JP2002057283A - Manufacturing method of semiconductor integrated circuit - Google Patents

Manufacturing method of semiconductor integrated circuit

Info

Publication number
JP2002057283A
JP2002057283A JP2001178040A JP2001178040A JP2002057283A JP 2002057283 A JP2002057283 A JP 2002057283A JP 2001178040 A JP2001178040 A JP 2001178040A JP 2001178040 A JP2001178040 A JP 2001178040A JP 2002057283 A JP2002057283 A JP 2002057283A
Authority
JP
Japan
Prior art keywords
substrate
layer
integrated circuit
semiconductor
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001178040A
Other languages
Japanese (ja)
Other versions
JP3681992B2 (en
Inventor
Shinji Matsuo
慎治 松尾
Tatsushi Nakahara
達志 中原
Takashi Kurokawa
隆志 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2001178040A priority Critical patent/JP3681992B2/en
Publication of JP2002057283A publication Critical patent/JP2002057283A/en
Application granted granted Critical
Publication of JP3681992B2 publication Critical patent/JP3681992B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a semiconductor integrated circuit, having semiconductor elements integrated in three dimension, which provides high speed and functionality of an integrated circuit board as well as high parallelism and speed of an optical input/output board. SOLUTION: The semiconductor integrated circuit comprises a semiconductor substrate where semiconductor elements are integrated on one main surface, an insulating layer provided on the substrate, one or more semiconductor elements provided on the insulating layer, and a wiring which electrically connects, through a window formed at the insulating layer, the semiconductor elements integrated on the semiconductor substrate to at least one semiconductor element provided on the insulating layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体集積回路に関
し、特に半導体素子が3次元的に集積された半導体集積
回路の製造方法に関するものである。
The present invention relates to a semiconductor integrated circuit, and more particularly to a method for manufacturing a semiconductor integrated circuit in which semiconductor elements are three-dimensionally integrated.

【0002】[0002]

【従来の技術】半導体素子の3次元集積化は半導体集積
回路の集積度を上げるために重要であるとともに、光ス
イッチアレイの構築にも極めて重要な基本技術である。
光スイッチアレイは光信号処理や光情報処理のキーデバ
イスとしてその開発が非常に望まれている。従来この種
の素子としては、例えば文献「IEEE PHOTONICS TECHNOL
OGY LETTERS 7 巻、360 頁(1995)」に見られるよう
に、シリコン集積回路基板上に多重量子井戸型pinダ
イオードを半田バンプにより実装し、多重量子井戸型p
inダイオードを受光素子あるいは光変調器として用い
て光の入出力を行い、論理機能をシリコン集積回路に行
わせる「ハイブリッド・シード(H-SHEED )」と呼ばれ
る素子が提案されている。この素子では、入力用多重量
子井戸型pinダイオードに入射した入力光信号を電気
信号に変換して、シリコン集積回路基板に伝達し電気的
に処理した後に、出力用多重量子井戸型pinダイオー
ドにかかる電圧を制御する。このとき、出力用多重量子
井戸型pinダイオードでは電圧変化に応じた量子閉じ
込めシュタルク効果により、一定強度でバイアスされた
光の反射強度を制御することができる。その構成を図1
2に、特性を図13に示す。
2. Description of the Related Art Three-dimensional integration of semiconductor elements is an important technique for increasing the degree of integration of a semiconductor integrated circuit and is also extremely important for constructing an optical switch array.
The development of an optical switch array as a key device for optical signal processing and optical information processing is highly desired. Conventionally, as this type of element, for example, the document "IEEE PHOTONICS TECHNOL
OGY LETTERS, Vol. 7, p. 360 (1995) ”, a multi-quantum well pin diode is mounted on a silicon integrated circuit board by solder bumps.
An element called "Hybrid Seed (H-SHEED)" has been proposed in which an in-diode is used as a light receiving element or an optical modulator to input and output light and to perform a logical function on a silicon integrated circuit. In this device, an input optical signal incident on an input multiple quantum well type pin diode is converted into an electric signal, transmitted to a silicon integrated circuit substrate, electrically processed, and then applied to an output multiple quantum well type pin diode. Control the voltage. At this time, in the output multiple quantum well type pin diode, the reflection intensity of light biased at a constant intensity can be controlled by the quantum confinement Stark effect according to the voltage change. Figure 1 shows the configuration.
FIG. 2 shows the characteristics.

【0003】図12(a)に示すように、エピタキシャ
ル基板10には、p−GaAs基板11上に、p−Al
GaAs層12、i−MQW層13および(n- −Ga
As層およびn+−GaAs層)14を順次積層し、B
eイオン注入層15および反射層としてのTi/Au膜
16を形成した光変調部が構成される。p側およびn側
の電極は同一平面上にあり、Beイオン注入層15およ
びTi/Au膜16上に半田17が形成されている。一
方、表面にCMOSが形成されているシリコン集積回路
基板20の表面には濡れ性を改善するためのAl:Ti
/Pt/Au膜21が形成され、その上に半田17が設
けられている。この二つの基板を図12(b)に示すよ
うに、半田バンプにより接合して光変調器はシリコン集
積回路基板に実装される。接合後、接合部の周囲はエポ
キシ樹脂18によって充填され、次いで、GaAs基板
が除去される。エポキシ樹脂はその後除去することがで
きる。最後に、図12(c)に示すように、反射防止コ
ーティング19を施して、シリコンCMOSと集積化さ
れた光変調器が得られる。この従来例は、2入力2出力
スイッチ機能を持っている。
[0003] As shown in FIG. 12 (a), a p-Al substrate is formed on a p-GaAs substrate 11.
The GaAs layer 12, the i-MQW layer 13, and the (n -Ga
As layer and n + -GaAs layer) 14 are sequentially laminated, and B
A light modulating section having the e-ion implantation layer 15 and the Ti / Au film 16 as a reflection layer is formed. The p-side and n-side electrodes are on the same plane, and a solder 17 is formed on the Be ion implanted layer 15 and the Ti / Au film 16. On the other hand, Al: Ti for improving wettability is provided on the surface of the silicon integrated circuit substrate 20 having a CMOS formed on the surface.
A / Pt / Au film 21 is formed, and a solder 17 is provided thereon. As shown in FIG. 12B, the two substrates are joined by solder bumps, and the optical modulator is mounted on a silicon integrated circuit substrate. After joining, the periphery of the joint is filled with epoxy resin 18, and then the GaAs substrate is removed. The epoxy resin can then be removed. Finally, as shown in FIG. 12C, an anti-reflection coating 19 is applied to obtain an optical modulator integrated with silicon CMOS. This conventional example has a two-input two-output switch function.

【0004】図13はこのようにして作成されたハイブ
リッド・シード素子におけるゲート−ソース間電圧と反
射率の関係を示す。CMOSのゲート−ソース間電圧の
制御によってスイッチング動作が可能である。
FIG. 13 shows the relationship between the gate-source voltage and the reflectivity of the hybrid seed device thus manufactured. Switching operation is possible by controlling the gate-source voltage of the CMOS.

【0005】[0005]

【発明が解決しようとする課題】ところが、前述した光
スイッチアレイには、以下のような問題点があった。
However, the above-described optical switch array has the following problems.

【0006】第1に、光変調部として多重量子井戸型p
inダイオードを用いているために消光比が低く、かつ
損失が大きい。
First, a multi-quantum well type p-type light modulator is used.
Since the in-diode is used, the extinction ratio is low and the loss is large.

【0007】第2に、光変調部にはバイアス光を入射す
る必要があるので、光学系が複雑になる。
Second, since the bias light needs to be incident on the light modulator, the optical system becomes complicated.

【0008】第3に、光変調部の動作電圧が10V程度
と大きなために、応答速度が遅い。
Third, since the operating voltage of the light modulator is as large as about 10 V, the response speed is low.

【0009】第4に、量子閉じ込めシュタルク効果を用
いた変調器は動作波長が数nmに制限され、さらにシリ
コン集積回路からの発熱により変調器の動作波長が変動
するため、バイアス光の光源への波長の制限が厳しく、
さらに、素子を一定温度に制御する必要がある。
Fourth, the operating wavelength of a modulator using the quantum confined Stark effect is limited to several nm, and the operating wavelength of the modulator fluctuates due to heat generated from a silicon integrated circuit. The wavelength is severely limited,
Further, it is necessary to control the temperature of the element at a constant temperature.

【0010】一方、前述した従来素子のような半田バン
プによる電子素子と光素子の3次元構造の構成方法には
以下のような問題がある。
On the other hand, the method of forming a three-dimensional structure of an electronic element and an optical element using solder bumps as in the above-described conventional element has the following problems.

【0011】すなわち、例えば受光器と面発光レーザの
ような異なる層構造を有する光素子を同時にシリコン集
積回路上に配置しようとすると、それぞれの光素子が異
なる構造を有するため、それらを同一基板上に形成する
ことは困難になり、従って、それぞれの素子を別個に半
田バンプによってシリコン集積回路に配置する必要があ
る。この様な個別搭載には次のような困難が伴う。
That is, if optical devices having different layer structures, such as a photodetector and a surface emitting laser, are to be simultaneously arranged on a silicon integrated circuit, each optical device has a different structure. Therefore, it is necessary to arrange each element separately on the silicon integrated circuit by solder bumps. Such individual mounting involves the following difficulties.

【0012】第1に半田バンプを複数回行わなければな
らないので工程が複雑化する。
First, since the solder bump must be performed a plurality of times, the process becomes complicated.

【0013】第2に、光スイッチアレイでは各光素子の
相対位置は、予め決められている入出射光の位置関係に
一致しなければならないが、半田バンプを個々の光素子
毎に行うことにより個々の光素子間の相対位置を正確に
定めることは困難である。従って、各光素子の位置関係
を入出射光の位置関係に一致させることは困難である。
Second, in the optical switch array, the relative position of each optical element must match a predetermined positional relationship between the incoming and outgoing light. It is difficult to accurately determine the relative position between the optical elements. Therefore, it is difficult to make the positional relationship between the optical elements coincide with the positional relationship between the incoming and outgoing light.

【0014】本発明の目的は、従来の光スイッチアレイ
にあった上記問題点を解決した半導体集積回路の製造方
法を実現することにある。さらに、消光比が大きく、光
学系が簡単で、高速な応答速度を有し、動作マージンの
大きい光スッチアレイの作製方法を提供することにあ
る。
An object of the present invention is to realize a method of manufacturing a semiconductor integrated circuit which solves the above-mentioned problems in the conventional optical switch array. Another object of the present invention is to provide a method of manufacturing an optical switch array having a large extinction ratio, a simple optical system, a high response speed, and a large operation margin.

【0015】[0015]

【課題を解決するための手段】本発明による半導体集積
回路の製造方法は、化合物半導体基板の一方の主面上
に、選択エッチング層、発光素子構成層、受光素子構成
層の順にエピタキシャル成長によって積層体を形成した
光入出力基板と、一方の主面上に半導体素子が集積さ
れ、かつ電気接続用金属層および放熱用金属層がパタン
形成されたシリコン集積回路基板とを、光入出力基板の
積層体を形成した面とシリコン集積回路基板の半導体素
子が集積された面とを対向させて有機材料からなる絶縁
性の接着層を介して貼り合わせ、化合物半導体基板を研
磨および化学エッチング法により除去し、光入出力基板
を加工して発光素子および受光素子とを形成し、発光素
子および受光素子の各々の電極を形成し、シリコン集積
回路基板上の半導体素子と発光素子および受光素子の各
々の電極とを接続するためのスルーホールを形成し、ス
ルーホールを金属で埋めて電気的に接続させることを特
徴とする。
According to a method of manufacturing a semiconductor integrated circuit according to the present invention, a laminated body is formed on one main surface of a compound semiconductor substrate by epitaxial growth in the order of a selective etching layer, a light emitting element forming layer, and a light receiving element forming layer. An optical input / output substrate formed with a silicon integrated circuit substrate on which a semiconductor element is integrated on one main surface and a metal layer for electrical connection and a metal layer for heat radiation is formed is laminated on the optical input / output substrate. The surface on which the body is formed and the surface on which the semiconductor elements of the silicon integrated circuit substrate are integrated are opposed to each other via an insulating adhesive layer made of an organic material, and the compound semiconductor substrate is removed by polishing and chemical etching. Forming a light emitting element and a light receiving element by processing an optical input / output substrate, forming respective electrodes of the light emitting element and the light receiving element, and forming a semiconductor element on the silicon integrated circuit substrate. And the respective electrodes through holes formed for connecting the light emitting element and a light receiving element, a through-hole, characterized in that electrically connecting filled with metal.

【0016】また、化合物半導体基板の一方の主面上
に、選択エッチング層、受光素子構成層、発光素子構成
層の順にエピタキシャル成長によって積層体を形成した
光入出力基板の前記積層構造を形成した面と石英基板と
をワックスを用いて貼り合わせ、前記化合物半導体基板
を研磨および化学エッチング法により除去した面と、一
方の主面上に半導体素子が集積され、かつ電気接続用金
属層および放熱用金属層がパタン形成されたシリコン集
積回路基板の半導体素子が集積された面とを対向させて
有機材料からなる絶縁性の接着層を介して貼り合わせ、
加熱によりワックスを溶かして石英基板を取り外し、積
層体を加工して発光素子および受光素子とを形成し、発
光素子および受光素子の各々の電極を形成し、シリコン
集積回路基板上の半導体素子と発光素子および受光素子
の各々の電極とを接続するためのスルーホールを形成
し、スルーホールを金属で埋めて電気的に接続させるこ
とを特徴とする。
Also, a surface on which the laminated structure of the optical input / output substrate is formed by epitaxially growing a selective etching layer, a light receiving element constituting layer, and a light emitting element constituting layer on one main surface of the compound semiconductor substrate in this order. And a quartz substrate are bonded together using wax, and the compound semiconductor substrate is polished and removed by a chemical etching method. A semiconductor element is integrated on one main surface, and a metal layer for electrical connection and a metal for heat dissipation are bonded. The surface of the silicon integrated circuit substrate on which the layers are formed is opposed to the surface on which the semiconductor elements are integrated, and bonded via an insulating adhesive layer made of an organic material,
The wax is melted by heating, the quartz substrate is removed, the laminated body is processed to form a light emitting element and a light receiving element, electrodes of the light emitting element and the light receiving element are formed, and the semiconductor element and the light emitting element on the silicon integrated circuit substrate are formed. A through hole for connecting each element of the element and the light receiving element is formed, and the through hole is filled with a metal to be electrically connected.

【0017】また、化合物半導体基板の上に複数の発光
素子および複数の受光素子ならびに各々の電極を形成
し、化合物半導体基板の複数の発光素子および複数の受
光素子ならびに各々の電極を形成した面と石英基板とを
ワックスを用いて貼り合わせ、化合物半導体基板を研磨
および化学エッチング法により除去した面と、一方の主
面上に半導体素子が集積され、かつ電気接続用金属層お
よび放熱用金属層がパタン形成されたシリコン集積回路
基板の半導体素子が集積された面とを対向させて、赤外
光を用いて位置決めを行い、有機材料からなる絶縁性の
接着層を介して貼り合わせ、加熱によりワックスを溶か
して石英基板を取り外し、シリコン集積回路基板上の半
導体素子と複数の発光素子および複数の受光素子の各々
の電極とを接続するためのスルーホールを形成し、スル
ーホールを金属で埋めて電気的に接続させることを特徴
とする。
Further, a plurality of light emitting elements, a plurality of light receiving elements, and respective electrodes are formed on the compound semiconductor substrate, and a surface of the compound semiconductor substrate on which the plurality of light emitting elements, the plurality of light receiving elements, and the respective electrodes are formed is provided. A quartz substrate is bonded using wax, the compound semiconductor substrate is polished and removed by chemical etching, and a semiconductor element is integrated on one main surface, and a metal layer for electrical connection and a metal layer for heat dissipation are provided. The silicon integrated circuit substrate on which the pattern is formed is opposed to the surface on which the semiconductor elements are integrated, positioned using infrared light, bonded via an insulating adhesive layer made of an organic material, and heated to form a wax. Is melted, the quartz substrate is removed, and the semiconductor element on the silicon integrated circuit board is connected to each electrode of the plurality of light emitting elements and the plurality of light receiving elements. Forming a fit of the through hole, the through-hole, characterized in that electrically connecting filled with metal.

【0018】また、化合物半導体基板の一方の主面上
に、選択エッチング層、発光素子構成層、FET素子構
成層、受光素子構成層の順にエピタキシャル成長によっ
て積層体を形成した光入出力基板と、一方の主面上に半
導体素子が集積され、かつ電気接続用金属層および放熱
用金属層がパタン形成されたシリコン集積回路基板と
を、光入出力基板の積層体を形成した面とシリコン集積
回路基板の半導体素子が集積された面とを対向させて有
機材料からなる絶縁性の接着層を介して貼り合わせ、化
合物半導体基板を研磨および化学エッチング法により除
去し、光入出力基板を加工して発光素子およびFET素
子ならびに受光素子とを形成し、発光素子およびFET
素子ならびに受光素子の各々の電極を形成し、シリコン
集積回路基板上の半導体素子と発光素子およびFET素
子ならびに受光素子の各々の電極とを接続するためのス
ルーホールを形成し、スルーホールを金属で埋めて電気
的に接続させることを特徴とする。
An optical input / output substrate in which a laminated body is formed on one principal surface of the compound semiconductor substrate by epitaxial growth in the order of a selective etching layer, a light emitting element forming layer, an FET element forming layer, and a light receiving element forming layer. A silicon integrated circuit substrate on which a semiconductor element is integrated on a main surface of the semiconductor integrated circuit and a pattern of a metal layer for electrical connection and a metal layer for heat radiation are formed; A semiconductor device is integrated with an insulating surface made of an organic material, facing the surface where the semiconductor elements are integrated, and the compound semiconductor substrate is removed by polishing and chemical etching, and the light input / output substrate is processed to emit light. Forming an element, an FET element, and a light receiving element;
Forming each electrode of the element and the light receiving element, forming a through hole for connecting the semiconductor element on the silicon integrated circuit board with each electrode of the light emitting element and the FET element and the light receiving element, and forming the through hole with metal It is characterized by being buried and electrically connected.

【0019】[0019]

【発明の実施の形態】図1に、本発明による素子の一実
施形態を示す。MOSFET、トランジスタ、ダイオー
ド等の半導体素子が一主面上に集積化された集積回路基
板200上に、絶縁層300を介して光入出力基板10
0が一体化されている。この光入出力基板100には複
数の受光素子100Aと垂直共振器型面発光レーザ(以
下、面発光レーザと記す)100Bが配置されている。
絶縁層300には窓が設けられ、受光素子100Aおよ
び面発光素子100Bはこの窓を通して配線400によ
り集積回路基板200の金属配線200Aと接続されて
いる。100Cおよび100Dはそれぞれ受光素子10
0Aおよび面発光素子100Bの配線である。この素子
は、受光素子100Aが入力した光を電気信号に変換
し、その電気信号を集積回路基板200に集積されてい
る半導体素子で増幅、スイッチング等の処理を行い、処
理結果を電流出力として面発光レーザ100Bに伝達
し、その動作を制御するすることができる。
FIG. 1 shows an embodiment of the device according to the present invention. On an integrated circuit substrate 200 on which semiconductor elements such as MOSFETs, transistors, and diodes are integrated on one main surface, an optical input / output substrate 10
0 is integrated. On the optical input / output substrate 100, a plurality of light receiving elements 100A and a vertical cavity surface emitting laser (hereinafter, referred to as a surface emitting laser) 100B are arranged.
A window is provided in the insulating layer 300, and the light receiving element 100A and the surface light emitting element 100B are connected to the metal wiring 200A of the integrated circuit board 200 through the window through the window. 100C and 100D are light receiving elements 10 respectively.
0A and the wiring of the surface light emitting element 100B. This element converts the light input by the light receiving element 100A into an electric signal, performs processing such as amplification and switching by a semiconductor element integrated on the integrated circuit board 200, and outputs the processing result as a current output. It can be transmitted to the light emitting laser 100B to control its operation.

【0020】図2にこの素子の動作特性を示す。図2の
例では、入力信号を同期、増幅および波形整形した結果
を示している。本発明の素子の場合、集積回路基板の処
理機能により様々な処理が可能となり、この例のほかに
2×2のスイッチングや種々の演算処理、画像処理など
が挙げられる。
FIG. 2 shows the operating characteristics of this device. The example of FIG. 2 shows the result of synchronizing, amplifying, and waveform shaping the input signal. In the case of the element of the present invention, various processing can be performed by the processing function of the integrated circuit substrate. In addition to this example, 2 × 2 switching, various arithmetic processing, image processing, and the like can be mentioned.

【0021】本発明による光スイッチアレイでは、光変
調部として垂直共振器型面発光レーザを用いているた
め、バイアス光が必要なく、高コントラストが得られる
ため、光学系が簡単になる。また、動作電圧も3V程度
で充分なので、高速動作が実現できる。加えて、本発明
の素子を多段に構成し、前段からの出力光を入力光とす
るような光接続を行って光インターコネクション等の処
理を行う場合、面発光レーザは、発振波長が膜厚の揺ら
ぎに対して非常に敏感であり、制御が難しいが、受光部
としてpinダイオード、MSMフォトダイオード等を
用いれば、100nm以上の広範囲な波長でほぼ均一な
光感度を得られるため、前段の面発光レーザの発振波長
に制限がなくなり、多段化に有利であるという特徴も持
つ。
In the optical switch array according to the present invention, since a vertical cavity surface emitting laser is used as an optical modulator, no bias light is required and a high contrast can be obtained, so that the optical system is simplified. In addition, since the operating voltage of about 3 V is sufficient, high-speed operation can be realized. In addition, when the device of the present invention is configured in multiple stages, and processing such as optical interconnection is performed by performing optical connection such that output light from the previous stage is used as input light, the surface emitting laser has an oscillation wavelength of film thickness. Is very sensitive to the fluctuation of the light, and it is difficult to control it. However, if a pin diode, an MSM photodiode or the like is used as the light receiving unit, almost uniform light sensitivity can be obtained over a wide wavelength range of 100 nm or more. There is also a feature that the emission wavelength of the light emitting laser is not limited and is advantageous for multistage operation.

【0022】以上のような光スイッチアレイを製造しよ
うとすると、垂直共振器型面発光レーザと受光器の層構
造が異なるため、一枚の基板上に同時に形成することが
できないので、上述したように半田バンプ技術が使用で
きない。この問題を解決するために、本発明は、半導体
素子が一方の主面上に集積化された半導体基板上に、絶
縁層を介して垂直共振器等の半導体素子を配置し、さら
に、この絶縁層に形成された窓を通して半導体基板上に
集積化された半導体素子と絶縁層上に配置された垂直共
振器等の間に配線を施している。
In order to manufacture an optical switch array as described above, the vertical cavity surface emitting laser and the photodetector cannot be simultaneously formed on a single substrate because the layer structure is different from that of the vertical cavity surface emitting laser. Cannot use solder bump technology. In order to solve this problem, the present invention arranges a semiconductor element such as a vertical resonator via an insulating layer on a semiconductor substrate in which the semiconductor element is integrated on one main surface, Wiring is provided between a semiconductor element integrated on a semiconductor substrate and a vertical resonator disposed on an insulating layer through a window formed in the layer.

【0023】絶縁層としてはポリイミドやSiO2等が
あるが、いずれも適切な工程により、半導体同士を貼り
合わせる能力を有する。従って、これらの絶縁層を接着
層として用いることにより、半導体素子の立体配置が容
易となる。さらに、絶縁性であるためにこの接着層の上
には容易に配線が可能になり、従って、集積回路上に配
置された素子に必要な配線を施すことができる。例え
ば、一枚の基板上にレーザのための層構造と受光器のた
めの層構造を積層し、これを絶縁性の接着層により半導
体集積回路に貼り合わせると、図1のようにエッチング
により各層構造を必要に応じて露出させた後、必要な配
線が容易にできる。
As the insulating layer, there are polyimide, SiO 2 and the like, all of which have an ability to bond semiconductors by an appropriate process. Therefore, by using these insulating layers as the adhesive layer, the three-dimensional arrangement of the semiconductor element is facilitated. Furthermore, because of the insulating property, wiring can be easily formed on the adhesive layer, and therefore, wiring required for elements disposed on the integrated circuit can be provided. For example, a layer structure for a laser and a layer structure for a light receiver are laminated on a single substrate, and these are laminated to a semiconductor integrated circuit with an insulating adhesive layer. After exposing the structure as required, necessary wiring can be easily performed.

【0024】[0024]

【実施例】実施例1 光入出力基板の成長面を集積回路
基板側に向けて接着した場合 本発明を光スイッチアレイに適用した第1の具体例を図
3および図4に示す。
EXAMPLE 1 The growth surface of the optical input / output substrate was changed to an integrated circuit.
FIGS. 3 and 4 show a first specific example in which the present invention is applied to an optical switch array in the case of bonding to the substrate side .

【0025】図3は活性層にGaAs/AlGaAs多
重量子井戸を用いた場合の光入出力基板の断面図であ
る。半絶縁性GaAs基板101上に、選択エッチング
用AlAs層102、n+−GaAsコンタクト層10
3、n−DBR(Distributed Bragg Reflector) 層10
4、活性層105、p−DBR層106およびi−Ga
As光吸収層107を、順次分子線エピタキシャル成長
法により形成した。p型およびn型ドーパントにはそれ
ぞれBeおよびSiを用いた。ここで、n−DBR層は
n−AlAs(71.5nm)/n−Al0.15Ga0.85
As(62.9nm)を交互に25周期積層した構造か
らなり、p−DBR層はp−AlAs(71.5nm)
/p−Al0.15Ga0.85As(62.9nm)を交互に
30周期積層した構造からなる。
FIG. 3 is a sectional view of an optical input / output substrate when a GaAs / AlGaAs multiple quantum well is used for the active layer. On a semi-insulating GaAs substrate 101, an AlAs layer 102 for selective etching, an n + -GaAs contact layer 10
3, n-DBR (Distributed Bragg Reflector) layer 10
4. Active layer 105, p-DBR layer 106 and i-Ga
The As light absorbing layer 107 was sequentially formed by a molecular beam epitaxial growth method. Be and Si were used for the p-type and n-type dopants, respectively. Here, the n-DBR layer is n-AlAs (71.5 nm) / n-Al 0.15 Ga 0.85
It has a structure in which As (62.9 nm) is alternately laminated for 25 periods, and the p-DBR layer is p-AlAs (71.5 nm).
/ P-Al 0.15 Ga 0.85 As (62.9 nm) is alternately laminated for 30 periods.

【0026】図4に光スイッチの作製法を示す。まず、
図4(a)のように、光入出力基板100の成長層10
0Eをシリコン集積回路基板200の半導体素子が集積
されている主面側に向けて接着剤300で接着する。こ
の場合、両方の基板の接着面にそれぞれスピンコートに
より接着剤としてポリイミドを塗布し気泡が入らないよ
うにする。その後、両基板を貼り合わせ、荷重をかけな
がら高温で熱処理して硬化させる。貼り合わせの手順
は、まず150℃程度の温度で仮接着を行い、ここでG
aAs基板101を1チップ程度の大きさに分割する。
その後350℃で最終硬化させる。これは2インチ以上
の大きな基板になった場合、シリコンとGaAsの熱膨
張係数の違いにより基板が反り割れるのを防ぐためであ
る。この際、集積回路基板200上に電気接続および冷
却用の厚い金属膜200Aを作製した場合、金属膜20
0A部分は、光入出力基板100との間に入ったポリイ
ミド300が接着時に荷重をかけることによって押し出
され、その結果、図4(b)に示すように、光入出力基
板100と直接接触するようになる。
FIG. 4 shows a method of manufacturing an optical switch. First,
As shown in FIG. 4A, the growth layer 10 of the optical input / output substrate 100 is formed.
OE is adhered to the main surface of the silicon integrated circuit substrate 200 on which the semiconductor elements are integrated with an adhesive 300. In this case, polyimide is applied as an adhesive to the bonding surfaces of both substrates by spin coating to prevent air bubbles. Thereafter, the two substrates are bonded to each other and cured by heat treatment at a high temperature while applying a load. In the bonding procedure, temporary bonding is first performed at a temperature of about 150 ° C.
The aAs substrate 101 is divided into about one chip.
Thereafter, final curing is performed at 350 ° C. This is to prevent the substrate from being warped and broken due to the difference in thermal expansion coefficient between silicon and GaAs when the substrate has a large size of 2 inches or more. At this time, when a thick metal film 200A for electrical connection and cooling is formed on the integrated circuit substrate 200, the metal film 20A is formed.
The portion 0A is extruded by applying a load at the time of bonding when the polyimide 300 interposed between the optical input / output substrate 100 and the polyimide 300, and as a result, as shown in FIG. Become like

【0027】その後、GaAs基板101を厚さ50μ
m程度まで研磨し、PA30溶液(H22 :NH3
H=30:1)によりGaAs基板101のみを選択的
にエッチングし、AlAs層102でエッチングを止め
る。次に、塩酸によりAlAs層102のみを選択的に
エッチングし、図4(c)のようにn+−GaAsコン
タクト層103が表面に露出した状態にする。図4
(c′)はこの状態での成長層を示す拡大図である。
After that, the GaAs substrate 101 is
m and a PA30 solution (H 2 O 2 : NH 3 O)
H = 30: 1), only the GaAs substrate 101 is selectively etched, and the etching is stopped at the AlAs layer 102. Next, only the AlAs layer 102 is selectively etched with hydrochloric acid, so that the n + -GaAs contact layer 103 is exposed on the surface as shown in FIG. FIG.
(C ') is an enlarged view showing the growth layer in this state.

【0028】次に、図4(d)に示すように光入出力基
板を加工し、面発光レーザ100BとSMSフォトディ
テクタ100Aを形成する。図4(d′)は面発光レー
ザ部の拡大図である。面発光レーザのp型電極110と
してはAuZnNiを、n型電極111としてはAuG
eNiを用い、フォトディテクタのショットキ電極11
2としてはTi/Pt/Auを用いた。その後、図4
(e)に示すように、光入出力基板100の両基板間の
電気配線を行う部分にエッチングにより金属膜200A
が露出するまでスルーホールを開ける。SMSフォトデ
ィテクタ部分も区画する。
Next, as shown in FIG. 4D, the light input / output substrate is processed to form a surface emitting laser 100B and an SMS photodetector 100A. FIG. 4D is an enlarged view of the surface emitting laser unit. AuZnNi is used as the p-type electrode 110 and AuGn is used as the n-type electrode 111 of the surface emitting laser.
Using eNi, photo detector Schottky electrode 11
2 was Ti / Pt / Au. Then, FIG.
As shown in (e), a portion of the optical input / output substrate 100 where electrical wiring is to be performed between the two substrates is etched by a metal film 200A.
Open through holes until is exposed. The SMS photodetector part is also partitioned.

【0029】そして、素子間配線用金属400を鍍金に
よって形成し、また配線113を施して図4(f)に示
す構造を得る。
Then, the inter-element wiring metal 400 is formed by plating, and the wiring 113 is applied to obtain the structure shown in FIG.

【0030】従来例のように、半田バンプを用いる場合
は、電極は必ずレーザおよび受光器を積層した基板の表
面に形成しなければならないので、どちらか一方の素子
への電極の形成が困難になる。例えば、図3のような積
層構造を用いると、p−DBR層106と活性層105
とn−DBR層104よりなるレーザ構造への電極形成
が困難である。しかし、本願発明の構造ではこのような
問題は生じない。集積回路基板200上の厚い金属膜2
00Aは両基板間の電気接続の際の段差を減らす効果
と、受光素子、発光素子から集積回路基板への光の入射
を防ぐ効果および光入出力基板で発生した熱を金属膜を
通して取り除く効果がある。
When a solder bump is used as in the conventional example, the electrode must be formed on the surface of the substrate on which the laser and the photodetector are laminated, so that it is difficult to form the electrode on one of the elements. Become. For example, if a stacked structure as shown in FIG. 3 is used, the p-DBR layer 106 and the active layer 105
It is difficult to form an electrode on the laser structure composed of the n-DBR layer 104 and the n-DBR layer 104. However, such a problem does not occur in the structure of the present invention. Thick metal film 2 on integrated circuit substrate 200
00A has the effect of reducing the level difference at the time of electrical connection between the two substrates, the effect of preventing light from entering the integrated circuit substrate from the light receiving element and the light emitting element, and the effect of removing heat generated at the optical input / output substrate through the metal film. is there.

【0031】実際に1ピクセル内にMSM−PD、ME
SFET3個、および面発光レーザを有する8×8=6
4ピクセルの2次元アレイを作製し、850nm波長帯
で、0.1mW、200MHzの入力光をMSD−PD
に入力し1mWの出力光が面発光レーザから出射する動
作が全ピクセルで並列になされることが確認された。
Actually, MSM-PD, ME are included in one pixel.
8 × 8 = 6 with 3 SFETs and surface emitting laser
A two-dimensional array of 4 pixels is fabricated, and an input light of 0.1 mW and 200 MHz is applied to an 850 nm wavelength band by MSD-PD.
It was confirmed that the operation of emitting 1 mW of output light from the surface emitting laser in parallel with all pixels was performed in all pixels.

【0032】また、集積回路内の一つの処理単位(セ
ル)ごとに面発光レーザ、受光素子は一つに限られたも
のではなく、複数の入出力素子があってもよい。
Further, the number of surface emitting lasers and light receiving elements is not limited to one for each processing unit (cell) in the integrated circuit, and a plurality of input / output elements may be provided.

【0033】本実施例では、素子間配線用金属の形成に
鍍金を用いたが、これに限るものでなく、例えばタング
ステン等を用いて選択成長により段差を埋めてもよい。
また、両基板の貼り合わせにはポリイミドを用いている
が、これに限られるものではなく、エポキシ系などの各
種接着剤を用いてもよく、SiO2などの誘電体同士の
接着なども可能である。
In this embodiment, plating is used to form the metal for the inter-element wiring. However, the present invention is not limited to this, and the steps may be filled by selective growth using, for example, tungsten.
In addition, although polyimide is used for bonding both substrates, the present invention is not limited to this, and various types of adhesives such as epoxy may be used, and bonding between dielectrics such as SiO 2 is also possible. is there.

【0034】なお、光入出力基板を、半絶縁性GaAs
基板101上に、選択エッチング用AlAs層、p+
GaAsコンタクト層、p−DBR層、i−GaAs/
AlGaAs活性層,n−DBR層およびi−GaAs
光吸収層の順に積層し、面発光レーザのDBR層のp、
nの極性を入れ換えてもよい。この場合は、p−DBR
層は25周期積層し、n−DBR層は30周期積層した
構造とする。これは、集積回路基板側のDBRミラーの
反射率を出射側のDBRミラーの反射率よりも高く設定
することによって、高い効率で出射側に出力光が得られ
るようにするためである。このことは以下の実施例でも
同様である。
The optical input / output substrate is made of semi-insulating GaAs.
On the substrate 101, an AlAs layer for selective etching, p +
GaAs contact layer, p-DBR layer, i-GaAs /
AlGaAs active layer, n-DBR layer and i-GaAs
The light-absorbing layers are stacked in this order, and p,
The polarity of n may be switched. In this case, p-DBR
The layers are stacked in 25 cycles, and the n-DBR layer is stacked in 30 cycles. This is because by setting the reflectivity of the DBR mirror on the integrated circuit substrate side higher than the reflectivity of the DBR mirror on the emission side, output light can be obtained on the emission side with high efficiency. This is the same in the following embodiments.

【0035】実施例2 光入出力基板の成長面を集積回
路基板側と反対にして接着した場合 (その1) 基板接着後に光入出力基板をプロセスする
場合 本発明を光スイッチアレイに適用した第2の具体例を図
5から図7に示す。
Embodiment 2 The growth surface of the optical input / output substrate is integrated
When adhered to opposite the road substrate to process the light output substrate (1) after the substrate adhesion
A second specific example in which the present invention is applied to an optical switch array is shown in FIGS.

【0036】図5は活性層にGaAs/AlGaAs多
重量子井戸を用いた場合の光入出力基板の断面図であ
る。半絶縁性GaAs基板101上に、選択エッチング
用AlAs層102、i−GaAs光吸収層107、p
−DBR層106、i−GaAs/AlGaAs活性層
105、n−DBR層104、およびn+−GaAsコ
ンタクト層103を、順次分子線エピタキシャル成長法
により形成した。先の実施例1とは受光素子構成層と発
光素子構成層の積層順序が逆になっている。ここで、実
施例1と同様に、n−DBR層は30周期積層した構造
からなり、p−DBR層は25周期積層した構造からな
る。
FIG. 5 is a sectional view of an optical input / output substrate when a GaAs / AlGaAs multiple quantum well is used for the active layer. On a semi-insulating GaAs substrate 101, an AlAs layer 102 for selective etching, an i-GaAs light absorbing layer 107,
The -DBR layer 106, the i-GaAs / AlGaAs active layer 105, the n-DBR layer 104, and the n + -GaAs contact layer 103 were sequentially formed by molecular beam epitaxial growth. The order of lamination of the light receiving element constituting layer and the light emitting element constituting layer is opposite to that of the first embodiment. Here, as in the first embodiment, the n-DBR layer has a structure in which 30 cycles are stacked, and the p-DBR layer has a structure in which 25 cycles are stacked.

【0037】図6に光スイッチの作成法を示す。まず、
図6(a)の様に光入出力基板100を平坦な石英板4
00に、成長層100Eを上にしてワックス500によ
り貼り付ける。
FIG. 6 shows a method of manufacturing an optical switch. First,
As shown in FIG. 6A, the optical input / output substrate 100 is
At 00, a wax 500 is attached with the growth layer 100E facing up.

【0038】次いで、図6(b)に示すように、GaA
s基板101を厚さ50μm程度まで研磨した後、クエ
ン酸溶液によりGaAs基板のみをエッチングし、Al
As層102でエッチングを止める。次に、塩酸により
AlAs層102のみを選択的にエッチングする。
Next, as shown in FIG.
After polishing the s substrate 101 to a thickness of about 50 μm, only the GaAs substrate is etched with a citric acid solution,
The etching is stopped at the As layer 102. Next, only the AlAs layer 102 is selectively etched with hydrochloric acid.

【0039】次に、図6(c)の様に、ポリイミド30
0により集積回路基板200との貼り合わせを行う。ま
ず、100℃程度でベーキングを行ってポリイミドを硬
化させる。
Next, as shown in FIG.
With 0, bonding to the integrated circuit substrate 200 is performed. First, baking is performed at about 100 ° C. to cure the polyimide.

【0040】このとき、石英板400と光入出力基板1
00の間にあったワックスは熱によって溶けるので、図
6(d)に示すように、集積回路基板200と光入出力
基板の成長層100Eを一緒に石英板から取り外す。そ
の後、300℃程度の高温でポリイミドを最終硬化させ
る。この状態は実施例1の図4(c)と同じ状態であ
り、以後は実施例1と同様にして素子が作製できる。
At this time, the quartz plate 400 and the light input / output substrate 1
Since the wax existing between 00 and 00 is melted by heat, as shown in FIG. 6D, the integrated circuit substrate 200 and the growth layer 100E of the optical input / output substrate are removed together from the quartz plate. Thereafter, the polyimide is finally cured at a high temperature of about 300 ° C. This state is the same as the state shown in FIG. 4C of the first embodiment, and thereafter the device can be manufactured in the same manner as in the first embodiment.

【0041】この場合、選択エッチングでi−GaAs
光吸収層を露出する必要はなく、半絶縁性GaAs基板
101が残ったままで集積回路基板200に貼り付けて
もよい。この例を図7に示す。
In this case, i-GaAs is selectively etched.
There is no need to expose the light absorption layer, and the light absorption layer may be attached to the integrated circuit substrate 200 with the semi-insulating GaAs substrate 101 remaining. This example is shown in FIG.

【0042】(その2) 光入出力基板をプロセス後に
接着する場合 本発明を適用した光スイッチアレイの第3の具体例を図
8に示す。光入出力基板は図5に示した第2の具体例と
同様である。
(Part 2) After the optical input / output substrate is processed
FIG. 8 shows a third specific example of an optical switch array to which the present invention is applied when bonding . The optical input / output substrate is the same as that of the second specific example shown in FIG.

【0043】図8に光スイッチの作製法を示す。まず、
面発光レーザ100B、MSMフォトダイオード100
Aを半絶縁性GaAs基板101を処理することなしに
プロセスした後、図8(a)に示すように、平坦な石英
板400とプロセスした面を向い合わせてワックス50
0により貼り合わせる。図8(a′)は光入出力基板の
拡大図である。
FIG. 8 shows a method of manufacturing an optical switch. First,
Surface emitting laser 100B, MSM photodiode 100
A is processed without treating the semi-insulating GaAs substrate 101, and then, as shown in FIG.
Laminate with 0. FIG. 8A is an enlarged view of the optical input / output substrate.

【0044】次に、図8(b)に示すように、GaAs
基板を厚さ50μm程度まで研磨し、次いでPA30溶
液によりGaAs基板のみをエッチングし、AlAs層
でエッチングを止め、さらに、塩酸によりAlAs層の
みを選択的にエッチングする。
Next, as shown in FIG.
The substrate is polished to a thickness of about 50 μm, then only the GaAs substrate is etched with a PA30 solution, the etching is stopped at the AlAs layer, and only the AlAs layer is selectively etched with hydrochloric acid.

【0045】次に、図8(c)に示すように、両方の基
板にポリイミド300を塗布した後、赤外線カメラ(C
CDカメラ)を用いて集積回路基板200と光入出力基
板100の回路パターンをモニタしながら、微動台60
0を用いて両基板の位置合わせを行い、貼り合わせる。
Next, as shown in FIG. 8C, after applying polyimide 300 to both substrates, an infrared camera (C
While monitoring the circuit patterns of the integrated circuit board 200 and the optical input / output board 100 using a CD camera),
Positioning of both substrates is performed using 0, and they are bonded.

【0046】次に、(その1)の場合と同様に、100
℃程度でポリイミドを硬化させ、同時に石英板から両基
板を取り外した後、300℃まで昇温することによりポ
リイミド300を最終的に硬化させ、図8(d)に示し
た構造を得る。この状態は、図4(d)と同様の状態で
あり、以後は先の具体例と同じプロセスを行う。
Next, as in the case of (1), 100
After curing the polyimide at about ° C and simultaneously removing both substrates from the quartz plate, the temperature is raised to 300 ° C to finally cure the polyimide 300, thereby obtaining the structure shown in FIG. 8D. This state is similar to the state shown in FIG. 4D, and thereafter, the same process as in the above specific example is performed.

【0047】この場合、第2の具体例と同様に、選択エ
ッチングでi−GaAs光吸収層を露出する必要はな
く、半絶縁性GaAs基板101が残ったままで集積回
路基板200に貼り付けてもよい。
In this case, similarly to the second embodiment, it is not necessary to expose the i-GaAs light absorbing layer by selective etching, and the semi-insulating GaAs substrate 101 can be stuck to the integrated circuit substrate 200 while remaining. Good.

【0048】実施例3 光入出力基板にも電気回路を形
成した場合 これまでの実施例では光入出力基板100には面発光レ
ーザとフォトディテクタが構成されていたが、光入出力
基板100にFETなどの電気回路を構成することも可
能である。ここでは、第1の具体例と同様の方法で光ス
イッチを構成する例を述べる。FETは下記の説明のよ
うにエピタキシャル成長によって構成することも、また
イオン注入によって構成することも可能である。
Embodiment 3 An electric circuit is also formed on the optical input / output substrate.
In the above embodiments, the surface emitting laser and the photodetector are configured on the optical input / output substrate 100 in the above-described embodiments. However, an electric circuit such as an FET can be configured on the optical input / output substrate 100. Here, an example in which an optical switch is configured in the same manner as in the first specific example will be described. The FET can be formed by epitaxial growth as described below, or can be formed by ion implantation.

【0049】図9は活性層にGaAs/AlGaAs多
重量子井戸を用いた場合の光入出力基板の断面図であ
る。
FIG. 9 is a sectional view of an optical input / output substrate when a GaAs / AlGaAs multiple quantum well is used for the active layer.

【0050】半絶縁性GaAs基板101上に、選択エ
ッチング用AlAs層102、p+−GaAsコンタク
ト層120、p−DBR層106、i−GaAs/Al
GaAs活性層105、n−DBR層104、選択エッ
チング層としてn−InGaP層121(10nm)、
FET用コンタクト層としてn+−GaAs層122
(0.4μm)、FETチャネル層としてn- −GaA
sチャネル層123(0.2μm)およびi−GaAs
光吸収層107(2μm)を、順次分子線エピタキシャ
ル成長法により形成した。p型およびn型ドーパントに
はそれぞれBeおよびSiを用いた。ここで、p−DB
R層はp−AlAs(71.5nm)/p−Al0.15
0.85As(62.9nm)を交互に25周期積層した
構造からなり、n−DBR層はn−AlAs(71.5
nm)/n−Al0.15Ga0.85As(62.9nm)を
交互に30周期積層した構造からなる。
On a semi-insulating GaAs substrate 101, an AlAs layer 102 for selective etching, a p + -GaAs contact layer 120, a p-DBR layer 106, an i-GaAs / Al
A GaAs active layer 105, an n-DBR layer 104, an n-InGaP layer 121 (10 nm) as a selective etching layer,
N + -GaAs layer 122 as FET contact layer
(0.4 μm), n -GaAs as FET channel layer
s channel layer 123 (0.2 μm) and i-GaAs
The light absorbing layer 107 (2 μm) was sequentially formed by a molecular beam epitaxial growth method. Be and Si were used for the p-type and n-type dopants, respectively. Here, p-DB
The R layer is p-AlAs (71.5 nm) / p-Al 0.15 G
a It has a structure in which 0.85 As (62.9 nm) is alternately laminated for 25 periods, and the n-DBR layer is n-AlAs (71.5
nm) / n-Al 0.15 Ga 0.85 As (62.9 nm) are alternately stacked for 30 periods.

【0051】これを図10に示すように加工して光スイ
ッチを作製する。
This is processed as shown in FIG. 10 to produce an optical switch.

【0052】まず、図10(a)に示すように、第1の
実施例と同様にして、集積回路基板200上にポリイミ
ド300を用いて光入出力基板100を接着し、その
後、研磨とエッチングによりエピタキシャル成長層10
0Eだけを残す。図10(a′)は成長層の拡大断面図
である。
First, as shown in FIG. 10A, an optical input / output substrate 100 is bonded on an integrated circuit substrate 200 using a polyimide 300 in the same manner as in the first embodiment, and then polished and etched. The epitaxial growth layer 10
Leave only 0E. FIG. 10A is an enlarged sectional view of the growth layer.

【0053】次に、図10(b)に示すように、面発光
レーザ部100Bのメサエッチングを行う。図10
(b′)は面発光レーザ部の拡大断面図である。このと
き、選択エッチングによってメサ深さはInGaP層1
21までに達する。
Next, as shown in FIG. 10B, the mesa etching of the surface emitting laser unit 100B is performed. FIG.
(B ') is an enlarged sectional view of the surface emitting laser unit. At this time, the mesa depth is changed to InGaP layer 1 by selective etching.
Up to 21

【0054】FETのプロセスは、図10(c)に示す
ように、InGaP層121をエッチングした後、FE
T100Fのメサエッチングをi−GaAs光吸収層1
07まで行う。次に、n+−GaAsコンタクト層12
2にソース、ドレイン電極124を作成する。リセスエ
ッチングはn- −GaAsチャネル層123まで行い、
その後、ゲート電極125を作成する。このとき、同時
にMSMフォトディテクタ100Aの電極も形成する。
In the FET process, as shown in FIG. 10C, after the InGaP layer 121 is etched, the FE
Mesa etching of T100F is performed on the i-GaAs light absorbing layer 1
Perform until 07. Next, the n + -GaAs contact layer 12
2, a source / drain electrode 124 is formed. The recess etching is performed up to the n -GaAs channel layer 123,
After that, a gate electrode 125 is formed. At this time, the electrodes of the MSM photodetector 100A are also formed at the same time.

【0055】最後に図10(d)に示すように、集積回
路基板200との電気配線400を施す。
Finally, as shown in FIG. 10D, an electric wiring 400 to the integrated circuit substrate 200 is formed.

【0056】このように、光入出力基板にも電気回路を
構成した場合は、Siに比べて大きなゲインを持つFE
Tが作成でき、集積回路の方では小さな電圧振幅のみで
面発光レーザを駆動できることになり、集積回路基板の
負担を軽減でき、より高速な応答が可能となる。
As described above, when an electric circuit is also formed on the optical input / output substrate, the FE having a larger gain than Si has
T can be created, and the integrated circuit can drive the surface emitting laser with only a small voltage amplitude, so that the load on the integrated circuit substrate can be reduced and a faster response can be achieved.

【0057】これまでの具体例では受光素子としてMS
Mフォトダイオードを用いた例を説明したが、これ以外
にも受光部としてはpinフォトダイオード、フォトコ
ンダクタ等を用いても半発明の素子を構成できる。
In the specific examples so far, MS is used as the light receiving element.
Although the example using the M photodiode has been described, the element of the semi-invention can also be configured by using a pin photodiode, a photoconductor, or the like as the light receiving unit.

【0058】実施例4 pinフォトダイオードを用いて作成した例を図11に
示す。pinフォトダイオード100Gは、図示される
ように、n−GaAs層131、i−GaAs光吸収層
107、p−GaAs層130から構成され、絶縁膜1
32を介してポリイミド300によって集積回路基板2
00に接着され、かつ配線400によって電気的に接続
される。面発光レーザ100Bの構成はすでに説明した
とおりである。この場合、MSMフォトダイオードの場
合と異なり、導電層を受光部にも含むため、各受光部を
分離する必要があることと、集積回路基板200と光入
出力基板100とを接着する際に光入出力基板100の
接着する面に絶縁膜132を蒸着していることが、これ
までの具体例と異なっている。
Embodiment 4 FIG. 11 shows an example in which a pin photodiode is used. The pin photodiode 100G includes an n-GaAs layer 131, an i-GaAs light absorption layer 107, and a p-GaAs layer 130, as shown in FIG.
32 through the integrated circuit board 2 by polyimide 300
00 and are electrically connected by wiring 400. The configuration of the surface emitting laser 100B is as described above. In this case, unlike the case of the MSM photodiode, since the conductive layer is also included in the light receiving portion, it is necessary to separate each light receiving portion. The difference from the previous specific example is that the insulating film 132 is deposited on the surface of the input / output substrate 100 to be bonded.

【0059】これまで説明した具体例では、GaAs/
AlGaAsで光スイッチを構成したが、これに限るも
のではなく、InGaAs/InP、InAlAs/I
nGaAs、GaAs/InGaAs等の他の材料系も
用いることができる。集積回路基板もシリコンのほか
に、GaAs, InP等使用できることは言うまでもな
い。
In the specific examples described so far, GaAs /
Although the optical switch is made of AlGaAs, the present invention is not limited to this. For example, InGaAs / InP, InAlAs / I
Other material systems such as nGaAs and GaAs / InGaAs can also be used. It goes without saying that GaAs, InP and the like can be used for the integrated circuit substrate in addition to silicon.

【0060】また、以上の実施例では、光スイッチアレ
イについてのみ記載したが、光スイッチアレイ以外の他
の3次元集積回路の構成にも本発明が有効であることは
明らかである。なお、本発明は、ポリイミド等の絶縁膜
上に集積化される素子がそれぞれ異なる層構造を有しな
い場合にも、各素子を分離できるので、素子間の電気的
分離(アイソレーション)が容易になるという利点があ
る。
Although only the optical switch array has been described in the above embodiments, it is apparent that the present invention is effective for the configuration of a three-dimensional integrated circuit other than the optical switch array. According to the present invention, even when elements integrated on an insulating film such as polyimide do not have different layer structures, each element can be separated, so that electrical isolation (isolation) between elements can be easily performed. There is an advantage that it becomes.

【0061】[0061]

【発明の効果】以上説明したように、本発明による半導
体集積回路の製造方法は、集積回路基板の持つ高速、高
機能性と、光入出力基板の持つ高並列、高速性を合わせ
持った半導体集積回路を製造できるという特長を持って
いる。これらの素子を多段に光により接続することによ
り、将来の光情報処理素子、LSIの光インターコネク
ション用素子として非常に有望になる。
As described above, the method of manufacturing a semiconductor integrated circuit according to the present invention provides a semiconductor device having both high speed and high functionality of an integrated circuit board and high parallelism and high speed of an optical input / output board. It has the feature that integrated circuits can be manufactured. By connecting these elements by light in multiple stages, it becomes very promising as a future optical information processing element or an element for optical interconnection of LSI.

【0062】また、本発明によると、異なる層構造を有
する半導体素子からなる3次元半導体集積回路の形成が
可能になる。さらに、素子間のアイソレーションに優れ
た3次元半導体集積回路の提供も可能になる。
Further, according to the present invention, it is possible to form a three-dimensional semiconductor integrated circuit composed of semiconductor elements having different layer structures. Further, a three-dimensional semiconductor integrated circuit having excellent isolation between elements can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による素子の断面構造を示す図である。FIG. 1 is a diagram showing a cross-sectional structure of an element according to the present invention.

【図2】本発明の素子の特性を示す図である。FIG. 2 is a diagram showing characteristics of the device of the present invention.

【図3】光入出力基板の一例の断面図である。FIG. 3 is a sectional view of an example of an optical input / output substrate.

【図4】第1の実施例の光スイッチの作製法を示す図で
ある。
FIG. 4 is a diagram illustrating a method of manufacturing the optical switch according to the first embodiment.

【図5】光入出力基板の他の例の断面図である。FIG. 5 is a sectional view of another example of the optical input / output substrate.

【図6】第2の実施例の光スイッチの作製法を示す図で
ある。
FIG. 6 is a diagram illustrating a method of manufacturing the optical switch according to the second embodiment.

【図7】選択エッチングを用いない場合の実施例の断面
図である。
FIG. 7 is a cross-sectional view of an embodiment in which selective etching is not used.

【図8】本発明素子の他の具体例の作製法を示す図であ
る。
FIG. 8 is a view showing a method of manufacturing another specific example of the device of the present invention.

【図9】電気回路を形成する光入出力基板の断面図であ
る。
FIG. 9 is a sectional view of an optical input / output substrate forming an electric circuit.

【図10】光入出力基板にも電気回路を形成した実施例
の作製法を示す図である。
FIG. 10 is a diagram showing a manufacturing method of an embodiment in which an electric circuit is also formed on the optical input / output substrate.

【図11】受光素子としてpinフォトダイオードを用
いた具体例の断面図である。
FIG. 11 is a cross-sectional view of a specific example using a pin photodiode as a light receiving element.

【図12】従来例の断面図である。FIG. 12 is a sectional view of a conventional example.

【図13】従来例の特性図である。FIG. 13 is a characteristic diagram of a conventional example.

【符号の説明】[Explanation of symbols]

101 半絶縁性GaAs基板 102 選択エッチング用AlAs層 103 n+−GaAsコンタクト層 104 n−DBR層 105 活性層 106 p−DBR層 107 i−GaAs光吸収層 110 p型電極 111 n型電極 112 ショットキ電極 113 配線用金属 120 p+−GaAsコンタクト層 121 選択エッチングInGaP層 122 n+−GaAsコンタクト層 123 n- −GaAsチャネル層 130 p−GaAs層 131 n−GaAs層 132 絶縁膜Reference Signs List 101 semi-insulating GaAs substrate 102 selective etching AlAs layer 103 n + -GaAs contact layer 104 n-DBR layer 105 active layer 106 p-DBR layer 107 i-GaAs light absorption layer 110 p-type electrode 111 n-type electrode 112 Schottky electrode 113 metal for wiring 120 p + -GaAs contact layer 121 selective etching InGaP layer 122 n + -GaAs contact layer 123 n -- GaAs channel layer 130 p-GaAs layer 131 n-GaAs layer 132 insulating film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 27/15 H01S 5/02 31/10 5/026 612 H01S 5/02 5/183 5/026 612 H01L 21/90 A 5/183 31/10 A G (72)発明者 黒川 隆志 東京都千代田区大手町二丁目3番1号 日 本電信電話株式会社内 Fターム(参考) 5F033 GG02 JJ19 PP07 PP27 PP28 QQ09 QQ10 QQ37 RR04 RR22 SS22 XX33 5F049 MA04 NA03 NA04 NB10 PA14 PA15 QA04 RA07 RA08 SS02 UA07 UA14 5F073 AA65 AA74 AB02 BA09 CB02 CB03 DA22 EA13 EA14 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 27/15 H01S 5/02 31/10 5/026 612 H01S 5/02 5/183 5/026 612 H01L 21/90 A 5/183 31/10 AG (72) Inventor Takashi Kurokawa 2-3-1, Otemachi, Chiyoda-ku, Tokyo F-term in Nippon Telegraph and Telephone Corporation (reference) 5F033 GG02 JJ19 PP07 PP27 PP28 QQ09 QQ10 QQ37 RR04 RR22 SS22 XX33 5F049 MA04 NA03 NA04 NB10 PA14 PA15 QA04 RA07 RA08 SS02 UA07 UA14 5F073 AA65 AA74 AB02 BA09 CB02 CB03 DA22 EA13 EA14

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 化合物半導体基板の一方の主面上に、選
択エッチング層、発光素子構成層、受光素子構成層の順
にエピタキシャル成長によって積層体を形成した光入出
力基板と、 一方の主面上に半導体素子が集積され、かつ電気接続用
金属層および放熱用金属層がパタン形成されたシリコン
集積回路基板とを、 前記光入出力基板の前記積層体を形成した面と前記シリ
コン集積回路基板の半導体素子が集積された面とを対向
させて有機材料からなる絶縁性の接着層を介して貼り合
わせ、 前記化合物半導体基板を研磨および化学エッチング法に
より除去し、 前記積層体を加工して発光素子および受光素子とを形成
し、当該発光素子および受光素子の各々の電極を形成
し、 前記シリコン集積回路基板上の半導体素子と前記発光素
子および受光素子の各々の電極とを接続するためのスル
ーホールを形成し、 前記スルーホールを金属で埋めて電気的に接続させるこ
とを特徴とする半導体集積回路の製造方法。
An optical input / output substrate in which a laminated body is formed on one main surface of a compound semiconductor substrate by epitaxial growth in the order of a selective etching layer, a light emitting element forming layer, and a light receiving element forming layer; A semiconductor integrated circuit board on which a semiconductor element is integrated and a metal layer for electrical connection and a metal layer for heat dissipation are formed; and a surface of the optical input / output board on which the laminated body is formed and a semiconductor of the silicon integrated circuit board. The surface on which the elements are integrated is opposed to each other and bonded together via an insulating adhesive layer made of an organic material. The compound semiconductor substrate is removed by polishing and chemical etching. Forming a light receiving element, forming respective electrodes of the light emitting element and the light receiving element, a semiconductor element on the silicon integrated circuit substrate, the light emitting element and the light receiving element A through hole for connecting the respective electrodes are formed, a manufacturing method of a semiconductor integrated circuit for causing said through hole is electrically connected to filled with metal.
【請求項2】 化合物半導体基板の一方の主面上に、選
択エッチング層、受光素子構成層、発光素子構成層の順
にエピタキシャル成長によって積層体を形成した光入出
力基板の前記積層体を形成した面と石英基板とをワック
スを用いて貼り合わせ、 前記化合物半導体基板を研磨および化学エッチング法に
より除去した面と、一方の主面上に半導体素子が集積さ
れ、かつ電気接続用金属層および放熱用金属層がパタン
形成されたシリコン集積回路基板の半導体素子が集積さ
れた面とを対向させて有機材料からなる絶縁性の接着層
を介して貼り合わせ、 加熱により前記ワックスを溶かして前記石英基板を取り
外し、 前記積層体を加工して発光素子および受光素子とを形成
し、当該発光素子および受光素子の各々の電極を形成
し、 前記シリコン集積回路基板上の半導体素子と前記発光素
子および受光素子の各々の電極とを接続するためのスル
ーホールを形成し、 前記スルーホールを金属で埋めて電気的に接続させるこ
とを特徴とする半導体集積回路の製造方法。
2. A surface of a light input / output substrate on which a laminate is formed by epitaxial growth on one main surface of a compound semiconductor substrate in the order of a selective etching layer, a light receiving element constituting layer, and a light emitting element constituting layer. And a quartz substrate are bonded together using wax, and a surface on which the compound semiconductor substrate is removed by polishing and chemical etching, and a semiconductor element integrated on one main surface, and a metal layer for electrical connection and a metal for heat dissipation The surface of the silicon integrated circuit substrate on which the layers are formed is bonded with an insulating adhesive layer made of an organic material facing the surface on which the semiconductor elements are integrated, and the wax is melted by heating to remove the quartz substrate. Processing the stacked body to form a light emitting element and a light receiving element, forming respective electrodes of the light emitting element and the light receiving element; A semiconductor integrated circuit, comprising: forming a through-hole for connecting a semiconductor element on a circuit board to each electrode of the light-emitting element and the light-receiving element; filling the through-hole with a metal for electrical connection. Manufacturing method.
【請求項3】 化合物半導体基板の上に複数の発光素子
および複数の受光素子ならびに各々の電極を形成し、 前記化合物半導体基板の前記複数の発光素子および複数
の受光素子ならびに各々の電極を形成した面と石英基板
とをワックスを用いて貼り合わせ、 前記化合物半導体基板を研磨および化学エッチング法に
より除去した面と、一方の主面上に半導体素子が集積さ
れ、かつ電気接続用金属層および放熱用金属層がパタン
形成されたシリコン集積回路基板の半導体素子が集積さ
れた面とを対向させて、赤外光を用いて位置決めを行
い、 有機材料からなる絶縁性の接着層を介して貼り合わせ、 加熱により前記ワックスを溶かして、前記石英基板を取
り外し、 前記シリコン集積回路基板上の半導体素子と前記複数の
発光素子および複数の受光素子の各々の電極とを接続す
るためのスルーホールを形成し、 前記スルーホールを金属で埋めて電気的に接続させるこ
とを特徴とする半導体集積回路の製造方法。
3. A plurality of light emitting elements, a plurality of light receiving elements, and respective electrodes are formed on a compound semiconductor substrate, and the plurality of light emitting elements, a plurality of light receiving elements, and respective electrodes of the compound semiconductor substrate are formed. A surface and a quartz substrate are bonded together using wax, and the compound semiconductor substrate is polished and removed by chemical etching, and a semiconductor element is integrated on one main surface, and a metal layer for electrical connection and a heat radiation The surface of the silicon integrated circuit substrate on which the metal layer is formed is opposed to the surface on which the semiconductor elements are integrated, positioned using infrared light, and bonded via an insulating adhesive layer made of an organic material. The wax is melted by heating, the quartz substrate is removed, and the semiconductor device, the plurality of light emitting devices, and the plurality of light receiving devices on the silicon integrated circuit substrate are removed. Forming a through hole for connecting the respective electrodes of the child, a method of manufacturing a semiconductor integrated circuit for causing said through hole is electrically connected to filled with metal.
【請求項4】 化合物半導体基板の一方の主面上に、選
択エッチング層、発光素子構成層、FET素子構成層、
受光素子構成層の順にエピタキシャル成長によって積層
体を形成した光入出力基板と、 一方の主面上に半導体素子が集積され、かつ電気接続用
金属層および放熱用金属層がパタン形成されたシリコン
集積回路基板とを、 前記光入出力基板の前記積層体を形成した面と前記シリ
コン集積回路基板の半導体素子が集積された面とを対向
させて有機材料からなる絶縁性の接着層を介して貼り合
わせ、 前記化合物半導体基板を研磨および化学エッチング法に
より除去し、 前記積層体を加工して発光素子およびFET素子ならび
に受光素子とを形成し、当該発光素子およびFET素子
ならびに受光素子の各々の電極を形成し、 前記シリコン集積回路基板上の半導体素子と前記発光素
子およびFET素子ならびに受光素子の各々の電極とを
接続するためのスルーホールを形成し、 前記スルーホールを金属で埋めて電気的に接続させるこ
とを特徴とする半導体集積回路の製造方法。
4. A selective etching layer, a light emitting element forming layer, a FET element forming layer, and a selective etching layer on one main surface of a compound semiconductor substrate.
A light-input / output substrate in which a stacked body is formed by epitaxial growth in the order of light-receiving element constituent layers; and a silicon integrated circuit in which semiconductor elements are integrated on one main surface and a metal layer for electric connection and a metal layer for heat radiation are formed in a pattern. A substrate is bonded to the optical input / output substrate via an insulating adhesive layer made of an organic material with the surface on which the laminate is formed and the surface of the silicon integrated circuit substrate on which the semiconductor elements are integrated facing each other. Removing the compound semiconductor substrate by polishing and chemical etching, processing the laminated body to form a light emitting element, an FET element, and a light receiving element, and forming respective electrodes of the light emitting element, the FET element, and the light receiving element Connecting the semiconductor element on the silicon integrated circuit board to each electrode of the light emitting element, the FET element, and the light receiving element. The method of manufacturing a semiconductor integrated circuit, characterized in that the through-holes are formed, thereby the through-hole is electrically connected to filled with metal.
JP2001178040A 2001-06-13 2001-06-13 Manufacturing method of semiconductor integrated circuit Expired - Lifetime JP3681992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001178040A JP3681992B2 (en) 2001-06-13 2001-06-13 Manufacturing method of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001178040A JP3681992B2 (en) 2001-06-13 2001-06-13 Manufacturing method of semiconductor integrated circuit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2972596A Division JP3236774B2 (en) 1996-02-16 1996-02-16 Semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JP2002057283A true JP2002057283A (en) 2002-02-22
JP3681992B2 JP3681992B2 (en) 2005-08-10

Family

ID=19018796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001178040A Expired - Lifetime JP3681992B2 (en) 2001-06-13 2001-06-13 Manufacturing method of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JP3681992B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027365A (en) * 2005-07-15 2007-02-01 Seiko Epson Corp Optical element, manufacturing method thereof, and optical module
JP2008270476A (en) * 2007-04-19 2008-11-06 Sony Corp Semiconductor device and its manufacturing method
US11476308B2 (en) 2019-03-22 2022-10-18 Nichia Corporation Method for manufacturing image display device and image display device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027365A (en) * 2005-07-15 2007-02-01 Seiko Epson Corp Optical element, manufacturing method thereof, and optical module
JP4525921B2 (en) * 2005-07-15 2010-08-18 セイコーエプソン株式会社 Optical element, method for manufacturing the same, and optical module
JP2008270476A (en) * 2007-04-19 2008-11-06 Sony Corp Semiconductor device and its manufacturing method
US8450752B2 (en) 2007-04-19 2013-05-28 Sony Corporation Semiconductor device and method of manufacturing the same
USRE47188E1 (en) 2007-04-19 2019-01-01 Sony Corporation Semiconductor device and method of manufacturing the same
US11476308B2 (en) 2019-03-22 2022-10-18 Nichia Corporation Method for manufacturing image display device and image display device

Also Published As

Publication number Publication date
JP3681992B2 (en) 2005-08-10

Similar Documents

Publication Publication Date Title
JP3236774B2 (en) Semiconductor integrated circuit
JP3990846B2 (en) Planar optical element, method for manufacturing the same, and apparatus using the same
US6261859B1 (en) Method for fabricating surface-emitting semiconductor device, surface-emitting semiconductor device fabricated by the method, and display device using the device
US7116854B2 (en) Optical element array, optical module, and optical transmission device
US8313962B2 (en) Method for attaching optical components onto silicon-based integrated circuits
JP4120184B2 (en) Mounting microstructure and optical transmission device
JPH11168262A (en) Planar optical device, manufacture thereof, and display device
WO2021124968A1 (en) Vertical cavity surface emitting laser element, vertical cavity surface emitting laser element array, vertical cavity surface emitting laser module, and method for manufacturing vertical cavity surface emitting laser element
US20050199896A1 (en) Method of fabricating surface-emission type light-emitting device, surface-emitting semiconductor laser, method of fabricating the same, optical module and optical transmission device
JPH10335383A (en) Producing method for semiconductor device
JPH11168263A (en) Optical device and manufacture thereof
JPH05218386A (en) Optical integrated circuit
JP2002286959A (en) Semiconductor device, photoelectric fusion substrate and manufacturing method for the same
US7406112B2 (en) Surface-emitting laser, method for manufacturing surface-emitting laser, device and electronic apparatus
JP2005159071A (en) Semiconductor device, its manufacturing method and optical transmission system
Nakahara et al. Hybrid integration of smart pixels by using polyimide bonding: demonstration of a GaAs pin photodiode/CMOS receiver
JP3093547B2 (en) Optical integrated circuit and method of manufacturing the same
JP3681992B2 (en) Manufacturing method of semiconductor integrated circuit
JP2002353561A (en) Surface-emitting laser and manufacturing method therefor
Pu et al. Comparison of techniques for bonding VCSELs directly to ICs
JPH07335976A (en) Surface emission laser device with light receiving element
JP2002100829A (en) Semiconductor light-emitting and light-receiving device and manufacturing method thereof
JP2002100799A (en) Semiconductor light-receiving element, semiconductor light-emitting and receiving device, and manufacturing method of them
JPH06244502A (en) Surface-emission laser apparatus and its manufacture
Ryu et al. Optical interconnects for high-speed data links

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term