JP2002053516A - Method of producing ketone by oxidative degradation of olefin - Google Patents

Method of producing ketone by oxidative degradation of olefin

Info

Publication number
JP2002053516A
JP2002053516A JP2000243982A JP2000243982A JP2002053516A JP 2002053516 A JP2002053516 A JP 2002053516A JP 2000243982 A JP2000243982 A JP 2000243982A JP 2000243982 A JP2000243982 A JP 2000243982A JP 2002053516 A JP2002053516 A JP 2002053516A
Authority
JP
Japan
Prior art keywords
compound
metal complex
olefin
transition metal
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000243982A
Other languages
Japanese (ja)
Other versions
JP3605012B2 (en
Inventor
Makoto Fujita
誠 藤田
Takahiro Kusukawa
隆博 楠川
Hiroichi Ito
博一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2000243982A priority Critical patent/JP3605012B2/en
Priority to PCT/JP2001/001847 priority patent/WO2002014254A1/en
Publication of JP2002053516A publication Critical patent/JP2002053516A/en
Application granted granted Critical
Publication of JP3605012B2 publication Critical patent/JP3605012B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/28Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of CHx-moieties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of simply and effectively producing a corresponding carbonyl compound from an olefin by an oxidative degradation without using a toxic substance such as ozone or the like and capable of reacting in an aqueous medium. SOLUTION: This method produces a corresponding carbonyl compound by oxidizing an olefin compound with hydrogen peroxide and an iron compound in an aqueous medium in the presence of a metal complex having a hydrophobic space, e.g. M6L4 type three dimensional basket like or bowl like transition metal complex using, e.g. 2,4,6-tris-(4-pyridinyl)-1,3,5-triazine or 2,4,6-tris-(3- pyridinyl)-1,3,5-triazine or the like as a ligand.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、オレフィンの酸化
的分解反応を利用した、カルボニル化合物の新規な製造
方法に関する。
[0001] The present invention relates to a novel method for producing a carbonyl compound utilizing an oxidative decomposition reaction of an olefin.

【0002】[0002]

【従来の技術】オレフィンを酸化的に分解して対応する
カルボニル化合物を製造する方法としては、これまで
に、有機溶媒中オゾンを用いて炭素−炭素二重結合を分
解してオゾニドを生成させ、次いでこれを還元してケト
ンにする方法が唯一実際的な方法として知られているの
みである。しかしながら、上記従来法は、有害物質のオ
ゾンを使用することが必須であり、且つ有機溶媒中で反
応させなければならないと云う点に問題があり、工業的
な方法として実用化されるまでには到っていない。
2. Description of the Related Art As a method of producing a corresponding carbonyl compound by oxidatively decomposing an olefin, a method of decomposing a carbon-carbon double bond using ozone in an organic solvent to produce an ozonide has been described. This is then reduced to a ketone only as the only practical method. However, the above-mentioned conventional method has a problem in that it is essential to use ozone, which is a harmful substance, and the reaction must be carried out in an organic solvent. Not yet.

【0003】[0003]

【発明が解決しようとする課題】本発明は、オレフィン
を酸化的に分解して対応するカルボニル化合物を製造す
る方法であって、オゾンのような有害物質を使用せず、
且つ水媒体中での反応が可能な、簡便且つ効率的な該製
造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention is a method for producing the corresponding carbonyl compound by oxidatively decomposing an olefin, and does not use harmful substances such as ozone.
Another object of the present invention is to provide a simple and efficient production method capable of performing a reaction in an aqueous medium.

【0004】[0004]

【課題を解決するための手段】本発明は、疎水的空間を
有する金属錯体の存在下、水媒体中でオレフィン化合物
を過酸化水素及び鉄化合物で酸化することを特徴とす
る、対応するカルボニル化合物の製造法に関する。
The present invention relates to a corresponding carbonyl compound, characterized in that an olefin compound is oxidized with hydrogen peroxide and an iron compound in an aqueous medium in the presence of a metal complex having a hydrophobic space. A method for producing the same.

【0005】本発明で用いられる疎水的空間を有する金
属錯体としては、例えば、配位子が実質的に平面構造で
あって、遷移金属と配位結合を形成することができる電
子対を分子中に3個以上有する化合物が挙げられる。ま
た、遷移金属としては、例えば白金、パラジウム等が挙
げられる。遷移金属と配位結合を形成することができる
配位子の電子対としては、例えばピリジン環の窒素原子
の電子対が挙げられる。配位子としては、分子中に遷移
金属と配位結合を形成することができる電子対を3乃至
6個有する化合物が好ましく、具体的には2,4,6−
トリス(4−ピリジル)−1,3,5−トリアジンや
2,4,6−トリス(3−ピリジル)−1,3,5−ト
リアジン等が、より好ましい配位子の例として挙げられ
る。本発明で用いられる疎水的空間を有する金属錯体と
しては、例えばM型三次元かご状又はボウル状遷
移金属錯体が挙げられる。本発明で用いられるM
型三次元かご状遷移金属錯体としては、例えば特開20
00−86683号公報に記載の三次元かご状遷移金属
錯体が挙げられる。本発明で用いられる疎水的空間を有
する金属錯体の好ましい具体例としては、例えば下式
[1]
The metal complex having a hydrophobic space used in the present invention includes, for example, an electron pair which has a substantially planar structure and can form a coordination bond with a transition metal in a molecule. Having three or more compounds. Examples of the transition metal include platinum and palladium. Examples of the electron pair of a ligand capable of forming a coordination bond with a transition metal include an electron pair of a nitrogen atom of a pyridine ring. As the ligand, a compound having 3 to 6 electron pairs capable of forming a coordination bond with a transition metal in the molecule is preferable, and specifically, 2,4,6-
Tris (4-pyridyl) -1,3,5-triazine, 2,4,6-tris (3-pyridyl) -1,3,5-triazine and the like are exemplified as more preferable ligands. Examples of the metal complex having a hydrophobic space used in the present invention include an M 6 L 4 type three-dimensional cage-like or bowl-like transition metal complex. M 6 L 4 used in the present invention
Type three-dimensional cage-like transition metal complex is disclosed in, for example,
The three-dimensional cage-like transition metal complex described in JP-A-00-86683 is exemplified. Preferred specific examples of the metal complex having a hydrophobic space used in the present invention include, for example, the following formula [1]

【0006】[0006]

【化3】 Embedded image

【0007】で示される化合物や、下式[2]The compound represented by the following formula [2]

【0008】[0008]

【化4】 Embedded image

【0009】で示される化合物が挙げられる。本発明に
係る金属錯体の使用量は、通常オレフィン化合物1モル
に対し1〜30モル%程度、好ましくは3〜20モル
%、より好ましくは5〜10モル%程度である。
Compounds represented by the formula: The use amount of the metal complex according to the present invention is usually about 1 to 30 mol%, preferably 3 to 20 mol%, more preferably about 5 to 10 mol% based on 1 mol of the olefin compound.

【0010】本発明で用いられるオレフィン化合物とし
ては、芳香族基を有するオレフィン化合物が好ましい。
また、本発明で用いられるオレフィン化合物としては、
分子の末端に炭素−炭素二重結合を有するオレフィン化
合物が好ましい。本発明で用いられる過酸化水素として
は、例えば、通常用いられる濃度約30%前後の過酸化
水素水溶液が挙げられるが、濃度等は特にこれに限定さ
れるものではなく、反応系中において酸化力を発揮し、
目的とする酸化反応をスムーズに進行させ得る濃度等で
あればどのようなものでも良い。過酸化水素の使用量
は、通常オレフィン化合物に対し0.5〜50当量、好
ましくは1〜10当量、より好ましくは1〜2当量であ
る。本発明で用いられる鉄化合物としては、一般的には
そのままで酸化力のある3価の鉄化合物が好ましいが、
この場合は2価の鉄化合物であっても系中で酸化されて
3価になるので、2価の鉄化合物も3価の鉄化合物と同
様に使用可能である。本発明で用いられる鉄化合物の具
体例としては、例えば塩化第二(又は第一)鉄、硫酸第
二(又は第一)鉄、硝酸第二(又は第一)鉄、リン酸第
二(又は第一)鉄等の鉄塩が挙げられる。鉄化合物の使
用量は、通常オレフィン化合物に対し対し1〜50モル
%程度、好ましくは3〜20モル%程度、より好ましく
は5〜10モル%程度である。
The olefin compound used in the present invention is preferably an olefin compound having an aromatic group.
Further, as the olefin compound used in the present invention,
Olefin compounds having a carbon-carbon double bond at the terminal of the molecule are preferred. Examples of the hydrogen peroxide used in the present invention include, for example, an aqueous hydrogen peroxide solution having a concentration of about 30%, which is generally used, but the concentration is not particularly limited thereto. Demonstrate
Any concentration may be used as long as the concentration allows the intended oxidation reaction to proceed smoothly. The amount of hydrogen peroxide to be used is generally 0.5 to 50 equivalents, preferably 1 to 10 equivalents, more preferably 1 to 2 equivalents to the olefin compound. As the iron compound used in the present invention, generally, a trivalent iron compound having oxidizing power as it is is preferable,
In this case, even a divalent iron compound is oxidized in the system to be trivalent, so that a divalent iron compound can be used similarly to a trivalent iron compound. Specific examples of the iron compound used in the present invention include, for example, ferric (or ferrous) chloride, ferric (or ferrous) sulfate, ferric (or ferrous) nitrate, and ferric (or ferrous) phosphate. First) iron salts such as iron. The amount of the iron compound to be used is generally about 1 to 50 mol%, preferably about 3 to 20 mol%, more preferably about 5 to 10 mol%, based on the olefin compound.

【0011】本発明の製造法は、通常、水溶媒中で反応
が行われる。本発明の製造法に於ける反応温度は、通常
0〜100℃位、好ましくは20〜50℃位である。反
応時間は反応温度やオレフィン化合物の種類、或いは過
酸化水素の反応系中に於ける濃度、金属錯体及び3価の
鉄塩の使用量等の反応条件により自ずから異なり一概に
は言えないが、通常2〜48時間位である。
In the production method of the present invention, the reaction is usually carried out in an aqueous solvent. The reaction temperature in the production method of the present invention is usually about 0 to 100 ° C, preferably about 20 to 50 ° C. The reaction time varies naturally depending on the reaction temperature, the type of the olefin compound, the concentration of hydrogen peroxide in the reaction system, the amount of the metal complex and the amount of the trivalent iron salt used, etc. It takes about 2 to 48 hours.

【0012】[0012]

【実施例】以下、実施例により本発明をより詳細に説明
するが、本発明はこれらの実施例に限定されるものでは
ない。なお、実施例において使用した錯体1aは、上記
式[1]で示される錯体において、遷移金属がパラジウ
ムであるもの、また、錯体1bは、上記式[1]で示さ
れる錯体において、遷移金属が白金であるものをそれぞ
れ表す。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. The complex 1a used in the examples is a complex represented by the above formula [1] in which the transition metal is palladium. The complex 1b is a complex represented by the above formula [1] in which the transition metal is the same. Each of platinum is represented.

【0013】実施例1 錯体1aを用いたアセトフェノ
ンの合成 5mLの試験管に、錯体1a(15.0mg,0.00
5mmol)及び硝酸鉄・9水和物(2.0mg,0.
005mmol)を入れて水(1mL)で加熱溶解させ
た。これを水道水で冷やした後、マイクロシリンジでα
−メチルスチレン 0.0065mL(0.05mmo
l)と34%過酸化水素水 0.005mL(0.05
mmol)を順次加えて密閉した後、50℃で24時間
攪拌した。攪拌反応後、重クロロホルムで抽出し、その
H NMRからアセトフェノンの生成量を定量した
(収率66%)。
Example 1 Synthesis of acetophenone using complex 1a Complex 1a (15.0 mg, 0.005 ml) was placed in a 5 mL test tube.
5 mmol) and iron nitrate nonahydrate (2.0 mg, 0.1 mg).
005 mmol) and dissolved by heating with water (1 mL). After cooling this with tap water, α with a micro syringe
-Methylstyrene 0.0065mL (0.05mmo
l) and 34% aqueous hydrogen peroxide 0.005 mL (0.05
mmol), and the mixture was sealed and stirred at 50 ° C. for 24 hours. After the stirring reaction, extraction was performed with heavy chloroform.
The amount of acetophenone produced was quantified by 1 H NMR (66% yield).

【0014】実施例2 錯体1bを用いたアセトフェノ
ンの合成 5mLの試験管に、錯体1b(17.6mg,0.00
5mmol)及び硝酸鉄・9水和物(2,2.0mg,
0.005mmol)を入れて水(1mL)で加熱溶解
させた。これを水道水で冷やした後、マイクロシリンジ
でα−メチルスチレン 0.0065mL(0.05m
mol)と34%過酸化水素水 0.005mL(0.
05mmol)を順次加えて密閉した後、50℃で24
時間攪拌した。攪拌反応後、重クロロホルムで抽出し、
そのH NMRからアセトフェノンの生成量を定量し
た(収率15%)。
Example 2 Synthesis of acetophenone using complex 1b Complex 1b (17.6 mg, 0.005 mL) was placed in a 5 mL test tube.
5 mmol) and iron nitrate 9-hydrate (2,2.0 mg,
0.005 mmol) and dissolved by heating with water (1 mL). After cooling this with tap water, 0.0065 mL of α-methylstyrene (0.05 m
mol) and 0.005 mL of 34% aqueous hydrogen peroxide (0.
05 mmol), and sealed at 50 ° C. for 24 hours.
Stirred for hours. After the stirring reaction, extraction was performed with deuterated chloroform,
From the 1 H NMR, the amount of acetophenone produced was quantified (yield 15%).

【0015】比較例1 硝酸鉄・9水和物を除いた系で
のアセトフェノンの合成 5mLの試験管に、錯体1a(15.0mg,0.00
5mmol)を入れて水(1mL)で加熱溶解させた。
これを水道水で冷やした後、マイクロシリンジでα−メ
チルスチレン 0.0065mL(0.05mmol)
と34%過酸化水素水 0.005mL(0.05mm
ol)を順次加えて密閉した後、50℃で24時間攪拌
した。攪拌反応後、重クロロホルムで抽出し、その
NMRからアセトフェノンの生成量を定量した(収率
1%)。
Comparative Example 1 Synthesis of acetophenone in a system from which iron nitrate 9-hydrate was removed Into a 5 mL test tube, complex 1a (15.0 mg, 0.00
5 mmol) and dissolved by heating with water (1 mL).
After cooling this with tap water, 0.0065 mL (0.05 mmol) of α-methylstyrene was obtained with a microsyringe.
And 34% hydrogen peroxide solution 0.005 mL (0.05 mm
ol), and the mixture was sealed, followed by stirring at 50 ° C for 24 hours. After stirring the reaction was extracted with deuterochloroform, The 1 H
The amount of acetophenone produced was quantified by NMR (1% yield).

【0016】比較例2 錯体1aを除いた系でのアセト
フェノンの合成 5mLの試験管に、硝酸鉄・9水和物(2.0mg,
0.005mmol)を入れて水(1mL)に溶解させ
た。これに、マイクロシリンジでα−メチルスチレン
0.0065mL(0.05mmol)と34%過酸化
水素水 0.005mL(0.05mmol)を順次加
えて密閉した後、50℃で24時間攪拌した。攪拌反応
後、重クロロホルムで抽出し、そのH NMRからア
セトフェノンの生成量を定量した(収率4%)。
Comparative Example 2 Synthesis of Acetophenone in a System Excluding Complex 1a Into a 5 mL test tube, iron nitrate 9-hydrate (2.0 mg,
0.005 mmol) and dissolved in water (1 mL). Add α-methylstyrene with a micro syringe
0.0065 mL (0.05 mmol) and 0.005 mL (0.05 mmol) of 34% aqueous hydrogen peroxide were sequentially added, and the mixture was sealed, followed by stirring at 50 ° C. for 24 hours. After the stirring reaction, extraction was performed with deuterated chloroform, and the amount of acetophenone produced was quantified from its 1 H NMR (4% yield).

【0017】比較例3 過酸化水素を除いた系でのアセ
トフェノンの合成 5mLの試験管に、錯体1a(15.0mg,0.00
5mmol)及び硝酸鉄・9水和物 (2.0mg,
0.005mmol)を入れて水(1mL)で加熱溶解
させた。これを水道水で冷やした後、マイクロシリンジ
でα−メチルスチレン 0.0065mL(0.05m
mol)と34%過酸化水素水 0.005mL(0.
05mmol)を順次加えて密閉した後、50℃で24
時間攪拌した。攪拌反応後、重クロロホルムで抽出し、
そのH NMRからアセトフェノンの生成量を定量し
た(収率1%)。
Comparative Example 3 Synthesis of acetophenone in a system from which hydrogen peroxide had been removed Into a 5 mL test tube, complex 1a (15.0 mg, 0.00
5 mmol) and iron nitrate nonahydrate (2.0 mg,
0.005 mmol) and dissolved by heating with water (1 mL). After cooling this with tap water, 0.0065 mL of α-methylstyrene (0.05 m
mol) and 0.005 mL of 34% aqueous hydrogen peroxide (0.
05 mmol), and sealed at 50 ° C. for 24 hours.
Stirred for hours. After the stirring reaction, extraction was performed with deuterated chloroform,
From the 1 H NMR, the amount of acetophenone produced was quantified (yield 1%).

【0018】実施例3 錯体1aを用いた4−メトキシ
アセトフェノンの合成 5mLの試験管に錯体1a(15.0mg,0.005
mmol)及び硝酸鉄・9水和物 (2.0mg,0.
005mmol)を入れ、水(1mL)に加熱溶解させ
て水溶液を調製した。別の試験管に予め4−メトキシ−
α−メチルスチレン 7.4mg(0.05mmol)
を入れておき、これに上で調製した水溶液と34%過酸
化水素水 0.005mL(0.05mmol)を順次
加えて密閉した後、50℃で24時間攪拌した。攪拌反
応後、重クロロホルムで抽出し、そのH NMRから
4−メトキシアセトフェノンの生成量を定量した(収率
61%)。
Example 3 Synthesis of 4-methoxyacetophenone using complex 1a In a 5 mL test tube, complex 1a (15.0 mg, 0.005
mmol) and iron nitrate nonahydrate (2.0 mg, 0.1 mg).
005 mmol), and dissolved by heating in water (1 mL) to prepare an aqueous solution. Add 4-methoxy- to another test tube in advance.
7.4 mg (0.05 mmol) of α-methylstyrene
, And the aqueous solution prepared above and 0.005 mL (0.05 mmol) of 34% aqueous hydrogen peroxide were sequentially added thereto, and the mixture was sealed, followed by stirring at 50 ° C. for 24 hours. After the stirring reaction, the mixture was extracted with heavy chloroform, and the amount of 4-methoxyacetophenone produced was quantified from its 1 H NMR (yield 61%).

【0019】実施例4 錯体1aを用いた4−メチルア
セトフェノンの合成 5mLの試験管に、錯体1a(15.0mg,0.00
5mmol)及び硝酸鉄・9水和物 (2.0mg,
0.005mmol)を入れて水(1mL)で加熱溶解
させた。これを水道水で冷やした後、マイクロシリンジ
で4−メチル−α−メチルスチレン 0.0066mL
(0.05mmol)と34%過酸化水素水 0.00
5mL(0.05mmol)を順次加えて密閉した後、
50℃で24時間攪拌した。攪拌反応後、重クロロホル
ムで抽出し、そのH NMRから4−メチルアセトフ
ェノンの生成量を定量した(収率53%)。
Example 4 Synthesis of 4-methylacetophenone using complex 1a Complex 1a (15.0 mg, 0.005 ml) was placed in a 5 mL test tube.
5 mmol) and iron nitrate nonahydrate (2.0 mg,
0.005 mmol) and dissolved by heating with water (1 mL). After cooling this with tap water, 4-methyl-α-methylstyrene 0.0066 mL with a microsyringe.
(0.05 mmol) and 34% aqueous hydrogen peroxide 0.00
After adding 5 mL (0.05 mmol) sequentially and sealing,
Stirred at 50 ° C. for 24 hours. After the stirring reaction, extraction was performed with deuterated chloroform, and the amount of 4-methylacetophenone produced was quantified from its 1 H NMR (yield 53%).

【0020】実施例5 錯体1aを用いた4−ニトロア
セトフェノンの合成 5mLの試験管に、錯体1a(15.0mg,0.00
5mmol)及び硝酸鉄・9水和物 (2.0mg,
0.005mmol)を入れ、水(1mL)に加熱溶解
させて水溶液を調製した。別の試験管に予め4−ニトロ
−α−メチルスチレン 8.2mg(0.05mmo
l)を入れておき、これに上で調製した水溶液と34%
過酸化水素水 0.005mL(0.05mmol)を
順次加えて密閉した後、、50℃で24時間攪拌した。
攪拌反応後、重クロロホルムで抽出し、そのH NM
Rから4−ニトロアセトフェノンの生成量を定量した
(収率75%)。
Example 5 Synthesis of 4-nitroacetophenone using complex 1a In a 5 mL test tube, complex 1a (15.0 mg, 0.00
5 mmol) and iron nitrate nonahydrate (2.0 mg,
0.005 mmol), and dissolved by heating in water (1 mL) to prepare an aqueous solution. In another test tube, 8.2 mg (0.05 mmol) of 4-nitro-α-methylstyrene was previously prepared.
l), and add the aqueous solution prepared above with 34%
After 0.005 mL (0.05 mmol) of aqueous hydrogen peroxide was sequentially added and the mixture was sealed, the mixture was stirred at 50 ° C. for 24 hours.
After the stirring reaction, extraction was performed with deuterated chloroform, and the 1 H NM
The amount of 4-nitroacetophenone produced from R was quantified (75% yield).

【0021】実施例6 錯体1aを用いたメチル−2−
ナフチルケトンの合成 5mLの試験管に、錯体1a(15.0mg,0.00
5mmol)及び硝酸鉄・9水和物 (2.0mg,
0.005mmol)を入れ、水(1mL)に加熱溶解
させて水溶液を調製した。別の試験管に予めイソプロペ
ニルナフタレン8.2mg(0.05mmol)を入れ
ておき、これに上で調製した水溶液と34%過酸化水素
水0.005mL(0.05mmol)を順次加えて密
閉した後、50℃で24時間攪拌した。攪拌反応後、重
クロロホルムで抽出し、そのHNMRからメチル−2
−ナフチルケトンの生成量を定量した(収率40%)。
Example 6 Methyl-2-using complex 1a
Synthesis of Naphthyl Ketone In a 5 mL test tube, complex 1a (15.0 mg, 0.00
5 mmol) and iron nitrate nonahydrate (2.0 mg,
0.005 mmol), and dissolved by heating in water (1 mL) to prepare an aqueous solution. In another test tube, 8.2 mg (0.05 mmol) of isopropenylnaphthalene was put in advance, and the aqueous solution prepared above and 0.005 mL (0.05 mmol) of 34% hydrogen peroxide solution were sequentially added thereto, followed by sealing. Thereafter, the mixture was stirred at 50 ° C. for 24 hours. After stirring the reaction was extracted with chloroform-methyl-2 from its 1 HNMR
-The amount of naphthyl ketone produced was quantified (40% yield).

【0022】実施例7 錯体1aを用いたメチル−2−
ナフチルケトンの合成(スケールアップ合成) 100mLの茄子型フラスコにイソプロペニルナフタレ
ン168.1mg(1.0mmol)を入れ、これに別
に調製した錯体1a(299.3mg,0.1mmo
l)及び硝酸鉄・9水和物 (40.4mg,0.1m
mol)の水溶液(30mL)を加えて10分間攪拌し
た。これにマイクロシリンジで34%過酸化水素水
0.11mL(1.0mmol)を加えて密閉した後、
50℃で24時間攪拌した。攪拌反応後、ヘキサン50
mL×3、クロロホルム50mL×2で抽出し、その抽
出液を無水硫酸マグネシウムで乾燥した。乾燥後、これ
を濃縮し、GPCで分離してメチル−2−ナフチルケト
ン(78.9mg,収率47%)を得た。同時に、原料
(52.2mg)を回収した。
Example 7 Methyl-2-using complex 1a
Synthesis of naphthyl ketone (scale-up synthesis) In a 100 mL eggplant-shaped flask, 168.1 mg (1.0 mmol) of isopropenylnaphthalene was placed, and the separately prepared complex 1a (299.3 mg, 0.1 mmol) was added thereto.
l) and iron nitrate nonahydrate (40.4 mg, 0.1 m
mol)) (30 mL) and stirred for 10 minutes. Add 34% hydrogen peroxide solution with a micro syringe
After adding 0.11 mL (1.0 mmol) and sealing,
Stirred at 50 ° C. for 24 hours. After the stirring reaction, hexane 50
The mixture was extracted with 3 mL × 3 and 50 mL × 2 chloroform, and the extract was dried over anhydrous magnesium sulfate. After drying, this was concentrated and separated by GPC to obtain methyl-2-naphthyl ketone (78.9 mg, yield 47%). At the same time, the raw material (52.2 mg) was recovered.

【0023】[0023]

【発明の効果】オレフィンの酸化的分解(開裂)反応は
基本的な合成反応であるが、これまではオゾンを使用し
なければならないと云うことと、有機溶媒中での反応と
云うことがネックとなっていて、一般に広く行われるま
でには到っていなかった。本発明の方法によれば、オゾ
ンのような有害物質を使用せず、且つ水媒体中での反応
が進行するため、工業的な規模での実施も可能であり、
今後の進展が大いに期待できる。
The oxidative decomposition (cleavage) reaction of olefins is a basic synthesis reaction, but it is a bottleneck that ozone must be used and that the reaction is carried out in an organic solvent. And did not reach general public use. According to the method of the present invention, no harmful substances such as ozone are used, and the reaction proceeds in an aqueous medium.
We can expect great progress in the future.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C07C 49/84 C07C 49/84 C 201/12 201/12 205/45 205/45 // C07B 61/00 300 C07B 61/00 300 (72)発明者 伊藤 博一 愛知県岡崎市井ノ口新町9−9 アーバン スクエアII 201 Fターム(参考) 4G069 BA27A BA27B BC72A BC72B BC75A BC75B BE13A BE13B BE38A BE38B BE39A BE39B CB11 4H006 AA02 AC44 BA25 BA26 BA46 BE32 4H039 CA62 CC30 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C07C 49/84 C07C 49/84 C 201/12 201/12 205/45 205/45 // C07B 61/00 300 C07B 61/00 300 (72) Inventor Hirokazu Ito 9-9 Inokachi Shinmachi, Okazaki City, Aichi Prefecture Urban Square II 201 F term (reference) 4G069 BA27A BA27B BC72A BC72B BC75A BC75B BE13A BE13B BE38A BE38B BE39A BE39B CB11 4H006 AA02 AC BA26 BA46 BE32 4H039 CA62 CC30

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 疎水的空間を有する金属錯体の存在下、
水媒体中でオレフィン化合物を過酸化水素及び鉄化合物
で酸化することを特徴とする、対応するカルボニル化合
物の製造法。
1. In the presence of a metal complex having a hydrophobic space,
A method for producing a corresponding carbonyl compound, comprising oxidizing an olefin compound with hydrogen peroxide and an iron compound in an aqueous medium.
【請求項2】 オレフィン化合物が芳香族基を有するオ
レフィン化合物である請求項1に記載の製造法。
2. The method according to claim 1, wherein the olefin compound is an olefin compound having an aromatic group.
【請求項3】 オレフィン化合物が、分子の末端に炭素
−炭素二重結合を有するオレフィン化合物である請求項
1又は2に記載の製造法。
3. The production method according to claim 1, wherein the olefin compound is an olefin compound having a carbon-carbon double bond at a molecular terminal.
【請求項4】 疎水的空間を有する金属錯体が、配位子
が実質的に平面構造であって、遷移金属と配位結合を形
成することができる電子対を分子中に3個以上有する化
合物である、請求項1〜3の何れかに記載の製造法。
4. A compound in which a metal complex having a hydrophobic space has a ligand having a substantially planar structure and three or more electron pairs in a molecule capable of forming a coordinate bond with a transition metal. The method according to any one of claims 1 to 3, wherein
【請求項5】 遷移金属が白金又はパラジウムである請
求項4に記載の製造法。
5. The method according to claim 4, wherein the transition metal is platinum or palladium.
【請求項6】 遷移金属と配位結合を形成することがで
きる配位子の電子対が、ピリジン環の窒素原子の電子対
である請求項4又は5に記載の製造法。
6. The method according to claim 4, wherein the electron pair of the ligand capable of forming a coordination bond with the transition metal is an electron pair of a nitrogen atom of a pyridine ring.
【請求項7】 配位子が、分子中に遷移金属と配位結合
を形成することができる電子対を3乃至6個有する化合
物である請求項4〜6の何れかに記載の製造法。
7. The method according to claim 4, wherein the ligand is a compound having 3 to 6 electron pairs capable of forming a coordination bond with a transition metal in the molecule.
【請求項8】 配位子が、2,4,6−トリス(4−ピ
リジル)−1,3,5−トリアジンである請求項7に記
載の製造法。
8. The method according to claim 7, wherein the ligand is 2,4,6-tris (4-pyridyl) -1,3,5-triazine.
【請求項9】 配位子が、2,4,6−トリス(3−ピ
リジル)−1,3,5−トリアジンである請求項7に記
載の製造法。
9. The method according to claim 7, wherein the ligand is 2,4,6-tris (3-pyridyl) -1,3,5-triazine.
【請求項10】 疎水的空間を有する金属錯体が、M
型三次元かご状又はボウル状遷移金属錯体である請
求項1〜7の何れかに記載の製造法。
10. The metal complex having a hydrophobic space is M 6
The process according to any one of claims 1 to 7 L is a 4-inch three-dimensional cage or bowl-shaped transition metal complex.
【請求項11】 疎水的空間を有する金属錯体が下式
[1] 【化1】 で示される化合物である請求項4に記載の製造法。
11. A metal complex having a hydrophobic space is represented by the following formula [1]: The method according to claim 4, which is a compound represented by the formula:
【請求項12】 疎水的空間を有する金属錯体が下式
[2] 【化2】 で示される化合物である請求項4に記載の製造法。
12. The metal complex having a hydrophobic space is represented by the following formula [2]: The method according to claim 4, which is a compound represented by the formula:
JP2000243982A 2000-08-11 2000-08-11 Production of ketones by oxidative decomposition of olefins. Expired - Fee Related JP3605012B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000243982A JP3605012B2 (en) 2000-08-11 2000-08-11 Production of ketones by oxidative decomposition of olefins.
PCT/JP2001/001847 WO2002014254A1 (en) 2000-08-11 2001-03-09 Process for producing ketone by oxidative decomposition of olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000243982A JP3605012B2 (en) 2000-08-11 2000-08-11 Production of ketones by oxidative decomposition of olefins.

Publications (2)

Publication Number Publication Date
JP2002053516A true JP2002053516A (en) 2002-02-19
JP3605012B2 JP3605012B2 (en) 2004-12-22

Family

ID=18734746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000243982A Expired - Fee Related JP3605012B2 (en) 2000-08-11 2000-08-11 Production of ketones by oxidative decomposition of olefins.

Country Status (2)

Country Link
JP (1) JP3605012B2 (en)
WO (1) WO2002014254A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8071990B2 (en) 2004-07-26 2011-12-06 Osram Opto Semiconductors Gmbh Optoelectronic component that emits electromagnetic radiation and illumination module

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA06007817A (en) * 2004-01-12 2006-09-01 Ciba Sc Holding Ag Use of metal complex compounds as catalysts for oxidations with peroxy acids and/or precursors of organic peroxy acid and h2.
EP1740306A1 (en) * 2004-04-29 2007-01-10 CIBA SPECIALTY CHEMICALS HOLDING INC. Patent Departement Use of metal complexes having bispyridylpyrimidine or bispyridyltriazine ligands as catalysts for reactions with peroxy compounds for bleaching coloured stains on hard surfaces
CN101415493A (en) * 2006-02-06 2009-04-22 西巴控股公司 Purpose of metal complex as oxidation catalyst

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3927111A (en) * 1971-12-08 1975-12-16 Mead Corp Production of carbonyl compounds
CH643226A5 (en) * 1978-12-18 1984-05-30 Inst Francais Du Petrole PROCESS FOR THE MANUFACTURE OF CARBONYL COMPOUNDS BY OXIDATION OF OLEFINIC COMPOUNDS.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8071990B2 (en) 2004-07-26 2011-12-06 Osram Opto Semiconductors Gmbh Optoelectronic component that emits electromagnetic radiation and illumination module

Also Published As

Publication number Publication date
JP3605012B2 (en) 2004-12-22
WO2002014254A1 (en) 2002-02-21

Similar Documents

Publication Publication Date Title
Qiu et al. Recent advances in the functionalization of allenes via radical process
US4892941A (en) Porphyrins
JPH09295979A (en) Production of porphyrin compound and metal complex thereof
Silveira-Dorta et al. Oxidation with air by ascorbate-driven quinone redox cycling
Zhang et al. Copper catalyzed one-pot synthesis of β-ketophosphine oxides from ketones and H-phosphine oxides
Liu et al. Electroreductive Cross‐Electrophile Coupling (eXEC) Reactions
Nikbakht et al. Green oxidation of alcohols in water by a polyoxometalate nano capsule as catalyst
Bakhtiary et al. Recent trends in the direct oxyphosphorylation of C–C multiple bonds
Kaboudin et al. Recent advances on the application of langlois’ reagent in organic transformations
CN105837416B (en) A kind of method that copper complex catalyzing alcohols selective oxidation prepares aldehydes or ketones
Li et al. Understanding the reaction mechanisms of Pd-catalysed oxidation of alcohols and domino oxidation–arylation reactions using phenyl chloride as an oxidant
JP2002053516A (en) Method of producing ketone by oxidative degradation of olefin
WO1988007988A1 (en) Porphyrins, their syntheses and uses thereof
Gulyás et al. A direct approach to selective sulfonation of triarylphosphines
Cahiez et al. Organomanganese (II) reagents XVII. Preparation of organomanganese bromide compounds in ether: An efficient and economic alternative to organomanganese iodide compounds for synthetic applications
JPS5865242A (en) Manufacture of alpha-arylpropionic acid and alkali salt of same
Mori et al. A novel procedure for the synthesis of multifunctional ketones through the Fukuyama coupling reaction employing dialkylzincs
JP2003055271A (en) Method of preparation for cyclobutane derivatives using photochemical reaction in internal hole of three dimensional complex
Greggio et al. Platinum (II) diphosphine complexes as catalysts for the Baeyer–Villiger oxidation of ketones: Is it possible to increase the concentration of the active species?
Gao et al. N‐Heterocyclic Carbenes (NHCs)‐Catalyzed Coupling Reactions of Aldehydes and Organic Halides
Ramachandran et al. Efficient Synthesis of B‐Iododialkyl‐and B‐Alkyldiiodoboranes as Their Acetonitrile Complexes: Application for the Enolboration–Aldolization of Ethyl Ketones
Komine et al. Enhanced reductive elimination of dialkylgold (III) complexes in water
JPH09194398A (en) Oxidation of organic compound in presence of bis-and tris-(myu-oxo)-dimanganese complex salt as catalyst
Abd-El-Aziz et al. The synthesis of alkylated or acylated nitroarene cyclopentadienyliron complexes: an alternative approach to the synthesis of arylated alkanoates
Kumar et al. Arylazopyrazole linked Schiff bases as organocatalysts for the ipso-hydroxylation of arylboronic acids for the synthesis of phenols

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040930

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees