JP2002055067A - Detection method for terioration of carbon material or graphite material - Google Patents

Detection method for terioration of carbon material or graphite material

Info

Publication number
JP2002055067A
JP2002055067A JP2000240578A JP2000240578A JP2002055067A JP 2002055067 A JP2002055067 A JP 2002055067A JP 2000240578 A JP2000240578 A JP 2000240578A JP 2000240578 A JP2000240578 A JP 2000240578A JP 2002055067 A JP2002055067 A JP 2002055067A
Authority
JP
Japan
Prior art keywords
graphite
carbon
measured
phase difference
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000240578A
Other languages
Japanese (ja)
Inventor
Hiroshi Shioyama
洋 塩山
Kazuhiro Fujita
和宏 藤田
Yoshihiro Sawada
吉裕 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000240578A priority Critical patent/JP2002055067A/en
Publication of JP2002055067A publication Critical patent/JP2002055067A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method which can detect terioration due to oxidation of wear, breakdown or the like of a carbon material or a graphite material, used in a special environment, such as at a high temperature or the like, during its use and at the site. SOLUTION: In the detection method for the deterioration of the carbon material or the graphite material, the AC propagation characteristic of the carbon material or the graphite material is measured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術範囲】本発明は、炭素材料又は黒鉛
材料の劣化検出方法に関する。
The present invention relates to a method for detecting deterioration of a carbon material or a graphite material.

【0002】[0002]

【従来の技術】黒鉛材料、炭素材料等は、2000℃以
上の温度で用いられる電気炉の発熱体や航空宇宙用部品
等の材料として超高温で使用される場合が多い。この様
な環境下において、炭素・黒鉛材料は、酸化消耗や材料
力学的な破壊の可能性がある。ところが、これまで超高
温での使用中に炭素・黒鉛材料の劣化を検出する手段が
なく、運転終了後又は中断後に室温にもどした際の検査
や経験によって劣化を予測していた。
2. Description of the Related Art Graphite materials, carbon materials and the like are often used at extremely high temperatures as materials for heating elements of electric furnaces and aerospace parts used at a temperature of 2000 ° C. or higher. Under such an environment, the carbon / graphite material has a possibility of oxidative consumption and material mechanical destruction. However, there has been no means to detect the deterioration of the carbon / graphite material during use at an ultra-high temperature, and the deterioration has been predicted by inspection and experience when the temperature is returned to room temperature after the operation is completed or interrupted.

【0003】[0003]

【発明が解決しようとする課題】本発明の主な目的は、
高温などの特殊環境下で使用する炭素材料又は黒鉛材料
について、使用中にその場で酸化消耗や破壊などによる
劣化を検出できる方法を提供することである。
SUMMARY OF THE INVENTION The main object of the present invention is to:
It is an object of the present invention to provide a method capable of detecting deterioration due to oxidative consumption or destruction during use of a carbon material or a graphite material used under a special environment such as a high temperature.

【0004】[0004]

【課題を解決するための手段】本発明者は、上記した如
き問題点に鑑みて鋭意研究を重ねた結果、炭素・黒鉛材
料の交流伝搬特性はその組織構造に大きく依存し、材料
の劣化が生じた場合には交流伝搬特性に変化が生じるこ
とから、材料の使用中にその場で交流伝搬特性を測定す
ることによって、材料の劣化を検出することが可能とな
ることを見出し、ここに本発明を完成するに至った。
Means for Solving the Problems The present inventor has conducted intensive studies in view of the above-mentioned problems, and as a result, the AC propagation characteristics of carbon / graphite materials greatly depend on the structure of the materials. If this occurs, the AC propagation characteristics change, so we found that it is possible to detect deterioration of the material by measuring the AC propagation characteristics on the spot while using the material. The invention has been completed.

【0005】即ち、本発明は、下記の炭素材料又は黒鉛
材料の劣化検出方法を提供するものである。 1.炭素材料又は黒鉛材料の交流伝搬特性を測定するこ
とを特徴とする炭素材料又は黒鉛材料の劣化検出方法。 2.炭素材料又は黒鉛材料の使用中に交流伝搬特性を測
定し、使用前又は使用開始直後に測定しておいた交流伝
搬特性と比較することを特徴とする炭素材料又は黒鉛材
料の劣化検出方法。 3.交流伝搬特性が、電圧電流間の位相差及びインピー
ダンスから選ばれた少なくとも一種の特性である項1又
は2に記載の劣化検出方法。 4.高密度等方性黒鉛について、10kHz〜2.2M
Hzの周波数域において電圧電流間の位相差を測定する
ことを特徴とする項1又は2に記載の劣化検出方法。 5.人造炭素電極について、5kHz〜2.2MHzの
周波数域において電圧電流間の位相差を測定することを
特徴とする項1又は2に記載の劣化検出方法。
That is, the present invention provides the following method for detecting deterioration of a carbon material or a graphite material. 1. A method for detecting deterioration of a carbon material or a graphite material, comprising measuring an AC propagation characteristic of the carbon material or the graphite material. 2. A method for detecting deterioration of a carbon material or a graphite material, comprising measuring an AC propagation characteristic during use of a carbon material or a graphite material and comparing the measured AC propagation characteristic before use or immediately after the start of use. 3. Item 3. The deterioration detection method according to Item 1 or 2, wherein the AC propagation characteristic is at least one type of characteristic selected from a phase difference between voltage and current and impedance. 4. 10 kHz to 2.2 M for high density isotropic graphite
Item 3. The deterioration detection method according to Item 1 or 2, wherein a phase difference between the voltage and the current is measured in a frequency range of Hz. 5. Item 3. The method according to Item 1 or 2, wherein the phase difference between the voltage and the current is measured in a frequency range of 5 kHz to 2.2 MHz for the artificial carbon electrode.

【0006】[0006]

【発明の実施の形態】炭素・黒鉛材料は、炭素六角網面
の積層体である結晶子の大きさ、その結晶子の配向様式
や程度(微細組織)、微細組織の集合様式(集合組織)
の違いによって様々なものに分類できる。黒鉛結晶子の
電気抵抗には、104程度の異方性があり、炭素六角網
面に平行な方向のほうがはるかに電流が流れやすく、さ
らに試料の微細組織、集合組織に応じた経路で電流が流
れる。試料に流す電流として交流を用いた場合には、交
流の流れ難さを示すインピーダンス値には、直流電流の
抵抗値に比べて試料の構造が大きく反映すると予測され
る。例えば、経路が迂回していれば、そこにコイル成分
とコンデンサー成分が生じることになる。人造炭素電
極、人造黒鉛電極及び高密度等方性黒鉛(IG−11)
の3種類について、交流周波数とインピーダンスとの関
係を示すグラフを図1に示し、交流周波数と電圧電流間
の位相差との関係を示すグラフを図2に示す。これらの
図から明らかなように、炭素材料や黒鉛材料は、その種
類によって、インピーダンス、位相差等の交流伝搬特性
が異なるものとなり、これらの交流伝搬特性は、その組
織構造に依存していることが判る。
BEST MODE FOR CARRYING OUT THE INVENTION The carbon / graphite material has a size of crystallite which is a laminate of hexagonal carbon planes, an orientation mode and degree (fine structure) of the crystallite, and a mode of aggregation of fine structure (texture).
Can be classified into various types according to the differences. The electrical resistance of graphite crystallites has anisotropy of about 10 4 , the current is much easier to flow in the direction parallel to the carbon hexagonal plane, and the current flows along the path according to the microstructure and texture of the sample. Flows. When an alternating current is used as the current flowing through the sample, it is predicted that the impedance value indicating the difficulty of the alternating current largely reflects the structure of the sample as compared with the resistance value of the direct current. For example, if the path detours, a coil component and a capacitor component will be generated there. Artificial carbon electrode, artificial graphite electrode and high density isotropic graphite (IG-11)
FIG. 1 is a graph showing the relationship between the AC frequency and the impedance for the three types, and FIG. 2 is a graph showing the relationship between the AC frequency and the phase difference between the voltage and the current. As is evident from these figures, carbon materials and graphite materials have different AC propagation characteristics such as impedance and phase difference depending on their types, and these AC propagation characteristics depend on the tissue structure. I understand.

【0007】炭素・黒鉛材料は、使用中に酸化消耗や材
料力学的破壊が生じた場合、結晶子や微細組織、集合組
織等が変化するものと考えられる。従って、酸化消耗や
材料力学的破壊を受けた炭素・黒鉛材料は、もとの材料
と比べると、交流伝搬特性に変化が生じることになる。
よって、交流伝搬特性の変化を知ることによって、使用
中の炭素・黒鉛材料の劣化を検出することが可能とな
る。
[0007] It is considered that when oxidative consumption or material mechanical destruction occurs during use of carbon / graphite materials, crystallites, microstructures, textures, and the like change. Therefore, a carbon / graphite material that has been subjected to oxidative consumption or material mechanical destruction has a change in the AC propagation characteristics as compared with the original material.
Therefore, by knowing the change in the AC propagation characteristics, it is possible to detect the deterioration of the carbon / graphite material in use.

【0008】本発明の劣化検出方法では、測定対象とす
る炭素材料及び黒鉛材料の種類については特に限定はな
く、不定形の炭素材料から結晶化の進んだ材料まで各種
の炭素材料及び黒鉛材料を測定対象とすることができ
る。特に、電気炉の発熱体、断熱材等;スペースシャト
ルのノーズ、ノズル等、航空機のブレーキ等の航空宇宙
材料;燃料電池、核融合炉、原子炉等のエネルギー分野
等で使用される材料等の炭素材料又は黒鉛材料は、高温
下や原子炉中などの特殊な環境下で使用されるために、
本発明の検出方法によって劣化を検出することが有利で
ある。
In the deterioration detection method of the present invention, the types of the carbon material and the graphite material to be measured are not particularly limited, and various types of carbon materials and graphite materials from amorphous carbon materials to highly crystallized materials are used. Can be measured. In particular, heating elements and heat insulators for electric furnaces; aerospace materials such as nose and nozzles for space shuttles; brakes for aircraft; materials used in energy fields such as fuel cells, fusion reactors, and nuclear reactors. Since carbon materials or graphite materials are used in special environments such as high temperatures and in nuclear reactors,
It is advantageous to detect degradation by the detection method of the invention.

【0009】本発明の方法では、測定対象とする炭素材
料又は黒鉛材料について、交流伝搬特性を測定すること
によって、酸化消耗や破壊等の劣化を検出することがで
きる。
According to the method of the present invention, deterioration such as oxidative consumption and destruction can be detected by measuring the AC propagation characteristics of a carbon material or a graphite material to be measured.

【0010】具体的には、測定対象の炭素材料又は黒鉛
材料について、使用前又は使用開始直後に交流伝搬特性
を測定しておき、使用中に測定した交流伝搬特性を予め
測定しておいた特性と比較することによって、酸化消耗
や破壊等による劣化の程度を知ることができる。
More specifically, for a carbon or graphite material to be measured, the AC propagation characteristics are measured before use or immediately after the start of use, and the AC propagation characteristics measured during use are measured in advance. By comparing with, it is possible to know the degree of deterioration due to oxidative consumption or destruction.

【0011】交流伝搬特性としては、電圧電流間の位相
差、インピーダンスを挙げることができる。これらの交
流伝搬特性の内で、測定対象とする材料の種類に応じ
て、材料の劣化によって大きく変化が生じる1種又は2
種の交流伝搬特性について、材料の使用中に連続的又は
適当な間隔をあけて測定すればよい。具体的には、測定
対象の材料について、材料劣化による変化の大きい交流
伝搬特性の種類と、変化が大きく生じる周波数域を予め
求めておき、使用中にその周波数域において、連続的又
は適当な間隔をあけて、その交流伝搬特性を測定すれば
よい。
The AC propagation characteristics include a phase difference between voltage and current and impedance. Among these AC propagation characteristics, depending on the type of the material to be measured, one or two types that greatly change due to deterioration of the material.
The AC propagation characteristics of the species may be measured continuously or at appropriate intervals during use of the material. Specifically, for the material to be measured, the type of the AC propagation characteristic having a large change due to the material deterioration and the frequency range in which the change is large are determined in advance, and the frequency range is continuously or appropriately set in the frequency range during use. After that, the AC propagation characteristics may be measured.

【0012】例えば、高密度等方性黒鉛については、1
0kHz〜2.2MHzの周波数域において、劣化によ
り電圧電流間の位相差に大きな変化が生じるので、使用
中にこの周波数域において電圧電流間の位相差を測定
し、予め測定しておいた特性と比較することによって容
易に劣化を検出することができる。
For example, for high density isotropic graphite, 1
In the frequency range of 0 kHz to 2.2 MHz, a large change occurs in the phase difference between the voltage and the current due to deterioration. Therefore, the phase difference between the voltage and the current is measured in this frequency range during use, and the characteristics measured in advance are The deterioration can be easily detected by comparison.

【0013】また、人造炭素については、5kHz〜
2.2MHzの周波数域において、劣化により電圧電流
間の位相差に大きな変化が生じるので、使用中にこの周
波数域において電圧電流間の位相差を測定し、予め測定
しておいた特性と比較することによって容易に劣化を検
出することができる。
For artificial carbon, the frequency of 5 kHz
In the 2.2 MHz frequency range, a large change occurs in the phase difference between the voltage and the current due to deterioration. Therefore, the phase difference between the voltage and the current is measured in this frequency range during use, and compared with the previously measured characteristics. This makes it possible to easily detect deterioration.

【0014】本発明の実施態様として、例えば、電気炉
の発熱体として直流又は交流電流を通電して使用中の炭
素材料又は黒鉛材料に対して、加熱に使用している周波
数とは異なる周波数の交流電圧を印加して交流伝搬特性
を測定することによって、使用中にその場で発熱体の劣
化を検出することができる。
[0014] As an embodiment of the present invention, for example, a DC or AC current is applied as a heating element of an electric furnace to a carbon material or a graphite material which is being used. By measuring the AC propagation characteristics by applying an AC voltage, it is possible to detect the deterioration of the heating element on the spot during use.

【0015】[0015]

【発明の効果】本発明の劣化検出方法によれば、高温下
や原子炉中等の特殊な環境下で使用中の炭素材料又は黒
鉛材料について、交流伝搬特性を測定するという簡単な
方法によって、酸化消耗や破壊による劣化をその場で使
用中に検出することが可能となる。
According to the deterioration detection method of the present invention, oxidation of a carbon material or a graphite material used in a special environment such as a high temperature or a nuclear reactor can be performed by a simple method of measuring an AC propagation characteristic. Deterioration due to wear and tear can be detected during use on the spot.

【0016】[0016]

【実施例】以下、実施例を挙げて本発明を更に詳細に説
明する。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples.

【0017】実施例1 高密度等方性黒鉛(IG-11)を10×10×120mm3
の形状に切り出したものに、両端からそれぞれ10mm
の位置に3mmφの穴をあけ、金属製のビスで測定用端
子を固定して、1Hz〜2.2MHzの周波数範囲でイ
ンピーダンスと、電圧電流間の位相差を測定した。
Example 1 High-density isotropic graphite (IG-11) was placed in a size of 10 × 10 × 120 mm 3
10mm from both ends
A hole of 3 mmφ was made in the position, and a measuring terminal was fixed with a metal screw, and impedance and a phase difference between voltage and current were measured in a frequency range of 1 Hz to 2.2 MHz.

【0018】また、材料力学的な破壊を擬制するために
測定用端子間に幅1mm、深さ5mmの切れ込みを10
mmおきに9本入れた材料を作製し、この材料について
も同様にインピーダンスと、電圧電流間の位相差を測定
した。
Further, in order to simulate mechanical mechanical destruction, a notch having a width of 1 mm and a depth of 5 mm is provided between the measuring terminals.
Nine pieces of material were prepared for every mm, and the impedance and the phase difference between voltage and current were measured for this material in the same manner.

【0019】インピーダンスについての測定結果を図3
に示し、位相差についての測定結果を図4に示す。図3
及び図4において、記号Aで示した曲線が切り込みなし
の試料についての測定結果であり、記号Bで示した曲線
が切り込みを入れた試料についての測定結果である。
FIG. 3 shows the measurement results for impedance.
FIG. 4 shows the measurement results of the phase difference. FIG.
In FIG. 4 and FIG. 4, the curve indicated by the symbol A is the measurement result of the sample without the notch, and the curve indicated by the symbol B is the measurement result of the sample with the notch.

【0020】これらの結果から明らかなように、高密度
等方性黒鉛からなる試料に切り込みを入れることによっ
て、切り込みを入れていない試料と比べて、インピーダ
ンスと位相差の両方の特性に変化が生じることが判る。
特に、10kHz〜2.2MHzの周波数域において位
相差を測定することにより、劣化を容易に検出できるこ
とが判る。
As is apparent from these results, by making a cut in a sample made of high-density isotropic graphite, a change occurs in both impedance and phase difference characteristics as compared with a sample without a cut. You can see that.
In particular, it is understood that deterioration can be easily detected by measuring the phase difference in the frequency range of 10 kHz to 2.2 MHz.

【0021】実施例2 人造炭素電極を試料として用い、実施例1と同様の形状
に切り出して、実施例1と同様にして、1Hz〜2.2
MHzの周波数範囲でインピーダンスと、電圧電流間の
位相差を測定した。
Example 2 Using an artificial carbon electrode as a sample, the same shape as in Example 1 was cut out, and 1 Hz to 2.2 as in Example 1.
The impedance and the phase difference between the voltage and the current were measured in the frequency range of MHz.

【0022】この試料を600℃の空気中で1時間酸化
させた後、同様の方法でインピーダンスと位相差を測定
した。
After the sample was oxidized in air at 600 ° C. for 1 hour, the impedance and the phase difference were measured in the same manner.

【0023】インピーダンスについての測定結果を図5
に示し、位相差についての測定結果を図6に示す。図5
及び図6において、記号Aで示した曲線が酸化前の試料
についての測定結果であり、記号Bで示した曲線が酸化
処理後の試料についての測定結果である。
FIG. 5 shows the measurement results of the impedance.
FIG. 6 shows the measurement results of the phase difference. FIG.
In FIG. 6 and FIG. 6, the curve indicated by symbol A is the measurement result of the sample before oxidation, and the curve indicated by symbol B is the measurement result of the sample after oxidation treatment.

【0024】これらの結果から明らかなように、人造黒
鉛電極からなる試料を酸化させることによって、インピ
ーダンスと位相差に変化が生じることが判る。特に、5
kHz〜2.2MHzの周波数域において位相差を測定
することにより、酸化による劣化の検出が容易であるこ
とが判る。
As is apparent from these results, it is found that the oxidation and the phase difference are changed by oxidizing the sample made of the artificial graphite electrode. In particular, 5
By measuring the phase difference in the frequency range of kHz to 2.2 MHz, it can be seen that deterioration due to oxidation is easily detected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】炭素・黒鉛材料についての交流周波数とインピ
ーダンスとの関係を示すグラフ。
FIG. 1 is a graph showing a relationship between an AC frequency and impedance for a carbon / graphite material.

【図2】炭素・黒鉛材料についての交流周波数と電圧電
流間の位相差との関係を示すグラフ。
FIG. 2 is a graph showing a relationship between an AC frequency and a phase difference between a voltage and a current for a carbon / graphite material.

【図3】実施例1で用いた試料についての交流周波数と
インピーダンスとの関係を示すグラフ。
FIG. 3 is a graph showing the relationship between the AC frequency and the impedance of the sample used in Example 1.

【図4】実施例1で用いた試料についての交流周波数と
電圧電流間の位相差との関係を示すグラフ。
FIG. 4 is a graph showing the relationship between the AC frequency and the phase difference between voltage and current for the sample used in Example 1.

【図5】実施例2で用いた試料についての交流周波数と
インピーダンスとの関係を示すグラフ。
FIG. 5 is a graph showing the relationship between the AC frequency and the impedance of the sample used in Example 2.

【図6】実施例2で用いた試料についての交流周波数と
電圧電流間の位相差との関係を示すグラフ。
FIG. 6 is a graph showing the relationship between the AC frequency and the phase difference between voltage and current for the sample used in Example 2.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】炭素材料又は黒鉛材料の交流伝搬特性を測
定することを特徴とする炭素材料又は黒鉛材料の劣化検
出方法。
1. A method for detecting deterioration of a carbon material or a graphite material, comprising measuring an AC propagation characteristic of the carbon material or the graphite material.
【請求項2】炭素材料又は黒鉛材料の使用中に交流伝搬
特性を測定し、使用前又は使用開始直後に測定しておい
た交流伝搬特性と比較することを特徴とする炭素材料又
は黒鉛材料の劣化検出方法。
2. A method for measuring the AC propagation characteristic during use of a carbon material or graphite material, and comparing the measured AC propagation characteristic with the AC propagation characteristic measured before use or immediately after the start of use. Deterioration detection method.
【請求項3】交流伝搬特性が、電圧電流間の位相差及び
インピーダンスから選ばれた少なくとも一種の特性であ
る請求項1又は2に記載の劣化検出方法。
3. The deterioration detection method according to claim 1, wherein the AC propagation characteristic is at least one characteristic selected from a phase difference between voltage and current and impedance.
【請求項4】高密度等方性黒鉛について、10kHz〜
2.2MHzの周波数域において電圧電流間の位相差を
測定することを特徴とする請求項1又は2に記載の劣化
検出方法。
4. A high-density isotropic graphite having a frequency of 10 kHz to
The deterioration detection method according to claim 1, wherein a phase difference between the voltage and the current is measured in a frequency range of 2.2 MHz.
【請求項5】人造炭素電極について、5kHz〜2.2
MHzの周波数域において電圧電流間の位相差を測定す
ることを特徴とする請求項1又は2に記載の劣化検出方
法。
5. An artificial carbon electrode having a frequency of 5 kHz to 2.2.
3. The method according to claim 1, wherein a phase difference between the voltage and the current is measured in a frequency range of MHz.
JP2000240578A 2000-08-09 2000-08-09 Detection method for terioration of carbon material or graphite material Pending JP2002055067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000240578A JP2002055067A (en) 2000-08-09 2000-08-09 Detection method for terioration of carbon material or graphite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000240578A JP2002055067A (en) 2000-08-09 2000-08-09 Detection method for terioration of carbon material or graphite material

Publications (1)

Publication Number Publication Date
JP2002055067A true JP2002055067A (en) 2002-02-20

Family

ID=18731909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000240578A Pending JP2002055067A (en) 2000-08-09 2000-08-09 Detection method for terioration of carbon material or graphite material

Country Status (1)

Country Link
JP (1) JP2002055067A (en)

Similar Documents

Publication Publication Date Title
EP1695368B1 (en) Corona discharge electrode and method of operating the same
US20150219333A1 (en) Electrodynamic combustion system with variable gain electrodes
DE4022844C1 (en)
JPH0732164A (en) Resistance welding control method
JP3603640B2 (en) Screening method of multilayer ceramic capacitor
JP2016131235A (en) Plasma processing apparatus and plasma processing method
Fagnard et al. Use of partial discharge patterns to assess the quality of sample/electrode contacts in flash sintering
Li et al. ON-state evolution in lateral and vertical VO2 threshold switching devices
Liu et al. Influence of dielectric materials on discharge characteristics of coaxial DBD driven by nanosecond pulse voltage
JP2002055067A (en) Detection method for terioration of carbon material or graphite material
CN112826151A (en) Vortex heating element and aerosol generating device
Li et al. Analysis of electrical contact temperature rise in spark gap switches with graphite electrodes
Gnapowski et al. The impact of dielectrics on the electrical capacity, concentration, efficiency ozone generation for the plasma reactor with mesh electrodes
Shea et al. Material effect on glowing contact properties
JP2505929B2 (en) Apparatus and method for self-induction repair of short circuit and near short circuit
Destrieux et al. Evolution of the electrical characteristics of an atmospheric pressure dielectric barrier discharge system over one hour operation
Gao et al. Mode transitions of a helium dielectric barrier discharge from Townsend, normal glow, to abnormal glow with varying voltage rising time
Wangwiwattana et al. Joule Heating and Arc-Fault-Induced Electrical Fires for Commercial-Grade Copper and Brass in Low-Voltage Electrical Systems
Bsaibess et al. A photopyroelectric approach for electrocaloric effect characterization of polar materials
Syakur et al. A Comparative Study on FeCrAl Alloy and NiCrSi Alloy Materials as Heating Element at Low Energy Oven
Anane et al. Electrical noise from phase separation in Pr 2/3 Ca 1/3 MnO 3 single crystal
CN112153764A (en) Rapid heating method for preparing ceramic material
Williams et al. High temperature conductivity of potassium-β ″-alumina
Borkowski et al. Temperature rise behind fixed polarity Ag-W contacts opening on an half cycle of high current and its relationship to contact erosion
Liu et al. Research on the current-zero period of vacuum arc interruption and equivalent model of post-arc gap