JP2002059485A - Joint type composite member made of stocks having different thermal expansion coefficients and its manufacturing method - Google Patents

Joint type composite member made of stocks having different thermal expansion coefficients and its manufacturing method

Info

Publication number
JP2002059485A
JP2002059485A JP2000247474A JP2000247474A JP2002059485A JP 2002059485 A JP2002059485 A JP 2002059485A JP 2000247474 A JP2000247474 A JP 2000247474A JP 2000247474 A JP2000247474 A JP 2000247474A JP 2002059485 A JP2002059485 A JP 2002059485A
Authority
JP
Japan
Prior art keywords
thermal expansion
composite member
joint
rubber material
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000247474A
Other languages
Japanese (ja)
Inventor
Shinji Motojima
伸次 本島
Tetsuya Matsumoto
哲也 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo R&D Co Ltd
Original Assignee
Tokyo R&D Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo R&D Co Ltd filed Critical Tokyo R&D Co Ltd
Priority to JP2000247474A priority Critical patent/JP2002059485A/en
Publication of JP2002059485A publication Critical patent/JP2002059485A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a joint type composite member made of stocks solving a problem of a warp, a distortion or the like by absorbing and alleviating a thermal stress of the composite member made of two types of stocks having different thermal expansion coefficients by a rubber material. SOLUTION: The composite member is made by integrally molding the two types of the stocks having the different thermal expansion coefficients in a joint structure. The composite member is further made by laminating an unvulcanized rubber material at an intermediate of the stocks having the different thermal expansion coefficients, forming the member in a joint structure in which a contact distance of the two types of the stocks having the different thermal expansion coefficients with the rubber material is set to 1.5 or more when a thickness of its contact part is 1, and vulcanizing the rubber material by heating and pressurizing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、2種の熱膨張率
が異なる素材を継手により一体的構造に成形して成る継
手型複合部材及びその製造方法の技術分野に属し、更に
云えば、レーシングカー等の車両、航空機、船舶、或い
は医療機器等に好適に使用される、2種の熱膨張率が異
なる素材から成る継手型複合部材及びその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention belongs to the technical field of a joint type composite member formed by molding two kinds of materials having different coefficients of thermal expansion into an integral structure by a joint and a method of manufacturing the same. The present invention relates to a joint type composite member made of two types of materials having different coefficients of thermal expansion, which is suitably used for a vehicle such as a car, an aircraft, a ship, or a medical device, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来、レーシングカー等の車両、航空
機、船舶、或いは医療機器等に用いられる2種の熱膨張
率が異なる素材から成る複合部材、一例として図6に示
したアルミニウム材10と炭素繊維強化プラスチック材
11(以下、CFRPと略す場合がある。)とから成る
複合部材9は、両材10と11を直列状に、直接的に一
体化成形していた。
2. Description of the Related Art Conventionally, a composite member made of two materials having different coefficients of thermal expansion used for a vehicle such as a racing car, an aircraft, a ship, or a medical device, for example, an aluminum material 10 shown in FIG. The composite member 9 composed of the fiber-reinforced plastic material 11 (hereinafter, sometimes abbreviated as CFRP) is formed by directly integrating the two materials 10 and 11 in series.

【0003】また、熱膨張率が異なる2種の素材、例え
ば未硬化のエポキシ樹脂組成物からなる成形材料と、未
加硫のアクリロニトリル−ブタジエン共重合体ゴム組成
物を積層し、加熱、加圧下で硬化接着させ、両者の接着
性を改善した複合材料の製造方法(特開平5−3017
92号)及び同方法により製造された積層型複合材も知
られている。
Further, two materials having different coefficients of thermal expansion, for example, a molding material comprising an uncured epoxy resin composition and an unvulcanized acrylonitrile-butadiene copolymer rubber composition are laminated, and heated and pressed under pressure. For producing a composite material in which both are cured and adhered to each other to improve the adhesiveness between them (Japanese Patent Laid-Open No. 5-3017).
No. 92) and a laminated composite material produced by the same method are also known.

【0004】[0004]

【本発明が解決しようとする課題】しかし、図6に示し
た複合部材9は、その成形時に温度が常温(20℃)か
ら硬化温度(約140℃)へと変化した際、或いは使用
時に常温から高温に熱せられた場合、2種の素材10と
11がそれぞれ固有の熱膨張率で熱膨張する。その結
果、熱膨張を拘束された両素材10と11との接合部に
大きな熱応力が発生、集中し、前記接合部が剥離してし
まう問題、或いは複合部材9の形状に点線で示すような
反りや歪みが発生する問題が生じる。一例として、図6
の大きさがL=300mmの場合、λ=2〜3mm程度の反
りが発生する。そのため、高温環境下における耐久性等
の信頼性に欠け、高温条件下の場所に設置したり、又は
高温を生じる精密装置や機材等の部品として用いること
は不向きとされている。
However, when the temperature of the composite member 9 shown in FIG. 6 changes from room temperature (20 ° C.) to the curing temperature (about 140 ° C.) at the time of molding, or at room temperature during use, When the two materials 10 and 11 are heated to a high temperature from above, the two materials 10 and 11 thermally expand at a specific coefficient of thermal expansion. As a result, a large thermal stress is generated and concentrated at the joint between the two materials 10 and 11 whose thermal expansion is restrained, and the joint is peeled off, or the shape of the composite member 9 is indicated by a dotted line. There is a problem that warpage and distortion occur. As an example, FIG.
Is about L = 300 mm, a warp of about λ = 2 to 3 mm occurs. Therefore, it lacks reliability such as durability in a high-temperature environment, and is not suitable for being installed in a place under a high-temperature condition or used as a component of a precision device or equipment that generates a high temperature.

【0005】本発明の目的は、熱膨張率が異なる2種類
の素材をゴム材料により、加熱、加圧下にて強固に一体
化した複合材料を得ること、特に、従来公知の上記「積
層型複合材」ではなく、継手構造により一体化成形し、
加熱、加圧処理して得られる「継手型複合部材」及びそ
の製造方法を提供することにある。
An object of the present invention is to obtain a composite material in which two types of materials having different coefficients of thermal expansion are firmly integrated by heating and pressing with a rubber material. Material), instead of the joint structure,
An object of the present invention is to provide a "joint-type composite member" obtained by heating and pressurizing and a method for producing the same.

【0006】本発明の次の目的は、熱膨張率が異なる2
種の素材からなる複合部材の熱応力をゴム材料によって
吸収緩和させ、上述した反りや歪み等の問題を解決した
熱膨張率が異なる素材から成る継手型複合部材及びその
製造方法を提供することである。
[0006] The next object of the present invention is to provide a different thermal expansion coefficient.
By providing a joint type composite member made of a material having a different coefficient of thermal expansion, which solves the above-described problems such as warpage and distortion by absorbing and relaxing the thermal stress of a composite member made of a different material by a rubber material, and a method of manufacturing the same. is there.

【0007】本発明の更なる目的は、高温下での使用に
おける耐久性等の信頼性が著しく向上し、よって使用可
能範囲を拡大できる、熱膨張率が異なる素材から成る継
手型複合部材及びその製造方法を提供することにある。
A further object of the present invention is to provide a joint type composite member made of a material having a different coefficient of thermal expansion, which significantly improves the reliability such as durability in use at a high temperature, and can thereby expand the usable range, and a joint member thereof. It is to provide a manufacturing method.

【0008】[0008]

【課題を解決するための手段】上述の課題を解決するた
めの手段として、請求項1に記載した発明に係る熱膨張
率が異なる素材から成る継手型複合部材は、2種の熱膨
張率が異なる素材を継手構造により一体成形して成る複
合部材であって、2種の熱膨張率が異なる素材の中間に
未加硫のゴム材料を積層すると共に前記2種の熱膨張率
が異なる素材とゴム材料との接触距離を、接触部の厚さ
を1とするとき、その1.5以上となる継手構造に形成
して一体的構造に成形し、前記ゴム材料の加熱及び加圧
による加硫処理をして成ることを特徴とする。
As a means for solving the above-mentioned problems, a joint type composite member made of a material having a different coefficient of thermal expansion according to the first aspect of the present invention has two kinds of coefficients of thermal expansion. A composite member formed by integrally molding different materials by a joint structure, wherein an unvulcanized rubber material is laminated between two materials having different coefficients of thermal expansion, and the two materials having different coefficients of thermal expansion. When the contact distance with the rubber material is 1 and the thickness of the contact portion is 1, it is formed into a joint structure of 1.5 or more, molded into an integral structure, and vulcanized by heating and pressing the rubber material. It is characterized by processing.

【0009】請求項2に記載した発明に係る熱膨張率が
異なる素材から成る継手型複合部材の製造方法は、2種
の熱膨張率が異なる素材を継手構造により一体成形して
成る複合部材の製造方法であって、2種の熱膨張率が異
なる素材の中間に未加硫のゴム材料を積層すると共に前
記2種の熱膨張率が異なる素材とゴム材料との接触距離
を接触部の厚さを1とするとき、その1.5以上となる
継手構造に形成して一体的構造に成形する段階と、前記
ゴム材料の加熱及び加圧による加硫処理をする段階とか
らなることを特徴とする。
According to a second aspect of the present invention, there is provided a method of manufacturing a joint type composite member made of materials having different coefficients of thermal expansion. A method of manufacturing, comprising: laminating an unvulcanized rubber material between two materials having different coefficients of thermal expansion, and determining the contact distance between the two materials having different coefficients of thermal expansion and the rubber material by a thickness of a contact portion. When the length is set to 1, it comprises a step of forming a joint structure of 1.5 or more to form an integrated structure, and a step of performing a vulcanization treatment by heating and pressing the rubber material. And

【0010】請求項3記載の発明は、請求項2に記載し
た熱膨張率が異なる素材から成る継手型複合部材の製造
方法において、熱膨張率が異なる素材の一つが熱硬化性
樹脂であり、これを他の素材との中間に未加硫のゴム材
料を積層して継手構造に一体成形する場合は、前記ゴム
材料を加熱及び加圧による加硫処理をする段階で、同時
に前記熱硬化性樹脂の硬化処理も行うことを特徴とす
る。
According to a third aspect of the present invention, in the method for manufacturing a joint type composite member made of a material having a different coefficient of thermal expansion according to the second aspect, one of the materials having a different coefficient of thermal expansion is a thermosetting resin, When laminating an unvulcanized rubber material in the middle of another material and integrally molding it into a joint structure, in the step of vulcanizing the rubber material by heating and pressing, the thermosetting It is also characterized in that the resin is cured.

【0011】[0011]

【発明の実施形態及び実施例】図1〜図3は、請求項1
〜3記載の発明に係る熱膨張率が異なる素材から成る継
手型複合部材及びその製造方法の実施形態を概念的に誇
張して示している。各実施形態は、熱膨張率が異なる素
材の一例として、熱膨張率が大きいアルミニウム等の金
属外周枠材1と、熱膨張率が小さい熱硬化性樹脂2と
を、ゴム材料3を継手に使用して一体化成形している。
1 and 3 show a first embodiment of the present invention.
3 is a conceptually exaggerated embodiment of a joint-type composite member made of materials having different coefficients of thermal expansion according to the inventions described in 3 to 3 and a method of manufacturing the same. Each embodiment uses, as an example of a material having a different coefficient of thermal expansion, a metal outer peripheral frame material 1 such as aluminum having a large coefficient of thermal expansion, a thermosetting resin 2 having a small coefficient of thermal expansion, and a rubber material 3 for a joint. And integrally molded.

【0012】図1は、アルミニウム等の金属外周枠材1
の内側に、炭素繊維等を配合した熱硬化性樹脂2を配置
し、両者の間(接合部)にゴム材料3を挟むように介在
させると共に、前記金属外周枠材1と熱硬化性樹脂2と
はゴム材料3との関係を凹凸の継手構造により接合して
一体化成形した「継手型複合部材」の断面を拡大して概
念的に示している。
FIG. 1 shows a metal outer frame material 1 such as aluminum.
A thermosetting resin 2 containing carbon fiber or the like is disposed inside the inside, and a rubber material 3 is interposed between them (joining portion) so that the metal outer peripheral frame material 1 and the thermosetting resin 2 are interposed therebetween. Is conceptually showing an enlarged cross-section of a "joint-type composite member" in which the relationship with the rubber material 3 is joined and formed integrally by a joint structure having irregularities.

【0013】図1の凹凸構造の継手は、十分な接着又は
接合強度を得るための手段として、金属外周枠材1とゴ
ム材料3との接合部の垂直断面の厚さT、又は熱硬化性
樹脂2とゴム材料3との接合部の垂直断面の厚さT’に
対し、各凹凸の接触距離S又はS’との比が1:1.5
以上となる継手構造、即ち、
The joint having the concave-convex structure shown in FIG. 1 has a thickness T of a vertical cross section of a joining portion between the metal outer frame material 1 and the rubber material 3 or a thermosetting material as means for obtaining sufficient bonding or joining strength. The ratio of the contact distance S or S 'of each concavo-convex to the thickness T' of the vertical cross section of the joint between the resin 2 and the rubber material 3 is 1: 1.5.
The joint structure described above, that is,

【0014】[0014]

【数1】 の条件を満たすことを必要とする。因みに、この凹凸継
手構造の接触距離S又はS’は、各接合部の厚さT又は
T’に凹凸継手構造の各凸部の上下水平面の長さW又は
W’分を足した長さ、つまり、
(Equation 1) Needs to be satisfied. Incidentally, the contact distance S or S ′ of the uneven joint structure is a length obtained by adding the length W or W ′ of the upper and lower horizontal surfaces of each convex portion of the uneven joint structure to the thickness T or T ′ of each joint, That is,

【0015】[0015]

【数2】 である。(Equation 2) It is.

【0016】金属外周枠材1及び熱硬化性樹脂2とゴム
材料3との継手構造の形状は、前記[数1]を満たす限
り、図2に例示した斜面状の継手構造、又は図3に例示
した鋸刃状の継手構造でも実施可能であり、同様の作用
効果を得られる。勿論、前記[数1]を満たせば、上記
の図1〜図3に示した凹凸、斜面状及び鋸刃状の継手構
造の形態に限定されない。
The shape of the joint structure between the metal outer frame member 1 and the thermosetting resin 2 and the rubber material 3 may be any of the inclined joint structures illustrated in FIG. The present invention can be implemented with the illustrated saw-toothed joint structure, and the same operation and effect can be obtained. Of course, as long as the above [Equation 1] is satisfied, the present invention is not limited to the form of the joint structure having the irregularities, slopes, and saw blades shown in FIGS.

【0017】上記「継手型複合部材」の成形工程として
は、先ず成形型4の上に配置した前記金属外周枠材1と
前記熱硬化性樹脂2との中間に、図1〜図3に示した継
手構造でゴム材料3を介在させる。前記熱硬化性樹脂2
及び前記ゴム材料3は、それぞれ厚さ0.1〜0.5mm
程度のシート材2’及び3’を積み重ねた積層体として
成形し配置される。
The molding process of the "joint-type composite member" is as shown in FIGS. 1 to 3 in the middle of the metal outer peripheral frame member 1 and the thermosetting resin 2 arranged on the molding die 4. The rubber material 3 is interposed in the joint structure. The thermosetting resin 2
And the rubber material 3 has a thickness of 0.1 to 0.5 mm, respectively.
The sheet materials 2 ′ and 3 ′ are formed and arranged as a laminated body in which the sheet materials 2 ′ and 3 ′ are stacked.

【0018】前記熱硬化性樹脂2は、積層時点において
は未硬化の薄く柔軟で加工容易な前記未硬化樹脂シート
材2’を所望の寸法と形状に切り出し、ゴム材料3との
接合部を継手構造に積層して成形する。
At the time of lamination, the thermosetting resin 2 is cut out of the uncured resin sheet material 2 ′ which is uncured, thin, flexible and easy to be processed into a desired size and shape, and the joint with the rubber material 3 is joined to the joint. Laminated to the structure and molded.

【0019】前記未硬化樹脂シート材2’としては、エ
ポキシ樹脂組成物、例えば三菱ガス化学(株)製造のビス
マレイドや東レ(株)製造のエポキシ#2500等が好適
に使用されるが、この限りでない。その他のガラス繊
維、炭素繊維等の繊維を補強材として含む繊維強化樹脂
等でも実施可能である。
As the uncured resin sheet material 2 ', an epoxy resin composition, for example, bismaleide manufactured by Mitsubishi Gas Chemical Co., Ltd. or Epoxy # 2500 manufactured by Toray Industries, Inc. is preferably used. Not. It is also possible to use a fiber-reinforced resin or the like containing other fibers such as glass fiber and carbon fiber as a reinforcing material.

【0020】前記ゴム材料3も、前記熱硬化性樹脂2と
同様に、未加硫の薄く柔軟で加工容易な前記未加硫ゴム
シート3’を、前記金属外周枠材1との接合部形状及び
熱硬化性樹脂2の接合部形状に対応する寸法と形状に切
り出したものを、継手構造に積層して成形する。
Similarly to the thermosetting resin 2, the rubber material 3 is formed by forming the unvulcanized, thin, flexible, and easy-to-process unvulcanized rubber sheet 3 'with the metal outer frame member 1. And, those cut out into dimensions and shapes corresponding to the shape of the joint portion of the thermosetting resin 2 are laminated and molded into a joint structure.

【0021】因みに、未加硫ゴムシート3’としては、
耐熱性と耐油性に優れたアクリロニトリル−ブタジエン
ゴム(NBR)組成物、例えば藤倉ゴム工業(株)製造の
タンク内装用の未加硫NBR等が好適に使用されるが、
この限りではない。
Incidentally, as the unvulcanized rubber sheet 3 ',
An acrylonitrile-butadiene rubber (NBR) composition excellent in heat resistance and oil resistance, for example, unvulcanized NBR for tank interior manufactured by Fujikura Rubber Industries, Ltd. is preferably used,
This is not the case.

【0022】前記成形型4内で凹凸継手構造に積層して
成形した金属外周部材1と熱硬化性樹脂2は、一体構造
のまま5kg/cmの加圧下で120℃の熱を加え、未加
硫ゴムシート3’の積層体であるゴム材料3の加硫工
程、及び未硬化樹脂シート2’の積層体である熱硬化性
樹脂2の硬化工程を同時に実行し完結する。
The metal outer peripheral member 1 and the thermosetting resin 2 formed by laminating and forming the concavo-convex joint structure in the molding die 4 are subjected to heat of 120 ° C. under a pressure of 5 kg / cm 2 while maintaining an integral structure. The step of vulcanizing the rubber material 3 which is a laminate of the vulcanized rubber sheets 3 'and the step of curing the thermosetting resin 2 which is a laminate of the uncured resin sheet 2' are simultaneously executed and completed.

【0023】なお、前記加圧・加熱による加硫処理は、
上述の処理条件に限定されない。1〜10kg/cmの加
圧力下で100〜200℃位まで加熱する処理条件で実
施することも可能である。
The vulcanization treatment by pressurization and heating is as follows:
The processing conditions are not limited to the above. It is also possible to carry out the treatment under heating conditions of about 100 to 200 ° C. under a pressure of 1 to 10 kg / cm 2 .

【0024】上記の加圧・加熱による加硫工程によっ
て、積層された未加硫ゴムシート3’同士は相互の接着
面で互いに化学的に結合(架橋)し、一体化したゴム材
料3が得られる。
In the vulcanization step by the above-mentioned pressurization and heating, the laminated unvulcanized rubber sheets 3 ′ are chemically bonded (cross-linked) to each other on their mutual bonding surfaces, and an integrated rubber material 3 is obtained. Can be

【0025】同時に実行された前記熱硬化工程により、
前記未硬化樹脂シート材2’同士はその接着面で互いに
化学的に結合し硬化して、一体化した熱硬化性樹脂2が
得られる。
[0025] By the thermosetting step performed at the same time,
The uncured resin sheet materials 2 ′ are chemically bonded to each other at their bonding surfaces and cured to obtain an integrated thermosetting resin 2.

【0026】その結果、熱硬化性樹脂2及び金属外周枠
材1は、それぞれの接合部において介在するゴム材料3
と微細な凸凹構造により一体的に接着・接合され、全体
として構造的に一体化した「継手型複合部材」が得られ
るのである。
As a result, the thermosetting resin 2 and the metal outer frame material 1 are bonded to the rubber material 3 interposed at each joint.
Thus, a "joint-type composite member" is integrally bonded and joined by the fine uneven structure, and is structurally integrated as a whole.

【0027】この「継手型複合部材」は、前記加圧・加
熱処理により温度が上昇した際、或いはその使用時に加
熱され同「継手型複合部材」の温度が上昇した際には、
当然のことながら金属外周枠材1及び熱硬化性樹脂2が
それぞれ固有の異なる熱膨張率で膨張し熱膨張差を生ず
るが、金属外周枠材1と熱硬化性樹脂2との中間接合部
に介在するゴム材料3の弾性により前記「熱膨張の差
分」が無理なく吸収緩和される。そのため、熱応力は無
視できる程度に著しく低減され、「継手型複合部材」に
反りや歪み等の変形が生ずる度合いは極めて小さいので
ある。
The "joint-type composite member" is heated when the temperature is increased by the pressurizing / heating treatment or when the temperature of the "joint-type composite member" is increased by heating during use.
As a matter of course, the metal outer peripheral frame material 1 and the thermosetting resin 2 expand at their own different thermal expansion coefficients to generate a difference in thermal expansion, but the intermediate peripheral portion between the metal outer peripheral frame material 1 and the thermosetting resin 2 Due to the elasticity of the interposed rubber material 3, the “difference in thermal expansion” is absorbed and alleviated without difficulty. Therefore, the thermal stress is remarkably reduced to a negligible level, and the degree of deformation such as warpage or distortion of the “joint-type composite member” is extremely small.

【0028】例えば、図4に示したようにゴム材料3で
アルミニウム材10とCFRP11とを一体化成形した
「継手型複合部材8」におけるCFRP11の大きさが
L=300mmの場合に、発生する反りはλ=0.1〜
0.15mm程度しかなく、図6の従来品に比べて1/2
0程度に小さい。
For example, as shown in FIG. 4, the warpage generated when the size of the CFRP 11 in the “joint type composite member 8” in which the aluminum material 10 and the CFRP 11 are integrally formed of the rubber material 3 is L = 300 mm. Is λ = 0.1 ~
It is only about 0.15mm, which is 1/2 that of the conventional product in Fig. 6.
It is as small as 0.

【0029】図5は、上述のように製造した「継手型複
合部材5」が、発熱を伴う機材6の一部品としてボルト
7等で直接取付けられた使用例を示している。機材6か
ら伝導される熱による熱膨張が原因の熱応力は上述のと
おり低減されるので、当該「継手型複合部材5」は熱環
境にさして悪影響を受けない。したがって、この「継手
型複合部材5」は、単体で、または部品として高温環境
下で支障なく使用でき、競技車等の車両、航空機、船
舶、或いは医療機器等の分野で広く実用に供される。
FIG. 5 shows an example of use in which the "joint-type composite member 5" manufactured as described above is directly attached with a bolt 7 or the like as one part of the equipment 6 that generates heat. Since the thermal stress due to the thermal expansion due to the heat conducted from the equipment 6 is reduced as described above, the “joint-type composite member 5” is not adversely affected by the thermal environment. Therefore, the “joint-type composite member 5” can be used alone or as a part without any trouble in a high-temperature environment, and is widely used in the fields of vehicles such as competition vehicles, aircraft, ships, and medical equipment. .

【0030】[0030]

【発明が奏する効果】請求項1に記載した発明に係る熱
膨張率が異なる素材から成る継手型複合部材は、熱膨張
率が異なる2種の素材の熱応力がゴム材料によって吸収
緩和・低減され、同継手型複合部材が上述した温度環境
で反りや歪み等の問題を生ずるおそれはない。
According to the joint type composite member made of materials having different thermal expansion coefficients according to the first aspect of the present invention, the thermal stress of the two materials having different thermal expansion coefficients is absorbed and reduced by the rubber material. In addition, there is no possibility that the joint type composite member will cause problems such as warpage and distortion in the above-described temperature environment.

【0031】したがって、高温環境下での使用における
耐久性等の信頼性が著しく向上し、使用可能範囲を拡大
できるのである。
Therefore, reliability such as durability in use in a high temperature environment is remarkably improved, and the usable range can be expanded.

【0032】請求項2、3に記載した発明に係る熱膨張
率が異なる素材から成る継手型複合部材の製造方法によ
れば、前記継手型複合部材を容易、確実に、且つ安価に
製造することができる。
According to the method for manufacturing a joint type composite member made of materials having different coefficients of thermal expansion according to the present invention, the joint type composite member can be manufactured easily, reliably, and at low cost. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る継手型複合部材を概略的に示した
断面図である。
FIG. 1 is a sectional view schematically showing a joint type composite member according to the present invention.

【図2】本発明に係る異なる継手型複合部材を概略的に
示した断面図である。
FIG. 2 is a sectional view schematically showing a different joint type composite member according to the present invention.

【図3】本発明に係る異なる継手型複合部材を概略的に
示した断面図である。
FIG. 3 is a sectional view schematically showing a different joint type composite member according to the present invention.

【図4】本発明による継手型複合部材の加熱時に生じる
反りを概略的に示した断面図である。
FIG. 4 is a cross-sectional view schematically showing a warp generated when the joint type composite member according to the present invention is heated.

【図5】本発明に係る継手型複合部材の使用例を示した
斜視図である。
FIG. 5 is a perspective view showing an example of use of the joint type composite member according to the present invention.

【図6】従来の製法による複合部材を加熱した時に生じ
る反りを概略的に示した断面図である。
FIG. 6 is a cross-sectional view schematically showing warpage generated when a composite member manufactured by a conventional manufacturing method is heated.

【符号の説明】[Explanation of symbols]

5、8 継手型複合部材 3 ゴム材料 2 熱硬化性樹脂 S、S’ 接触距離 T、T’ 接触部の厚さ 5, 8 Joint type composite member 3 Rubber material 2 Thermosetting resin S, S 'Contact distance T, T' Thickness of contact part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】2種の熱膨張率が異なる素材を継手構造に
より一体成形して成る複合部材であって、 2種の熱膨張率が異なる素材の中間に未加硫のゴム材料
を積層すると共に前記2種の熱膨張率が異なる素材とゴ
ム材料との接触距離を、接触部の厚さを1とするとき、
その1.5以上となる継手構造に形成して一体的構造に
成形し、前記ゴム材料の加熱及び加圧による加硫処理を
して成ることを特徴とする、熱膨張率が異なる素材から
成る継手型複合部材。
1. A composite member obtained by integrally molding two materials having different coefficients of thermal expansion by a joint structure, wherein an unvulcanized rubber material is laminated between two materials having different coefficients of thermal expansion. When the contact distance between the two kinds of materials having different coefficients of thermal expansion and the rubber material, and the thickness of the contact portion is 1,
It is made of a material having a different coefficient of thermal expansion, characterized in that it is formed into a joint structure of 1.5 or more, molded into an integral structure, and vulcanized by heating and pressing the rubber material. Joint type composite member.
【請求項2】2種の熱膨張率が異なる素材を継手構造に
より一体成形して成る複合部材の製造方法であって、 2種の熱膨張率が異なる素材の中間に未加硫のゴム材料
を積層すると共に前記2種の熱膨張率が異なる素材とゴ
ム材料との接触距離を接触部の厚さを1とするとき、そ
の1.5以上となる継手構造に形成して一体的構造に成
形する段階と、 前記ゴム材料の加熱及び加圧による加硫処理をする段階
とからなることを特徴とする、熱膨張率が異なる素材か
ら成る継手型複合部材の製造方法。
2. A method for producing a composite member comprising two materials having different coefficients of thermal expansion integrally formed by a joint structure, wherein an unvulcanized rubber material is provided between two materials having different coefficients of thermal expansion. When the contact distance between the two types of materials having different coefficients of thermal expansion and the rubber material is set to the thickness of the contact portion, the thickness of the contact portion is set to 1.5 or more, thereby forming an integral structure. A method of manufacturing a joint-type composite member made of materials having different coefficients of thermal expansion, comprising a step of molding and a step of vulcanizing the rubber material by applying heat and pressure.
【請求項3】熱膨張率が異なる素材の一つが熱硬化性樹
脂であり、これを他の素材との中間に未加硫のゴム材料
を積層して継手構造に一体成形する場合は、前記ゴム材
料を加熱及び加圧による加硫処理をする段階で、同時に
前記熱硬化性樹脂の硬化処理も行うことを特徴とする、
請求項2に記載した熱膨張率が異なる素材から成る継手
型複合部材の製造方法。
3. One of the materials having a different coefficient of thermal expansion is a thermosetting resin, and when this is laminated with an unvulcanized rubber material in the middle of another material and integrally molded into a joint structure, At the stage of performing a vulcanization treatment by heating and pressing the rubber material, simultaneously performing a curing treatment of the thermosetting resin,
A method for manufacturing a joint-type composite member comprising the materials having different coefficients of thermal expansion according to claim 2.
JP2000247474A 2000-08-17 2000-08-17 Joint type composite member made of stocks having different thermal expansion coefficients and its manufacturing method Pending JP2002059485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000247474A JP2002059485A (en) 2000-08-17 2000-08-17 Joint type composite member made of stocks having different thermal expansion coefficients and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000247474A JP2002059485A (en) 2000-08-17 2000-08-17 Joint type composite member made of stocks having different thermal expansion coefficients and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002059485A true JP2002059485A (en) 2002-02-26

Family

ID=18737556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000247474A Pending JP2002059485A (en) 2000-08-17 2000-08-17 Joint type composite member made of stocks having different thermal expansion coefficients and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002059485A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170445A1 (en) * 2016-03-29 2017-10-05 マツダ株式会社 Method for joining metal member and thermosetting resin member, and metal member, thermosetting resin member, and thermoplastic resin sheet for use therein

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017170445A1 (en) * 2016-03-29 2017-10-05 マツダ株式会社 Method for joining metal member and thermosetting resin member, and metal member, thermosetting resin member, and thermoplastic resin sheet for use therein
JP2017177465A (en) * 2016-03-29 2017-10-05 マツダ株式会社 Method for conjugating metal member and thermosetting resin member, and metal member, thermosetting resin member and thermoplastic resin sheet used in the method
US11046021B2 (en) 2016-03-29 2021-06-29 Mazda Motor Corporation Method for joining metal member and thermosetting resin member, and metal member, thermosetting resin member, and thermoplastic resin sheet for use therein

Similar Documents

Publication Publication Date Title
JP4407964B2 (en) Composite honeycomb sandwich structure
JP5329649B2 (en) Turbine blade half manufacturing method, turbine blade half, turbine blade manufacturing method, and turbine blade
US6852192B2 (en) Method for producing honeycomb sandwich panel
JP4342620B2 (en) Method for forming honeycomb sandwich structure composite panel
US5667859A (en) Reinforced joint for composite structures and method of joining composite parts
US6698484B1 (en) Method for reducing core crush
JPWO2005068284A1 (en) Bicycle crank and method for manufacturing the same
US8715560B2 (en) Method to control thickness in composite parts cured on closed angle tool
CA2635363C (en) Method for producing structures from composite materials, including embedded precured tools
JP2020055447A (en) Composite material aircraft part and method of manufacturing the same
KR20090084042A (en) Integrated body using composite materials for vehicles and manufacturing method of the same
US20170066216A1 (en) Composite material structure and method of manufacturing composite material structure
JP2016221963A (en) Material composite
US7138031B2 (en) Mandrel and method for manufacturing composite structures
JP3769194B2 (en) Composite sandwich structure and repair method thereof
WO2022260186A1 (en) Laminate for pressing, and pressed laminate
JP2002059485A (en) Joint type composite member made of stocks having different thermal expansion coefficients and its manufacturing method
JP5238152B2 (en) Laminate and automobile bonnet using the same
JP5398110B2 (en) Automotive bonnet
JPH04251715A (en) Manufacture of carbon fiber reinforced composite material
WO2023062870A1 (en) Metal-prepreg complex
WO2021200047A1 (en) Method for producing intermediate product of airplane component, and airplane component
JPH04251714A (en) Manufacture of carbon fiber reinforced composite material
JP2008000990A (en) Composite material sandwich structure, and its manufacturing method
JP2023084738A (en) Composite material and production method of composite material