JP2002058106A - Regenerative energy controller in electric motor car - Google Patents

Regenerative energy controller in electric motor car

Info

Publication number
JP2002058106A
JP2002058106A JP2000237620A JP2000237620A JP2002058106A JP 2002058106 A JP2002058106 A JP 2002058106A JP 2000237620 A JP2000237620 A JP 2000237620A JP 2000237620 A JP2000237620 A JP 2000237620A JP 2002058106 A JP2002058106 A JP 2002058106A
Authority
JP
Japan
Prior art keywords
motor
torque
torque command
command value
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000237620A
Other languages
Japanese (ja)
Other versions
JP4419289B2 (en
Inventor
Kazufumi Oishi
和史 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Araco Co Ltd
Original Assignee
Araco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Araco Co Ltd filed Critical Araco Co Ltd
Priority to JP2000237620A priority Critical patent/JP4419289B2/en
Publication of JP2002058106A publication Critical patent/JP2002058106A/en
Application granted granted Critical
Publication of JP4419289B2 publication Critical patent/JP4419289B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/25Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by controlling the electric load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Regulating Braking Force (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent operating state of a brake from changing suddenly, and to prevent charging of a battery from becoming insufficient in an electric motor car which uses regenerative brake. SOLUTION: A torque computing means 11 computes a torque command for regenerating energy from a motor 35 to a motor-drive battery 31, on the basis of each operating state of the electric motor car and the characteristics of torque command stored in a torque map 12. A torque command suppressing means 13 conducts correcting, so as to reduce the torque command computed by the torque computing means, as the voltage of the motor-drive battery detected by a voltage sensor 21 becomes higher, and makes the command approach zero, when the detected voltage of the motor drive battery is not lower than a prescribed low voltage. A motor controller 20 regenerates energy from the motor to the motor-drive battery, on the basis of this corrected torque command, controls the output torque of the motor and drives the wheels, on the basis of a torque command computed separately.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、バッテリにより給
電されて車輪を駆動するモータを用いた電動車両におい
て、モータからバッテリへ回収される回生エネルギを制
御する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for controlling regenerative energy recovered from a motor to a battery in an electric vehicle using a motor powered by a battery and driving wheels.

【0002】[0002]

【従来の技術】図2は本発明による電動車両における回
生エネルギ制御装置を適用した電動車両の全体構成を示
すブロック図であるが、従来のこの種の電動車両のブロ
ック図はトルク指令値抑制手段13を備えていない点を
除き、これと同じであるので、この図2を利用して従来
技術の説明をする。従来のこの種の電動車両において
は、手動のアクセルレバーなどによりアクセル操作を行
えば、車両ECU(車両制御装置)10は左右の車輪に
連結されたモータ35a,35bをモータECU(モー
タ制御装置)20を介して作動させて電動車両を走行さ
せ、ブレーキを作動させることにより停止させている。
ブレーキとして機械式ブレーキに加えて回生ブレーキを
設ければ、この停止の際に電動車両の運動エネルギの一
部は電力としてモータ駆動用バッテリ(高電圧用バッテ
リ)31に回収される。このような回生ブレーキは、ブ
レーキを作動させることなくアクセル操作量を0に戻し
た場合にも作動させるようにすることも行われている。
2. Description of the Related Art FIG. 2 is a block diagram showing the overall configuration of an electric vehicle to which a regenerative energy control device for an electric vehicle according to the present invention is applied. 13 is the same as the above except that the device is not provided, and the conventional technology will be described with reference to FIG. In a conventional electric vehicle of this type, if an accelerator operation is performed by a manual accelerator lever or the like, the vehicle ECU (vehicle control device) 10 controls the motors 35a and 35b connected to the left and right wheels by a motor ECU (motor control device). The electric vehicle is driven by operating through the motor 20 and is stopped by operating the brake.
If a regenerative brake is provided in addition to the mechanical brake as the brake, a part of the kinetic energy of the electric vehicle is recovered as electric power by the motor drive battery (high-voltage battery) 31 at the time of the stop. Such a regenerative brake is also operated even when the accelerator operation amount is returned to 0 without operating the brake.

【0003】次にこの従来技術の電動車両のさらに詳し
い説明をする。この電動車両は、電動車両全体の作動を
制御する車両ECU10と、この車両ECU10からの
指令に基づいて左右の各車輪を駆動するモータ35a,
35bの作動を制御するモータECU20を備えてい
る。この両ECU10,20は低電圧用バッテリ32に
より給電され、また各モータ35a,35bはリレー3
3およびインバータ34を介してモータ駆動用バッテリ
31により給電される。
Next, the prior art electric vehicle will be described in more detail. The electric vehicle includes a vehicle ECU 10 that controls the operation of the entire electric vehicle, and a motor 35a that drives left and right wheels based on a command from the vehicle ECU 10.
The motor ECU 20 controls the operation of the motor ECU 35b. The two ECUs 10 and 20 are powered by a low-voltage battery 32, and each motor 35a and 35b is connected to a relay 3
Power is supplied from the motor driving battery 31 through the inverter 3 and the inverter 34.

【0004】車両ECU10には、電動車両のメインス
イッチ15と、使用者により操作されるブレーキが作動
すれば閉じるブレーキセンサ(ブレーキスイッチ)16
と、使用者により操作されるアクセルレバーやアクセル
ペダル等のアクセル部材の操作量(開度)を検出するア
クセルセンサ17と、前進・後進・中立の各シフト位置
を検出するシフトポジションセンサ18が接続されてい
る。また車両ECU10は、電動車両の各作動状態に対
応してモータ35a,35bにより車輪を駆動する場合
に使用するトルク指令値の特性(図3のAd ,Ar 参
照)およびモータ35a,35bからモータ駆動用バッ
テリ31へエネルギを回生する場合に使用するトルク指
令値の特性(図3のBd ,Br ,Cd ,Cr 参照)を記
憶したトルクマップ12と、各センサ16〜18により
検出した電動車両の各作動状態およびトルクマップ12
に基づいて、モータ35a,35bにより車輪を駆動す
るためのトルク指令値(以下単に、車輪を駆動するため
のトルク指令値という)およびモータ35a,35bか
らモータ駆動用バッテリ31へエネルギを回生するため
のトルク指令値(以下単に、エネルギを回生するための
トルク指令値という)を演算するトルク演算手段11を
備えている。モータ35a,35bへの給電回路にある
リレー33は車両ECU10により制御される。
The vehicle ECU 10 includes a main switch 15 of the electric vehicle and a brake sensor (brake switch) 16 which is closed when a brake operated by the user is operated.
And an accelerator sensor 17 for detecting an operation amount (opening degree) of an accelerator member such as an accelerator lever or an accelerator pedal operated by a user, and a shift position sensor 18 for detecting each of forward, reverse and neutral shift positions. Have been. Further, the vehicle ECU 10 controls the characteristics of the torque command value used when the wheels are driven by the motors 35a and 35b (see Ad and Ar in FIG. 3) in accordance with the respective operating states of the electric vehicle, and the motor drive from the motors 35a and 35b. Map 12 that stores the characteristics of torque command values (see Bd, Br, Cd, and Cr in FIG. 3) used to regenerate energy to the battery 31 for use in the electric vehicle detected by the sensors 16-18. Operating state and torque map 12
To regenerate energy from the motors 35a, 35b to the motor driving battery 31 based on the torque command value for driving the wheels by the motors 35a, 35b (hereinafter, simply referred to as the torque command value for driving the wheels). (Hereinafter simply referred to as a torque command value for regenerating energy). The relay 33 in the power supply circuit to the motors 35a and 35b is controlled by the vehicle ECU 10.

【0005】モータECU20は、トルク演算手段11
により演算されたトルク指令値に基づいて、各モータ3
5a,35bがこのトルク指令値の通りのトルクを生じ
て各車輪を駆動するように、また各モータ35a,35
bからモータ駆動用バッテリ31へエネルギを回生する
ようにインバータ34を制御するものである。左右の車
輪は常に左右のモータ35a,35bと対応する回転速
度で駆動され、各モータ35a,35bの回転速度は各
回転数センサ36a,36bにより検出されて、モータ
ECU20を介して車両ECU10に伝達される。また
モータ駆動用バッテリ31の電圧はモータECU20に
設けた電圧センサ21により検出されて車両ECU10
に伝達される。電圧センサ21は、検出分解能が0.5
ボルトとされており、0.5ボルトきざみで検出電圧を
出力する。両バッテリ31,32は、電動車両の不使用
時に100ボルト交流電源に接続される充電器30によ
り充電される。あるいは内燃機関により駆動される発電
機を搭載し、電動車両の使用中にこの発電機により両バ
ッテリ31,32を充電するようにしてもよい。
[0005] The motor ECU 20 includes a torque calculating means 11
Based on the torque command value calculated by
5a and 35b generate the torque according to the torque command value to drive each wheel.
The inverter 34 is controlled so as to regenerate energy from the battery b to the motor driving battery 31. The left and right wheels are always driven at rotational speeds corresponding to the left and right motors 35a and 35b, and the rotational speeds of the motors 35a and 35b are detected by respective rotational speed sensors 36a and 36b and transmitted to the vehicle ECU 10 via the motor ECU 20. Is done. The voltage of the motor driving battery 31 is detected by a voltage sensor 21 provided in the
Is transmitted to The voltage sensor 21 has a detection resolution of 0.5
It outputs a detection voltage in 0.5 volt increments. Both batteries 31 and 32 are charged by charger 30 connected to a 100 volt AC power supply when the electric vehicle is not used. Alternatively, a generator driven by an internal combustion engine may be mounted, and the batteries 31 and 32 may be charged by the generator during use of the electric vehicle.

【0006】トルクマップ12は、図3に示すように、
各モータ35a,35bの回転速度に対するトルク指令
値の特性を記憶したもので、6つの特性Ad ,Ar ,B
d ,Br ,Cd ,Cr よりなっている。特性Ad および
特性Ar は、モータ35a,35bにより車輪を駆動し
て走行する場合の出力可能範囲の最大限となるトルク指
令値の特性であり、特性Ad はシフトポジションがD
(前進)の場合における特性、特性Ar はシフトポジシ
ョンがR(後進)の場合における特性である。特性Bd
および特性Br は、ブレーキを作動させた場合における
エネルギを回生するためのトルク指令値の特性であり、
特性Bd は車両が前進中の場合における特性、特性Br
は車両が後進中の場合における特性である。特性Cd お
よび特性Cr は、アクセル操作量を0とした場合におけ
るエネルギを回生するためのトルク指令値の特性であ
り、特性Cd はシフトポジションがDの場合における特
性、特性Cr はシフトポジションがRの場合における特
性である。電動車両の各作動状態におけるこれらの各特
性は、モータ35a,35bの回転速度に対応している
だけである。
[0006] As shown in FIG.
It stores the characteristics of the torque command value with respect to the rotation speed of each of the motors 35a, 35b, and includes six characteristics Ad, Ar, B
d, Br, Cd, and Cr. The characteristic Ad and the characteristic Ar are characteristics of a torque command value that maximizes an output possible range when the vehicle is driven by driving the wheels by the motors 35a and 35b.
The characteristic in the case of (forward) and the characteristic Ar are the characteristics in the case where the shift position is R (reverse). Characteristic Bd
And the characteristic Br are characteristics of a torque command value for regenerating energy when the brake is operated,
The characteristic Bd is the characteristic when the vehicle is moving forward, the characteristic Br
Is a characteristic when the vehicle is moving backward. The characteristic Cd and the characteristic Cr are characteristics of a torque command value for regenerating energy when the accelerator operation amount is set to 0, the characteristic Cd is a characteristic when the shift position is D, and the characteristic Cr is a characteristic when the shift position is R. It is a characteristic in the case. These characteristics in each operating state of the electric vehicle only correspond to the rotation speed of the motors 35a and 35b.

【0007】電動車両の通常の走行状態、すなわちブレ
ーキセンサ16がブレーキの作動を検出しておらずかつ
アクセルセンサ17により検出される操作量が0でない
場合は、トルク演算手段11は、特性Ad および特性A
r ならびに回転数センサ36a,36bにより検出され
た各モータ35a,35bの回転速度に基づいて、走行
する場合の出力可能範囲の最大限となるトルク指令値、
すなわちアクセル操作量が最大の場合のトルク指令値を
演算し、このトルク指令値とアクセルセンサ17により
検出される操作量に基づいて、そのときのアクセル操作
量に応じて車輪を駆動するためのトルク指令値を演算す
る。車両ECU10はこのように演算されたトルク指令
値をモータECU20に出力し、モータECU20は、
前述のようにこのトルク指令値に基づいて各モータ35
a,35bが各車輪を駆動するようにインバータ34を
制御する。これにより電動車両は、そのときのアクセル
操作量に応じた出力で、シフトポジションに応じて前進
または後進する。
When the electric vehicle is in a normal running state, that is, when the brake sensor 16 has not detected the operation of the brake and the operation amount detected by the accelerator sensor 17 is not zero, the torque calculating means 11 determines the characteristics Ad and Characteristic A
r and a torque command value that maximizes the output possible range when the vehicle travels, based on the rotation speeds of the motors 35a and 35b detected by the rotation speed sensors 36a and 36b,
That is, a torque command value when the accelerator operation amount is the maximum is calculated, and a torque for driving wheels according to the accelerator operation amount at that time is calculated based on the torque command value and the operation amount detected by the accelerator sensor 17. Calculate the command value. The vehicle ECU 10 outputs the torque command value thus calculated to the motor ECU 20, and the motor ECU 20
As described above, based on this torque command value, each motor 35
a and 35b control the inverter 34 so as to drive each wheel. Thereby, the electric vehicle moves forward or backward according to the shift position with an output corresponding to the accelerator operation amount at that time.

【0008】電動車両の走行中に運転者によりブレーキ
が掛けられれば、ブレーキセンサ16がブレーキの作動
を検出する。この状態では、アクセル操作量の如何にか
かわらず、トルク演算手段11は、特性Bd および特性
Br ならびに回転数センサ36a,36bにより検出さ
れた各モータ35a,35bの回転速度に基づいてエネ
ルギを回生するためのトルク指令値を演算し、車両EC
U10はこのトルク指令値をモータECU20に出力
し、モータECU20は、前述のようにこのトルク指令
値に基づいて各モータ35a,35bからモータ駆動用
バッテリ31へエネルギを回生するようにインバータ3
4を制御する。また電動車両の走行中にブレーキを作動
させることなくアクセルを閉じれば、ブレーキセンサ1
6はブレーキの作動を検出せずかつアクセルセンサ17
により検出される操作量は0である。この状態では、ト
ルク演算手段11は、特性Cd および特性Cr ならびに
各モータ35a,35bの回転速度に基づいてエネルギ
を回生するためのトルク指令値を演算し、車両ECU1
0はこのトルク指令値をモータECU20に出力し、モ
ータECU20は、ブレーキを作動させた場合と同様こ
のトルク指令値に基づいて各モータ35a,35bから
モータ駆動用バッテリ31へエネルギを回生するように
インバータ34を制御するが、エネルギ回生の程度はブ
レーキを作動させた場合よりは小さい。
If the driver applies a brake while the electric vehicle is traveling, the brake sensor 16 detects the operation of the brake. In this state, regardless of the accelerator operation amount, the torque calculating means 11 regenerates energy based on the characteristics Bd and Br and the rotational speeds of the motors 35a and 35b detected by the rotational speed sensors 36a and 36b. For the vehicle EC
U10 outputs this torque command value to the motor ECU 20, and the motor ECU 20 regenerates the energy from each of the motors 35a and 35b to the motor driving battery 31 based on the torque command value as described above.
4 is controlled. If the accelerator is closed without operating the brake while the electric vehicle is running, the brake sensor 1
6 is for detecting the operation of the brake and for detecting the accelerator sensor 17
Is zero. In this state, the torque calculator 11 calculates a torque command value for regenerating energy based on the characteristics Cd and Cr and the rotational speed of each of the motors 35a and 35b.
0 outputs this torque command value to the motor ECU 20, and the motor ECU 20 regenerates energy from each of the motors 35a and 35b to the motor driving battery 31 based on the torque command value, similarly to the case of operating the brake. The inverter 34 is controlled, but the degree of energy regeneration is smaller than when the brake is operated.

【0009】このエネルギの回生は、各モータ35a,
35bで生成された電流によりモータ駆動用バッテリ3
1を充電することにより行われるが、この充電電流があ
る許容量を超えるとモータ駆動用バッテリ31の温度が
上昇しまた電圧が上昇してモータ駆動用バッテリ31が
劣化する。そこで従来の技術では例えばモータ駆動用バ
ッテリ31の電圧を検出して、その値が所定の限度電圧
以上になれば充電電流を遮断してエネルギの回生を停止
している。
The regeneration of the energy is performed by each motor 35a,
35b for driving the motor by the current generated at 35b.
The charging is performed by charging the battery 1. When the charging current exceeds a certain allowable amount, the temperature of the motor driving battery 31 increases and the voltage increases, and the motor driving battery 31 deteriorates. Therefore, in the related art, for example, the voltage of the motor drive battery 31 is detected, and when the value becomes equal to or higher than a predetermined limit voltage, the charging current is cut off to stop the energy regeneration.

【0010】[0010]

【発明が解決しようとする課題】機械式ブレーキに加え
て回生ブレーキを使用してエネルギを回生するようにし
た上記従来技術では、上述のようにモータ駆動用バッテ
リの電圧を検出して、その値が所定の限度電圧以上にな
れば充電電流を遮断してエネルギの回生を停止するよう
にしているので、ブレーキを作動させている間にモータ
駆動用バッテリの電圧が上昇して所定の限度電圧以上に
なれば回生ブレーキが作動しなくなり、ブレーキの作動
状態が変化して運転者に違和感を与えることがある。こ
れは長い下り坂の場合にブレーキの作動が低下する現象
として現れるが、機械式ブレーキはそれ単独で充分な制
動能力を有しているので、危険を伴うことはない。また
走行中にブレーキを作動させることなくアクセルを閉じ
た場合も特性Cd および特性Cr による多少弱い回生ブ
レーキが作用するが、この場合もその作動中にもモータ
駆動用バッテリの電圧が上昇し所定の限度を越えて回生
ブレーキが作動しなくなることがあるので、やはり運転
者に違和感を与えるおそれがある。
In the above prior art in which energy is regenerated by using a regenerative brake in addition to a mechanical brake, the voltage of the battery for driving the motor is detected as described above, and the value of the voltage is detected. When the voltage exceeds the predetermined limit voltage, the charging current is cut off to stop the regeneration of energy, so that the voltage of the motor driving battery rises while the brake is operated and exceeds the predetermined limit voltage. When this happens, the regenerative brake will not operate, and the operating state of the brake will change, giving the driver an uncomfortable feeling. This manifests itself as a phenomenon of reduced brake operation on long downhills, but without any danger, mechanical brakes alone have sufficient braking capacity. Also, when the accelerator is closed without operating the brake during running, the somewhat weak regenerative brake due to the characteristic Cd and the characteristic Cr operates, but also in this case, the voltage of the motor driving battery rises and the predetermined voltage increases. Since the regenerative brake may not operate beyond the limit, the driver may feel uncomfortable.

【0011】また、バッテリに許容される充電電流は、
バッテリ電圧が低い場合は大きくバッテリ電圧が高くな
ると小さくなるので、バッテリ電圧が高い状態で大きな
充電電流を与えると、そのバッテリの定格容量まで充電
される前にバッテリ電圧が所定の限度電圧に達して充電
を停止しなければならず、バッテリを完全に充電するこ
とができないという問題がある。本発明はこのような各
問題を解決することを目的とする。
The charging current allowed for the battery is as follows:
When the battery voltage is low, the battery voltage becomes large and the battery voltage becomes high, and becomes small.If a large charging current is given while the battery voltage is high, the battery voltage reaches a predetermined limit voltage before the battery is charged to the rated capacity. There is a problem that charging must be stopped and the battery cannot be completely charged. An object of the present invention is to solve each of these problems.

【0012】[0012]

【課題を解決するための手段】本発明による電動車両に
おける回生エネルギ制御装置は、モータ駆動用バッテリ
により給電されモータ制御装置により制御されて車輪を
駆動するモータと、ブレーキの作動を検出するブレーキ
センサと、アクセル操作量を検出するアクセルセンサ
と、ブレーキセンサがブレーキの作動を検出しておらず
かつアクセルセンサにより検出される操作量が0でない
作動状態において使用するモータにより車輪を駆動する
ためのトルク指令値の特性およびブレーキセンサがブレ
ーキの作動を検出しているかまたはアクセルセンサによ
り検出される操作量が0である作動状態において使用す
るモータからモータ駆動用バッテリへエネルギを回生す
るためのトルク指令値の特性を記憶したトルクマップ
と、各センサにより検出した電動車両の各作動状態およ
びトルクマップの各特性に基づき各作動状態に対応して
モータにより車輪を駆動するためのトルク指令値または
エネルギを回生するためのトルク指令値を演算するトル
ク演算手段を備えてなり、モータ制御装置は、トルク演
算手段により演算されたトルク指令値に基づき、モータ
の出力トルクを制御して車輪を駆動し、またはモータか
らモータ駆動用バッテリへエネルギを回生するようにし
てなる電動車両における回生エネルギ制御装置におい
て、電圧センサにより検出したモータ駆動用バッテリの
電圧が所定の低い電圧以上である場合には検出した電圧
が高くなるにつれてトルク演算手段により演算されたエ
ネルギを回生するためのトルク指令値の値を減少させて
0に近づけるように補正するトルク指令値抑制手段を備
え、モータ制御装置はこの補正されたトルク指令値に基
づきモータからモータ駆動用バッテリへエネルギを回生
するようにしたことを特徴とするものである。
A regenerative energy control device for an electric vehicle according to the present invention is provided with a motor driven by a motor driving battery and driven by a motor control device to drive wheels, and a brake sensor for detecting operation of a brake. An accelerator sensor for detecting an accelerator operation amount, and a torque for driving wheels by a motor used in an operation state in which the brake sensor does not detect the operation of the brake and the operation amount detected by the accelerator sensor is not zero. Characteristics of the command value and a torque command value for regenerating energy from the motor used in the operating state where the brake sensor detects the operation of the brake or the operation amount detected by the accelerator sensor is 0 to the motor driving battery. And a torque map that stores the characteristics of Torque calculating means for calculating a torque command value for driving wheels by a motor or a torque command value for regenerating energy in accordance with each operating state of the electric vehicle and each characteristic of the torque map based on each characteristic of the torque map. The motor control device controls the output torque of the motor based on the torque command value calculated by the torque calculation means, drives the wheels, or regenerates energy from the motor to the motor driving battery. In the regenerative energy control device for an electric vehicle, when the voltage of the motor driving battery detected by the voltage sensor is equal to or higher than a predetermined low voltage, the energy calculated by the torque calculating means is regenerated as the detected voltage increases. Command value to reduce the value of the torque command value to make it closer to 0 Comprising a control means, the motor control device is characterized in that it has to be regenerated energy from the motor to the motor drive battery based on the corrected torque command value.

【0013】[0013]

【発明の実施の形態】以下に添付図面により、本発明の
電動車両における回生エネルギ制御装置の説明をする。
図1は本発明による電動車両における回生エネルギ制御
装置の構成を示す図であり、図2は本発明による電動車
両における回生エネルギ制御装置を適用した電動車両の
一実施形態の全体構成を示すブロック図である。この実
施の形態は、トルク指令値抑制手段13を備えている点
および車両ECU10の制御内容の一部が異なる点を除
き、前述した従来技術と同じである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A regenerative energy control device for an electric vehicle according to the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a diagram showing a configuration of a regenerative energy control device in an electric vehicle according to the present invention, and FIG. 2 is a block diagram showing an entire configuration of one embodiment of an electric vehicle to which the regenerative energy control device in the electric vehicle according to the present invention is applied. It is. This embodiment is the same as the above-described prior art except that a torque command value suppressing unit 13 is provided and a part of the control content of the vehicle ECU 10 is different.

【0014】電動車両の通常の走行状態においては、前
述した従来技術と同様、トルク演算手段11は、特性A
d および特性Ar 、回転数センサ36a,36bにより
検出された各モータ35a,35bの回転速度、ならび
にアクセルセンサ17により検出される操作量に基づい
て車輪を駆動するためのトルク指令値を演算し、車両E
CU10はこのように演算されたトルク指令値をモータ
ECU20に出力し、モータECU20はこのトルク指
令値に基づいて各モータ35a,35bが各車輪を駆動
するようにインバータ34を制御する。これにより電動
車両は、アクセル操作量に応じた出力で前進または後進
する。
In a normal running state of the electric vehicle, the torque calculating means 11 operates as shown in FIG.
d, a characteristic Ar, a torque command value for driving the wheels based on the rotation speed of each of the motors 35a and 35b detected by the rotation speed sensors 36a and 36b, and the operation amount detected by the accelerator sensor 17, Vehicle E
The CU 10 outputs the calculated torque command value to the motor ECU 20, and the motor ECU 20 controls the inverter 34 based on the torque command value so that the motors 35a and 35b drive the wheels. As a result, the electric vehicle moves forward or backward with an output corresponding to the accelerator operation amount.

【0015】電動車両の走行中に運転者によりブレーキ
が掛けられれば、ブレーキセンサ16がブレーキの作動
を検出する。この状態では、アクセル操作量の如何にか
かわらず、先ずトルク演算手段11が、前述した従来技
術の場合と同様にして、特性Bd および特性Br ならび
に回転数センサ36a,36bにより検出された各モー
タ35a,35bの回転速度に基づいてエネルギを回生
するためのトルク指令値を演算する。
If the driver applies a brake while the electric vehicle is running, the brake sensor 16 detects the operation of the brake. In this state, irrespective of the accelerator operation amount, first, the torque calculating means 11 operates the motor 35a detected by the characteristic Bd and the characteristic Br and the rotation speed sensors 36a and 36b in the same manner as in the above-described prior art. , 35b are calculated based on the rotational speeds of the torques.

【0016】このエネルギを回生するためのトルク指令
値は、電圧センサ21により検出したモータ駆動用バッ
テリ31の電圧が所定の低い電圧(例えば78.0ボル
ト)未満の場合はそのまま、またそれ以上である場合は
次に述べるように車両ECU10のトルク指令値抑制手
段13により補正されて、モータECU20に出力され
る。モータ駆動用バッテリ31の電圧が所定の低い電圧
以上である場合のトルク指令値の補正は、後述するよう
に、検出した電圧が高くなるにつれて、トルク演算手段
に11より演算されたエネルギを回生するためのトルク
指令値の値を減少させて0に近づけるように補正し、ま
た検出した電圧が上昇して所定の限度電圧(例えば9
2.5ボルト)以上になればトルク指令値の値を0とす
るように補正するものである。そしてモータECU20
は、このように補正されたまたは補正されなかったトル
ク指令値に基づいて、各モータ35a,35bからモー
タ駆動用バッテリ31へエネルギを回生するようにイン
バータ34を制御する。
The torque command value for regenerating this energy is unchanged if the voltage of the motor driving battery 31 detected by the voltage sensor 21 is lower than a predetermined low voltage (for example, 78.0 volts), or higher. In some cases, the correction is made by the torque command value suppression means 13 of the vehicle ECU 10 as described below, and is output to the motor ECU 20. The correction of the torque command value when the voltage of the motor driving battery 31 is equal to or higher than a predetermined low voltage, as described later, regenerates the energy calculated by the torque calculation means 11 as the detected voltage increases. The value of the torque command value is reduced to approach 0, and the detected voltage increases to a predetermined limit voltage (for example, 9
When the voltage exceeds 2.5 volts), the torque command value is corrected to be zero. And the motor ECU 20
Controls the inverter 34 to regenerate energy from each of the motors 35a and 35b to the motor driving battery 31 based on the corrected or uncorrected torque command value.

【0017】また電動車両の走行中にブレーキを作動さ
せることなくアクセルを閉じれば、ブレーキセンサ16
はブレーキの作動を検出せずかつアクセルセンサ17に
より検出される操作量は0である。この状態では、上述
したブレーキが掛けられた場合と同様、先ずトルク演算
手段11が、特性Cd および特性Cr ならびに各モータ
35a,35bの回転速度に基づいてエネルギを回生す
るためのトルク指令値を演算する。このエネルギを回生
するためのトルク指令値は、上述と同様、電圧センサ2
1により検出したモータ駆動用バッテリ31の電圧が所
定の低い電圧(同上)未満の場合はそのまま、またそれ
以上である場合は車両ECU10のトルク指令値抑制手
段13により補正されて、モータECU20に出力され
る。そしてモータECU20は、上述と同様にインバー
タ34を制御して各モータ35a,35bからモータ駆
動用バッテリ31へエネルギを回生する。
If the accelerator is closed during operation of the electric vehicle without operating the brake, the brake sensor 16
Does not detect the operation of the brake and the operation amount detected by the accelerator sensor 17 is zero. In this state, similarly to the case where the brake is applied, first, the torque calculating means 11 calculates a torque command value for regenerating energy based on the characteristics Cd and Cr and the rotation speed of each of the motors 35a and 35b. I do. The torque command value for regenerating this energy is, as described above,
If the voltage of the motor driving battery 31 detected in step 1 is lower than the predetermined low voltage (same as above), the voltage is corrected by the torque command value suppression means 13 of the vehicle ECU 10 if the voltage is higher than the predetermined voltage, and output to the motor ECU 20. Is done. Then, the motor ECU 20 controls the inverter 34 in the same manner as described above to regenerate energy from the motors 35a and 35b to the motor driving battery 31.

【0018】次に上述した車両ECU10およびトルク
演算手段11によるエネルギを回生するためのトルク指
令値の演算と、このように演算されたトルク指令値のト
ルク指令値抑制手段13による補正を図4および図5に
示すフローチャートにより説明する。
Next, the calculation of the torque command value for regenerating the energy by the vehicle ECU 10 and the torque calculating means 11 and the correction of the thus calculated torque command value by the torque command value suppressing means 13 are shown in FIG. This will be described with reference to the flowchart shown in FIG.

【0019】車両ECU10は、所定の時間間隔で割込
信号が入力される都度、図4のフローチャートに示す処
理の実行を開始する。車両ECU10は先ずシフトポジ
ションセンサ18によりシフトポジションがN(中
立)、R(後進)、D(前進)の何れであるかを認識し
(ステップ100)、同じ認識値を3回連続して認識す
れば(ステップ101〜104)、認識したシフトポジ
ションに対応するエネルギ回生のためのトルク指令値を
演算する(ステップ110〜115)。シフトポジショ
ンがNの場合はステップ111においてシフトポジショ
ンNに対応するエネルギ回生のためのトルク指令値を演
算するが、このトルク指令値は0である。
The vehicle ECU 10 starts executing the processing shown in the flowchart of FIG. 4 every time an interrupt signal is input at a predetermined time interval. The vehicle ECU 10 first recognizes whether the shift position is N (neutral), R (reverse), or D (forward) by the shift position sensor 18 (step 100), and recognizes the same recognition value three times in succession. If it is (steps 101 to 104), a torque command value for energy regeneration corresponding to the recognized shift position is calculated (steps 110 to 115). If the shift position is N, a torque command value for energy regeneration corresponding to the shift position N is calculated in step 111, and this torque command value is zero.

【0020】シフトポジションがRの場合は、ステップ
113においてシフトポジションRに対応するエネルギ
回生のためのトルク指令値を演算する。この演算は、電
動車両の走行中にブレーキを作動させた場合と、ブレー
キを作動させることなくアクセルを閉じた場合に分けて
行われる。電動車両の後進中にブレーキを作動させた場
合は、アクセル操作量の如何にかかわらず、車両ECU
10のトルク演算手段11は、図3に示すトルクマップ
12の特性Br,Bdおよび回転数センサ36a,36b
により検出された各モータ35a,35bの回転速度に
基づいてエネルギを回生するためのトルク指令値を演算
し、またブレーキを作動させることなくアクセルを閉じ
た場合は、トルクマップ12の特性Cr および検出され
た各モータ35a,35bの回転速度に基づいてエネル
ギを回生するためのトルク指令値を演算する。
If the shift position is R, a torque command value for energy regeneration corresponding to the shift position R is calculated in step 113. This calculation is performed separately for a case where the brake is operated while the electric vehicle is running and a case where the accelerator is closed without operating the brake. When the brake is activated while the electric vehicle is moving backwards, the vehicle ECU is activated regardless of the accelerator operation amount.
The torque calculation means 11 includes the characteristics Br and Bd of the torque map 12 and the rotation speed sensors 36a and 36b shown in FIG.
A torque command value for regenerating energy is calculated based on the rotation speed of each of the motors 35a and 35b detected by the above. If the accelerator is closed without operating the brake, the characteristic Cr of the torque map 12 and the detection A torque command value for regenerating energy is calculated based on the rotation speeds of the respective motors 35a and 35b.

【0021】またシフトポジションがDの場合は、ステ
ップ115においてシフトポジションDに対応するエネ
ルギ回生のためのトルク指令値を演算する。この演算
も、電動車両の走行中にブレーキを作動させた場合と、
ブレーキを作動させることなくアクセルを閉じた場合に
分けて行われる。電動車両の前進中にブレーキを作動さ
せた場合は、アクセル操作量の如何にかかわらず、車両
ECU10のトルク演算手段11は、図3に示すトルク
マップ12の特性Bd,Brおよび検出された各モータ3
5a,35bの回転速度に基づいてエネルギを回生する
ためのトルク指令値を演算し、またブレーキを作動させ
ることなくアクセルを閉じた場合は、トルクマップ12
の特性Cd および検出された各モータ35a,35bの
回転速度に基づいてエネルギを回生するためのトルク指
令値を演算する。
If the shift position is D, a torque command value for energy regeneration corresponding to the shift position D is calculated in step 115. This calculation is also performed when the brake is activated while the electric vehicle is running,
This is performed separately when the accelerator is closed without operating the brake. When the brake is operated while the electric vehicle is moving forward, regardless of the accelerator operation amount, the torque calculation means 11 of the vehicle ECU 10 determines the characteristics Bd and Br of the torque map 12 shown in FIG. 3
When a torque command value for regenerating energy is calculated based on the rotation speeds of the motors 5a and 35b, and the accelerator is closed without operating the brake, the torque map 12
A torque command value for regenerating energy is calculated on the basis of the characteristic Cd and the detected rotational speeds of the motors 35a and 35b.

【0022】これらのエネルギを回生するためのトルク
指令値の何れかを演算した後に、車両ECU10はステ
ップ116のトルク指令値抑制制御を行う。このトルク
指令値抑制制御の内容は図5のフローチャートに示され
ている。先ず車両ECU10は電圧センサ21によりモ
ータ駆動用バッテリ31の電圧を検出し(ステップ20
0)、ブレーキセンサ16がブレーキの作動を検出して
いるかまたはアクセルセンサ17により検出されるアク
セル操作量が0であれば(ステップ201、202)、
トルク指令値抑制手段13によりステップ210〜22
7のトルク指令値抑制制御を行う。ステップ200で検
出したモータ駆動用バッテリ31の電圧(以下単にバッ
テリ電圧という)が78.0ボルト未満の場合は、トル
ク指令値抑制手段13は図5のステップ113またはス
テップ115で演算したエネルギ回生のためのトルク指
令値(以下単に図5で演算したトルク指令値という)の
補正は行わない。検出したバッテリ電圧が78.0〜7
8.5ボルトの場合は、図5で演算したトルク指令値を
7/8倍する補正を行う(ステップ210、211)。
また検出したバッテリ電圧が79.0〜79.5ボルト
の場合は、図5で演算したトルク指令値を6/8倍する
補正を行う(ステップ212、213)。以下同様にし
て、トルク指令値抑制手段13は、検出したバッテリ電
圧が高くなるにつれて、乗じる倍数を次第に低下させ、
図5で演算したトルク指令値を減少させて0に近づける
ように補正する(ステップ214〜225)。そして検
出したバッテリ電圧が92.5ボルト以上となれば、ト
ルク指令値抑制手段13は、図5で演算したトルク指令
値を0とする補正を行う(ステップ226、227)。
After calculating any of the torque command values for regenerating these energies, the vehicle ECU 10 performs torque command value suppression control in step 116. The contents of the torque command value suppression control are shown in the flowchart of FIG. First, the vehicle ECU 10 detects the voltage of the motor driving battery 31 by the voltage sensor 21 (step 20).
0), if the brake sensor 16 detects the operation of the brake or if the accelerator operation amount detected by the accelerator sensor 17 is 0 (steps 201 and 202),
Steps 210 to 22 by the torque command value suppressing means 13
7, the torque command value suppression control is performed. If the voltage of the motor drive battery 31 detected in step 200 (hereinafter simply referred to as battery voltage) is less than 78.0 volts, the torque command value suppressing means 13 performs the energy regeneration calculated in step 113 or 115 in FIG. (Hereinafter simply referred to as the torque command value calculated in FIG. 5) is not performed. If the detected battery voltage is 78.0-7
In the case of 8.5 volts, a correction is performed to multiply the torque command value calculated in FIG. 5 by 7/8 (steps 210 and 211).
If the detected battery voltage is 79.0 to 79.5 volts, a correction is made to multiply the torque command value calculated in FIG. 5 by 6/8 (steps 212 and 213). Similarly, the torque command value suppressing means 13 gradually decreases the multiplication factor as the detected battery voltage increases,
The torque command value calculated in FIG. 5 is corrected so as to decrease to approach 0 (steps 214 to 225). Then, when the detected battery voltage becomes 92.5 volts or more, the torque command value suppressing means 13 performs correction so that the torque command value calculated in FIG. 5 becomes 0 (steps 226 and 227).

【0023】モータECU20は、このように補正され
た(検出したバッテリ電圧が78.0ボルト以上の場
合)または補正されなかった(検出したバッテリ電圧が
78.0ボルト未満の場合)トルク指令値に基づいて、
各モータ35a,35bからモータ駆動用バッテリ31
へエネルギを回生するようにインバータ34を制御す
る。従ってモータ35a,35bからモータ駆動用バッ
テリ31への充電電流もモータ駆動用バッテリ31の電
圧が高くなるにつれて減少して0に近づくので、ブレー
キの際に生じる制動力における回生エネルギの占める比
率もモータ駆動用バッテリ31の電圧が高くなるにつれ
て減少する。そしてモータ駆動用バッテリ31の電圧が
所定の限度電圧以上になればモータ駆動用バッテリ31
の劣化を防止するためにモータ35a,35bからの充
電電流を0にするが、その時点では制動力における回生
エネルギの占める比率は充分に減少しているので、充電
電流を0にすることによるブレーキの作動状態の変化は
0またはごく僅かであり、運転者に違和感を与えること
はない。
The motor ECU 20 sets the torque command value corrected in this way (when the detected battery voltage is 78.0 volts or more) or not corrected (when the detected battery voltage is less than 78.0 volts). On the basis of,
From each of the motors 35a and 35b, a motor driving battery 31 is provided.
The inverter 34 is controlled so as to regenerate energy. Accordingly, the charging current from the motors 35a and 35b to the motor driving battery 31 also decreases as the voltage of the motor driving battery 31 increases and approaches zero, so that the ratio of the regenerative energy in the braking force generated during braking is also reduced. It decreases as the voltage of the driving battery 31 increases. When the voltage of the motor driving battery 31 becomes higher than a predetermined limit voltage, the motor driving battery 31
The charging current from the motors 35a and 35b is set to 0 in order to prevent the deterioration of the braking force. At this point, the ratio of the regenerative energy in the braking force is sufficiently reduced. The change in the operating state of the vehicle is zero or very slight, and the driver does not feel uncomfortable.

【0024】また、一般的にバッテリに許容される充電
電流は、バッテリ電圧が低い場合は大きくバッテリ電圧
が高くなると小さくなり、バッテリ電圧が高い状態で大
きな充電電流を与えると、そのバッテリの定格容量まで
充電される前にバッテリ電圧が所定の限度電圧に達して
充電を停止しなければならなくなる。しかしこの実施の
形態では、モータ駆動用バッテリ31の電圧が高くなる
につれて充電電流が減少するので、モータ駆動用バッテ
リ31を劣化させるおそれなしに定格容量まで確実に充
電することができる。
In general, the charging current allowed for a battery is large when the battery voltage is low, becomes small when the battery voltage is high, and when a large charging current is given while the battery voltage is high, the rated capacity of the battery is reduced. Before the battery is charged, the battery voltage must reach a predetermined limit voltage and the charging must be stopped. However, in this embodiment, since the charging current decreases as the voltage of the motor driving battery 31 increases, it is possible to reliably charge the motor driving battery 31 to the rated capacity without fear of deterioration.

【0025】[0025]

【発明の効果】本発明によれば、エネルギを回生するた
めのトルク指令値は、モータ駆動用バッテリの電圧が所
定の低い電圧以上である場合には検出した電圧が高くな
るにつれて減少して0に近づくように補正されるので、
モータ駆動用バッテリへの充電電流もモータ駆動用バッ
テリの電圧が高くなるにつれて減少して0に近づき、ブ
レーキの際に生じる制動力における回生エネルギの占め
る比率もモータ駆動用バッテリの電圧が高くなるにつれ
て減少する。そしてモータ駆動用バッテリの電圧が所定
の限度電圧以上になればモータからモータ駆動用バッテ
リへ回収される回生エネルギも0になるが、その時点で
は制動力における回生エネルギの占める比率は充分に減
少しているので、ブレーキの作動状態の変化は0または
ごく僅かであり、運転者に違和感を与えることはない。
According to the present invention, when the voltage of the motor driving battery is equal to or higher than a predetermined low voltage, the torque command value for regenerating the energy decreases as the detected voltage increases and becomes zero. Is corrected so that it approaches
The charging current to the motor driving battery also decreases as the voltage of the motor driving battery increases and approaches zero, and the ratio of the regenerative energy in the braking force generated during braking also increases as the voltage of the motor driving battery increases. Decrease. When the voltage of the motor driving battery becomes equal to or higher than a predetermined limit voltage, the regenerative energy recovered from the motor to the motor driving battery also becomes 0, but at that time, the ratio of the regenerative energy in the braking force decreases sufficiently. Therefore, the change in the operation state of the brake is zero or very slight, and the driver does not feel uncomfortable.

【0026】また、バッテリ電圧が高い状態で大きな充
電電流を与えると、そのバッテリの定格容量まで充電さ
れる前にバッテリ電圧が所定の限度電圧に達して充電を
停止しなければならないという問題があるが、この発明
ではモータ駆動用バッテリの電圧が高くなるにつれて充
電電流が減少するので、モータ駆動用バッテリを劣化さ
せるおそれなしに定格容量まで確実に充電することがで
きる。
Further, if a large charging current is applied in a state where the battery voltage is high, there is a problem that the battery voltage reaches a predetermined limit voltage and charging must be stopped before the battery is charged to the rated capacity. However, in the present invention, the charging current decreases as the voltage of the motor driving battery increases, so that the battery can be reliably charged to the rated capacity without fear of deteriorating the motor driving battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明による電動車両における回生エネルギ
制御装置の構成を示す図である。
FIG. 1 is a diagram showing a configuration of a regenerative energy control device in an electric vehicle according to the present invention.

【図2】 本発明による電動車両における回生エネルギ
制御装置を適用した電動車両の一例の全体構成を示すブ
ロック図である。
FIG. 2 is a block diagram showing an overall configuration of an example of an electric vehicle to which a regenerative energy control device for an electric vehicle according to the present invention is applied.

【図3】 本発明で使用するトルク指令値の特性の一例
を示す図である。
FIG. 3 is a diagram illustrating an example of a characteristic of a torque command value used in the present invention.

【図4】 本発明においてエネルギを回生するためのト
ルク指令値を演算するためのフローチャートの一例を示
す図である。
FIG. 4 is a diagram showing an example of a flowchart for calculating a torque command value for regenerating energy in the present invention.

【図5】 図4において演算されたトルク指令値を補正
するためのフローチャートの一例を示す図である。
5 is a diagram showing an example of a flowchart for correcting the torque command value calculated in FIG.

【符号の説明】[Explanation of symbols]

11…トルク演算手段、12…トルクマップ、13…ト
ルク指令値抑制手段、16…ブレーキセンサ(ブレーキ
スイッチ)、17…アクセルセンサ、20…モータ制御
装置(モータECU)、21…電圧センサ、31…モー
タ駆動用バッテリ(高電圧用バッテリ)、35(35
a,35b)…モータ。
11: Torque calculation means, 12: Torque map, 13: Torque command value suppression means, 16: Brake sensor (brake switch), 17: Accelerator sensor, 20: Motor control device (motor ECU), 21: Voltage sensor, 31 ... Motor drive battery (high-voltage battery), 35 (35
a, 35b) ... motor.

フロントページの続き Fターム(参考) 3D046 BB03 HH00 HH02 HH05 HH51 JJ24 5H115 PA01 PA15 PG04 PI16 PI22 PI29 PO02 PO06 PO17 PU08 PU26 PV09 QE10 QE13 QH08 QI04 QI07 QN03 SE04 SE06 TI05 TO13 TO21 TO23 TO30Continued on front page F-term (reference) 3D046 BB03 HH00 HH02 HH05 HH51 JJ24 5H115 PA01 PA15 PG04 PI16 PI22 PI29 PO02 PO06 PO17 PU08 PU26 PV09 QE10 QE13 QH08 QI04 QI07 QN03 SE04 SE06 TI05 TO13 TO21 TO23 TO30

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 モータ駆動用バッテリにより給電されモ
ータ制御装置により制御されて車輪を駆動するモータ
と、ブレーキの作動を検出するブレーキセンサと、アク
セル操作量を検出するアクセルセンサと、前記ブレーキ
センサがブレーキの作動を検出しておらずかつ前記アク
セルセンサにより検出される操作量が0でない作動状態
において使用する前記モータにより前記車輪を駆動する
ためのトルク指令値の特性および前記ブレーキセンサが
ブレーキの作動を検出しているかまたは前記アクセルセ
ンサにより検出される操作量が0である作動状態におい
て使用する前記モータから前記モータ駆動用バッテリへ
エネルギを回生するためのトルク指令値の特性を記憶し
たトルクマップと、前記各センサにより検出した電動車
両の各作動状態および前記トルクマップの各特性に基づ
き前記各作動状態に対応して前記モータにより前記車輪
を駆動するためのトルク指令値またはエネルギを回生す
るためのトルク指令値を演算するトルク演算手段を備え
てなり、前記モータ制御装置は、前記トルク演算手段に
より演算されたトルク指令値に基づき、前記モータの出
力トルクを制御して前記車輪を駆動し、または前記モー
タから前記モータ駆動用バッテリへエネルギを回生する
ようにしてなる電動車両における回生エネルギ制御装置
において、電圧センサにより検出した前記モータ駆動用
バッテリの電圧が所定の低い電圧以上である場合には検
出した前記電圧が高くなるにつれて前記トルク演算手段
により演算されたエネルギを回生するためのトルク指令
値の値を減少させて0に近づけるように補正するトルク
指令値抑制手段を備え、前記モータ制御装置はこの補正
されたトルク指令値に基づき前記モータから前記モータ
駆動用バッテリへエネルギを回生するようにしたことを
特徴とする電動車両における回生エネルギ制御装置。
1. A motor that is powered by a motor driving battery and drives wheels by being controlled by a motor control device, a brake sensor that detects an operation of a brake, an accelerator sensor that detects an accelerator operation amount, and the brake sensor Characteristics of a torque command value for driving the wheels by the motor used in an operation state in which the operation of the brake is not detected and the operation amount detected by the accelerator sensor is not 0, and the brake sensor operates the brake. And a torque map storing characteristics of a torque command value for regenerating energy from the motor to the motor driving battery used in an operation state in which the operation amount detected by the accelerator sensor is 0 or , Each operating state of the electric vehicle detected by each of the sensors and It is provided with torque calculating means for calculating a torque command value for driving the wheels by the motor or a torque command value for regenerating energy based on each characteristic of the torque map in accordance with each operation state, The motor control device drives the wheels by controlling the output torque of the motor based on the torque command value calculated by the torque calculation means, or regenerates energy from the motor to the motor driving battery. In the regenerative energy control device for an electric vehicle, when the voltage of the motor driving battery detected by a voltage sensor is equal to or higher than a predetermined low voltage, the torque is calculated by the torque calculating means as the detected voltage increases. Reduce the value of the torque command value for regenerating the energy Regenerative energy in the electric vehicle, wherein the motor control device regenerates energy from the motor to the motor driving battery based on the corrected torque command value. Control device.
JP2000237620A 2000-08-04 2000-08-04 Regenerative energy control device for electric vehicle Expired - Lifetime JP4419289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000237620A JP4419289B2 (en) 2000-08-04 2000-08-04 Regenerative energy control device for electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000237620A JP4419289B2 (en) 2000-08-04 2000-08-04 Regenerative energy control device for electric vehicle

Publications (2)

Publication Number Publication Date
JP2002058106A true JP2002058106A (en) 2002-02-22
JP4419289B2 JP4419289B2 (en) 2010-02-24

Family

ID=18729446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000237620A Expired - Lifetime JP4419289B2 (en) 2000-08-04 2000-08-04 Regenerative energy control device for electric vehicle

Country Status (1)

Country Link
JP (1) JP4419289B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008092630A (en) * 2006-09-29 2008-04-17 Aisin Seiki Co Ltd Controller of vehicle driving motor
JP2013027064A (en) * 2011-07-15 2013-02-04 Mitsubishi Motors Corp Regeneration control device of electric vehicle
US8947025B2 (en) 2011-07-15 2015-02-03 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Regeneration control device of electrically powered vehicle
JP2015066966A (en) * 2013-09-26 2015-04-13 トヨタ自動車株式会社 Control method for inverted pendulum type moving body
CN109228957A (en) * 2018-08-01 2019-01-18 淮安信息职业技术学院 A kind of new-energy automobile electricity detects automatically and the device of included energy-saving effect

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105487421B (en) * 2016-02-01 2018-09-28 北京智充科技有限公司 A kind of energy saver and its method of electric vehicle intelligent charging spot

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008092630A (en) * 2006-09-29 2008-04-17 Aisin Seiki Co Ltd Controller of vehicle driving motor
JP4730272B2 (en) * 2006-09-29 2011-07-20 アイシン精機株式会社 Control device for vehicle drive motor
JP2013027064A (en) * 2011-07-15 2013-02-04 Mitsubishi Motors Corp Regeneration control device of electric vehicle
US8947025B2 (en) 2011-07-15 2015-02-03 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Regeneration control device of electrically powered vehicle
EP2546089A3 (en) * 2011-07-15 2017-08-23 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Regeneration control device of electrically powered vehicle
JP2015066966A (en) * 2013-09-26 2015-04-13 トヨタ自動車株式会社 Control method for inverted pendulum type moving body
CN109228957A (en) * 2018-08-01 2019-01-18 淮安信息职业技术学院 A kind of new-energy automobile electricity detects automatically and the device of included energy-saving effect

Also Published As

Publication number Publication date
JP4419289B2 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
JP5514661B2 (en) Drive control device for electric vehicle
JP5563062B2 (en) Accelerator pedal device
WO1996016831A1 (en) Braking control device for an electric car
JP6690712B2 (en) Torque control method and torque control device
EP2546089A2 (en) Regeneration control device of electrically powered vehicle
US9180789B2 (en) Electric vehicle
EP3725621B1 (en) Control method for hybrid vehicle and control apparatus for hybrid vehicle
US9139106B2 (en) Method of controlling electric vehicle
JPH08140212A (en) Regenerative controller
JP7176360B2 (en) electric vehicle
JP4133349B2 (en) Vehicle travel control device
JP3799786B2 (en) Electric brake device
JP2003061205A (en) Motor controller for electric vehicle
JP2002058106A (en) Regenerative energy controller in electric motor car
JP2017169363A (en) Controlling apparatus for vehicle
JP3949047B2 (en) Vehicle control device
JP6649605B2 (en) Vehicle regenerative control device
US11870379B2 (en) Control device for rotating electrical machine
JP2001218303A (en) Method and device for controlling running of electric vehicle
JP4419290B2 (en) Rollback suppression device for electric vehicle
JP7409280B2 (en) Rotating electrical machine control device
JP2003070107A (en) Motor controller for electric vehicle
JP6508449B2 (en) Control device of electric vehicle
JPH06217406A (en) Driver for electric automobile
JPH0993724A (en) Electric automobile

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050131

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050412

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4419289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term