JP2002050366A - Solid polymer fuel cell metal separator and fuel cell using the same - Google Patents

Solid polymer fuel cell metal separator and fuel cell using the same

Info

Publication number
JP2002050366A
JP2002050366A JP2000237864A JP2000237864A JP2002050366A JP 2002050366 A JP2002050366 A JP 2002050366A JP 2000237864 A JP2000237864 A JP 2000237864A JP 2000237864 A JP2000237864 A JP 2000237864A JP 2002050366 A JP2002050366 A JP 2002050366A
Authority
JP
Japan
Prior art keywords
fuel cell
resin
polymer electrolyte
conductive
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000237864A
Other languages
Japanese (ja)
Inventor
Yukio Saito
幸雄 斉藤
Kazushige Kono
一重 河野
Masanori Yoshikawa
正則 吉川
Hiroshi Yamauchi
博史 山内
Kazuhisa Higashiyama
和寿 東山
Yuichi Kamo
友一 加茂
Shuichi Ohara
周一 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000237864A priority Critical patent/JP2002050366A/en
Publication of JP2002050366A publication Critical patent/JP2002050366A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid polymer electrolyte fuel cell metal separator that has a small surface resistance and an excellent acid resistance, and a fuel cell using the same. SOLUTION: This is a solid polymer fuel cell metal separator in which the surface of the metal substrate is coated with a resin composite comprised of conducting particles containing conducting ceramics particles, or conducting particles containing conducting ceramics particles and carbon particles, and a resin, and a fuel cell using the separator is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は新規な固体高分子電
解質型燃料電池用セパレータ及びそれを用いた固体高分
子電解質型燃料電池並びに導電性塗料に関する。
The present invention relates to a novel separator for a solid polymer electrolyte fuel cell, a solid polymer electrolyte fuel cell using the same, and a conductive paint.

【0002】[0002]

【従来技術】燃料電池は、使用される電解質に基づき固
体高分子型、溶融炭酸塩型、リン酸型、固体酸化物型等
が知られている。固体高分子型燃料電池は他の燃料電池
に比べ、高電流密度がとれる、寿命が長い、起動・停止
による劣化が少ない、運転温度が低い(約80℃)、低
負荷運転ができる、精密な差圧制御が不用等の長所を有
しているため自動車、定置及び家庭用電源等幅広い用途
が見込まれている。
2. Description of the Related Art There are known fuel cells of a polymer electrolyte type, a molten carbonate type, a phosphoric acid type, a solid oxide type and the like based on an electrolyte used. The polymer electrolyte fuel cell has higher current density, longer life, less degradation due to start / stop, lower operating temperature (about 80 ° C), lower load operation, and higher precision than other fuel cells. Since the differential pressure control has such advantages as being unnecessary, a wide range of applications such as automobiles, stationary and home power supplies are expected.

【0003】固体高分子型燃料電池の単セルは、電解質
にプロトン(H+)導電性を有する膜厚約100μmの
高分子膜を用い、この膜の両側に数10μmの薄い多孔
質のPtまたはPt合金触媒を担持したカーボンシート
等の電極を焼付け、一方の電極に水素(H2)を、他方
の電極に空気(酸素(O2))を供給するガス流路を形
づくるとともに電解質膜及び電極を固定保持する筐体
(セパレータ)から構成される。この単セルを複数個積
層させることにより電池スタックが構築される。電極反
応は、水素極(アノード):H2→2H++2e- 、酸素
極(カソード):2H++1/2O2+2e-→H2Oであ
る。アノードで生成したH+を高分子電解質膜(イオン
交換膜)を通してカソードに導くため電解質膜は湿潤状
態に維持される。電解質膜はスルホン基を有し、湿潤な
状態に維持されるので、多孔質の薄いカーボンシートを
挟んで固定するセパレータは強酸性にさらされている。
A single cell of a polymer electrolyte fuel cell uses a polymer film having a proton (H + ) conductivity of about 100 μm and having a thickness of several tens of μm on both sides of the membrane. An electrode such as a carbon sheet carrying a Pt alloy catalyst is baked, and a gas flow path for supplying hydrogen (H 2 ) to one electrode and air (oxygen (O 2 )) to the other electrode is formed, and an electrolyte membrane and an electrode are formed. Is constituted by a housing (separator) for fixedly holding. A battery stack is constructed by stacking a plurality of the single cells. The electrode reaction is as follows: hydrogen electrode (anode): H 2 → 2H + + 2e , oxygen electrode (cathode): 2H + + 1 / 2O 2 + 2e → H 2 O. Since the H + generated at the anode is led to the cathode through the polymer electrolyte membrane (ion exchange membrane), the electrolyte membrane is maintained in a wet state. Since the electrolyte membrane has a sulfone group and is maintained in a wet state, the separator fixed with the porous thin carbon sheet interposed therebetween is exposed to strong acidity.

【0004】従来、セパレータ材料としては、機能材
料、19(1999)15には黒鉛を用いること、特開
平11―345618号公報には表面に導電性炭素塗
料、Ag粉末、Ni粉末 を塗布した金属基体を用いる
ことが示されている。
Conventionally, a functional material has been used as a separator material, and graphite has been used for 19 (1999) 15. Japanese Patent Application Laid-Open No. 11-345618 discloses a metal having a surface coated with a conductive carbon paint, Ag powder, Ni powder. The use of a substrate has been shown.

【0005】[0005]

【発明が解決しようとする課題】燃料電池は単セルが積
層されるので多数のセパレータを介して電力が取り出さ
れることになりセパレータ材料の低抵抗率化が発電効率
上大きな課題となる。また、湿潤な強酸性雰囲気で使用
されるため耐酸性も要求される。さらに、セパレータの
実用化のためには強度が大きく、低コストであることが
前提となる。従来技術になる黒鉛セパレータは、抵抗率
及び耐酸性の点ではほぼ満足されるが、素材自身が高価
であるばかりでなく、燃料ガスの流路を切削加工により
作製するため加工費も高価となる。また、黒鉛は脆いた
め機械的衝撃、振動に弱く自動車用電源として使用する
場合には信頼性に欠ける。他の従来技術になる表面に導
電性炭素塗料を塗布した金属セパレータは、これらの課
題を解決するためになされたもので、黒鉛に比べて安価
になり耐酸性及び強度にも優れる。しかし、炭素材の抵
抗率は10-3Ωcmオーダであり金属に比べると2〜3
桁大きいため、炭素粉末を導電フィラとした塗料を塗布
した金属セパレータでは、充分小さい面抵抗(単位面積
当たりの抵抗)が得られない。たとえば、特開平11−
345618号公報に見られる炭素粉末を導電フィラと
した塗料を塗布した金属セパレータの面抵抗は17〜6
8mΩcm2である。黒鉛セパレータ材の面抵抗が0.
3mΩcm2であるのに比べると約50〜220倍大き
い。面抵抗が大きいと多量のジュール熱が発生し、燃料
電池の発電効率を低下させてしまうので好ましくない。
In a fuel cell, since single cells are stacked, electric power is taken out through a large number of separators, and a reduction in the resistivity of the separator material is a major problem in terms of power generation efficiency. Further, since it is used in a humid and strongly acidic atmosphere, acid resistance is also required. Further, it is premised that the separator has high strength and low cost for practical use of the separator. The graphite separator according to the prior art is almost satisfied in terms of resistivity and acid resistance, but not only is the material itself expensive, but also the processing cost is high because the fuel gas flow path is manufactured by cutting. . In addition, graphite is brittle, so it is vulnerable to mechanical shock and vibration and lacks reliability when used as a power source for automobiles. Another conventional metal separator having a surface coated with a conductive carbon paint has been made to solve these problems, and is inexpensive and superior in acid resistance and strength as compared to graphite. However, the resistivity of the carbon material is on the order of 10 -3 Ωcm, which is 2-3 times smaller than that of metal.
Because of the order of magnitude, a sufficiently low sheet resistance (resistance per unit area) cannot be obtained with a metal separator coated with a paint using carbon powder as a conductive filler. For example, JP-A-11-
The sheet resistance of a metal separator coated with a paint using carbon powder as a conductive filler as disclosed in JP-A-345618 is 17-6.
8 mΩcm 2 . The sheet resistance of the graphite separator material is 0.
It is about 50 to 220 times larger than 3 mΩcm 2 . If the sheet resistance is large, a large amount of Joule heat is generated, which lowers the power generation efficiency of the fuel cell, which is not preferable.

【0006】本発明の目的は、面抵抗が小さく、耐酸性
に優れた固体高分子型燃料電池用金属セパレータ及びそ
れを用いた燃料電池並びに導電性塗料を提供することに
ある。
An object of the present invention is to provide a metal separator for a polymer electrolyte fuel cell having a small sheet resistance and excellent acid resistance, a fuel cell using the same, and a conductive paint.

【問題を解決するための手段】本発明は、金属基板に塗
布する塗料の導電性粒子の種類及び樹脂について検討し
た結果、金属の珪化物、炭化物、又は窒化物系の導電性
セラミックス粒子又は導電性セラミックス粒子と炭素粒
子とを含む導電性粒子を分散した樹脂で被覆した金属セ
パレータが抵抗率、耐酸性及び強度の点で優れているこ
とを見出し、なされたものである。
According to the present invention, as a result of examining the type and resin of conductive particles of a coating material applied to a metal substrate, it has been found that metal silicide, carbide, or nitride-based conductive ceramic particles or conductive particles are used. The present inventors have found that a metal separator coated with a resin in which conductive particles containing conductive ceramic particles and carbon particles are dispersed is excellent in terms of resistivity, acid resistance, and strength.

【0007】本発明は、金属基体の表面が導電性粒子と
樹脂とを有する樹脂組成物で被覆されており、該樹脂組
成物は、面抵抗が0.1〜6.0mΩcm2であり、2
0℃、0.5モル%H2SO4溶液中でー1Vから1.5
Vまで掃除したときの電流密度が10 4A/cm2以下又
は80℃、1モル%H2SO4溶液中で168時間浸漬後
の重量減少率が0.1%以下であることが好ましい。
According to the present invention, the surface of a metal substrate is coated with a resin composition having conductive particles and a resin. The resin composition has a sheet resistance of 0.1 to 6.0 mΩcm 2 ,
0 ° C., -1 V to 1.5 in 0.5 mol% H 2 SO 4 solution
The current density at the time of cleaning to V 10 Tsu 4 A / cm 2 or less, or 80 ° C., it is preferred that 1 mol% H 2 SO 4 solution for 168 hours after dipping weight loss in the 0.1% or less .

【0008】本発明は、導電性セラミックス粒子及び炭
素粒子を含む導電性粒子と樹脂とを有することを特徴と
する導電性塗料にある。
[0008] The present invention resides in a conductive paint comprising conductive resin containing conductive ceramic particles and carbon particles, and a resin.

【0009】導電性セラミックス粒子として、金属の硼
化物、珪化物、窒化物、炭化物があり、抵抗率は概ね1
-5〜10-6Ωcmである。黒鉛の抵抗率が10-3Ωc
mオーダであるのに比べて2〜3桁小さいので、導電性
セラミックス粒子を分散した樹脂をコートした金属セパ
レータでは、充分小さい面抵抗が達成される。しかし、
耐酸性の点で、金属の硼化物を分散させた樹脂では小さ
く、金属の珪化物(FeSi2、MoSi2、ZrS
2、TiSi)、金属の炭化物(WC)、金属の窒化
物(TiN)を分散させた樹脂は優れていることを実験
により見出した。価格の点ではWCが最もよい。上記し
た導電性セラミックス1種類を樹脂中に分散させてもよ
いが、2種類以上を分散させて用いることもできる。
The conductive ceramic particles include metal borides, silicides, nitrides, and carbides, and have a resistivity of about 1
0 -5 to 10 -6 Ωcm. The resistivity of graphite is 10 -3 Ωc
Since it is two to three orders of magnitude smaller than the order of m, a sufficiently low sheet resistance can be achieved with a metal separator coated with a resin in which conductive ceramic particles are dispersed. But,
In terms of acid resistance, a resin in which a metal boride is dispersed is small, and a metal silicide (FeSi 2 , MoSi 2 , ZrS
Experiments have shown that a resin in which i 2 , TiSi), metal carbide (WC), and metal nitride (TiN) are dispersed is excellent. WC is the best in terms of price. One kind of the above-mentioned conductive ceramics may be dispersed in the resin, but two or more kinds may be dispersed and used.

【0010】樹脂には、ポリスチレン、ポリアミド、メ
タクリル酸メチル、ABS樹脂、フッ化ビニリデン等の
熱可塑性樹脂、フェノール樹脂、尿素樹脂、メラミン樹
脂、フラン樹脂、エポキシ樹脂等の熱硬化性樹脂があ
る。これらの樹脂の中で固体高分子電解質型燃料電池の
作動環境になる80℃前後の温度、酸性、スチーム環境
の条件に耐えられるのは、フラン樹脂、エポキシ樹脂等
の熱硬化性樹脂及びフッ化ビニリデン等のフッ素系樹脂
であった。耐酸性の点ではフッ化ビニリデンが最も優れ
ていたが、金属基板への密着性の点では熱硬化性樹脂の
方が優れていた。
Examples of the resin include thermoplastic resins such as polystyrene, polyamide, methyl methacrylate, ABS resin, and vinylidene fluoride, and thermosetting resins such as phenol resin, urea resin, melamine resin, furan resin, and epoxy resin. Among these resins, thermosetting resins such as furan resins and epoxy resins and fluorinated resins that can withstand the temperature of around 80 ° C., which is the operating environment of the solid polymer electrolyte fuel cell, and the acidic and steam environment conditions It was a fluororesin such as vinylidene. Vinylidene fluoride was the best in terms of acid resistance, but the thermosetting resin was better in terms of adhesion to a metal substrate.

【0011】金属の珪化物(FeSi2、MoSi2、Z
rSi2、TiSi)、金属の炭化物(WC)、金属の
窒化物(TiN)の樹脂中への混合割合は、20〜50
vol%がよい。20vol%以下では導電性が悪く、
50vol%以上では導電性は良いが膜の空隙率が高く
なるため耐酸性がわるくなる。また、膜の密着力も低下
する。導電性セラミックスの平均粒子径は、1〜10μ
mが好ましい。粒子径1μm以下でも導電性の点では問
題ないが原料紛の価格が高価となる。10μm以上では
導電性が悪くなる。2種類以上の平均粒子径を持つ紛体
を混合して用いるのは空隙率を小さくできるので好まし
い。
Metal silicides (FeSi 2 , MoSi 2 , Z
rSi 2 , TiSi), metal carbide (WC), and metal nitride (TiN) in the resin in a mixing ratio of 20 to 50.
vol% is good. At 20 vol% or less, the conductivity is poor,
If it is 50 vol% or more, the conductivity is good, but the porosity of the film becomes high, so that the acid resistance deteriorates. Further, the adhesion of the film is also reduced. The average particle size of the conductive ceramic is 1-10μ
m is preferred. Even if the particle diameter is 1 μm or less, there is no problem in terms of conductivity, but the price of the raw material powder becomes expensive. If it is 10 μm or more, the conductivity will be poor. It is preferable to use a mixture of powders having two or more kinds of average particle diameters because the porosity can be reduced.

【0012】導電性セラミックス粒子又は導電性セラミ
ックス粒子と炭素粒子とを分散した樹脂層の厚さは30
〜200μmであることが好ましい。膜厚30μm以下
の場合、導電性は良くなるが耐酸性の信頼性は低下す
る。膜厚200μm以上では、耐酸性の信頼性は向上す
るが導電性が悪くなるので好ましくない。また、導電性
セラミックスをより多く使用するので割高となる。
The thickness of the resin layer in which the conductive ceramic particles or the conductive ceramic particles and the carbon particles are dispersed is 30.
It is preferably from 200 to 200 μm. When the film thickness is 30 μm or less, conductivity is improved, but reliability of acid resistance is reduced. When the film thickness is 200 μm or more, the reliability of acid resistance is improved, but the conductivity is unfavorably deteriorated. In addition, since more conductive ceramics are used, the cost is higher.

【0013】炭素粒子としては、グラファイト粉末、カ
ーボンブラックが用いられ、30vol%以下が好まし
い。
As the carbon particles, graphite powder and carbon black are used, and preferably 30 vol% or less.

【0014】ステンレス基板上に上記好的条件で作製し
た導電性セラミックス粒子を分散した樹脂層の面抵抗は
0.12〜5.9m Ωcm2であった。樹脂層の抵抗率
は小さいほど好ましいが、面抵抗0.12m Ωcm2
下では導電層が薄くなったり、導電性フィラ多くするの
で気孔率が高くなり耐酸性の信頼性が悪くなる。炭素を
導電性フィラとした場合でも含有量を増加させることに
より10m Ωcm2前後の面抵抗を達成できるので、
5.9m Ωcm2以上では炭素を用いる場合との有為差
が小さくなる。
The sheet resistance of the resin layer in which the conductive ceramic particles prepared under the above favorable conditions were dispersed on a stainless steel substrate was 0.12 to 5.9 mΩcm 2 . The resistivity of the resin layer is preferably as small as possible. However, if the sheet resistance is 0.12 mΩcm 2 or less, the conductive layer becomes thin or the conductive filler is increased, so that the porosity increases and the reliability of acid resistance deteriorates. Even when carbon is used as the conductive filler, a sheet resistance of about 10 mΩcm 2 can be achieved by increasing the content, so that
At 5.9 mΩcm 2 or more, the significant difference from the case of using carbon becomes small.

【0015】金属基板については特に限定されないが信
頼性の点から耐酸性があるSUS304、SUS316
等のオーステナイトステンレス鋼が好ましい。
The metal substrate is not particularly limited, but SUS304 and SUS316 having acid resistance in terms of reliability.
And the like are preferred.

【0016】[0016]

【発明の実施の形態】〔実施例1〕図1は本発明の導電
性セラミックス塗料を塗布した金属セパレータを用いた
燃料電池セルの1構造を示した概略断面図である。ナフ
ィオン系固体高分子電解質膜1を挟んでカーボンメッシ
ユにPtを担持した電極2a、2bがある。電極2a、
2bは電解質膜1に圧接される。電解質膜1及び電極2
a、2bは導電性セラミックス塗料を塗布した金属セパ
レータ3により挟み込まれる。金属セパレータ3のガス
流路溝3a、3bにはそれぞれ主としてH2からなる燃
料ガス及び酸化ガス(空気)が供給される。発電に伴い
発生する熱は水流路4a、4bに供給される水により冷
やされ約80℃に維持される。ガスはシール材5a、5
bによりシールされる。
[Embodiment 1] FIG. 1 is a schematic sectional view showing one structure of a fuel cell using a metal separator coated with a conductive ceramic paint of the present invention. There are electrodes 2a and 2b supporting Pt on carbon mesh with the Nafion-based solid polymer electrolyte membrane 1 interposed therebetween. Electrode 2a,
2 b is pressed against the electrolyte membrane 1. Electrolyte membrane 1 and electrode 2
a and 2b are sandwiched between metal separators 3 coated with a conductive ceramic paint. Fuel gas and oxidizing gas (air) mainly composed of H2 are respectively supplied to the gas passage grooves 3a and 3b of the metal separator 3. The heat generated by the power generation is cooled by water supplied to the water flow paths 4a and 4b and is maintained at about 80 ° C. Gas is sealing material 5a, 5
b.

【0017】導電性セラミック塗料を塗布した金属セパ
レータ3は水素極(アノード)では水素が触媒表面で解
離しプロトン(H+)を生成するので電極接触部は酸性
である。酸素(空気)極では電解質を通過してきたプロ
トン(H+)と酸素が触媒上で反応して水を生成するの
で、電極接触部は水蒸気雰囲気下であるとともに酸性で
ある。本発明に係わる金属の珪化物、炭化物、又は窒化
物系の導電性セラミックス粒子を分散した樹脂でコート
した金属セパレータはこの環境に充分耐える。
In the metal separator 3 coated with the conductive ceramic paint, hydrogen dissociates on the surface of the catalyst at the hydrogen electrode (anode) to generate protons (H + ), so that the electrode contact portion is acidic. At the oxygen (air) electrode, protons (H + ) and oxygen that have passed through the electrolyte react with each other on the catalyst to generate water. Therefore, the electrode contact portion is under a steam atmosphere and is acidic. The metal separator according to the present invention, which is coated with a resin in which metal silicide, carbide, or nitride-based conductive ceramic particles are dispersed, can sufficiently withstand this environment.

【0018】〔実施例2〕液状の油化シェル製エポキシ
樹脂(Ep806)5gに、導電性フィラとして平均粒
子径3〜10μmの導電性セラミックスである硼化物
(W25、TiB2、TaB2、ZrB2)、炭化物(W
C、TiC、TaC、ZrC)、窒化物(TiN、Ta
N、ZrN)、珪化物(FeSi2、MoSi2、ZrS
2、TiSi)粉末及び比較のため日本黒鉛製鱗状黒
鉛(CSPE、平均粒子径4.5μm)、大阪ガス製メ
ソカーボン(平均径10μm)をそれぞれ45vol%
になるように添加し、メノウ鉢を用いて混練して塗料を
作製した。この塗料を表面を研磨した大きさ20×10
mm、厚さ4mmのSS400製試験片の片面にキャス
テング法によりほぼ均一に塗布し、真空下、150℃で
7時間熱処理した。得られた試験片をインジウム板、銀
板で挟み込み4端子法を用いて導電性セラミックス塗料
塗布金属セパレータの炭素鋼基板含みの面抵抗を測定し
た。測定結果を表1に示す。
Example 2 Borides (W 2 B 5 , TiB 2 , TaB), which are conductive ceramics having an average particle diameter of 3 to 10 μm, were added to 5 g of a liquid oily shell epoxy resin (Ep806) as a conductive filler. 2 , ZrB 2 ), carbide (W
C, TiC, TaC, ZrC), nitride (TiN, Ta)
N, ZrN), silicides (FeSi 2 , MoSi 2 , ZrS)
45 vol% each of i 2 , TiSi) powder and scale graphite made of Nippon Graphite (CSPE, average particle diameter 4.5 μm) and mesocarbon made by Osaka Gas (average diameter 10 μm) for comparison.
And kneaded using an agate bowl to prepare a paint. The size of this paint polished on the surface is 20 × 10
A test piece made of SS400 having a thickness of 4 mm and a thickness of 4 mm was substantially uniformly applied to one surface by a casting method, and heat-treated at 150 ° C. for 7 hours under vacuum. The obtained test piece was sandwiched between an indium plate and a silver plate, and the sheet resistance including the carbon steel substrate of the metal separator coated with the conductive ceramic paint was measured using a four-terminal method. Table 1 shows the measurement results.

【0019】[0019]

【表1】 [Table 1]

【0020】表1からわかるように比較例の黒鉛やカー
ボン導電性フィラを用いた塗料を塗布した金属セパレー
タに比べ、導電性セラミックスをフィラとした塗料を塗
布した本発明の金属セパレータの方がほぼ同じ膜厚で1
〜2桁面抵抗が小さくできる。黒鉛セパレータの面抵抗
は0.3mΩcm2であり、これと比べて同等〜数倍の
大きさで導電性に優れている。
As can be seen from Table 1, the metal separator of the present invention coated with a paint using conductive ceramic as a filler is almost the same as the metal separator coated with a paint using graphite or a carbon conductive filler of the comparative example. 1 with the same film thickness
~ 2 digits surface resistance can be reduced. The sheet resistance of the graphite separator is 0.3 mΩcm 2, which is equal to or several times as large as that of the graphite separator and excellent in conductivity.

【0021】〔実施例3〕実施例2で得られた試料及び
塗料を用いて耐酸性を次の2方法により評価した。1つ
は実施例2で得られた試料の導電性塗料が塗布されてい
ない部分をアラルダイト樹脂で固め、20℃、0.05
モル%H2SO4溶液中に浸漬し、電圧を−1から+1.
5Vまでゆっくりスイープさせながら流れる電流密度を
測定した。また、他の1つは実施例2で得られた塗料を
大きさ20×60mm、厚さ1.2mmの炭素鋼製板の
全面にキャステング法を用いて塗布し、80℃、1モル
%H2SO4溶液中に浸漬し、重量減少率を測定した。試
験結果を表2に示す。
Example 3 Using the sample and the paint obtained in Example 2, acid resistance was evaluated by the following two methods. One is to harden a portion of the sample obtained in Example 2 where the conductive paint is not applied with an araldite resin,
Mol% H 2 SO 4 solution immersed in, a voltage from -1 to +1.
The current density flowing while sweeping slowly to 5 V was measured. On the other hand, the coating material obtained in Example 2 was applied to the entire surface of a carbon steel plate having a size of 20 × 60 mm and a thickness of 1.2 mm by using a casting method, and was applied at 80 ° C. and 1 mol% H. It was immersed in a 2 SO 4 solution, and the weight loss rate was measured. Table 2 shows the test results.

【0022】[0022]

【表2】 [Table 2]

【0023】表3より、窒化物:TiN、炭化物:W
C、珪化物:MoSi2、FeSi2、TiSi2、Zr
Si2、は耐酸性に優れていると言える。
According to Table 3, nitride: TiN, carbide: W
C, silicide: MoSi 2 , FeSi 2 , TiSi 2 , Zr
It can be said that Si 2 has excellent acid resistance.

【0024】〔実施例4〕液状油化シェル製エポキシ樹
脂(Ep806)に、実施例3で優れた耐酸性をもつこ
とが明らかになったMoSi2、FeSi2、WC及び比較
例として黒鉛を種々の割合で混合して塗料を作製し、炭
素鋼板に塗布して面抵抗と耐酸性を評価することにより
最適な混合割合について調べた。導電性塗料の作製方
法、塗布方法、焼付け方法、面抵抗の評価方法は実施例
2に準じて行った。樹脂層の膜厚は約100μmとし
た。
[Example 4] MoSi 2 , FeSi 2 , WC, which was found to have excellent acid resistance in Example 3, and graphite as a comparative example were added to a liquid oilified shell epoxy resin (Ep806). The mixture was mixed at the ratio described above to prepare a coating material, applied to a carbon steel plate, and evaluated for sheet resistance and acid resistance, thereby examining an optimum mixing ratio. The method for preparing the conductive paint, the coating method, the baking method, and the evaluation method for the sheet resistance were performed in accordance with Example 2. The thickness of the resin layer was about 100 μm.

【0025】図2は、面抵抗と導電性セラミックス粒子
の添加量との関係を示す線図である。図2より、黒鉛に
比べて導電性セラミックスの方が面抵抗が小さい。面抵
抗は導電性セラミックスの種類に依存せず、混合量10
から20vol%にかけて急激に小さくなり20vol
%ぐらいから30vol%かけては漸減し、30vol
%以上ではほぼ一定になっている。最小の面抵抗は導電
性セラミックスの種類により多少異なるが数mΩcm2
以下である。10から20vol%にかけて面抵抗が急
激に小さくなるのは粒子同士が接触して導電パスができ
るためと考えられる。また、導電性セラミックスの混合
割合が50vol%以下であれば塗料の粘性が小さくな
り塗り易くなる。さらに、空隙率も小さいので耐酸性の
信頼性も高くなる。以上のようなことから、導電性セラ
ミックスの混合割合は20〜50vol%が好ましいと
言える。
FIG. 2 is a diagram showing the relationship between the sheet resistance and the amount of conductive ceramic particles added. As shown in FIG. 2, the conductive ceramic has lower sheet resistance than graphite. The sheet resistance does not depend on the type of conductive ceramics,
From 20vol% to 20vol%
From 30% to about 30%
It is almost constant at% or more. The minimum sheet resistance varies slightly depending on the type of conductive ceramics, but is several mΩcm 2
It is as follows. It is considered that the reason why the sheet resistance rapidly decreases from 10 to 20 vol% is that the particles are in contact with each other to form a conductive path. If the mixing ratio of the conductive ceramics is 50 vol% or less, the viscosity of the paint becomes small and the paint becomes easy to apply. Further, since the porosity is small, the reliability of acid resistance also increases. From the above, it can be said that the mixing ratio of the conductive ceramic is preferably 20 to 50 vol%.

【0026】〔実施例5〕液状油化シェル製エポキシ樹
脂(Ep806)に、実施例3で優れた耐酸性をもつこ
とが明らかになったMoSi2、FeSi2、WCの平均粒
子径を種々変えて塗料を作製し、炭素鋼板に塗布して面
抵抗と耐酸性を評価することにより最適な粒子径につい
て調べた。導電性セラミックスの混合割合は30vol
%一定とし、膜厚は約100μmとした。導電性塗料の
作製方法、塗布方法、焼付け方法、面抵抗の評価方法は
実施例2に準じて行った。
Example 5 The average particle diameter of MoSi 2 , FeSi 2 , and WC, which was found to have excellent acid resistance in Example 3, was changed by changing the liquid oilified shell epoxy resin (Ep806). A paint was prepared, applied to a carbon steel sheet, and evaluated for sheet resistance and acid resistance to determine the optimum particle size. The mixing ratio of conductive ceramics is 30vol
% Was constant, and the film thickness was about 100 μm. The method for preparing the conductive paint, the coating method, the baking method, and the evaluation method for the sheet resistance were performed in accordance with Example 2.

【0027】図3は、面抵抗と導電性セラミックス粒子
の平均粒径との関係を示す線図である。図3より導電性
セラミックスの種類にあまり依存せず、平均粒径が細か
くなるにつれ面抵抗が小さくなる傾向にある。平均粒子
径が10μm以下であれば面抵抗は実用的な範囲にある
ことから、平均粒径は1〜10μmが適切と言える。
FIG. 3 is a diagram showing the relationship between the sheet resistance and the average particle size of the conductive ceramic particles. As shown in FIG. 3, the sheet resistance does not depend much on the type of the conductive ceramic, and the sheet resistance tends to decrease as the average particle diameter becomes smaller. If the average particle diameter is 10 μm or less, the sheet resistance is in a practical range, and therefore it can be said that the average particle diameter is 1 to 10 μm.

【0028】〔実施例6〕油化シェル製液状エポキシ樹
脂(Ep806)5gに、実施例3で優れた耐酸性をも
つことが明らかになったMoSi2、FeSi2、WCの粉
末を30vol%になるように添加し、メノウ鉢を用い
て混練し塗料を作製した。この塗料を溶剤を用いて適度
に希釈し、デイップ法又はキャステング法を用いて炭素
鋼板上に種々の膜厚で塗布し、焼付けして試料を作製し
た。面抵抗測定試料は片面に、耐酸性評価試料は全面に
塗料を塗布した。得られた試料の面抵抗及び耐酸性を評
価することにより最適な膜厚について調べた。面抵抗の
測定は実施例2に準じて、耐酸性の評価は実施例3の重
量減少率の測定に準じておこなった。
[Example 6] MoSi 2 , FeSi 2 , and WC powders, which were found to have excellent acid resistance in Example 3, were added to 30 vol% of 5 g of a liquid epoxy resin (Ep806) made of oiled shell. And then kneaded using an agate bowl to prepare a coating. This coating material was appropriately diluted with a solvent, applied to a carbon steel sheet at various thicknesses using a dipping method or a casting method, and baked to prepare a sample. The paint was applied to one surface of the sample for measuring sheet resistance and to the entire surface of the sample for acid resistance evaluation. The optimum film thickness was examined by evaluating the sheet resistance and acid resistance of the obtained sample. The measurement of the sheet resistance was performed according to Example 2, and the evaluation of the acid resistance was performed according to the measurement of the weight loss rate of Example 3.

【0029】表3は、80℃、1モル%H2SO4溶液
中、168時間浸漬後の重量減少による耐酸性と膜厚と
の関係、表4は、面抵抗と膜厚との関係を示すものであ
る。
Table 3 shows the relationship between acid resistance and film thickness due to weight loss after immersion in a 1 mol% H 2 SO 4 solution at 80 ° C. for 168 hours, and Table 4 shows the relationship between sheet resistance and film thickness. It is shown.

【0030】[0030]

【表3】 [Table 3]

【0031】[0031]

【表4】 [Table 4]

【0032】表3から明らかなように、耐酸性に対して
は膜厚は30μm以上が好ましく、又、表4から明らか
なように、導電性セラミックス粒子としてMoSi2 では面
抵抗10mΩcm2以下を得るには膜厚200μm以下
とすることが好ましい。他の導電性セラミックス粒子で
は約500μmまで膜厚とすることが出来る。
As evident from Table 3, the film thickness is preferably 30 μm or more for acid resistance, and as evident from Table 4, MoSi 2 as conductive ceramic particles has a sheet resistance of 10 mΩcm 2 or less. The thickness is preferably 200 μm or less. Other conductive ceramic particles can have a thickness up to about 500 μm.

【0033】〔実施例7〕導電性塗膜の特性に及ぼす樹
脂種の影響を調べるため、熱可塑性樹脂としてポリスチ
レン、ポリアミド、メタクリル酸メチル、フッ化ビニリ
デンの市販品を、熱硬化性樹脂としてフェノール樹脂、
尿素樹脂、メラミン樹脂、フラン樹脂、エポキシ樹脂、
ジアリルフタレート樹脂の市販品を用い、導電フィラと
して平均粒子径3μmのWCを用いて塗料を作製した。
樹脂量(3g)に対してWCを30vol%になるよう
加え、メノウ鉢にて数分混練して塗料を作製した。この
とき必要に応じて溶剤を適量加えて粘度を調整した。
Example 7 In order to investigate the effect of the type of resin on the properties of the conductive coating film, commercially available thermoplastic resins such as polystyrene, polyamide, methyl methacrylate, and vinylidene fluoride were used, and phenol was used as the thermosetting resin. resin,
Urea resin, melamine resin, furan resin, epoxy resin,
A coating material was prepared using a commercially available diallyl phthalate resin and WC having an average particle diameter of 3 μm as a conductive filler.
WC was added to 30 vol% with respect to the resin amount (3 g), and the mixture was kneaded for several minutes in an agate bowl to prepare a paint. At this time, the viscosity was adjusted by adding an appropriate amount of a solvent as needed.

【0034】得られた塗料を10×40×1mm大きさ
のSS400板にデップ法により膜厚が約100μmに
成るよう塗布した。熱硬化性樹脂の場合は、真空下、1
50℃前後の温度で数時間加熱し重合させた。熱可塑性
樹脂の場合は、真空下で加熱し溶剤を蒸発させて導電性
膜を形成した。得られた試料を80℃、H2SO4濃度1
モル%、1気圧環境下に暴露し耐酸性試験を行った。耐
酸性の評価は7日間浸漬したのちの面抵抗を測定するこ
とにより行った。
The obtained paint was applied to an SS400 plate having a size of 10 × 40 × 1 mm by a dipping method so as to have a film thickness of about 100 μm. In the case of thermosetting resin,
The polymer was heated at a temperature of about 50 ° C. for several hours for polymerization. In the case of a thermoplastic resin, the conductive film was formed by heating under vacuum to evaporate the solvent. The obtained sample was heated at 80 ° C. and H 2 SO 4 concentration 1
An acid resistance test was performed by exposing it to a mol% and 1 atmosphere environment. Evaluation of acid resistance was performed by measuring the sheet resistance after immersion for 7 days.

【0035】表5は樹脂の耐酸性試験結果を示すもので
ある。表5より、熱可塑性のフッ化ビニリデン、熱硬化
性のフラン樹脂、エポキシ樹脂が耐酸性に優れているこ
とが明らかである。
Table 5 shows the results of the acid resistance test of the resin. From Table 5, it is clear that thermoplastic vinylidene fluoride, thermosetting furan resin, and epoxy resin have excellent acid resistance.

【0036】[0036]

【表5】 [Table 5]

【0037】〔実施例8〕実施例1に概略構造を示した
燃料電池単セルを試作し、本発明になるセパレータの電
池組込み評価を実施した。セパレータの固体高分子型燃
料電池を構成するセパレータとして、ステンレス鋼(S
US316)からなる縦150mm×横150mm×厚
さ2.5mmの基体2個の片面の中央部100mm×1
00mmの領域に、機械加工により幅1mm、深さ1m
mのガス流路及びガス導入孔を作製した。この基体のガ
ス流路及びガス導入孔に、エポキシ樹脂70vol%,
WC(平均粒径2.5μm)25vol%からなる塗料
をスプレー法をベースとして塗布し、膜厚約100μm
の耐酸性導電被覆層を形成した。
Example 8 A single fuel cell having the schematic structure shown in Example 1 was experimentally manufactured, and the assembly of the separator according to the present invention in a battery was evaluated. As a separator constituting a polymer electrolyte fuel cell, stainless steel (S
US316) 150 mm × 150 mm × 2.5 mm thick
1mm width and 1m depth by machining in the area of 00mm
m gas flow paths and gas introduction holes were prepared. 70 vol% of epoxy resin,
WC (average particle size 2.5 μm) 25 vol% paint is applied based on the spray method, and the film thickness is about 100 μm
Was formed.

【0038】得られた2個のセパレータをガス流れが十
字流になるように、購入したガス拡散電極付きゴア膜を
挟んで組合わせ固体高分子型燃料電池の単セルを作製し
た。この電池を80℃、燃料利用率70%、酸素利用率
酸素利用率40%、電量密度0.5A/cm2で720
時間の連続発電試験を行った。試験後、電池を分解して
セパレータの面抵抗の変化と腐食状況を目視並びに光学
顕微鏡により観察した結果、面抵抗の変化はほとんど無
く、腐食も認められなかった。以上により、本発明にな
るセパレータは燃料電池用に使用できると判断される。
A single cell of a solid polymer fuel cell was manufactured by combining the obtained two separators with a Gore membrane with a gas diffusion electrode interposed therebetween so that the gas flow became a cross flow. This battery was used at 80 ° C., a fuel utilization rate of 70%, an oxygen utilization rate of 40%, and a charge density of 0.5 A / cm 2 .
A continuous power generation test for hours was performed. After the test, the battery was disassembled and the change in the sheet resistance and the corrosion state of the separator were visually observed and observed by an optical microscope. As a result, there was almost no change in the sheet resistance and no corrosion was observed. From the above, it is determined that the separator according to the present invention can be used for a fuel cell.

【0039】〔実施例9〕油化シェル製エポキシ樹脂
(Ep806)5gに、平均粒径3μmのWCを5、1
0、15、20、25vol%,平均粒径6μmの炭素
粉末を25、20、15、10、5vol%とし、合計
30vol%のなるように添加し、メノウ鉢を用いて混
練し、塗料を作製した。この塗料をキャステング方を用
いて10×15×4mmt及び10×40×2mmtの
大きさの炭素鋼板上に膜厚約100μmで塗布し、15
0℃で6時間焼付けして試料を作製した。
EXAMPLE 9 5 g of WC having an average particle size of 3 μm was added to 5 g of an epoxy resin (Ep806) made by Yuka Shell.
Carbon powders having 0, 15, 20, 25 vol% and an average particle diameter of 6 μm were added to make 25, 20, 15, 10, 5 vol%, and a total of 30 vol% was added, and kneaded using an agate bowl to prepare a paint. did. This coating material was applied on a carbon steel sheet having a size of 10 × 15 × 4 mmt and 10 × 40 × 2 mmt using a casting method with a film thickness of about 100 μm.
The sample was prepared by baking at 0 ° C. for 6 hours.

【0040】大きさ10×15×4μmtの試料を用い
て面抵抗及び分極特性を大きさ10×40×2mmtの
試料を用いて80℃、1モル%H2SO4中で耐酸性試験
により実施した。面抵抗はWCの混合率が5〜25vo
l%の全範囲で46.5〜0.58mΩcm2と小さ
く、又、分極特性も電圧―1から1.5Vの範囲で10
4A/cm2 以下と優れていた。更に、7日間のH2SO
4中での浸漬試験でも重量減少率0.05%以下と優れ
ていた。以上のことから、導電性セラミックス粒子と炭
素粒子と樹脂とを有する樹脂組成物を金属基体の表面に
塗布することにより優れたセパレータが得られることが
明らかである。
Using a sample having a size of 10 × 15 × 4 μmt
The sheet resistance and the polarization characteristics are 10 × 40 × 2 mmt.
80 ° C, 1 mol% H using sampleTwoSOFourAcid resistance test in
Was carried out by As for the sheet resistance, the mixing ratio of WC is 5 to 25 vo.
46.5 to 0.58 mΩcm over the entire range of 1%TwoAnd small
In addition, the polarization characteristics are 10 in the range of voltage -1 to 1.5V.
Tsu FourA / cmTwo The following was excellent. In addition, 7 days of HTwoSO
FourExcellent in weight reduction rate of 0.05% or less even in immersion test in air
I was From the above, conductive ceramic particles and charcoal
A resin composition having elementary particles and a resin is applied to the surface of a metal substrate.
Excellent separator can be obtained by coating
it is obvious.

【0041】[0041]

【発明の効果】本発明によれば、面抵抗が小さく、耐酸
性に優れた固体高分子型燃料電池用金属セパレータが得
られ、高性能で信頼性の高い固体高分子電解質型燃料電
池が得られる。
According to the present invention, a metal separator for a polymer electrolyte fuel cell having low sheet resistance and excellent acid resistance can be obtained, and a solid polymer electrolyte fuel cell having high performance and high reliability can be obtained. Can be

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる固体高分子電解質型燃料電池用
金属セパレータの断面図。
FIG. 1 is a sectional view of a metal separator for a polymer electrolyte fuel cell according to the present invention.

【図2】面抵抗と導電性セラミックス粒子の添加量との
関係を示す線図。
FIG. 2 is a diagram showing the relationship between sheet resistance and the amount of conductive ceramic particles added.

【図3】面抵抗と導電性セラミックス粒子の平均粒径と
の関係を示す線図。
FIG. 3 is a diagram showing a relationship between a sheet resistance and an average particle size of conductive ceramic particles.

【符号の説明】[Explanation of symbols]

1…解質膜、2a、2b…電極、3…導電性セラミック
ス塗料塗布金属セパレータ、3a、3b…ガス流路溝、
4a、4b…冷却水流路溝、5a、5b…シール部材。
DESCRIPTION OF SYMBOLS 1 ... Degradation film, 2a, 2b ... Electrode, 3 ... Metal separator coated with conductive ceramic paint, 3a, 3b ... Gas flow channel,
4a, 4b: cooling water passage grooves, 5a, 5b: sealing members.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年12月5日(2000.12.
5)
[Submission date] December 5, 2000 (200.12.
5)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0001[Correction target item name] 0001

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0001】[0001]

【発明の属する技術分野】本発明は新規な固体高分子電
解質型燃料電池用セパレータ及びそれを用いた固体高分
子電解質型燃料電池に関する。
The present invention relates to relates to a novel solid polymer electrolyte fuel cell separator and a solid polymer electrolyte fuel cells using the same.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0007】本発明は、金属基体の表面が導電性粒子と
樹脂とを有する樹脂組成物で被覆されており、該樹脂組
成物は、面抵抗が0.1〜6.0mΩcm2であり、2
0℃、0.5モル%H2SO4溶液中でー1Vから1.5
Vまで掃除したときの電流密度が10 - 4A/cm2以下又
は80℃、1モル%H2SO4溶液中で168時間浸漬後
の重量減少率が0.1%以下であることが好ましい。
According to the present invention, the surface of a metal substrate is coated with a resin composition having conductive particles and a resin. The resin composition has a sheet resistance of 0.1 to 6.0 mΩcm 2 ,
0 ° C., -1 V to 1.5 in 0.5 mol% H 2 SO 4 solution
The current density at the time of cleaning up V is 10 - 4 A / cm 2 or less, or 80 ° C., it is preferred that 1 mol% H 2 SO 4 solution for 168 hours after dipping weight loss in the 0.1% or less .

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】削除[Correction method] Deleted

【手続補正5】[Procedure amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0040[Correction target item name] 0040

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0040】大きさ10×15×4μmtの試料を用い
て面抵抗及び分極特性を大きさ10×40×2mmtの
試料を用いて80℃、1モル%H2SO4中で耐酸性試験
により実施した。面抵抗はWCの混合率が5〜25vo
l%の全範囲で46.5〜0.58mΩcm2と小さ
く、又、分極特性も電圧―1から1.5Vの範囲で10
- 4A/cm2 以下と優れていた。更に、7日間のH2SO
4中での浸漬試験でも重量減少率0.05%以下と優れ
ていた。以上のことから、導電性セラミックス粒子と炭
素粒子と樹脂とを有する樹脂組成物を金属基体の表面に
塗布することにより優れたセパレータが得られることが
明らかである。
Using a sample having a size of 10 × 15 × 4 μmt
The sheet resistance and the polarization characteristics are 10 × 40 × 2 mmt.
80 ° C, 1 mol% H using sampleTwoSOFourAcid resistance test in
Was carried out by As for the sheet resistance, the mixing ratio of WC is 5 to 25 vo.
46.5 to 0.58 mΩcm over the entire range of 1%TwoAnd small
In addition, the polarization characteristics are 10 in the range of voltage -1 to 1.5V.
- FourA / cmTwo The following was excellent. In addition, 7 days of HTwoSO
FourExcellent in weight reduction rate of 0.05% or less even in immersion test in air
I was From the above, conductive ceramic particles and charcoal
A resin composition having elementary particles and a resin is applied to the surface of a metal substrate.
Excellent separator can be obtained by coating
it is obvious.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉川 正則 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 山内 博史 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 東山 和寿 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 加茂 友一 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 大原 周一 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 5G301 CA01 CA03 CA06 CD02 5H026 AA06 CC03 EE02 EE05 EE11 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masanori Yoshikawa 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside the Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Hirofumi Yamauchi 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture No. 1 Inside Hitachi, Ltd.Hitachi Research Laboratory (72) Inventor Kazuhisa Higashiyama 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd.Hitachi Research Laboratory (72) Inventor Yuichi Kamo Hitachi, Ibaraki Prefecture 7-1-1, Omikacho Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Shuichi Ohara 7-1-1, Omikamachi, Hitachi, Ibaraki F-term Hitachi Research Laboratory, F-term (reference) 5G301 CA01 CA03 CA06 CD02 5H026 AA06 CC03 EE02 EE05 EE11

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】金属基体の表面が導電性セラミックスを含
む導電性粒子と樹脂とを有する樹脂組成物で被覆されて
いることを特徴とする固体高分子型燃料電池用金属セパ
レータ。
1. A metal separator for a polymer electrolyte fuel cell, wherein a surface of a metal substrate is coated with a resin composition having conductive particles containing conductive ceramics and a resin.
【請求項2】金属基体の表面が導電性セラミックス粒子
及び炭素粒子を含む導電性粒子と樹脂とを有する樹脂組
成物で被覆されていることを特徴とする固体高分子型燃
料電池用金属セパレータ。
2. A metal separator for a polymer electrolyte fuel cell, wherein a surface of a metal substrate is coated with a resin composition having a resin and conductive particles including conductive ceramic particles and carbon particles.
【請求項3】請求項1又は2において、前記樹脂組成物
は、20℃、0.5モル%H2SO4溶液中でー1Vから
1.5Vまで掃引したときの電流密度が10 4A/cm2
以下又は80℃、1モル%H2SO4溶液中で168時間
浸漬後の重量減少率が0.1重量%以下であることを特
徴とする固体高分子型燃料電池用金属セパレータ。
3. The method of claim 1 or 2, wherein the resin composition, 20 ° C., 0.5 mol% H 2 SO 4 current density when swept from over 1V to 1.5V in a solution of 10 Tsu 4 A / cm 2
A metal separator for a polymer electrolyte fuel cell, wherein a weight reduction rate after immersion in a 1 mol% H 2 SO 4 solution at 80 ° C. for 168 hours is 0.1% by weight or less.
【請求項4】請求項1〜3のいずれかにおいて、前記導
電性セラミックスが金属珪化物、金属炭化物及び金属窒
化物の少なくとも1種からなることを特徴とする固体高
分子型燃料電池用金属セパレータ。
4. The metal separator for a polymer electrolyte fuel cell according to claim 1, wherein said conductive ceramic is made of at least one of a metal silicide, a metal carbide and a metal nitride. .
【請求項5】請求項1〜4のいずれかにおいて、前記導
電性粒子は樹脂組成物に対して前記20〜50体積%含
有することを特徴とする固体高分子型燃料電池用金属セ
パレータ。
5. The metal separator for a polymer electrolyte fuel cell according to claim 1, wherein the conductive particles are contained in the resin composition in an amount of 20 to 50% by volume.
【請求項6】請求項1〜5のいずれかにおいて、前記導
電性粒子はその平均粒径が1〜10μmであることを特
徴とする固体高分子型燃料電池用金属セパレータ。
6. The metal separator for a polymer electrolyte fuel cell according to claim 1, wherein the conductive particles have an average particle size of 1 to 10 μm.
【請求項7】請求項1〜6のいずれかにおいて、前記樹
脂組成物層の厚さが30〜200μmであることを特徴
とする固体高分子型燃料電池用金属セパレータ。
7. The metal separator for a polymer electrolyte fuel cell according to claim 1, wherein said resin composition layer has a thickness of 30 to 200 μm.
【請求項8】請求項1〜7のいずれかにおいて、前記樹
脂組成物層の面抵抗が0.12〜5.9m Ωcm2であ
ることを特徴とする固体高分子型燃料電池用金属セパレ
ータ。
8. The metal separator for a polymer electrolyte fuel cell according to claim 1, wherein the resin composition layer has a sheet resistance of 0.12 to 5.9 mΩcm 2 .
【請求項9】請求項1〜8のいずれかにおいて、前記樹
脂が、フラン樹脂、エポキシ樹脂及びフッ化ビニリデン
樹脂のいずれかであることを特徴とする固体高分子型燃
料電池用金属セパレータ。
9. A metal separator for a polymer electrolyte fuel cell according to claim 1, wherein said resin is one of a furan resin, an epoxy resin and a vinylidene fluoride resin.
【請求項10】固体高分子電解質膜と、該電解質膜の両
面の各々に設けられた電極と、該各々の電極に配置され
たセパレータとを有する燃料電池セルを備えた固体高分
子型燃料電池において、前記セパレータは、請求項1〜
9のいずれかに記載のセパレータからなることを特徴と
する固体高分子型燃料電池。
10. A solid polymer fuel cell comprising a fuel cell having a solid polymer electrolyte membrane, electrodes provided on both sides of the electrolyte membrane, and separators disposed on each of the electrodes. In the separator, claims 1 to 1
A polymer electrolyte fuel cell comprising the separator according to any one of claims 9 to 13.
【請求項11】導電性セラミックス粒子及び炭素粒子を
含む導電性粒子と樹脂とを有することを特徴とする導電
性塗料。
11. A conductive paint comprising conductive resin containing conductive ceramic particles and carbon particles and a resin.
JP2000237864A 2000-08-07 2000-08-07 Solid polymer fuel cell metal separator and fuel cell using the same Pending JP2002050366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000237864A JP2002050366A (en) 2000-08-07 2000-08-07 Solid polymer fuel cell metal separator and fuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000237864A JP2002050366A (en) 2000-08-07 2000-08-07 Solid polymer fuel cell metal separator and fuel cell using the same

Publications (1)

Publication Number Publication Date
JP2002050366A true JP2002050366A (en) 2002-02-15

Family

ID=18729650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000237864A Pending JP2002050366A (en) 2000-08-07 2000-08-07 Solid polymer fuel cell metal separator and fuel cell using the same

Country Status (1)

Country Link
JP (1) JP2002050366A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049765A1 (en) * 2005-10-27 2007-05-03 Mitsubishi Plastics, Inc. Separator for fuel cell, fuel cell using the separator, and paint composition for preparaing the separator
JP2009256491A (en) * 2008-04-17 2009-11-05 Kansai Paint Co Ltd Cationic electrodeposition coating composition
DE102019007298A1 (en) * 2019-10-21 2021-04-22 Daimler Ag Method for producing a partial plate of a bipolar plate
WO2021095312A1 (en) * 2019-11-11 2021-05-20 トヨタ車体株式会社 Separator for fuel cells, method for producing separator for fuel cells, and method for producing sheet for thermal transfer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049765A1 (en) * 2005-10-27 2007-05-03 Mitsubishi Plastics, Inc. Separator for fuel cell, fuel cell using the separator, and paint composition for preparaing the separator
JP2009256491A (en) * 2008-04-17 2009-11-05 Kansai Paint Co Ltd Cationic electrodeposition coating composition
DE102019007298A1 (en) * 2019-10-21 2021-04-22 Daimler Ag Method for producing a partial plate of a bipolar plate
WO2021095312A1 (en) * 2019-11-11 2021-05-20 トヨタ車体株式会社 Separator for fuel cells, method for producing separator for fuel cells, and method for producing sheet for thermal transfer

Similar Documents

Publication Publication Date Title
KR100429039B1 (en) Polymer electrolyte fuel cell
US6866958B2 (en) Ultra-low loadings of Au for stainless steel bipolar plates
CA2139167C (en) Electrode used in electrochemical reaction and fuel cell using the same
JP2006156386A (en) Metal separator for fuel cell, manufacturing method of the same, and fuel cell stack including the same
US8168025B2 (en) Methods of making components for electrochemical cells
JP4010036B2 (en) Solid polymer electrolyte fuel cell
JP5192743B2 (en) Method for making super hydrophilic conductive surfaces for fuel cell bipolar plates
US8007958B2 (en) PEM fuel cell with improved water management
JP2008541377A (en) Hydrophilic, conductive fluid distribution plate for fuel cells
JPH06267555A (en) Electrochemical device
US20090176139A1 (en) Passivated metallic bipolar plates and a method for producing the same
US7960071B2 (en) Separator for fuel cell using a metal plate coated with titanium nitride, method for manufacturing the same, and polymer electrolyte membrane fuel cell comprising the separator
US20140011115A1 (en) Proton-exchange membrane fuel cell having enhanced performance
CN110098416A (en) Separator for fuel battery
CN105556720B (en) The manufacturing method of fuel cell partition, fuel cell and fuel cell partition
WO2007124011A2 (en) Methods of making components for electrochemical cells
US8021797B2 (en) Bipolar plate and fuel cell comprising such a bipolar plate
JP2002050366A (en) Solid polymer fuel cell metal separator and fuel cell using the same
JP2007149661A (en) Separator for fuel cell, fuel cell using the separator, and coating composition for preparing separator
Gómez et al. Electrodes based on nafion and epoxy-graphene composites for improving the performance and durability of open cathode fuel cells, prepared by electrospray deposition
JP2003297385A (en) Manufacturing method of fuel cell separator, fuel cell separator and solid high polymer fuel cell
US7687100B2 (en) Method of dry coating flow field plates for increased durability
JP2002334704A (en) Separator for solid polymer type fuel cell
JP5111893B2 (en) Fuel cell separator and fuel cell
WO2007049765A1 (en) Separator for fuel cell, fuel cell using the separator, and paint composition for preparaing the separator