing the production efficiency. Therefore, attempts have been made to perform injection molding or compression molding with highly fluid polyolefin,
Since polyethylene has a lower melting point than polypropylene, it has been reviewed in that the molding cycle can be shortened. In addition, the lid made of polypropylene has poor slipperiness and increases the opening torque, but the lid made of polyethylene has an advantage that the slipperiness when opening and closing the cap is also good. However, as for the lid for a carbonated beverage container, as described above, there is a problem such as a stress crack in a polyethylene cap due to the pressure in the container. In addition, while the thickness of the cap is required to be reduced for economic reasons, higher rigidity is also required to prevent leakage of carbon dioxide gas from the seal due to deformation due to internal pressure. A container lid made of polyethylene resin that satisfies the above has not been realized yet.

【0004】耐ストレスクラック性、耐衝撃性等を向上
したポリエチレン樹脂として、例えば2種類のポリエチ
レンをブレンドすることにより、コンテナ、ボトル、フ
ィルム等に適用させたものが知られている。しかしなが
ら、それらのポリエチレン樹脂でも、高速成形に対応し
得る高流動性、炭酸飲料容器の内圧に耐え得る剛性を共
に満足するものはなく、炭酸飲料用のキャップには使用
されていない。また、近年の高速成形機による、成形サ
イクル向上を考えた場合の流動性を重視したポリエチレ
ン樹脂は、耐ストレスクラック性が劣るものである。ま
た、剛性を重視した高密度のポリエチレンでも耐ストレ
スクラック性は劣る。例えば特開昭58−103542
号公報に記載されたポリエチレン樹脂では、耐ストレス
クラック性を保持しながら、高サイクル成形および高剛
性を図ることは困難である。従って、炭酸飲料用キャッ
プには、ポリエチレン樹脂が使用されていないのが現状
である。
[0004] As a polyethylene resin having improved stress crack resistance, impact resistance, and the like, there is known a polyethylene resin which is applied to containers, bottles, films and the like by blending two types of polyethylene, for example. However, none of these polyethylene resins satisfies both high fluidity, which can cope with high-speed molding, and rigidity, which can withstand the internal pressure of a carbonated beverage container, and is not used for a cap for carbonated beverages. In addition, a polyethylene resin which emphasizes fluidity when considering a molding cycle by a recent high-speed molding machine has poor stress crack resistance. In addition, even high-density polyethylene that emphasizes rigidity has poor stress crack resistance. For example, JP-A-58-103542
In the polyethylene resin described in Japanese Patent Application Laid-Open Publication No. H11-129, it is difficult to achieve high cycle molding and high rigidity while maintaining stress crack resistance. Therefore, at present, polyethylene resin is not used in the cap for carbonated beverages.

【0005】本発明は前記課題を解決するためになされ
たもので、炭酸飲料等用の容器にも適用できるように、
耐熱性、剛性、成形性、耐ストレスクラック性等を高次
元で兼ね備えたポリエチレン樹脂を目的とするものであ
る。
The present invention has been made to solve the above-mentioned problems, and has been made so as to be applicable to containers for carbonated drinks and the like.
An object of the present invention is to provide a polyethylene resin having a high degree of heat resistance, rigidity, moldability, stress crack resistance, and the like.

【0006】[0006]

【課題を解決するための手段】本発明の容器本体又は蓋
用ポリエチレン樹脂は、次の(a)から(d)の要件を
満足するものである。。 (a)荷重2.16kgにおけるMFRが0.5〜5g/10
min (b)荷重21.6kgにおけるHLMFRが180g/1
0min以上 (c)HLMFR/MFRが80以上 (d)高温GPC溶出分の分子量2×106〜1×107に相当
する成分の短鎖分岐数BHと、分子量4×104〜1.4×105
相当する成分の短鎖分岐数BLとの比BH/BLが2以上。さ
らに下記要件(e)〜(h)を満足することが望まし
い。 (e)密度が0.955g/cm3以上 (f)射出成形試料の曲げ弾性率が13000kgf/
cm2以上 (g)射出成形試料の耐定ひずみストレスクラック性が
40時間以上 (h)キャピラリーレオメーターにおいて、200℃測
定時、剪断速度200sec-1での溶融粘度が4000poi
se以下。 上記ポリエチレン樹脂としては、HLMFRが0.1〜
2.0g/10min、密度が0.930g/cm3以下のポリエ
チレン樹脂(A)を10重量%以上且つ30重量%未満
と、MFRが200g/10min以上、密度が0.960g/
cm3以上のポリエチレン樹脂(B)を70重量%より
多く且つ90重量%以下とを有するものが望ましい。本
発明の容器本体又は蓋は、上記ポリエチレン樹脂からな
ることを特徴とするものである。
Means for Solving the Problems The polyethylene resin for a container body or a lid according to the present invention satisfies the following requirements (a) to (d). . (A) MFR at a load of 2.16 kg is 0.5 to 5 g / 10
min (b) HLMFR at a load of 21.6 kg is 180 g / 1
0 min or more (c) HLMFR / MFR is 80 or more (d) The number of short-chain branches BH of the component corresponding to the molecular weight of 2 × 10 6 to 1 × 10 7 eluted by high-temperature GPC, and the molecular weight of 4 × 10 4 to 1.4 × 10 The ratio BH / BL of the component corresponding to 5 to the number of short-chain branches BL is 2 or more. Further, it is desirable to satisfy the following requirements (e) to (h). (E) The density is 0.955 g / cm 3 or more. (F) The flexural modulus of the injection molded sample is 13000 kgf /
In cm 2 or more (g) of the injection molded samples耐定strain stress crack resistance over 40 hours (h) a capillary rheometer at 200 ° C. measurement, the melt viscosity at a shear rate of 200sec -1 4000poi
se or less. As the polyethylene resin, HLMFR is 0.1 to 0.1.
When the polyethylene resin (A) having a density of 2.0 g / 10 min and a density of 0.930 g / cm 3 or less is 10 wt% or more and less than 30 wt%, the MFR is 200 g / 10 min or more and the density is 0.960 g / cm 3.
It is desirable that the content of the polyethylene resin (B) of cm 3 or more be more than 70% by weight and 90% by weight or less. A container body or a lid according to the present invention is made of the above polyethylene resin.

【0007】[0007]

【発明の実施の形態】本発明に係るポリエチレン樹脂
は、チーグラー触媒;フィリップス触媒;メタロセン触
媒等のシングルサイト触媒等の各種触媒で重合されるエ
チレン単独あるいはエチレンと炭素数3〜18のα−オ
レフィンから選ばれる1種またはそれ以上のコモノマー
との共重合体である。α−オレフィンの代表例としては
例えばプロピレン、1-ブテン、1-ヘキセン、1-オク
テン、4-メチル-1ペンテン等が挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION The polyethylene resin according to the present invention is ethylene alone or ethylene and an α-olefin having 3 to 18 carbon atoms which are polymerized by various catalysts such as a Ziegler catalyst; a Phillips catalyst; and a single site catalyst such as a metallocene catalyst. And a copolymer with one or more comonomers selected from the group consisting of: Representative examples of the α-olefin include, for example, propylene, 1-butene, 1-hexene, 1-octene, 4-methyl-1-pentene and the like.

【0008】(a) 本発明のポリエチレン樹脂は、荷重
2.16kgにおけるMFRが0.5〜5g/10minである
ことが必要である。好ましくは1〜4g/10minの範囲で
ある。 (b)また荷重21.6kgにおけるHLMFRは18
0g/10min以上であることが必要である。HLMFRは
好ましくは200〜380g/10minである。MFRが0.
5〜5g/10minの範囲であってもHLMFRが180g/1
0min未満であれば高速成形性が劣る。また、MFRが5
g/10minを超えれば、HLMFRが180g/10min以上で
あっても、耐ストレスクラック性が劣る。MFRが、
0.5g/10min未満ではHLMFRが180g/10min以上
を達成することは困難であり、当然ながら高速成形性が
劣る。 (c)さらに、HLMFR/MFRの比の値は80以上
である。 HLMFR/MFRの比率を80以上とする
ことにより、高速成形性(流動性)と耐ストレスクラッ
ク性のバランスを向上させることができる。HLMFR
/MFRの比の上限値は特に制限されない。通常は、1
000以下である。
(A) The polyethylene resin of the present invention must have an MFR of 0.5 to 5 g / 10 min under a load of 2.16 kg. Preferably, it is in the range of 1 to 4 g / 10 min. (B) HLMFR at a load of 21.6 kg is 18
It is necessary to be 0 g / 10min or more. The HLMFR is preferably between 200 and 380 g / 10 min. MFR is 0.
HLMFR is 180g / 1 even in the range of 5-5g / 10min
If it is less than 0 min, high-speed moldability is inferior. In addition, MFR is 5
If it exceeds g / 10min, the stress crack resistance is inferior even if the HLMFR is 180 g / 10min or more. MFR
If it is less than 0.5 g / 10 min, it is difficult to achieve an HLMFR of 180 g / 10 min or more, and naturally high speed moldability is inferior. (C) Further, the value of the ratio of HLMFR / MFR is 80 or more. When the ratio of HLMFR / MFR is 80 or more, the balance between high-speed moldability (fluidity) and stress crack resistance can be improved. HLMFR
The upper limit of the ratio of / MFR is not particularly limited. Usually 1
000 or less.

【0009】(d)また本発明のポリエチレン樹脂で
は、高温GPC溶出分の分子量2×106〜1×107に相当す
る成分の短鎖分岐数BHと、分子量4×104〜1.4×105に相
当する成分の短鎖分岐数BLとの比BH/BLが2以上である
ことを必須とする。BH/BLを2以上とすることにより高
い剛性が得られ、剛性と耐ストレスクラック性とのバラ
ンスを向上させることができる。短鎖分岐数の比BH/BL
の上限値は特に制限されない。通常は100以下であ
る。この短鎖分岐数の比BH/BLは以下のようにして求め
ることができる。すなわち、高温GPC(ポリマーラボ
ラトリーズ社製「形式PL−GPC220」)の溶出物出口
にLab Connection社製「LC-Transform 320型採取機」を
接続する。高温GPCの測定はポリエチレンの一般的な
条件(カラム:PSゲル、温度:140℃、試料:10
〜20mg/溶媒10ml)で行う。試料ポリエチレン
を高温GPC(溶媒:ODCB(オルソジクロロベンゼ
ン))にかけ、それからの溶出物を上記採取機により直径
60mmのゲルマニウムディスク上に採取する。この操作に
より、試料のポリマーはディスク上外周部に分子量にし
たがって分別され堆積する。次に、ディスク上の各位置
におけるポリマーのIRスペクトルを専用のアタッチメ
ントを用いて測定する。このとき、ディスク上の位置は
溶出時間により決まるので、予め測定された検量線を用
いて希望の分子量のものが堆積された位置を知ることが
できる。そこで、分子量2×106〜1×107および分子量4
×104〜1.4×105のものが堆積した位置を知り、その位
置におけるIRスペクトルを測定する。分子量2×106
1×107および分子量4×104〜1.4×105に相当する成分の
IRスペクトルからBHおよびBLを計算する方法は以下の
通りである。縦軸を吸光度としたIRスペクトルにおい
て、まず3000〜2750cm-1にベースラインを引き、2925cm
-1を主ピークとするC‐Hの伸縮振動によるこの範囲の吸
収ピークの面積A2925を計算する。A2925は堆積されたポ
リマーの量に比例する。次に、1340〜1400cm-1付近の吸
収ピークから、1368cm-1のピーク(ポリマー主鎖のメチ
レンの振動吸収に対応する)を除いて、1378cm-1のピー
ク(分岐に対応する)のみを検出するために、別途測定
した基準試料の直鎖エチレンホモポリマーのIRスペク
トルに適当な係数を乗じて試料のIRスペクトルに重ね
合わせて試料スペクトルからの差算を行い、得られた差
スペクトルの1378cm-1のピークの面積A1378を計算す
る。A1378は堆積されたポリマー中の短鎖分岐末端のメ
チル基の量に比例する。A1378/A2925を計算し、これに
予め測定した検量線から求めた係数を乗ずることによ
り、ポリマーの短鎖分岐数を知ることができる。
(D) In the polyethylene resin of the present invention, the number of short-chain branches BH of the component corresponding to the molecular weight of 2 × 10 6 to 1 × 10 7 , which is eluted by high-temperature GPC, and the molecular weight of 4 × 10 4 to 1.4 × 10 It is essential that the ratio BH / BL of the component corresponding to 5 to the number of short-chain branches BL is 2 or more. By setting BH / BL to 2 or more, high rigidity can be obtained, and the balance between rigidity and stress crack resistance can be improved. Short chain branching ratio BH / BL
Is not particularly limited. Usually, it is 100 or less. The ratio BH / BL of the number of short-chain branches can be determined as follows. That is, an "LC-Transform 320 type sampler" manufactured by Lab Connection is connected to the eluate outlet of high-temperature GPC ("Model PL-GPC220" manufactured by Polymer Laboratories). The measurement of high-temperature GPC was performed under the general conditions of polyethylene (column: PS gel, temperature: 140 ° C., sample: 10
2020 mg / solvent 10 ml). The sample polyethylene was subjected to high-temperature GPC (solvent: ODCB (orthodichlorobenzene)), and the eluate from the sample polyethylene was collected by the above-mentioned sampler to obtain a diameter
Collect on a 60 mm germanium disk. By this operation, the polymer of the sample is separated and deposited on the outer peripheral portion of the disk according to the molecular weight. Next, the IR spectrum of the polymer at each position on the disk is measured using a dedicated attachment. At this time, since the position on the disk is determined by the elution time, the position where the desired molecular weight is deposited can be known using the calibration curve measured in advance. Therefore, a molecular weight of 2 × 10 6 to 1 × 10 7 and a molecular weight of 4
The position where x10 4 to 1.4 × 10 5 are deposited is known, and the IR spectrum at that position is measured. Molecular weight 2 × 10 6
The method of calculating BH and BL from the IR spectrum of a component corresponding to 1 × 10 7 and a molecular weight of 4 × 10 4 to 1.4 × 10 5 is as follows. In the IR spectrum with the vertical axis representing the absorbance, a baseline was first drawn to 3000-2750 cm -1 and 2925 cm
The area A2925 of the absorption peak in this range due to CH stretching vibration with -1 as the main peak is calculated. A2925 is proportional to the amount of polymer deposited. Then, from the absorption peak around 1340~1400Cm -1, with the exception of the peak of 1368cm -1 (corresponding to the vibration absorption of the methylene in the polymer backbone), (corresponding to the branch) peak of 1378 cm -1 only detected In order to perform the subtraction from the sample spectrum by multiplying the IR spectrum of the linear ethylene homopolymer of the reference sample separately measured by an appropriate coefficient and superimposing on the IR spectrum of the sample, the obtained difference spectrum of 1378 cm The peak area A1378 of 1 is calculated. A1378 is proportional to the amount of methyl groups at the short-chain branch ends in the deposited polymer. By calculating A1378 / A2925 and multiplying it by a coefficient obtained from a calibration curve measured in advance, the number of short-chain branches of the polymer can be known.

【0010】(e)さらに、本発明のポリエチレン樹脂
にあっては、次の(e)から(h)の要件をも満足する
ことが望ましい。すなわち、(e)その密度が0.95
5g/cm3以上、好ましくは0.957g/cm3以上
であることが望ましい。密度の上限値としては、0.9
80g/cm3以下であることが好ましい。密度を0.9
55g/cm3以上とすることにより、剛性が向上し、
容器の内圧によりキャップが変形しにくくなる。また、
加熱充填に対する耐熱性も向上する。 (f)ポリエチレン樹脂は射出成形により成形した試料
の曲げ弾性率が13000kgf/cm2以上であるこ
とが望ましい。より望ましくは14000kgf/cm
2以上である。曲げ弾性率が13000kgf/cm2
上となることで剛性が高く、容器の内圧によりキャップ
が変形しにくくなる。曲げ弾性率の上限値は特に制限さ
れない。通常は20000kgf/cm2以下である。
本発明における曲げ弾性率測定用の射出成形試料とは射
出成形にて210℃で6.4×12.4×127mmの試
験片を作製したもので、JIS−K7203準拠にて行
なうものである。
(E) It is desirable that the polyethylene resin of the present invention also satisfies the following requirements (e) to (h). That is, (e) the density is 0.95
5 g / cm 3 or more, it is desirable that preferably 0.957 g / cm 3 or more. The upper limit of the density is 0.9
It is preferably 80 g / cm 3 or less. 0.9 density
By making it 55 g / cm 3 or more, rigidity is improved,
The cap is less likely to deform due to the internal pressure of the container. Also,
Heat resistance to heat filling is also improved. (F) The polyethylene resin preferably has a flexural modulus of 13000 kgf / cm 2 or more of a sample molded by injection molding. More desirably 14000 kgf / cm
2 or more. When the flexural modulus is 13000 kgf / cm 2 or more, the rigidity is high, and the cap is not easily deformed by the internal pressure of the container. The upper limit of the flexural modulus is not particularly limited. Usually, it is 20,000 kgf / cm 2 or less.
The injection-molded sample for measuring the flexural modulus in the present invention is a specimen prepared by injection molding at 210 ° C. and measuring 6.4 × 12.4 × 127 mm, which is measured in accordance with JIS-K7203.

【0011】(g)ポリエチレン樹脂の耐定ひずみスト
レスクラック性(ESCR)は40時間以上であること
が望ましい。これは一定ひずみ下での耐ストレスクラッ
ク性であり、具体的にはJIS−K6760に従うもの
である。射出成形試料とは210℃にて射出成形された
130×130×2mmの寸法の板から切り出したもので
ある。 (h)ポリエチレン樹脂は、キャピラリーレオメーター
において、200℃測定時、剪断速度200sec-1の溶
融粘度が4000poise以下、好ましくは3500poise
以下であることが望ましい。本発明においてはインテス
コ社製キャピラリーレオメーターを用い、径1.0m
m,L/D=20のキャピラリーを用い、200℃の温
度にて測定し、剪断速度200sec-1での粘度をここで
述べる溶融粘度とする。この溶融粘度を4000poise
以下とすることにより、ショートショットが生じにくく
なって高速射出成形性が向上し、また、延展性が向上す
るので圧縮成形に好適なものとなる。剪断速度200se
c-1の溶融粘度の下限値は特に制限されない。通常は、
500poise以上である。
(G) The polyethylene resin preferably has a constant strain stress crack resistance (ESCR) of 40 hours or more. This is stress crack resistance under a constant strain, and specifically conforms to JIS-K6760. The injection molded sample was cut out from a plate having a size of 130 × 130 × 2 mm which was injection molded at 210 ° C. (H) The polyethylene resin has a melt viscosity at a shear rate of 200 sec -1 of 4000 poise or less, preferably 3500 poise when measured at 200 ° C. in a capillary rheometer.
It is desirable that: In the present invention, a capillary rheometer manufactured by Intesco Corporation is used, and the diameter is 1.0 m.
The viscosity at a shear rate of 200 sec −1 is measured at a temperature of 200 ° C. using a capillary with m, L / D = 20 and the melt viscosity described herein. This melt viscosity is 4000poise
By setting it as follows, short shots are less likely to occur and high-speed injection moldability is improved, and spreadability is improved, so that it is suitable for compression molding. Shear speed 200se
The lower limit of the melt viscosity of c- 1 is not particularly limited. Normally,
More than 500poise.

【0012】本発明のポリエチレン樹脂は、単一のポリ
エチレン樹脂であることもできるが、複数、たとえば二
種類の物性を有するポリエチレン樹脂からなるものとし
て構成することができる。すなわち、後述する成分
(A)としてのポリエチレン樹脂を10重量%以上且つ
30重量%未満、好ましくは20重量%以上且つ30重
量%未満、および成分(B)としてのポリエチレン樹脂
を70重量%より多く且つ90重量%以下、好ましくは
70重量%より多く且つ80重量%以下からなるもので
あることができる。ここで、成分(A)としてのポリエ
チレン樹脂を10重量%以上とすることにより耐ストレ
スクラック性が向上し、30重量%未満とすることによ
り成形性が向上する。成分(A)としてのポリエチレン
樹脂は、HLMFRが0.1〜2g/10min、好ましくは
0.2〜1g/10min、密度が0.930g/cm3以下のポ
リエチレン樹脂であり、成分(B)としてのポリエチレ
ン樹脂はMFRが200g/10min以上、密度が0.960
g/cm3以上のポリエチレン樹脂である。ここで成分
(A)としてのポリエチレン樹脂のHLMFRが0.1g
/10min未満の場合は流動性が悪化し成形性が不良となっ
たり、2.0g/10minを超える場合は耐ストレスクラック
性が悪化したりする虞がある。さらに成分(A)として
のポリエチレン樹脂の密度が0.930g/cm3を超え
る場合は耐ストレスクラック性が悪くなる虞がある。成
分(A)としてのポリエチレン樹脂の密度の下限値は特
に制限されない。通常は、0.880g/cm3以上であ
る。また、成分(B)としてのポリエチレン樹脂のMF
Rが200g/10min未満の場合は流動性が悪化したり、
密度が0.960g/cm3未満の場合は剛性が低下する
虞がある。成分(B)としてのポリエチレン樹脂のMF
Rの上限値は特に制限されない。通常は2000g/10mi
n以下である。また成分(B)としてのポリエチレン樹
脂の密度の上限値は特に制限されない。通常は、0.9
80g/cm3以下である。
The polyethylene resin of the present invention may be a single polyethylene resin, but may be constituted by a plurality of, for example, polyethylene resins having two kinds of physical properties. That is, the polyethylene resin as the component (A) described later is 10% by weight or more and less than 30% by weight, preferably 20% by weight or more and less than 30% by weight, and the polyethylene resin as the component (B) is more than 70% by weight. And up to 90% by weight, preferably more than 70% by weight and up to 80% by weight. Here, when the content of the polyethylene resin as the component (A) is 10% by weight or more, the stress crack resistance is improved, and when the content is less than 30% by weight, the moldability is improved. The polyethylene resin as the component (A) is a polyethylene resin having an HLMFR of 0.1 to 2 g / 10 min, preferably 0.2 to 1 g / 10 min, and a density of 0.930 g / cm 3 or less. Has an MFR of 200 g / 10 min or more and a density of 0.960.
g / cm 3 or more. Here, the HLMFR of the polyethylene resin as the component (A) is 0.1 g.
If it is less than / 10 min, the fluidity may be deteriorated, resulting in poor moldability. If it is more than 2.0 g / 10 min, the stress crack resistance may be deteriorated. Further, when the density of the polyethylene resin as the component (A) exceeds 0.930 g / cm 3 , the stress crack resistance may be deteriorated. The lower limit of the density of the polyethylene resin as the component (A) is not particularly limited. Usually, it is 0.880 g / cm 3 or more. MF of polyethylene resin as component (B)
When R is less than 200 g / 10 min, the fluidity deteriorates,
If the density is less than 0.960 g / cm 3 , the rigidity may decrease. MF of polyethylene resin as component (B)
The upper limit of R is not particularly limited. Normally 2000g / 10mi
n or less. The upper limit of the density of the polyethylene resin as the component (B) is not particularly limited. Normally, 0.9
It is 80 g / cm 3 or less.

【0013】成分(A)および成分(B)のポリエチレ
ン樹脂を別個にそれぞれ重合し、それをブレンドするこ
とにより本発明のポリエチレン樹脂とすることができ
る。好ましくは、樹脂の均一性等の理由から直列に接続
した複数の重合器、たとえば2基の重合器で順次連続的
に重合して得られるものが望ましい。重合触媒は、前記
した遷移金属触媒成分と有機アルミニウム化合物とから
なるチーグラー触媒;フィリップス触媒;メタロセン触
媒等のシングルサイト触媒等の各種触媒である。重合
は、有機溶媒中または気相で行うことができる。ここで
直列に接続した複数の重合器で順次連続して重合する、
いわゆる多段重合においては、具体的には種々の方法を
採用し得る。たとえば、一段目において、エチレン或い
はさらにα−オレフィンを(共)重合させて高分子量成分
の基となるポリエチレン樹脂を製造し、引き続き重合系
にエチレンおよび水素を導入して、高分子量成分と低分
子量成分とを含むポリエチレン樹脂を調製する方法など
がある。しかしながら、本発明のポリエチレン樹脂は上
記多段重合によって製造することは必ずしも容易ではな
い。好ましい方法としては、始めの重合域は低分子量成
分を製造する製造条件を採用して重合し、得られた樹脂
を次の重合域に移送し、当該次の重合域では高分子量成
分を製造する製造条件を採用して重合しポリエチレン樹
脂を調製する方法が好ましい。また密度は後の重合域で
製造される樹脂の密度が低くなるよう製造条件を設定す
る。すなわち、共重合が始めの重合域よりも後の重合域
で起るように、α−オレフィンの供給量等を各段の間で
調整する。より詳しく述べれば、チタン系触媒成分およ
び有機アルミニウム化合物を用いるチーグラー系触媒に
より複数段で重合する場合、始めの重合域(2段重合の
1段目)では、エチレンおよび水素を導入してチーグラ
ー触媒により重合させることにより高MFRで高密度な
ポリエチレン樹脂を連続的に製造し、始めの重合域から
抜き出された重合物はその後適宜に水素を脱圧された
後、引き続いて後の重合域(2段重合の2段目)に移送さ
れ、当該後の重合域ではエチレンおよびα−オレフィン
を導入することにより低いHLMFRで低密度なポリエ
チレンを製造する製造条件を採用して重合させる方法で
ある。
The polyethylene resin of the present invention can be obtained by separately polymerizing the polyethylene resins of the component (A) and the component (B) and blending them. Preferably, a polymer obtained by sequentially and continuously polymerizing a plurality of polymerization reactors connected in series, for example, two polymerization reactors, for reasons such as resin uniformity is desirable. The polymerization catalyst includes various catalysts such as a Ziegler catalyst comprising the above-described transition metal catalyst component and an organoaluminum compound; a Phillips catalyst; a single-site catalyst such as a metallocene catalyst. The polymerization can be carried out in an organic solvent or in the gas phase. Here, a plurality of polymerization vessels connected in series sequentially and continuously polymerize,
In the so-called multi-stage polymerization, various methods can be specifically adopted. For example, in the first stage, ethylene or further α-olefin is (co) polymerized to produce a polyethylene resin as a base of a high molecular weight component, and then ethylene and hydrogen are introduced into a polymerization system, whereby a high molecular weight component and a low molecular weight And a method of preparing a polyethylene resin containing the components. However, it is not always easy to produce the polyethylene resin of the present invention by the above multistage polymerization. As a preferred method, the first polymerization zone is polymerized by employing the production conditions for producing a low molecular weight component, and the obtained resin is transferred to the next polymerization zone, and the high molecular weight component is produced in the next polymerization zone. A method of preparing a polyethylene resin by polymerization under the production conditions is preferred. The production conditions are set so that the density of the resin produced in the subsequent polymerization zone becomes low. That is, the supply amount of the α-olefin and the like are adjusted between the stages so that the copolymerization occurs in the polymerization zone after the initial polymerization zone. More specifically, when polymerizing in multiple stages using a Ziegler-based catalyst using a titanium-based catalyst component and an organoaluminum compound, in the first polymerization zone (the first stage of the two-stage polymerization), ethylene and hydrogen are introduced to introduce a Ziegler catalyst. A high-density polyethylene resin with a high MFR is continuously produced by polymerization, and the polymer extracted from the first polymerization zone is appropriately depressurized with hydrogen, and subsequently, the subsequent polymerization zone ( This is a method of carrying out polymerization in the subsequent polymerization zone by introducing ethylene and an α-olefin to produce low-density polyethylene with low HLMFR.

【0014】上記本発明のポリエチレン樹脂には本発明
の効果を著しく損なわない範囲で添加剤、充填剤等を添
加しても良い。添加剤として、例えば酸化防止剤(フェ
ノール系、リン系、イオウ系)、滑剤、帯電防止剤、光
安定剤、紫外線吸収剤等を1種または2種以上適宜に併
用することができる。充填剤としては、例えばタルク、
マイカ等が使用できる。上記樹脂は先に説明したとお
り、連続的に多段重合で重合して得られポリエチレン樹
脂とすることができ、特に上記成分(B)を先に重合
後、成分(A)を重合することが好ましい。なお多段重
合による場合、2段目以降の重合域で生成するポリエチ
レンの量とその物性については、各段における樹脂生産
量(未反応ガス分析、その外の分析手段により把握する
ことができる)を求め、樹脂の物性は各段の後でそれぞ
れ抜き出した樹脂の物性を測定し、物性の加成性から換
算して求めることができる。また、もちろん別々に重合
した後ブレンドして得ることも可能である。またいずれ
の場合でも必要に応じ各種添加剤を配合し、混練押出
機、バンバリーミキサー等により混練し、容易に成形用
材料とすることができる。
Additives, fillers and the like may be added to the polyethylene resin of the present invention as long as the effects of the present invention are not significantly impaired. As the additives, for example, one or two or more of antioxidants (phenol-based, phosphorus-based, sulfur-based), lubricants, antistatic agents, light stabilizers, ultraviolet absorbers, and the like can be appropriately used. As the filler, for example, talc,
Mica and the like can be used. As described above, the resin can be a polyethylene resin obtained by continuously polymerizing in a multistage polymerization, and it is particularly preferable to polymerize the component (A) after polymerizing the component (B) first. . In the case of multi-stage polymerization, the amount of polyethylene produced in the polymerization zone of the second and subsequent stages and its physical properties are determined based on the amount of resin produced in each stage (unreacted gas analysis, which can be grasped by other analysis means). The physical properties of the resin can be determined by measuring the physical properties of the resin extracted after each step and converting the properties from the additive properties of the resin. Of course, it is also possible to polymerize them separately and then blend them. In each case, various additives can be blended as required and kneaded with a kneading extruder, a Banbury mixer, or the like to easily form a molding material.

【0015】本発明に係るポリエチレン樹脂は、容器の
容器本体または蓋用であり、特に蓋への適用に適してい
るものである。特に炭酸飲料等の容器内部に内圧がかか
る容器や水飲料等の内容物を加熱充填する必要がある容
器の容器本体または蓋、特にそのような容器の蓋に好ま
しく適用される。蓋の成形法としては、特に限定されず
周知の種々の樹脂成形法を適用できる。しかしながら中
でも、射出成形、圧縮成形等が最も好ましく用いられ
る。蓋を本発明のポリエチレン樹脂により構成する場
合、容器本体の樹脂はいずれの樹脂でも構成することが
できる。たとえば、PETやポリピロピレン等の樹脂を
採用することができる。もちろん、容器内容物により本
発明のポリエチレン樹脂とすることができる。本発明が
適用される容器本体又は蓋は、通常一般に樹脂製の容器
として使われるものであればよい。中でも、飲料用、特
に炭酸飲料用容器のときに、その効果が顕著なものとな
る。
The polyethylene resin according to the present invention is used for a container body or a lid of a container, and is particularly suitable for application to a lid. In particular, it is preferably applied to a container body or a lid of a container in which internal pressure is applied to the inside of a container such as a carbonated beverage or a container in which contents such as a water beverage need to be heated and filled, and particularly to a lid of such a container. The method of forming the lid is not particularly limited, and various well-known resin molding methods can be applied. However, among them, injection molding, compression molding and the like are most preferably used. When the lid is made of the polyethylene resin of the present invention, the resin of the container body can be made of any resin. For example, a resin such as PET or polypropylene can be employed. Of course, the polyethylene resin of the present invention can be used depending on the contents of the container. The container body or lid to which the present invention is applied may be any one that is generally used as a resin container. Among them, the effects are remarkable when used for beverages, particularly for carbonated beverage containers.

【0016】[0016]

【実施例】下記実施例、比較例でのポリエチレン樹脂の
物性測定法は以下の通りである。 ・MFR:JIS−K6760 ・密度 :JIS−K6760 ・曲げ弾性率:JIS−K7203 ・定ひずみストレスクラック性(ESCR):JIS−
K6760 ・溶融粘度:キャピラリーレオメーター(インテスコ社
製)および径1.0mm,L/D=20のキャピラリーを用い、20
0℃の温度にて測定し、剪断速度200sec-1での粘度
を測定し、これを溶融粘度とする。 ・ビカット軟化点:JIS−K6760。125℃以上
であれば、容器として耐熱性が良好と判断できる。 ・成形性:高速で蓋を射出成形し、高速成形性を評価し
た。成形性が良好なものを○、不良なものを×で示し
た。 射出成形試料作成条件: 成形機;ファナック社製「ファナック100B」 成形温度;230℃ 射出速度;35mm/sec 保圧;400kg/cm2 冷却温度;40℃ 冷却時間;20sec ・持続耐圧試験:PET瓶に炭酸飲料をいれ、各実施例
等のポリエチレン樹脂で成形したキャップで閉栓し、5
0℃にて1ヶ月放置後に、キャップにおけるクラックの
有無を調べ、ないものを○、あったものを×で示した。
EXAMPLES The methods for measuring the physical properties of polyethylene resins in the following Examples and Comparative Examples are as follows. -MFR: JIS-K6760-Density: JIS-K6760-Flexural modulus: JIS-K7203-Constant strain stress cracking (ESCR): JIS-
K6760-Melt viscosity: 20 using a capillary rheometer (manufactured by Intesco) and a capillary having a diameter of 1.0 mm and L / D = 20.
The viscosity was measured at a temperature of 0 ° C., and the viscosity at a shear rate of 200 sec −1 was measured, and this was defined as the melt viscosity. -Vicat softening point: JIS-K6760 If the temperature is 125 ° C or higher, it can be determined that the container has good heat resistance. Moldability: The lid was injection molded at high speed, and the high speed moldability was evaluated. Good moldability was indicated by ○, and poor moldability was indicated by ×. Injection molding sample preparation conditions: Molding machine; FANUC 100B manufactured by FANUC Molding temperature: 230 ° C Injection speed: 35 mm / sec Holding pressure: 400 kg / cm 2 Cooling temperature; 40 ° C Cooling time: 20 sec , Add a carbonated beverage, and close with a cap molded of polyethylene resin as in each example.
After being left at 0 ° C. for one month, the presence or absence of cracks in the cap was examined.

【0017】[実施例1]チーグラー触媒を用いてコモ
ノマーとしてブテン−1を用いスラリー重合法により連
続的に2段重合で、表1に示したように、成分(B)を
重合後、成分(A)を重合して樹脂を得た。その配合
比、樹脂のMFR、HLMFRとともに各測定値も併せ
て示した。第1段目にはモノマーとしてはエチレンのみ
を供給し、第2段目にはモノマーとしてはエチレンおよ
びブテン−1を供給することにより重合した。2段目で
製造される成分(A)のポリエチレン樹脂の量(配合
比)、その物性等は、各段の後の未反応ガス分析から各
段の生産量をそれぞれ求め、さらに1段目の後と2段目
の後で得られた樹脂の物性をそれぞれ測定し、加成性か
ら換算して求めた。実施例1のポリエチレン樹脂は、そ
の短鎖分岐数の比BH/BLは2.5と高かった。他の物性
は表1に示すように曲げ弾性率、衝撃強度、耐ストレス
クラック性、耐熱性、成形性、持続耐圧性のいずれも良
好であった。また、常法により圧縮成形で内部に螺合面
を有する蓋を成形した。即ち、樹脂押出機よりストラン
ドを押し出し、これを切断して金型に投じ、圧縮成形機
により圧縮して蓋を成形した。成形は容易に行うことが
できた。さらに常法により、射出成形機により金型内に
樹脂を射出し、同じく内部に螺合面を有する蓋を成形し
た。この成形も容易に行うことができた。 [実施例2〜実施例3]表1に示した各成分、コモノマ
ーを用いて実施例1と同様に行った。表1に示したよう
に、曲げ弾性率、衝撃強度、耐ストレスクラック性、耐
熱性、成形性、持続耐圧性のいずれも良好であった。
[Example 1] As shown in Table 1, component (B) was polymerized as shown in Table 1 by continuous two-stage polymerization using butene-1 as a comonomer using a Ziegler catalyst, followed by polymerization of component (B). A) was polymerized to obtain a resin. The measured values are also shown together with the compounding ratio, MFR and HLMFR of the resin. In the first stage, only ethylene was supplied as a monomer, and in the second stage, ethylene and butene-1 were supplied as monomers to perform polymerization. The amount (combination ratio) of the polyethylene resin of the component (A) produced in the second stage, its physical properties, and the like are determined from the unreacted gas analysis after each stage, and the production amount of each stage is obtained. The physical properties of the resin obtained after and after the second stage were measured, respectively, and were calculated from the additivity. The polyethylene resin of Example 1 had a high short-chain branching ratio BH / BL of 2.5, which was high. As shown in Table 1, the other physical properties were good in all of the flexural modulus, impact strength, stress crack resistance, heat resistance, moldability and sustained pressure resistance. Further, a lid having a screwed surface inside was formed by compression molding by a conventional method. That is, a strand was extruded from a resin extruder, cut, thrown into a mold, and compressed by a compression molding machine to form a lid. Molding could be performed easily. Further, the resin was injected into the mold by an injection molding machine by a conventional method, and a lid having a screw surface inside was formed. This molding was also easily performed. [Examples 2 and 3] The same procedure as in Example 1 was carried out using each component and comonomer shown in Table 1. As shown in Table 1, the flexural modulus, impact strength, stress crack resistance, heat resistance, moldability, and sustained pressure resistance were all good.

【0018】[比較例1]実施例1の連続2段重合装置
を用いて重合した。ただし、一段目においてはエチレン
とブテン−1を共重合させて高分子量成分の基となるポ
リエチレンを製造し、引き続き二段目では重合系にエチ
レンおよび水素を導入し高分子量成分と低分子量成分と
を含むポリエチレン樹脂を製造した。この樹脂の短鎖分
岐数の比BH/BLは1.6と低かった。他の物性は表2に
示すとおりである。このポリエチレン樹脂を用いて実施
例1と同様に成形性等の試験を行った。その結果、曲げ
弾性率、耐熱性が不良であった。 [比較例2]成分(A)のみからなるMFRが大きく、
HLMFR/MFRが小さく、短鎖分岐数の比BH/BLが
小さいポリエチレン樹脂を用いて実施例1と同様に試験
を行った。耐ストレスクラック性および持続耐圧性が不
良であった。 [比較例3]表2に示す成分(A)、成分(B)の樹脂
の重量を測定しヘンシェルミキサーで均一に混合後、押
出機にて溶融混合しペレットを作製した。樹脂の短鎖分
岐数の比BH/BLは1.1と低かった。実施例1と同様に
試験を行った結果、曲げ弾性率、耐ストレスクラック
性、耐熱性、持続耐圧性が不良であった。 [比較例4]HLMFR、HLMFR/MFRが小さい
ポリエチレン樹脂を用いて実施例1と同様に試験を行っ
た。曲げ弾性率、耐ストレスクラック性、耐熱性、成形
性、持続耐圧性が不良であった。
Comparative Example 1 Polymerization was carried out using the continuous two-stage polymerization apparatus of Example 1. However, in the first stage, ethylene and butene-1 are copolymerized to produce polyethylene as a base of the high molecular weight component, and then in the second stage, ethylene and hydrogen are introduced into the polymerization system, and the high molecular weight component and the low molecular weight component are mixed. Was produced. The short chain branching ratio BH / BL of this resin was as low as 1.6. Other physical properties are as shown in Table 2. Using this polyethylene resin, tests such as moldability were conducted in the same manner as in Example 1. As a result, the flexural modulus and heat resistance were poor. [Comparative Example 2] The MFR comprising only the component (A) was large,
A test was conducted in the same manner as in Example 1 using a polyethylene resin having a small HLMFR / MFR and a small ratio of short chain branches BH / BL. Stress crack resistance and continuous pressure resistance were poor. Comparative Example 3 The weights of the components (A) and (B) shown in Table 2 were measured and uniformly mixed with a Henschel mixer, and then melt-mixed with an extruder to produce pellets. The ratio BH / BL of the number of short-chain branches of the resin was as low as 1.1. As a result of a test performed in the same manner as in Example 1, the flexural modulus, stress crack resistance, heat resistance, and continuous pressure resistance were poor. Comparative Example 4 A test was performed in the same manner as in Example 1 using a polyethylene resin having a small HLMFR and a small HLMFR / MFR. The flexural modulus, stress crack resistance, heat resistance, moldability, and sustained pressure resistance were poor.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【発明の効果】本発明のポリエチレン樹脂は、高流動性
で成形性に優れ、サイクルを短縮して、生産効率を上げ
ることができる。また、耐ストレスクラック性、剛性と
耐衝撃性のバランスに優れ、および高剛性化による加熱
充填にも耐えうる耐熱性を有し、充填方法を問わず、す
べての充填方法において使用することが可能で炭酸飲料
等による内圧が高くなるものを内容物とする容器にも対
応できる。しかも、臭いやブリードアウトも殆どなく、
飲食品用の容器に適合できる。従って、炭酸飲料やビー
ル用の容器、特にその蓋に好適である。また、リサイク
ル性に優れて環境適性が良好な上、軽量、安価で、ま
た、滑剤を使用せずとも滑り性が良好で、使い勝手も良
い。
The polyethylene resin of the present invention has high fluidity and excellent moldability, can shorten the cycle, and can increase production efficiency. In addition, it has an excellent balance of stress crack resistance, rigidity and impact resistance, and has heat resistance enough to withstand heat filling due to high rigidity, and can be used in all filling methods regardless of filling method It can also be used for containers that contain contents whose internal pressure is high due to carbonated beverages or the like. Moreover, there is almost no smell or bleed-out,
Compatible with food and beverage containers. Therefore, it is suitable for containers for carbonated beverages and beers, especially for lids thereof. In addition, it is excellent in recyclability, good in environmental suitability, lightweight, inexpensive, has good sliding properties without using a lubricant, and is easy to use.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3E033 BA15 CA03 CA06 CA07 CA20 FA02 GA02 3E084 CC04 DC04 4J002 BB031 BB032 BB051 BB052 GG01 4J100 AA02P AA04Q CA01 CA04 DA11 DA39 DA43 FA34 JA58 ────────────────────────────────────────────────── ─── Continued on the front page F term (reference) 3E033 BA15 CA03 CA06 CA07 CA20 FA02 GA02 3E084 CC04 DC04 4J002 BB031 BB032 BB051 BB052 GG01 4J100 AA02P AA04Q CA01 CA04 DA11 DA39 DA43 FA34 JA58

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 次の(a)から(d)の要件を満足する
容器本体又は蓋用ポリエチレン樹脂。 (a)荷重2.16kgにおけるMFRが0.5〜5g/10
min (b)荷重21.6kgにおけるHLMFRが180g/1
0min以上 (c)HLMFR/MFRが80以上 (d)高温GPC溶出分の分子量2×106〜1×107に相当
する成分の短鎖分岐数BHと、分子量4×104〜1.4×105
相当する成分の短鎖分岐数BLとの比BH/BLが2以上。
1. A polyethylene resin for a container body or a lid satisfying the following requirements (a) to (d). (A) MFR at a load of 2.16 kg is 0.5 to 5 g / 10
min (b) HLMFR at a load of 21.6 kg is 180 g / 1
0 min or more (c) HLMFR / MFR is 80 or more (d) The number of short-chain branches BH of the component corresponding to the molecular weight of 2 × 10 6 to 1 × 10 7 eluted by high-temperature GPC, and the molecular weight of 4 × 10 4 to 1.4 × 10 The ratio BH / BL of the component corresponding to 5 to the number of short-chain branches BL is 2 or more.
【請求項2】 さらに下記要件(e)〜(h)を満足す
ることを特徴とする請求項1記載の容器本体又は蓋用ポ
リエチレン樹脂。 (e)密度が0.955g/cm3以上 (f)射出成形試料の曲げ弾性率が13000kgf/
cm2以上 (g)射出成形試料の耐定ひずみストレスクラック性が
40時間以上 (h)キャピラリーレオメーターにおいて、200℃測
定時、剪断速度200sec-1での溶融粘度が4000poi
se以下。
2. The polyethylene resin for a container body or a lid according to claim 1, further satisfying the following requirements (e) to (h). (E) The density is 0.955 g / cm 3 or more. (F) The flexural modulus of the injection molded sample is 13000 kgf /
In cm 2 or more (g) of the injection molded samples耐定strain stress crack resistance over 40 hours (h) a capillary rheometer at 200 ° C. measurement, the melt viscosity at a shear rate of 200sec -1 4000poi
se or less.
【請求項3】 HLMFRが0.1〜2.0g/10min、密
度が0.930g/cm3以下のポリエチレン樹脂(A)
を10重量%以上且つ30重量%未満と、 MFRが200g/10min以上、密度が0.960g/cm
3以上のポリエチレン樹脂(B)を70重量%より多く
且つ90重量%以下とを有することを特徴とする請求項
1または2記載の容器本体又は蓋用ポリエチレン樹脂。
3. A polyethylene resin (A) having an HLMFR of 0.1 to 2.0 g / 10 min and a density of 0.930 g / cm 3 or less.
10% by weight or more and less than 30% by weight, MFR is 200 g / 10 min or more, density is 0.960 g / cm.
The polyethylene resin for a container body or a lid according to claim 1 or 2, wherein the polyethylene resin (B) has more than 3 % by weight and more than 70% by weight and 90% by weight or less.
【請求項4】 請求項1、2、3のいずれかに記載のポ
リエチレン樹脂からなることを特徴とする容器本体又は
蓋。
4. A container body or lid made of the polyethylene resin according to claim 1.
JP2000253050A 2000-08-23 2000-08-23 Polyethylene resin for containers Expired - Fee Related JP3980256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000253050A JP3980256B2 (en) 2000-08-23 2000-08-23 Polyethylene resin for containers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000253050A JP3980256B2 (en) 2000-08-23 2000-08-23 Polyethylene resin for containers

Publications (2)

Publication Number Publication Date
JP2002060559A true JP2002060559A (en) 2002-02-26
JP3980256B2 JP3980256B2 (en) 2007-09-26

Family

ID=18742204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000253050A Expired - Fee Related JP3980256B2 (en) 2000-08-23 2000-08-23 Polyethylene resin for containers

Country Status (1)

Country Link
JP (1) JP3980256B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019404A (en) * 2006-07-14 2008-01-31 Nippon Polyethylene Kk Polyethylene-based resin-molding material for container and cap of the same
JP2009018868A (en) * 2007-06-11 2009-01-29 Nippon Polyethylene Kk Polyethylene resin composition for injection-molded container lid
WO2011126029A1 (en) * 2010-04-06 2011-10-13 日本ポリエチレン株式会社 Polyethylene resin molding material for container lid
JP2012092254A (en) * 2010-10-28 2012-05-17 Japan Polyethylene Corp Polyethylene resin composition for container lid
WO2013118749A1 (en) * 2012-02-07 2013-08-15 日本ポリエチレン株式会社 Polyethylene-based resin composition for container lid, and container lid
KR101420017B1 (en) * 2012-11-12 2014-07-15 삼성토탈 주식회사 Polyethylene Resine Composition for Plastic Closure and Article Produced with the Same
JP2019501251A (en) * 2015-12-10 2019-01-17 ノヴァ ケミカルズ(アンテルナショナル)ソシエテ アノニム High temperature filling process using closures made from bimodal polyethylene compositions

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019404A (en) * 2006-07-14 2008-01-31 Nippon Polyethylene Kk Polyethylene-based resin-molding material for container and cap of the same
CN101104715B (en) * 2006-07-14 2011-08-17 日本聚乙烯株式会社 Polyethylene-based resin molding material
JP2009018868A (en) * 2007-06-11 2009-01-29 Nippon Polyethylene Kk Polyethylene resin composition for injection-molded container lid
WO2011126029A1 (en) * 2010-04-06 2011-10-13 日本ポリエチレン株式会社 Polyethylene resin molding material for container lid
JP2011231316A (en) * 2010-04-06 2011-11-17 Japan Polyethylene Corp Polyethylene-based resin molding material for use in container cap
CN102822064A (en) * 2010-04-06 2012-12-12 日本聚乙烯株式会社 Polyethylene resin molding material for container lid
KR20130033362A (en) 2010-04-06 2013-04-03 닛폰포리에치렌가부시키가이샤 Polyethylene resin molding material for container lid
KR101645062B1 (en) 2010-04-06 2016-08-02 닛폰포리에치렌가부시키가이샤 Polyethylene resin molding material for container lid
JP2012092254A (en) * 2010-10-28 2012-05-17 Japan Polyethylene Corp Polyethylene resin composition for container lid
WO2013118749A1 (en) * 2012-02-07 2013-08-15 日本ポリエチレン株式会社 Polyethylene-based resin composition for container lid, and container lid
KR101420017B1 (en) * 2012-11-12 2014-07-15 삼성토탈 주식회사 Polyethylene Resine Composition for Plastic Closure and Article Produced with the Same
JP2019501251A (en) * 2015-12-10 2019-01-17 ノヴァ ケミカルズ(アンテルナショナル)ソシエテ アノニム High temperature filling process using closures made from bimodal polyethylene compositions

Also Published As

Publication number Publication date
JP3980256B2 (en) 2007-09-26

Similar Documents

Publication Publication Date Title
US8022143B2 (en) Closures for bottles
RU2674695C2 (en) High density polyethylene
US8044160B2 (en) Polyethylene composition for injection molded caps and closure articles
US6969741B2 (en) Polyethylene compositions for rotational molding
US8663790B2 (en) PE moulding composition for producing injection-molded screw cap closures and high-strength screw cap closure for carbonated beverages produced therewith
KR102384280B1 (en) Multimodal Polyethylene Screw Cap
EP2746334B1 (en) Polyethylene blend with improved ESCR
EP1931729A1 (en) Polyethylene composition for injection moulding with improved stress crack/stiffness relation and impact resistance
EP2891680B1 (en) Polymer blend: HDPE with ethylene-norbornene or propylene-norbornene copolymer
JP4564876B2 (en) Polyethylene resin for container lid
JP3980256B2 (en) Polyethylene resin for containers
JP4926360B2 (en) Polyethylene resin for container lid and container lid comprising the same
JP7319357B2 (en) Polyolefin resin blends for high stress crack resistance and excellent processability
EP3994185B1 (en) Multimodal polyethylene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3980256

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees