JP2002052337A - Air-conditioning material exhibiting excellent water absorption behavior at high-humidity - Google Patents

Air-conditioning material exhibiting excellent water absorption behavior at high-humidity

Info

Publication number
JP2002052337A
JP2002052337A JP2000240679A JP2000240679A JP2002052337A JP 2002052337 A JP2002052337 A JP 2002052337A JP 2000240679 A JP2000240679 A JP 2000240679A JP 2000240679 A JP2000240679 A JP 2000240679A JP 2002052337 A JP2002052337 A JP 2002052337A
Authority
JP
Japan
Prior art keywords
humidity
aluminum silicate
air
water vapor
silicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000240679A
Other languages
Japanese (ja)
Other versions
JP3398761B2 (en
Inventor
Masaya Suzuki
正哉 鈴木
Fumihiko Ohashi
文彦 大橋
Keiichi Inukai
恵一 犬飼
Masaki Maeda
雅喜 前田
Shinji Watamura
信治 渡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000240679A priority Critical patent/JP3398761B2/en
Publication of JP2002052337A publication Critical patent/JP2002052337A/en
Application granted granted Critical
Publication of JP3398761B2 publication Critical patent/JP3398761B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Drying Of Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Inorganic Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air-conditioning material which exhibits an excellent water absorption behavior under high-humidity conditions, adsorbs water vapor in an amount of about 200% or higher of its own weight under high humidity conditions of a relative humidity of 90% or higher, can release the most part of adsorbed water vapor under normal humidity conditions of a relative humidity of 90% or lower, and can be repeatedly used. SOLUTION: This air-conditioning material comprises hollow fibrous aluminum silicate having minute mesopores with a pore radius lower than 5 nm. The method for producing an air-conditioning material exhibiting excellent adsorption behavior under high-humidity conditions comprises subjecting hollow fibrous aluminum silicate synthesized under weakly acidic conditions to hydrothermal synthesis, adding an alkali to the silicate to coagulate a gelatinous substance of the silicate, and drying the silicate at such a temperature as not to thermally decompose the fibers while utilizing a specific solid shape formed by the coagulation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高湿度条件下にお
いて優れた吸水挙動を示す調湿材料に関するものであ
り、更に詳しくは、特定のメソポア細孔を有する中空繊
維状アルミニウムシリケイトからなる、耐久性に優れ、
省エネルギーの観点から既存の結露防止材料に優る、結
露防止材料等として有用な、新規な調湿材料、及びその
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a humidity control material exhibiting excellent water absorption behavior under high humidity conditions. More specifically, the present invention relates to a durable material comprising hollow fibrous aluminum silicate having specific mesopore pores. Excellent in nature,
The present invention relates to a novel humidity control material which is superior to existing dew condensation preventing materials from the viewpoint of energy saving, is useful as a dew condensation preventing material, and a method for producing the same.

【0002】[0002]

【従来の技術】日本における最近の住居に関わる建築物
は、高断熱化・高気密化の促進により、内部結露の発生
及びそれに伴う壁面の濡れやシミの発生、カビやダニな
どの繁殖などの問題が生じている。このような居住空間
の変化に伴い、結露防止対策の技術の重要性はますます
高まっている。従来では、乾燥剤として生石灰(酸化カ
ルシウム)やシリカゲルなどを利用したり、除湿器、エ
アコン等の空調設備を運転することにより、結露の発生
を防いでいた。
2. Description of the Related Art In recent years, buildings related to dwelling in Japan have been promoted to have high heat insulation and high airtightness, thereby causing internal dew condensation, accompanying wetness and stains on walls, and breeding of molds and mites. There is a problem. With such a change in living space, techniques for dew condensation prevention measures have become increasingly important. Conventionally, dew condensation has been prevented by using quicklime (calcium oxide), silica gel, or the like as a desiccant, or by operating an air conditioner such as a dehumidifier or an air conditioner.

【0003】しかし、上記の乾燥剤は、いずれも吸湿力
が強く、除湿能力を制御しにくい。また、一度飽和点に
達すると吸湿機能が大幅に低下するため、吸湿有効期間
は短い。更に、一度吸収した水分を分離し吸湿機能を回
復させることが容易ではないため、繰り返し再利用する
ことが困難である。一方、除湿機、エアコン等の空調設
備の運転による除湿は、エネルギーを消費する点及び経
済性の点から好ましいものではない。
However, all of the above desiccants have strong hygroscopicity, and it is difficult to control the dehumidifying ability. Further, once the saturation point is reached, the moisture absorption function is greatly reduced, so that the moisture absorption effective period is short. Furthermore, since it is not easy to separate the once absorbed moisture and restore the moisture absorbing function, it is difficult to repeatedly reuse the moisture. On the other hand, dehumidification by operation of an air conditioner such as a dehumidifier or an air conditioner is not preferable in terms of energy consumption and economy.

【0004】[0004]

【発明が解決しようとする課題】このような状況の中
で、本発明者らは、上記従来技術に鑑みて、上記従来製
品の問題点を解消し得る新しい調湿材料を開発すること
を目標として鋭意研究を積み重ねた結果、特定のメソポ
ア細孔を有する中空繊維状アルミニウムシリケイトが、
高湿度条件下において優れた吸水挙動を示すことを見出
し、更に研究を重ねて、本発明を完成するに至った。即
ち、本発明は、高湿度条件下において多量の水蒸気を吸
着し、かつ通常の湿度条件下において吸着した水蒸気の
大部分を容易に放出することができ、それによって、繰
り返し利用可能な、結露防止材料として好適に用いるこ
とができる調湿材料、及びかかる調湿材料を比較的簡単
にかつ低コストで製造できる方法を提供することを目的
とするものである。
Under these circumstances, the present inventors have developed a new humidity control material which can solve the problems of the conventional products in view of the above prior art. As a result of intensive research, hollow fibrous aluminum silicate with specific mesopore pores,
The present inventors have found that they exhibit excellent water absorption behavior under high humidity conditions, and have conducted further studies to complete the present invention. That is, the present invention can adsorb a large amount of water vapor under high humidity conditions, and can easily release most of the adsorbed water vapor under normal humidity conditions, and thereby can be used repeatedly to prevent condensation. It is an object of the present invention to provide a humidity control material that can be suitably used as a material, and a method of manufacturing such a humidity control material relatively easily and at low cost.

【0005】[0005]

【課題を解決するための手段】前記課題を解決するため
に、本発明では、細孔半径20nm未満のメソポア細孔
を有する多孔質チューブ状アルミニウムシリケイトから
なる調湿材料であって、相対湿度90%以上の高湿度条
件下において自重の約200%以上の水蒸気を吸着し、
かつ相対湿度90%程度以下の通常の湿度条件下におい
て吸着した水蒸気の大部分を容易に放出することができ
る、繰り返し利用可能な、高湿度条件下において優れた
吸水挙動を示す調湿材料、が提供される。更に、弱酸性
条件下で合成される中空繊維状アルミニウムケイ酸塩を
水熱合成にて合成した後、アルカリ性水溶液を加え、生
成物を含む溶液全体をpHが8〜12程度のアルカリ性
にすることにより、生成物をゲル状物質として凝集させ
ることにより形成される特異な立体形状を利用し、それ
自体が熱分解しない程度の温度で乾燥することによっ
て、高湿度条件下において優れた吸水挙動を示す調湿材
料を得ることを特徴とする調湿材料の製造方法、が提供
される。
According to the present invention, there is provided a humidity control material comprising a porous tubular aluminum silicate having mesopore pores having a pore radius of less than 20 nm, wherein the relative humidity is 90%. % Adsorbs water vapor of more than about 200% of its own weight under high humidity conditions,
A humidity control material which can easily release most of the water vapor adsorbed under normal humidity conditions of about 90% or less relative humidity and which can be repeatedly used and which exhibits excellent water absorption behavior under high humidity conditions. Provided. Furthermore, after synthesizing hollow fibrous aluminum silicate synthesized under weakly acidic conditions by hydrothermal synthesis, an alkaline aqueous solution is added, and the entire solution including the product is made alkaline with a pH of about 8 to 12. By using the unique three-dimensional shape formed by agglomerating the product as a gel substance, it shows excellent water absorption behavior under high humidity conditions by drying at a temperature that does not itself thermally decompose A method for producing a humidity control material, characterized by obtaining a humidity control material.

【0006】[0006]

【発明の実施の形態】以下、本発明において更に詳細に
説明する。本発明の方法は、弱酸性条件下で合成した中
空繊維状アルミニウムケイ酸塩を水熱合成した後、アル
カリを加えることによって、中空繊維状アルミニウムケ
イ酸塩のゲル状物質を凝集させることにより形成される
特異な立体形状を利用し、それ自体が熱分解しない程度
の温度で乾燥することを特徴とするものである。その結
果、相対湿度90%以上の高湿度条件下において、自重
の約200%以上の水蒸気を吸着し、かつ相対湿度90
%程度以下の通常の湿度条件下において吸着した水蒸気
の大部分を容易に放出する優れた調湿機能を示す多孔質
材料が提供される。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The method of the present invention is formed by hydrothermally synthesizing a hollow fibrous aluminum silicate synthesized under weakly acidic conditions and then adding an alkali to agglomerate the gel-like substance of the hollow fibrous aluminum silicate. It is characterized in that it is dried at a temperature at which it does not itself thermally decompose, utilizing a unique three-dimensional shape. As a result, under a high humidity condition of 90% or more of relative humidity, water vapor of about 200% or more of its own weight is adsorbed, and a relative humidity of 90% or more is absorbed.
The present invention provides a porous material exhibiting an excellent humidity control function that easily releases most of the adsorbed water vapor under ordinary humidity conditions of about% or less.

【0007】本発明の方法では、原料としてケイ素化合
物とアルミニウム化合物が用いられる。ケイ素源として
使用される試剤は、モノケイ酸であればよく、具体的に
は、オルトケイ酸ナトリウム、メタケイ酸ナトリウム、
無定形コロイド状二酸化ケイ素(エアロジルなど)など
が好適なものとして挙げられる。また、上記ケイ酸分子
と結合させるアルミニウム源としては、アルミニウムイ
オンであればよく、具体的には、例えば、塩化アルミニ
ウム、硝酸アルミニウム、過塩素酸アルミニウムなどの
アルミニウム化合物が挙げられる。これらのケイ素源及
びアルミニウム源は、上記の化合物に限定されるもので
はなく、それらと同効のものであれば同様に使用するこ
とができる。
In the method of the present invention, a silicon compound and an aluminum compound are used as raw materials. The reagent used as the silicon source may be monosilicic acid, specifically, sodium orthosilicate, sodium metasilicate,
Suitable examples include amorphous colloidal silicon dioxide (eg, Aerosil). The aluminum source to be bonded to the above-mentioned silicate molecule may be any aluminum ion, and specific examples include aluminum compounds such as aluminum chloride, aluminum nitrate, and aluminum perchlorate. These silicon source and aluminum source are not limited to the above-mentioned compounds, but may be used as long as they have the same effect.

【0008】これらの原料を適切な水溶液に溶解させ、
所定の濃度の溶液を調製する。これらの溶液を任意の比
率で混合しても前駆体の形成において問題はないが、好
適にはケイ素/アルミニウム比は0.5〜1.0となる
ように混合する。溶液中のケイ素化合物の濃度は1〜1
000mmol/lでアルミニウム化合物の溶液の濃度
は1〜2000mmol/lであるが、好適な濃度とし
ては1〜500mmol/lのケイ素化合物溶液と1〜
1000mmol/lのアルミニウム化合物溶液を混合
することが好ましい。このアルミニウム化合物溶液にケ
イ素化合物溶液を混合した後、アルカリ性溶液を滴下
し、pHが弱酸性から中性付近なるように調整し、前駆
体を形成する。前駆体生成過程における中和反応に必要
なアルカリ性溶液としては、例えば、水酸化ナトリウ
ム、水酸化カリウム、アンモニアなどが挙げられる。前
駆体形成後、遠心分離、濾過、膜分離等により、溶液中
の共存イオンを取り除き、その後、回収した前駆体を純
水に分散させ、更に、副生成物の生成を抑制するため、
酸を滴下し、pHが3〜6の酸性溶液とする。好適には
pHが3.5〜4.5が望ましい。また、このときに用
いられる酸としては、例えば、塩酸、硝酸、過塩素酸な
どが挙げられる。
[0008] These raw materials are dissolved in an appropriate aqueous solution,
Prepare a solution of the desired concentration. There is no problem in the formation of the precursor even if these solutions are mixed at an arbitrary ratio, but they are preferably mixed so that the silicon / aluminum ratio is 0.5 to 1.0. The concentration of the silicon compound in the solution is 1-1.
The concentration of the aluminum compound solution is 2,000 mmol / l and the concentration of the aluminum compound solution is 1 to 2000 mmol / l.
It is preferable to mix a 1000 mmol / l aluminum compound solution. After mixing the silicon compound solution with the aluminum compound solution, an alkaline solution is added dropwise, and the pH is adjusted from weakly acidic to near neutral to form a precursor. Examples of the alkaline solution required for the neutralization reaction in the precursor generation process include sodium hydroxide, potassium hydroxide, and ammonia. After precursor formation, centrifugation, filtration, membrane separation, etc., to remove coexisting ions in the solution, then, the recovered precursor is dispersed in pure water, and further, to suppress the generation of by-products,
Acid is added dropwise to obtain an acidic solution having a pH of 3 to 6. Preferably, the pH is 3.5 to 4.5. The acid used at this time includes, for example, hydrochloric acid, nitric acid, perchloric acid and the like.

【0009】この酸性水溶液に分散させた前駆体を2日
間加熱する。加熱の方法及び条件は、例えば、マントル
ヒーターやオートクレーブを用いて、水が蒸発しないよ
うに加熱を行えばよく、また、温度の範囲は50℃〜1
20℃であるが、好適には100℃前後が望ましい。加
熱後、生成物を含む水溶液にアルカリ性水溶液を加えp
Hを8〜12程度のアルカリ性にすることにより、生成
物をゲル状物質として凝集させる。このときに用いられ
るアルカリとしては、例えば、アンモニア、水酸化ナト
リウム、水酸化カリウムなどが挙げられる。遠心分離に
より余分な水を取り除いた後、それ自体が熱分解しない
程度の温度で乾燥することによって、繊維が複雑にから
み合うことによって形成される特異な立体形状を有する
中空繊維状アルミニウムケイ酸塩が分離回収される。乾
燥する温度は、中空繊維状アルミニウムケイ酸塩が分解
しない350℃以下であればよく、好適には50〜12
0℃である。上記方法により、細孔半径5nm未満のメ
ソポア細孔を有する中空繊維状アルミニウムシリケイト
が得られる。本発明の細孔半径5nm未満のメソポア細
孔を有する中空繊維状アルミニウムシリケイトからなる
調湿材料は、以下の特性を有する。相対湿度90%以上
の高湿度条件下において、自重の約200%以上の水蒸
気を吸着し、かつ相対湿度90%以下の湿度条件下にお
いて吸着した水蒸気の大部分を容易に放出することがで
きる。繰り返し利用可能な高湿度条件下において優れた
吸水挙動を示す。
The precursor dispersed in the acidic aqueous solution is heated for 2 days. The heating method and conditions may be, for example, heating using a mantle heater or an autoclave so that water does not evaporate, and the temperature range is 50 ° C to 1 ° C.
The temperature is 20 ° C., preferably around 100 ° C. After heating, add an alkaline aqueous solution to the aqueous solution containing the product and add p.
By making H alkaline to about 8 to 12, the product is aggregated as a gel substance. Examples of the alkali used at this time include ammonia, sodium hydroxide, potassium hydroxide and the like. Hollow fibrous aluminum silicate with a unique three-dimensional shape formed by intertwining the fibers by drying at a temperature that does not itself decompose after removing excess water by centrifugation Are separated and recovered. The drying temperature may be 350 ° C. or less at which the hollow fibrous aluminum silicate is not decomposed, and preferably 50 to 12 ° C.
0 ° C. By the above method, a hollow fibrous aluminum silicate having mesopore pores having a pore radius of less than 5 nm can be obtained. The humidity control material comprising hollow fibrous aluminum silicate having mesopore pores having a pore radius of less than 5 nm according to the present invention has the following properties. It can adsorb water vapor of about 200% or more of its own weight under a high humidity condition of 90% or more of relative humidity, and can easily release most of the adsorbed water vapor under a humidity condition of 90% or less of relative humidity. It shows excellent water absorption behavior under high humidity conditions that can be used repeatedly.

【0010】[0010]

【実施例】次に、本発明を実施例に基づいて具体的に説
明するが、本発明は当該実施例によって何ら限定される
ものではない。 実施例 (1)合成方法 SiO2 濃度が100mmol/lになるように純水で
希釈したオルトケイ酸ナトリウム水溶液125mlを調
製した。また、これとは別に、塩化アルミニウムを純水
に溶解させ、150mmol/l水溶液125mlを調
製した。塩化アルミニウム水溶液にオルトケイ酸ナトリ
ウム水溶液を混合し、マグネティックスターラーで撹拌
した。このときのケイ素/アルミニウム比は0.67で
ある。更に、この混合溶液に1N水酸化ナトリウム水溶
液を22ml滴下し、pHが6前後になるように調整し
た。この溶液を遠心分離により前駆体を回収、更に、純
水で前駆体を2回遠心分離により洗浄した後、1000
mlの純水中に分散させた。前駆体を分散させた溶液に
5N塩酸を1.2ml加えpHを4前後となるように調
整する。この溶液をマントルヒーターにて100℃で2
日間加熱した。加熱終了後、遠心分離用セルに生成物を
含む50mlの水溶液を入れ、28%アンモニア水を数
滴加え、よく振った後、遠心分離を行った。これによっ
て得られたゲル状の生成物を、100℃の乾燥器で約2
日乾燥した。得られた試料を、めのう乳鉢にて解砕した
ものを測定試料として、以下の測定に供した。
Next, the present invention will be described in detail with reference to examples, but the present invention is not limited to the examples. Example (1) Synthesis method 125 ml of an aqueous sodium orthosilicate solution diluted with pure water was prepared so that the SiO2 concentration became 100 mmol / l. Separately, aluminum chloride was dissolved in pure water to prepare 125 ml of a 150 mmol / l aqueous solution. An aqueous solution of sodium orthosilicate was mixed with the aqueous solution of aluminum chloride and stirred with a magnetic stirrer. The silicon / aluminum ratio at this time is 0.67. Further, 22 ml of a 1N aqueous solution of sodium hydroxide was added dropwise to this mixed solution to adjust the pH to around 6. The precursor was recovered from this solution by centrifugation, and the precursor was further washed twice with pure water by centrifugation.
It was dispersed in ml of pure water. 1.2 ml of 5N hydrochloric acid is added to the solution in which the precursor is dispersed, and the pH is adjusted to about 4. This solution was heated at 100 ° C. for 2
Heated for days. After the completion of the heating, 50 ml of an aqueous solution containing the product was placed in a centrifugation cell, a few drops of 28% aqueous ammonia were added, and the mixture was shaken well and then centrifuged. The resulting gel-like product is dried in a dryer at 100 ° C. for about 2 hours.
Sun dried. The obtained sample was crushed in an agate mortar and used as a measurement sample for the following measurement.

【0011】(2)結果 得られた試料の同定は粉末X線回折測定により行った。
細孔分布は窒素吸着法を用いて測定した。また、吸・放
湿特性は、吸着平衡自動測定測定装置を用い、測定系内
の温度を一定(25℃)にして、水蒸気圧を変化させて
平衡状態に達したときの試料重量の変化から吸着量を求
める方法(重量法)により測定した。水蒸気吸着量は、
絶乾状態の試料重量に対する吸着水重量の割合を示す。
実施例で得られた試料の粉末X線回折パターンを図1に
示す。回折パターンは2θ=4,9.5,14,27,
40°付近にピークを有し、中空繊維状アルミニウムケ
イ酸塩特有のX線回折パターンを示している。また、実
施例で得られた試料の細孔分布曲線を図2に示す。得ら
れた試料の細孔分布は細孔半径約0.4nmにピークト
ップを示している。更に、実施例で得られた試料の吸・
放出特性(吸着等温線)を図3に示す。得られた試料の
吸着等温線は相対湿度約90%で急激に立ち上がり、脱
着等温線から相対湿度約90%において吸着していた水
蒸気の大部分を放湿していることがわかる。
(2) Results The obtained sample was identified by powder X-ray diffraction measurement.
The pore distribution was measured using a nitrogen adsorption method. The absorption / desorption characteristics are determined from the change in sample weight when the equilibrium state is reached by changing the water vapor pressure while keeping the temperature in the measurement system constant (25 ° C) using an automatic adsorption equilibrium measuring device. It was measured by a method for determining the amount of adsorption (gravimetric method). The amount of water vapor adsorption is
The ratio of the weight of the adsorbed water to the weight of the sample in a completely dry state is shown.
FIG. 1 shows a powder X-ray diffraction pattern of the sample obtained in the example. The diffraction pattern is 2θ = 4, 9.5, 14, 27,
It has a peak near 40 ° and shows an X-ray diffraction pattern unique to hollow fiber aluminum silicate. FIG. 2 shows a pore distribution curve of the sample obtained in the example. The pore distribution of the obtained sample shows a peak top at a pore radius of about 0.4 nm. Furthermore, the absorption and absorption of the sample obtained in the Examples
The release characteristics (adsorption isotherm) are shown in FIG. The adsorption isotherm of the obtained sample rises sharply at a relative humidity of about 90%, and it can be seen from the desorption isotherm that most of the water vapor adsorbed at a relative humidity of about 90% is released.

【0012】比較例 図4に、従来より乾燥剤として用いられてきた、酸化カ
ルシウム及びシリカゲルの吸・放湿特性(吸着等温線)
示す。酸化カルシウムは、吸水後、水酸化カルシウムに
変化するため、乾燥による再利用は困難である。また、
シリカゲルは相対湿度70%で飽和し、再利用する際に
は相対湿度20%以下で乾燥させる必要がある。このよ
うに、どちらも繰り返し利用する結露防止用途には不適
当であることがわかる。
Comparative Example FIG. 4 shows the absorption / desorption characteristics of calcium oxide and silica gel (adsorption isotherm) conventionally used as a desiccant.
Show. Calcium oxide changes to calcium hydroxide after absorbing water, and is difficult to reuse by drying. Also,
Silica gel is saturated at a relative humidity of 70% and must be dried at a relative humidity of 20% or less when reused. Thus, it can be seen that both are unsuitable for dew condensation prevention applications that are repeatedly used.

【0013】[0013]

【発明の効果】以上にように、本発明の方法によれば、
1)結露防止材料として有用なゲル状物質として凝集さ
せた後、乾燥させて得られる繊維が複雑にからみ合うこ
とによって形成される特異な立体形状を有する中空繊維
状アルミニウムケイ酸塩からなる調湿材料を、比較的簡
単にかつ低コストで製造できる、2)前記したような優
れた水分吸着・脱着性能を有するため、極めて良好な結
露防止機能と、それの繰り返し利用が可能な材料を提供
することができる、という格別の効果が奏される。
As described above, according to the method of the present invention,
1) Humidity control made of hollow fibrous aluminum silicate having a unique three-dimensional shape formed by intertwining fibers obtained by coagulation as a gel substance useful as a dew condensation preventing material and then drying. The material can be manufactured relatively easily and at low cost. 2) Because of the excellent moisture adsorption / desorption performance as described above, an extremely good dew condensation preventing function and a material that can be used repeatedly can be provided. The special effect that it can be performed is produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例で得られた材料のX線回折パタ
ーンによる測定結果を示す。
FIG. 1 shows the measurement results of an X-ray diffraction pattern of a material obtained in an example of the present invention.

【図2】本発明の実施例で得られた材料の細孔分布を示
すグラフである。
FIG. 2 is a graph showing a pore distribution of a material obtained in an example of the present invention.

【図3】本発明の実施例で得られた材料の水蒸気の吸着
・脱着等温線を示すグラフである。
FIG. 3 is a graph showing a water vapor adsorption / desorption isotherm of a material obtained in an example of the present invention.

【図4】本発明の比較例で提示された従来からの吸湿材
料(乾燥剤)の水蒸気の吸着・脱着等温線を示すグラフ
である。
FIG. 4 is a graph showing water vapor adsorption / desorption isotherms of a conventional moisture absorbing material (drying agent) presented in a comparative example of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) D01F 9/08 D01F 9/08 A (72)発明者 前田 雅喜 愛知県知多郡阿久比町大字草木字東郷54番 地 (72)発明者 渡村 信治 愛知県名古屋市千種区南ヶ丘1−7−12 Fターム(参考) 4D052 AA08 CE00 DA00 DB01 GA04 GB03 GB14 GB16 GB18 GB19 HA00 HB02 4G066 AA30A AA30B AA32A BA16 BA23 BA24 BA31 BA36 CA43 DA03 FA03 FA21 FA33 GA06 GA31 4G073 BA57 BA63 BD11 BD19 FC03 FD15 FD17 FD21 FE02 GA03 GA13 UA06 4L037 CS19 FA03 FA04 FA05 PA40 UA20 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme Court ゛ (Reference) D01F 9/08 D01F 9/08 A (72) Inventor Masaki Maeda 54 Address (72) Inventor Shinji Watarimura 1-7-12 Minamigaoka, Chigusa-ku, Nagoya-shi, Aichi F-term (reference) 4D052 AA08 CE00 DA00 DB01 GA04 GB03 GB14 GB16 GB18 GB19 HA00 HB02 4G066 AA30A AA30B AA32A BA16 BA23 BA24 BA31 BA36 CA43 DA03 FA03 FA21 FA33 GA06 GA31 4G073 BA57 BA63 BD11 BD19 FC03 FD15 FD17 FD21 FE02 GA03 GA13 UA06 4L037 CS19 FA03 FA04 FA05 PA40 UA20

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 弱酸性条件下で合成される中空繊維状ア
ルミニウムケイ酸塩を水熱合成にて合成した後、アルカ
リ性水溶液を加え、生成物を含む溶液全体をアルカリ性
にすることにより、生成物をゲル状物質として凝集させ
た後、それ自体が熱分解しない程度の温度で乾燥させて
得られる、細孔半径5nm未満のメソポア細孔を有する
中空繊維状アルミニウムシリケイトからなる調湿材料で
あって、相対湿度90%以上の高湿度条件下において自
重の約200%以上の水蒸気を吸着し、かつ相対湿度9
0%程度以下の湿度条件下において吸着した水蒸気の大
部分を容易に放出することができる、繰り返し利用可能
な、高湿度条件下において優れた吸水挙動を示す調湿材
料。
1. A method in which a hollow fibrous aluminum silicate synthesized under weakly acidic conditions is synthesized by hydrothermal synthesis, and then an alkaline aqueous solution is added to make the entire solution containing the product alkaline. Agglomerated as a gel-like substance, obtained by drying at a temperature that does not itself thermally decompose, a moisture-conditioning material comprising hollow fibrous aluminum silicate having mesopore pores having a pore radius of less than 5 nm, Adsorbs water vapor of about 200% or more of its own weight under a high humidity condition of 90% or more of relative humidity, and has a relative humidity of 9% or more.
A humidity control material that can easily release most of the adsorbed water vapor under a humidity condition of about 0% or less, and that can be repeatedly used and has excellent water absorption behavior under high humidity conditions.
【請求項2】 請求項1に記載の調湿材料を製造する方
法であって、弱酸性条件下で合成される中空繊維状アル
ミニウムケイ酸塩を水熱合成にて合成した後、アルカリ
性水溶液を加え、生成物を含む溶液全体をアルカリ性に
することにより、生成物をゲル状物質として凝集させた
後、それ自体が熱分解しない程度の温度で乾燥させて得
られる、特異な立体形状を有する中空繊維状アルミニウ
ムシリケイトからなる調湿材料を得ることを特徴とす
る、高湿度条件下において優れた吸水挙動を示す調湿材
料の製造方法。
2. The method for producing a humidity control material according to claim 1, wherein a hollow fiber aluminum silicate synthesized under weakly acidic conditions is synthesized by hydrothermal synthesis, and then an alkaline aqueous solution is formed. In addition, by making the entire solution containing the product alkaline, the product is agglomerated as a gel substance, and then dried at a temperature that does not itself thermally decompose. A method for producing a humidity control material exhibiting excellent water absorption behavior under high humidity conditions, comprising obtaining a humidity control material comprising a fibrous aluminum silicate.
JP2000240679A 2000-08-09 2000-08-09 Humidity control material showing excellent water absorption behavior under high humidity conditions Expired - Lifetime JP3398761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000240679A JP3398761B2 (en) 2000-08-09 2000-08-09 Humidity control material showing excellent water absorption behavior under high humidity conditions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000240679A JP3398761B2 (en) 2000-08-09 2000-08-09 Humidity control material showing excellent water absorption behavior under high humidity conditions

Publications (2)

Publication Number Publication Date
JP2002052337A true JP2002052337A (en) 2002-02-19
JP3398761B2 JP3398761B2 (en) 2003-04-21

Family

ID=18732000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000240679A Expired - Lifetime JP3398761B2 (en) 2000-08-09 2000-08-09 Humidity control material showing excellent water absorption behavior under high humidity conditions

Country Status (1)

Country Link
JP (1) JP3398761B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008081606A1 (en) * 2006-12-27 2008-07-10 National Institute Of Advanced Industrial Science And Technology Amorphous aluminum silicate having excellent adsorption characteristics in high-humidity range and process for producing the same
JP2011111332A (en) * 2009-11-24 2011-06-09 Toyota Central R&D Labs Inc Method for producing spherical silica-based mesoporous body
US7971482B2 (en) 2007-04-20 2011-07-05 Denso Corporation Humidity sensor
JP2021065832A (en) * 2019-10-23 2021-04-30 国立研究開発法人産業技術総合研究所 Harmful substance adsorbent containing aluminum silicate or aluminum hydrate, aluminum hydrate, method for producing aluminum silicate or aluminum hydrate, and method for removing harmful substance

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008081606A1 (en) * 2006-12-27 2008-07-10 National Institute Of Advanced Industrial Science And Technology Amorphous aluminum silicate having excellent adsorption characteristics in high-humidity range and process for producing the same
JP2008179534A (en) * 2006-12-27 2008-08-07 National Institute Of Advanced Industrial & Technology Amorphous aluminum silicate having excellent adsorption characteristic in high humidity range, and its manufacture method
US7971482B2 (en) 2007-04-20 2011-07-05 Denso Corporation Humidity sensor
JP2011111332A (en) * 2009-11-24 2011-06-09 Toyota Central R&D Labs Inc Method for producing spherical silica-based mesoporous body
JP2021065832A (en) * 2019-10-23 2021-04-30 国立研究開発法人産業技術総合研究所 Harmful substance adsorbent containing aluminum silicate or aluminum hydrate, aluminum hydrate, method for producing aluminum silicate or aluminum hydrate, and method for removing harmful substance
JP7010274B2 (en) 2019-10-23 2022-01-26 国立研究開発法人産業技術総合研究所 Hazardous substance adsorbent containing aluminum silicate or aluminum hydrate, method for producing aluminum hydrate, aluminum silicate or aluminum hydrate, and method for removing harmful substances.

Also Published As

Publication number Publication date
JP3398761B2 (en) 2003-04-21

Similar Documents

Publication Publication Date Title
JP4576616B2 (en) Amorphous aluminum silicate with excellent moisture absorption and desorption characteristics in medium humidity range
JP5212992B2 (en) Aluminum silicate complex and high performance adsorbent comprising the complex
JP2006240956A (en) Amorphous aluminum silicate, adsorbent having the same, dehumidifying rotor and air conditioner
KR101641985B1 (en) Honeycomb matrix comprising macroporous desiccant, process and use thereof
JP4936394B2 (en) Amorphous aluminum silicate having excellent adsorption characteristics in high humidity region and method for producing the same
Rajamani et al. Bundled-firewood like AlOOH-CaCl2 nanocomposite desiccant
JP5392121B2 (en) Method for producing hygroscopic agent
JP3398761B2 (en) Humidity control material showing excellent water absorption behavior under high humidity conditions
JP4113943B2 (en) Tubular structure made of amorphous aluminum silicate, method for producing the same, and adsorbent using the same
JP3793809B2 (en) Porous material comprising hollow fiber aluminum silicate and method for producing the same
JP3089395B2 (en) Porous material with autonomous humidity control function
JP5140278B2 (en) Desiccant material and air dehumidification method using the same
JP3869136B2 (en) Manufacturing method of humidity control material
JP5495054B2 (en) Method for producing aluminum silicate composite
JP3554752B2 (en) Reusable humidity control material and method for producing the same
JPH02153818A (en) Production of zeolite moldings
JP3837464B2 (en) Anti-condensation material consisting of hollow spherical silicate clusters with autonomous humidity control function
JP4631022B2 (en) Novel aluminum silicate and its synthesis method
JP3360111B2 (en) Moisture absorbing and releasing material with low hysteresis and durable water vapor
JP3871174B2 (en) Method for producing humidity conditioning material having antibacterial function
JP5354561B2 (en) Amorphous substance composed of composite of protoimogolite and phosphoric acid, and desiccant air-conditioning adsorbent and anti-condensation agent using the same
KR100427264B1 (en) Powdery humidity self control material and its preparation method
JP2002085535A (en) Humidifiable formaldehyde adsorbent
RU2218304C2 (en) Method to produce synthetic zeolite of x-type
JP3921526B2 (en) Porous material effective as anti-condensation material and method for producing the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3398761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term