JP2002048693A - Evaluation method for high-fatigue-strength material in high-strength steel and high-fatigue-strength material - Google Patents

Evaluation method for high-fatigue-strength material in high-strength steel and high-fatigue-strength material

Info

Publication number
JP2002048693A
JP2002048693A JP2000232531A JP2000232531A JP2002048693A JP 2002048693 A JP2002048693 A JP 2002048693A JP 2000232531 A JP2000232531 A JP 2000232531A JP 2000232531 A JP2000232531 A JP 2000232531A JP 2002048693 A JP2002048693 A JP 2002048693A
Authority
JP
Japan
Prior art keywords
max
area
strength
steel
fatigue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000232531A
Other languages
Japanese (ja)
Other versions
JP4360509B2 (en
Inventor
Tatsuaki Sawai
達明 沢井
Saburo Matsuoka
三郎 松岡
Takayuki Abe
孝行 安部
Etsuo Takeuchi
悦男 竹内
Kensuke Miyahara
健介 宮原
Hisashi Hirukawa
寿 蛭川
Kaneaki Tsuzaki
兼彰 津崎
Yuji Kimura
勇次 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
National Institute for Materials Science
Original Assignee
Kawasaki Heavy Industries Ltd
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, National Institute for Materials Science filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2000232531A priority Critical patent/JP4360509B2/en
Priority to US09/917,733 priority patent/US6546808B2/en
Priority to EP01306529A priority patent/EP1178313A3/en
Publication of JP2002048693A publication Critical patent/JP2002048693A/en
Application granted granted Critical
Publication of JP4360509B2 publication Critical patent/JP4360509B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/204Structure thereof, e.g. crystal structure
    • G01N33/2045Defects

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an evaluation method, for a high-fatigue-strength material in high-strength steel, in which a relationship between a defect size and a fatigue strength is taken into consideration and to provide the high-fatigue-strength material. SOLUTION: In steel whose tensile strength σB (unit: MPA) is known and whose Vickers hardness Hv is known, a fracture starting point is set only on its surface. Then, its defect area is measured. When the defect size area is at 45.8/σB2 or 4.47/Hv2, the design guideline of the material whose fatigue limit σw (unit: MPa) reaches σw>=0.53sB or σw>=1.6 Hv is given.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この出願の発明は、高強度鋼
における高疲労強度材料の評価法とこの評価法によって
製造される高疲労強度材料に関するものである。さらに
詳しくは、この出願の発明は、機械構造物や自動車部品
などの軽量化、小型および高性能化を図るためのギガサ
イクル疲労強度を備えた高強度鋼の材料設計と製造に有
用な高強度鋼における高疲労強度材料の評価法と高疲労
強度材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating a high fatigue strength material in high strength steel and a high fatigue strength material produced by the evaluation method. More specifically, the invention of this application relates to a high-strength steel useful for material design and manufacture of gigacycle fatigue strength for achieving lighter weight, smaller size, and higher performance of mechanical structures and automobile parts. The present invention relates to a method for evaluating high fatigue strength materials in steel and high fatigue strength materials.

【0002】[0002]

【従来の技術と発明の課題】従来より、機械構造物や自
動車部品などの軽量化、小型化および高性能化を図るた
めに、ギガサイクルほどの高疲労強度に優れた高強度鋼
が求められている。ところが、特に、1200MPa超
級高強度鋼のギガサイクル域では介在物や組織割れを起
点とした内部破壊のために、疲労強度が低下してしま
い、高疲労強度を備えた高強度鋼を製造することは、技
術的に容易なことではない。さらには、その内部破壊の
メカニズムが複雑なために、より高疲労強度を備えた高
強度鋼を製造するための材料設計法もほとんど知られて
いない。
2. Description of the Related Art Conventionally, in order to reduce the weight, size, and performance of mechanical structures and automobile parts, high-strength steels having high fatigue strength on the order of gigacycles have been required. ing. However, especially in the gigacycle range of 1200 MPa super-grade high-strength steel, fatigue strength is reduced due to internal destruction starting from inclusions and structural cracks, and high-strength steel with high fatigue strength must be manufactured. Is not technically easy. Furthermore, due to the complicated mechanism of internal fracture, there is almost no known material design method for producing high-strength steel having higher fatigue strength.

【0003】例えば、高強度鋼を製造するための材料設
計法のひとつとして、介在物の欠陥寸法や性状に着目
し、その介在物寸法と疲労限との相関式から、介在物の
欠陥寸法を測定することにより、疲労限を把握する方法
が知られている。
[0003] For example, as one of material design methods for manufacturing high-strength steel, attention is paid to the defect size and properties of inclusions, and the defect size of inclusions is calculated from a correlation equation between the inclusion size and the fatigue limit. There is known a method of measuring the fatigue limit by measuring.

【0004】しかしながら、この方法は、複雑な内部破
損メカニズムを単純化して近似的な疲労限を把握してい
るに過ぎないことから、より高疲労強度を備えた高強度
鋼を製造するための設計法を与えるものではない。
[0004] However, this method merely simplifies a complicated internal failure mechanism and grasps an approximate fatigue limit. Therefore, this method is designed to produce a high-strength steel with higher fatigue strength. It does not give a law.

【0005】このような状況において、最近になって、
複雑な内部破壊メカニズムを解明するひとつの手がかり
として、介在物の周りの水素による裂進展と考えられる
凸凹欠陥領域(ODA:Optically Dark Area)が観察さ
れ、このODA欠陥領域と疲労強度との関係を解明しよ
うとする試みがなされている。ODA欠陥領域の発見に
より、将来的には、より高疲労強度を備えた高強度鋼の
設計法に寄与する可能性が考えられるが、いまだ、具体
的な設計指針を与えるまでには到っていない。
In such a situation, recently,
As one clue to elucidating the complex internal fracture mechanism, an ODA (Optically Dark Area), which is thought to be crack propagation due to hydrogen around inclusions, has been observed. Attempts to elucidate have been made. The discovery of the ODA defect region may contribute to the design of high-strength steels with higher fatigue strength in the future, but has yet to give specific design guidelines. Absent.

【0006】この出願の発明は、以上の通りの事情に鑑
みてなされたものであり、ODA欠陥寸法と疲労強度と
の関係をも考慮に入れた、高強度鋼における高疲労強度
材料の評価法と高疲労強度材料を提供することを課題と
している。
[0006] The invention of this application has been made in view of the above circumstances, and a method for evaluating a high fatigue strength material in a high strength steel in consideration of the relationship between the ODA defect size and the fatigue strength. And high fatigue strength materials.

【0007】[0007]

【課題を解決するための手段】この出願の発明は、上記
の課題を解決するものとして、第1には、引張強度σB
(単位はMPa)、ビッカース硬さHvが既知である鋼
において、破壊起点が表面だけである場合、その鋼に含
まれる欠陥の√area(単位はm)が、45.8/σ
B 2 または4.47/Hv2 以下であるとき、疲労限σ
w (単位はMPa)が、σw が≧0.5σB またはσw
≧1.6Hvを達成するという材料の設計指針を与える
ことを特徴とする高強度鋼における高疲労強度材料の評
価法を提供する。
SUMMARY OF THE INVENTION The claimed invention is as to solve the above problems, the first, the tensile strength sigma B
(Unit: MPa) In a steel whose Vickers hardness Hv is known, when the fracture origin is only the surface, the √area (unit: m) of the defect contained in the steel is 45.8 / σ.
When B 2 or 4.47 / Hv 2 or less, the fatigue limit σ
w (in MPa), σ w ≧ 0.5σ B or σ w
Provided is a method for evaluating a material having a high fatigue strength in a high-strength steel, which provides a material design guideline for achieving ≧ 1.6 Hv.

【0008】この出願の発明は、第2には、引張強度σ
B (単位はMPa)、ビッカース硬さHvが既知である
鋼において、破壊起点が内部である場合、介在物の欠陥
面積areaを測定し、疲労限σw (単位はMPa)
が、σw ≧3.38(areai -1/4を達成するとい
う材料の設計指針を与えることを特徴とする高強度鋼に
おける高疲労強度材料を提供し、第3には、前記いずれ
かの高疲労強度材料の評価を可能にする方法であって、
組織均一(不均一組織のサイズ低下)あるいは結晶微細
化(ブロック巾低下)を図った場合、最大不均一組織欠
陥面積areama x,m を測定し、最大不均一組織欠陥寸
法√areamax,m (√areamax,m の単位はμm)
の極値分布が、直線√areamax,m =0と√area
max,m =0.9403y+4.571(検査基準面積S
0 =6.2×10-92 )に囲まれる領域にあり、また
は、最大ブロック巾dmax (dmax の単位はμm)の極
値分布が直線dmax =0とdmax =0.217y+0.
701(yは基準化変数、検査基準面積1×10-10
2 )に囲まれる領域にあることを特徴とする高強度組織
の評価法を提供する。
[0008] Secondly, the invention of this application relates to a tensile strength σ.
B (unit: MPa) In a steel whose Vickers hardness Hv is known, when the fracture origin is inside, the defect area area of the inclusion is measured, and the fatigue limit σ w (unit: MPa)
Provide a high fatigue strength material in a high strength steel characterized by providing a material design guideline that achieves σ w ≧ 3.38 (area i ) −1/4. A method that enables the evaluation of some high fatigue strength materials,
If tried to tissue uniform (size reduction of heterogeneous tissue) or grain refiner (block width decreases), the maximum inhomogeneous structure area area ma x, a m was measured, the maximum inhomogeneous structure dimensions} area max, m (√area max, m is in μm)
Is a straight line area max, m = 0 and √area
max, m = 0.9403y + 4.571 (inspection reference area S
0 = 6.2 × 10 −9 m 2 ), or the extreme value distribution of the maximum block width d max (the unit of d max is μm) has straight lines d max = 0 and d max = 0. 217y + 0.
701 (y is a standardized variable, inspection standard area 1 × 10 −10 m
2 ) To provide a method for evaluating a high-strength tissue characterized by being in an area surrounded by 2 ).

【0009】そして、この出願の発明は、第4には、前
記第3の発明の評価法のもとで、前記第1または第2の
発明によって与えられた材料の設計指針に沿って鋼を製
造することを特徴とする高疲労強度材料の製造方法を提
供し、第5には、2×10-6 Pa以上の高真空中で鋼を
焼戻す熱処理を施すことにより前記第1の発明の方法に
より与えられた材料の設計指針に沿った鋼を製造するこ
とを特徴とする高疲労強度材料の製造方法を提供する。
Fourth, the invention of the present application is
According to the evaluation method of the third invention, the first or the second
Steel is manufactured in accordance with the material design guidelines given by the invention.
A method for producing high fatigue strength materials characterized by
5th, 2 × 10-6 Steel in high vacuum over Pa
By performing a tempering heat treatment, the method of the first invention can be performed.
Manufacturing steel in accordance with the given material design guidelines.
And a method for producing a high fatigue strength material.

【0010】さらに、この出願の発明は、第6には、前
記第3の発明のもとで、前記第1または第2の発明評価
法によって与えられた材料の設計指針に沿って製造され
た高疲労強度材料を提供する。
Further, the invention of this application is, sixthly, manufactured under the third invention in accordance with the material design guidelines given by the first or second invention evaluation method. Provide high fatigue strength material.

【0011】[0011]

【発明の実施の形態】この出願の発明は、上記のとおり
の特徴をもつものであるが、以下にその実施の形態につ
いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The invention of this application has the features as described above, and embodiments thereof will be described below.

【0012】この出願の発明は、ODA欠陥寸法を含め
た介在物の欠陥寸法と疲労強度との相関に着目し、ア)
破壊起点が表面のみの場合、イ)破壊起点が内部の場
合、および、ウ)組織均一化あるいは結晶粒微細化を図
った場合の主に3つの場合について、欠陥寸法を定量化
することにより、疲労強度を算出することに大きな特徴
がある。
The invention of this application focuses on the correlation between the defect size of inclusions including the ODA defect size and the fatigue strength.
By quantifying the defect size, mainly in the three cases where the fracture origin is only the surface, a) when the fracture origin is internal, and c) when the structure is homogenized or the crystal grains are refined, There is a great feature in calculating the fatigue strength.

【0013】したがって、この出願の発明は、疲労強度
と介在物寸法の相関を明確化しているので、的確な大き
さの介在物を提供することことができ、同一の機械的強
度であっても、より疲労強度の高い高強度鋼を製造する
ことができ、さらに、高強度鋼の疲労設計において信頼
性を向上させることができる。
Therefore, the invention of this application clarifies the correlation between the fatigue strength and the size of the inclusions, so that it is possible to provide inclusions of an accurate size, and even if the mechanical strength is the same. Accordingly, it is possible to manufacture a high-strength steel having a higher fatigue strength, and it is possible to improve reliability in fatigue design of the high-strength steel.

【0014】なお、この発明において、介在物の欠陥寸
法とは、介在物の荷重方向に垂直な面への欠陥面積ルー
トを指し、次元上は長さの単位となる。また、最大不均
一組織欠陥寸法とは、介在物不均一組織の荷重方向に垂
直な面への欠陥面積の最大値のルートを示し、次元上は
長さの単位となる。
In the present invention, the defect size of the inclusion refers to a defect area route to a plane perpendicular to the load direction of the inclusion, and is a unit of length in dimension. The maximum non-uniform structure defect size indicates a route of the maximum value of the defect area to a plane perpendicular to the load direction of the inclusion non-uniform structure, and is a unit of length on a dimension.

【0015】さらに、この発明においては、その設計法
により製造された高強度鋼の提供をも可能とし、具体的
には、引張強度σB (単位はMPa)、ビッカース硬さ
Hv、疲労限σw (単位はMPa)としたときσw
0.5σB またはσW ≧1.6Hv2 もの疲労強度を持
つ高強度鋼も提供する。このような疲労強度を持つ高強
鋼は現在まで存在しない。
Further, the present invention also makes it possible to provide a high-strength steel manufactured by the design method. Specifically, tensile strength σ B (unit is MPa), Vickers hardness Hv, fatigue limit σ w (unit is MPa) σ w
High strength steels having a fatigue strength of as much as 0.5 σ B or σ W ≧ 1.6 Hv 2 are also provided. There is no high-strength steel having such fatigue strength to date.

【0016】引張強度σB (単位はMPa)、ビッカー
ス硬さHvが既知である鋼において、まずはじめに、
ア)破壊起点が表面だけである場合(内部破壊に優先し
て表面破壊が起こる場合)の鋼について、疲労限σW
求め方について説明する。
In a steel having a known tensile strength σ B (unit is MPa) and Vickers hardness Hv, first,
A) A method of obtaining the fatigue limit σ W for a steel in which the fracture origin is only the surface (surface fracture occurs prior to internal fracture) will be described.

【0017】この場合、破壊起点が表面だけであるの
で、表面破壊の疲労限σwsurfaceが0.5σB または
1.6Hvを超えるODAが発生しない高強度鋼と仮定
する。欠陥√area(単位はm)の特殊な場合とし
て、内部破壊に優先して表面破壊が起こる欠陥領域の最
大値(最大欠陥)(√area)max (単位はm)は、
表面破壊の疲労限σwsurfaceを用いて、
In this case, since the fracture origin is only the surface, it is assumed that the fatigue limit σ wsurface of the surface fracture is 0.5 σ B or a high-strength steel which does not generate ODA exceeding 1.6 Hv. As a special case of the defect √ area (unit: m), the maximum value (maximum defect) (√ area) max (unit: m) of the defect area in which surface rupture occurs prior to internal destruction is
Using the fatigue limit σ wsurface of surface fracture,

【0018】[0018]

【数1】 (Equation 1)

【0019】で与えられる。ここで、ΔKthは亀裂が進
展する応力拡大係数範囲の下限界値で、その一般的な値
は、およそ3MPam1/2 である。よって、最大欠陥寸
法(√area)max は、引張強度σB (単位はMP
a)とビッカース硬さHvを用いて、
## EQU1 ## Here, ΔK th is a lower limit value of a stress intensity factor range in which a crack propagates, and its general value is about 3 MPam 1/2 . Therefore, the maximum defect size (√area) max is the tensile strength σ B (unit is MP
Using a) and Vickers hardness Hv,

【0020】[0020]

【数2】 (Equation 2)

【0021】となる。この式(2)より、破壊起点が表
面だけである場合には欠陥寸法√areaが、45.8
/σB 2 または4.47/Hv2 以下であれば、疲労限
σw は、σw が≧0.5σB またはσw ≧1.6Hv2
である高強度鋼を製造できるという材料の設計指針を与
えることができる。
## EQU1 ## From this equation (2), when the fracture origin is only the surface, the defect size √area is 45.8.
/ Σ B 2 or 4.47 / Hv 2 or less, the fatigue limit σ w is such that σ w is ≧ 0.5σ B or σ w ≧ 1.6Hv 2
Can provide a material design guide that can produce high-strength steel.

【0022】つぎに、イ)破壊起点が内部である場合の
疲労限σw の求め方について説明する。内部破壊起点で
の疲労限が優先されるために、(介在物の欠陥寸法)を
areai (√areai の単位はm)とすると、疲労
限σw は、
Next, a) how to determine the fatigue limit σ w when the fracture starting point is inside will be described. Since the fatigue limit at the internal fracture starting point is prioritized, if (defect size of inclusions) is area i (√area i is in m), the fatigue limit σ w becomes

【0023】[0023]

【数3】 (Equation 3)

【0024】となる。ここでΔKth=3MPam1/2
すると、疲労限σw は、
## EQU1 ## Here, assuming that ΔK th = 3 MPam 1/2 , the fatigue limit σ w becomes

【0025】[0025]

【数4】 (Equation 4)

【0026】となる。つまり、ODAが発生せず介在物
寸法の規制がない鋼では、介在物の欠陥面積areai
が測定されると、疲労限σw は3.38(areai
-1/4以上のものになるという材料設計の指針が与えられ
る。
## EQU1 ## That is, in the case of steel in which ODA does not occur and the size of inclusions is not restricted, the defect area of the inclusions area i
Is measured, the fatigue limit σ w is 3.38 (area i )
Guidance on material design that will be more than -1/4 is given.

【0027】次に、ウ)前記ア)イ)を可能とする高強
度組織の評価法として、組織均一(不均一組織のサイズ
低下)あるいは組織微細化(ブロック巾低下)を図った
場合について説明する。
Next, (c) As a method for evaluating a high-strength structure that enables the above-mentioned a) and a), a case where the structure is uniform (reduction in the size of a non-uniform structure) or finer (the block width is reduced) will be described. I do.

【0028】すなわちこの場合、最大不均一組織欠陥面
積areamax,m を測定し、最大不均一組織欠陥寸法√
areamax,m の極値分布が直線、√areamax,m
0.9403y+4.571と√areamax,m =0に
囲まれる領域にあり、最大ブロック巾dm の極値分布が
直線dmax =0.217y+0.701とdmax =0と
に囲まれる領域にあることが必要である。このとき、最
大不均一組織欠陥寸法√aream を求めるための検査
基準面積はS0 =6.2×10-92 程度が望ましく、
最大ブロック巾dmax の検査基準面積はS0 =1×10
-10 2 程度が望ましい。
That is, in this case, the maximum non-uniform tissue defect area area max, m is measured, and the maximum non-uniform tissue defect size √
The extreme value distribution of area max, m is a straight line, √area max, m =
0.9403y + 4.571 and} area max, in the area surrounded by the m = 0, in regions where extreme value distribution of the maximum block width d m is surrounded by the straight line d max = 0.217y + 0.701 and d max = 0 It is necessary to be. In this case, inspection reference area for determining the maximum inhomogeneous structure dimensions} area m is S 0 = 6.2 × 10 -9 m 2 about desirably,
The inspection reference area of the maximum block width d max is S 0 = 1 × 10
About -10 m 2 is desirable.

【0029】以下実施例を示し、さらにこの発明につい
て詳しく説明する。
Hereinafter, the present invention will be described in detail with reference to Examples.

【0030】[0030]

【実施例】実施例1 A 試料の作成と前処理 この出願の発明の評価方法の精度を実証するために、ば
ね鋼SUP12と弁ばね鋼SWOSC−Vを用い、実際
に試験を行った。まずはじめに、その試料の作成と前処
理および試料の機械的性状について調べた。
【Example】Example 1 A Sample preparation and pretreatment  To demonstrate the accuracy of the evaluation method of the invention of this application,
Actually, using the steel SUP12 and the valve spring steel SWOSC-V
Was tested. First, preparation of the sample and preparation
And the mechanical properties of the samples were investigated.

【0031】ばね鋼SUP12と弁ばね鋼SWOSC−
Vの化学成分は表1に示した通りであり、そのヒートの
種類により、ばね鋼SUP12が4種類(ヒートA,B
2,C1,D1,)、弁ばね鋼SWOSC−Vが2種類
(E2,F)の計6種類用意した。それらの鋼の形状と
欠陥寸法、熱処理条件、引張強度σB 、およびビッカー
ス硬さHvは、表2に示した通りであり、ばね鋼SUP
12のヒートD1については、熱処理条件の異なる2種
類、すなわち、通常焼入れ焼戻し材(QT材)と改良オ
ースフォーム材(AF材)とを用意した。
Spring steel SUP12 and valve spring steel SWOSC-
The chemical composition of V is as shown in Table 1. Depending on the type of heat, four types of spring steel SUP12 (heat A, B
2, C1, D1,) and two types (E2, F) of valve spring steel SWOSC-V were prepared. The shape and defect size of these steels, heat treatment conditions, tensile strength σ B , and Vickers hardness Hv are as shown in Table 2, and the spring steel SUP
Regarding the heat D1 of No. 12, two types having different heat treatment conditions, that is, a normal quenched and tempered material (QT material) and an improved aus foam material (AF material) were prepared.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】これらの計6種類の鋼に対して、まずはじ
めに、最大欠陥寸法√areamax ,mを求めるために極
値統計グラフを作成した。この実施例の場合では、最大
介在物の欠陥寸法は、内部破壊しないで表面破壊だけの
場合を保証している。
For these six types of steel in total, first, an extreme value statistical graph was prepared in order to obtain the maximum defect size √area max , m . In the case of this embodiment, the defect size of the largest inclusion guarantees the case of only surface destruction without internal destruction.

【0035】その極値統計グラフは、検査基準面積S0
=0.482mm2 において最大欠陥寸法√area
max,m を求め、この手順を異なる場所で20回行い、最
大介在物の分布直線を求めた。この分布直線を基に疲労
試験片の最小断欠陥寸法(πr2 =π×62 =28.3
mm2 )、rは半径)に存在する最大欠陥寸法√are
max,m を求め、表3に示した。
The extreme value statistical graph shows the inspection reference area S 0.
= Maximum defect size at 0.482 mm 2 √area
The maximum and m were obtained, and this procedure was performed 20 times at different places to obtain the distribution line of the maximum inclusion. Based on this distribution straight line, the minimum defect size of the fatigue test piece (πr 2 = π × 6 2 = 28.3)
mm 2 ), and r is the maximum defect size √are existing in the radius).
a max, m was determined and is shown in Table 3.

【0036】[0036]

【表3】 [Table 3]

【0037】表3によると、SUP12鋼Aヒートの√
areamax,m =15μmを示す介在物はAl2 3
介在物であるが、それ以外の4種類のSUP12鋼(B
2,C1,D1ヒート)と2種類のSWOSC−V鋼
(E2,Fヒート)では、Al2 3 系複合介在物また
はSiO2 系介在物であり、最新の介在物軟質化制御が
行われていることがわかる。
According to Table 3, √ of SUP12 steel A heat
The inclusions showing area max, m = 15 μm are Al 2 O 3 inclusions, but the other four SUP12 steels (B
2, C1, D1 heat) and two types of SWOSC-V steel (E2, F heat) are Al 2 O 3 -based composite inclusions or SiO 2 -based inclusions, and the latest inclusion softening control is performed. You can see that it is.

【0038】この発明で対象としている1200MPa
超級の高強度鋼の引張強度σw と103 回疲労限の関係
は図1(a)に、ビッカース硬さHvと108 回疲労限
の関係は図1(b)に示した通りであり、これらの図に
は、SUP12鋼AF材の表面破壊◆印と内部破壊◇
印、SUP12鋼QT材の内部破壊△印を示している。
また、これらの図においては、後述の図11と図12か
ら求められる108 回疲労限を、◆印と◇印を用いて示
している。内部破壊(◇印)の欠陥寸法は破面上で観察
したODAを伴わない介在物の欠陥寸法の平均値20μ
mを用いた。またこれらの図には、低強度鋼(炭素鋼、
低合金鋼、ばね鋼)についても、表面破壊の場合を+
印、内部破壊の場合を×印で記してある。この図中×印
で示す低強度鋼の内部破壊した結果では、破壊起点はA
2 3 系介在物であった。低強度鋼ではσw =0.5
×σB の関係が認められるが、SUP12鋼の改良オー
スフォーム材(AF材)とSUP12鋼の通常焼入れ焼
戻し材(QT材)の高強度鋼では、引張強度と疲労限の
相関は見られない。
1200 MPa which is the object of the present invention
The tensile strength sigma w and relationships 10 3 times the fatigue limit of the super-class high-strength steel FIG. 1 (a), the relationship of Vickers hardness Hv and 10 8 times fatigue limit be as shown in FIG. 1 (b) In these figures, the surface fracture of the SUP12 steel AF material {mark and internal fracture}
The mark indicates the internal fracture of the SUP12 steel QT material.
Further, in these figures, the 10 8 times fatigue limit obtained from 11 and 12 to be described later are denoted by the mark and ◇ mark ◆. The average size of the defect size of the inclusions without ODA observed on the fracture surface is 20μ, which is the defect size of internal fracture (marked by ◇).
m was used. These figures also show low strength steel (carbon steel,
+ Low alloy steel, spring steel)
The mark and the case of internal destruction are marked with x. In the result of the internal fracture of the low-strength steel indicated by the mark x in this figure, the fracture origin is A
It was l 2 O 3 inclusions. Σ w = 0.5 for low strength steel
Although a relationship of × σ B is recognized, there is no correlation between the tensile strength and the fatigue limit in the high-strength steel of the improved aus foam material (AF material) of SUP12 steel and the normal quenched and tempered material of SUP12 steel (QT material). .

【0039】この図1(a)(b)から、AF材では内
部破壊したとしてもσw =0.5または、σB ,σw
1.6Hvを超えていることがわかり、この発明の評価
法により、高疲労強度の鋼を設計できることがわかる。B 内部破壊起点考慮した評価方法 次に、最近では、内部破壊起点周りのSEM写真を示し
た図2(a)のように、介在物周りのSEM写真で観察
されるような介在物周りの凸凹欠陥寸法(ODA;Opti
cally Dark Area)が通常の疲労き裂に先立って形成さ
れ、介在物の実効欠陥寸法を大きくしていることが予測
されているので、この点についても考慮した。すなわち
疲労試験を実施した高強度鋼を調査した結果、ODAの
欠陥寸法と介在物の欠陥寸法には図3に示すような相
関、すなわち、D=2dの相関があることを見出した。
From FIGS. 1 (a) and 1 (b), the inside of the AF material
Σw= 0.5 or σB, Σw=
It was found that the value exceeded 1.6 Hv.
It can be understood that steel with high fatigue strength can be designed by the method.B. Evaluation method considering internal fracture origin  Next, recently, a SEM photograph around the internal fracture origin is shown.
Observed by SEM photograph around the inclusion as shown in Fig. 2 (a)
Of irregularities around inclusions (ODA; Opti
cally Dark Area) formed prior to normal fatigue cracking
Is expected to increase the effective defect size of inclusions
This has been taken into account. Ie
As a result of investigating the high-strength steels subjected to the fatigue test,
As shown in Fig. 3, the defect size and the inclusion size
Seki, that is, a correlation of D = 2d was found.

【0040】ここで、Dは縦軸であり、介在物起点内部
破壊でのODAによる欠陥寸法をも含めた全体の欠陥寸
法√areah であり、dは横軸であり、破壊起点が内
部である場合(ODAの影響がない場合)の介在物のみ
の欠陥寸法√areai である。この状態を模式的に示
したものは、図4である。
Here, D is the vertical axis, the total defect size √area h including the defect size due to ODA in the internal fracture starting from the inclusion, d is the horizontal axis, and the fracture origin is the internal In a certain case (in the case where there is no influence of the ODA), the defect size of only the inclusion is 介 在 area i . FIG. 4 schematically shows this state.

【0041】以上のことから、疲労限σw と欠陥寸法√
areaの関係を図5に整理した。この図5において、
後述の図11と図12から求められる108 回疲労限
を、◆印と◇印を用いて示し、表面破壊(◆印)の欠陥
寸法は表3のD1ヒートAF材の最大不均一組織欠陥寸
法√areamax,m =5μmが存在すると仮定した。こ
こで、横軸の欠陥寸法√areaは、介在物起点内部破
壊ではODAを含めた全体の欠陥寸法√areah 、介
在物の欠陥寸法に規制のない場合の介在物のみの欠陥寸
法√areai 、および、組織割れ起点内部破壊の場合
の欠陥寸法√areamax,m を用いている。相関関係を
表す図中の直線(イ)は、
From the above, the fatigue limit σ w and the defect size √
FIG. 5 shows the relationship between the areas. In FIG.
The 10 8 fatigue limit obtained from FIG. 11 and FIG. 12 described below is indicated by Δ and Δ marks, and the defect size of surface fracture (Δ mark) is the maximum non-uniform structure defect of the D1 heat AF material in Table 3. It was assumed that the dimension √area max, m = 5 μm existed. Here, the defect dimensions} area on the horizontal axis, inclusions originated internal fracture entire defect size} area h including ODA is, inclusion defects dimensions} area i of the inclusions in the absence of regulation in the defect size only , And the defect size √area max, m in the case of internal fracture at the structural crack origin. The straight line (a) in the figure showing the correlation is

【0042】[0042]

【数5】 (Equation 5)

【0043】で与えられる。Is given by

【0044】ここで、ΔKth=3MPam1/2 とした
ときの直線(イ)と、表面破壊の疲労限をあらわすσw
≧0.5×σB 、またはσw ≧1.6Hvで与えられる
直線(ロ)の交点から、最大欠陥寸法(√area)
max は、
Here, a straight line (a) when ΔKth = 3 MPam 1/2 and σ w representing the fatigue limit of surface fracture.
From the intersection of the straight lines (b) given by ≧ 0.5 × σ B or σ w ≧ 1.6Hv, the maximum defect size (√area)
max is

【0045】[0045]

【数6】 (Equation 6)

【0046】のようになる。Is as follows.

【0047】この式(6)より、この本発明において
は、この下限以下の値に欠陥寸法を規制することで、高
強度鋼の疲労限が引張強度の0.5倍以上まはたビッカ
ース硬さの1.6倍以上になることがわかる。C 介在物欠陥寸法の規制がない場合 一方、介在物起点内部破壊に関しては、介在物周りのO
DAの影響がほとんどないと仮定すると、前記図2に示
すように、欠陥寸法は介在物の欠陥寸法√areai
なわちODAを含めた欠陥寸法√areah の半分とな
り、同じ引張強度でもσw =3.38(areai
-1/4で表される高疲労強度の高強度鋼が得られることが
わかる。実施例2 次に、組織均一結晶粒微細化を行ったSUP12鋼に対
して、この発明の評価法を適用して高強度鋼を設計し
た。
From this equation (6), it can be seen that
Is controlled by limiting the defect size to a value below this lower limit.
The fatigue limit of high-strength steel is 0.5 times or more of tensile strength or Vicca
It can be seen that the hardness is 1.6 times or more of the base hardness.C When there is no regulation on the size of inclusion defects  On the other hand, regarding the internal fracture originating from the inclusion, O
Assuming that the influence of DA is negligible, FIG.
As described above, the defect size is the defect size of the inclusion 介 在 areaiYou
That is, the defect size including the ODA √ areahHalf of
Σ at the same tensile strengthw= 3.38 (areai)
-1/4High strength steel with high fatigue strength expressed by
Understand.Example 2  Next, for SUP12 steel with refined grains with uniform structure,
The high strength steel was designed by applying the evaluation method of the present invention.
Was.

【0048】図6は、組織均一結晶粒微細化のため、S
UP12鋼に対して施した、加工熱処理のプロセスを例
示したものである。すなわち、前処理として、50mm
径の丸棒を電気炉中で1200℃、1時間保持した後
に、板厚25mmまで圧延し、空冷した。改良オースフ
ォーム処理としては、電気炉中で845℃、30分間保
持し、800℃まで空冷した後、板厚12mmまで2パ
スで圧延し、水冷した。焼戻しとしては、ソルトバスで
430℃、1時間保持した後に水冷した。ビッカース硬
さは534である。
FIG. 6 shows a graph of S
Fig. 3 illustrates a thermomechanical process applied to UP12 steel. That is, 50 mm
The round bar having a diameter was held in an electric furnace at 1200 ° C. for 1 hour, then rolled to a plate thickness of 25 mm, and air-cooled. As the improved ausform treatment, the steel sheet was kept at 845 ° C. for 30 minutes in an electric furnace, air-cooled to 800 ° C., rolled to a sheet thickness of 12 mm in two passes, and water-cooled. As the tempering, it was kept at 430 ° C. for 1 hour in a salt bath and then cooled with water. Vickers hardness is 534.

【0049】改良オースフォーム材(AF材)と通常の
焼入れ焼戻し材(QT材)の組織の例を図7の写真とし
て示した。それぞれの組織は不均一な組織は含まれ、そ
れらの欠損面積√areaについて極値統計した結果
は、図8に示した通りであった。AF材の最大不均一組
織欠陥領域√areamax,m の極値分布は、QT材の分
布直線√areamax,m =0.9403y+4.571
と、√areamax,m =0に囲まれた欠陥寸法にあっ
た。
FIG. 7 is a photograph showing an example of the structure of the improved aus foam material (AF material) and the structure of a normal quenched and tempered material (QT material). Each tissue contained a heterogeneous tissue, and the results of extreme value statistic of the defective area √area were as shown in FIG. The extreme value distribution of the maximum non-uniform structure defect area √area max, m of the AF material is represented by a distribution straight line √area max, m = 0.9403y + 4.571 of the QT material.
And defect size surrounded by √area max, m = 0.

【0050】AF材とQT材の焼戻しマルテンサイトの
組織の例を図9に示した。この組織の代表欠陥寸法をブ
ロック巾とし、その極値統計結果を示すと図10とな
る。AF材のブロック巾の最大値dmax の極値分布は、
QT材の分布直線dmax =0.217y+0.701と
max =0に囲まれる領域にあった。
FIG. 9 shows an example of the structure of tempered martensite of the AF material and the QT material. FIG. 10 shows an extreme value statistical result of the representative defect size of this structure as a block width. The extreme value distribution of the maximum value d max of the block width of the AF material is:
It was in the region surrounded by the distribution linear d max = 0.217y + 0.701 and d max = 0 of QT material.

【0051】このような組織の特徴を有するAF材の疲
労試験結果で、表面破壊の場合は、図11に示した通り
であり、破壊繰り返し数Nfと応力振幅σaの関係を示
している。この図11に示す欠陥の√area≦45.
8/σB 2 以下となるものは、本願の第1の発明に該当
するσw ≧0.5σB を達成している。
FIG. 11 shows the result of a fatigue test of an AF material having such a structure characteristic. In the case of a surface fracture, it is as shown in FIG. 11, and shows the relationship between the number of fractures Nf and the stress amplitude σa. In the defect shown in FIG.
Those of 8 / σ B 2 or less achieve σ w ≧ 0.5σ B corresponding to the first invention of the present application.

【0052】さらに、このAF材の疲労試験結果で、内
部破壊の場合は、図12に示した通りであり、破壊繰り
返し数Nfと応力振幅σaの関係を示している。この図
12に示す欠陥の√area>45.8/σB 2 となる
ものは、介在物の欠陥寸法√areai の平均が約20
μmの介在物により内部破壊が発生するが、介在物周り
にODAが存在していないため、本願の第2の発明に該
当するσw ≧3.38(areai -1/4を達成してい
る。実施例2 通常熱処理により製造したSUP12鋼を2×10-6
a以上の高真空中で300℃まで加熱した。ビッカース
硬さは518であり、欠陥寸法√areaは4.8/σ
B 2 以下であり、σw ≧1.6Hvを達成していた。
Further, the results of the fatigue test of this AF material
In the case of partial destruction, it is as shown in FIG.
The relationship between the number of turns Nf and the stress amplitude σa is shown. This figure
欠 陥 area> 45.8 / σ of the defect shown in FIG.B TwoBecomes
Is the defect size of inclusionsiAverage of about 20
μm inclusions cause internal destruction, but around inclusions
ODA does not exist in the second invention of the present application.
Hit σw≧ 3.38 (areai)-1/4Have achieved
You.Example 2  2 × 10 SUP12 steel manufactured by normal heat treatment-6P
Heated to 300 ° C. in a high vacuum of at least a. Vickers
The hardness is 518, and the defect size √area is 4.8 / σ.
B TwoAnd σw≧ 1.6 Hv was achieved.

【0053】[0053]

【発明の効果】以上詳しく説明したように、この出願の
発明により、ODA欠陥寸法と疲労強度との関係をも考
慮に入れた高強度鋼における高疲労強度材料の設計法と
その材料を提供することを可能とする。
As described above in detail, according to the invention of this application, there is provided a method of designing a high fatigue strength material for high strength steel in consideration of the relationship between the ODA defect size and the fatigue strength, and the material. To make things possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例であって、静的強度と108
回疲労限の関係を示した関係図である。
FIG. 1 shows an embodiment of the present invention, in which static strength and 10 8
FIG. 4 is a relationship diagram showing the relationship between the times of fatigue.

【図2】内部破壊起点周りのSEM写真を示した図であ
る。
FIG. 2 is a view showing an SEM photograph around an internal fracture starting point.

【図3】この発明の実施例であってODAと介在物の欠
陥寸法√areaの関係を示した関係図である。
FIG. 3 is a relationship diagram showing a relationship between ODA and a defect size Δarea of an inclusion in the embodiment of the present invention.

【図4】内部破壊の様子を示した概略頭である。FIG. 4 is a schematic head showing a state of internal destruction.

【図5】この発明の実施例であって、欠陥寸法√are
aと疲労限の関係を示した関係図である。
FIG. 5 shows an embodiment of the present invention, in which a defect size reare
It is a relation diagram showing the relation between a and the fatigue limit.

【図6】加工熱処理のプロセスを例示した図である。FIG. 6 is a diagram illustrating a process of thermomechanical treatment.

【図7】不均一組織の光学顕微鏡写真を示した図であ
る。
FIG. 7 is a diagram showing an optical micrograph of a non-uniform structure.

【図8】この発明の実施例であって、介在物不均一組織
欠陥寸法の極値統計を示した関係図である。
FIG. 8 is a relationship diagram showing an extreme value statistic of an inclusion non-uniform structure defect size in an example of the present invention.

【図9】焼戻しマルテンサイト組織のブロックをAFM
写真として示した図である。
FIG. 9 shows a block diagram of a tempered martensitic structure by AFM.
It is the figure shown as a photograph.

【図10】この発明の実施例であって、最大ブロック巾
の極値統計を示した関係図である。
FIG. 10 is a relationship diagram showing an extreme value statistic of the maximum block width according to the embodiment of the present invention.

【図11】この発明の実施例であって、AF材の疲労試
験結果(介在物規制あり)を示した関係図である。
FIG. 11 is a relationship diagram showing a fatigue test result (with inclusions restricted) of an AF material according to an example of the present invention.

【図12】この発明の実施例であって、AF材の疲労試
験結果(介在物規制なし)を示した関係図である。
FIG. 12 is a relationship diagram showing a fatigue test result (without inclusion control) of an AF material according to an example of the present invention.

フロントページの続き (72)発明者 松岡 三郎 茨城県つくば市千現1丁目2番1号 科学 技術庁金属材料技術研究所内 (72)発明者 安部 孝行 茨城県つくば市千現1丁目2番1号 科学 技術庁金属材料技術研究所内 (72)発明者 竹内 悦男 茨城県つくば市千現1丁目2番1号 科学 技術庁金属材料技術研究所内 (72)発明者 宮原 健介 茨城県つくば市千現1丁目2番1号 科学 技術庁金属材料技術研究所内 (72)発明者 蛭川 寿 茨城県つくば市千現1丁目2番1号 科学 技術庁金属材料技術研究所内 (72)発明者 津崎 兼彰 茨城県つくば市千現1丁目2番1号 科学 技術庁金属材料技術研究所内 (72)発明者 木村 勇次 茨城県つくば市千現1丁目2番1号 科学 技術庁金属材料技術研究所内 Fターム(参考) 2G055 AA03 BA05 BA07 BA14 CA02 CA05 CA06 CA09 CA11 CA22 CA25 CA26 CA27 CA29 EA04 FA01 FA02 2G061 AB05 AC03 BA01 BA15 CA02Continuing from the front page (72) Inventor Saburo Matsuoka 1-2-1, Sengen, Tsukuba, Ibaraki Pref., National Institute for Science and Technology (72) Inventor Takayuki Abe 1-2-1, Sengen, Tsukuba, Ibaraki Scientific Technology (72) Inventor, Etsio Takeuchi 1-2-1, Sengen, Tsukuba City, Ibaraki Prefecture, Japan Science and Technology Agency (72) Inventor Kensuke Miyahara 1-2-1, Sengen, Tsukuba City, Ibaraki Prefecture Within the National Institute for Metals Technology, Science and Technology Agency (72) Inventor Kotobuki Hirukawa 1-2-1, Sengen, Tsukuba City, Ibaraki Prefecture Within the National Institute for Metals Technology, Science and Technology Agency (72) Kaneaki Tsuzaki 1-2-2 Sengen, Tsukuba City, Ibaraki Prefecture No. 1 Science and Technology Agency Metal Materials Research Laboratory (72) Inventor Yuji Kimura 1-2-1 Sengen, Tsukuba City, Ibaraki Prefecture Science and Technology Agency Metal Materials Research Laboratory F-term (reference) 2G055 AA03 BA05 BA07 BA14 CA02 CA05 CA06 CA09 CA11 CA22 CA25 CA26 CA27 CA29 EA04 FA01 FA02 2G061 AB05 AC03 BA01 BA15 CA02

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 引張強度σB (単位はMPa)、ビッカ
ース硬さHvが既知である鋼において、破壊起点が表面
だけである場合、その鋼に含まれる欠陥の√area
(単位はm)が、45.8/σB 2 または4.47/H
2 以下であるとき、疲労限σw (単位はMPa)が、
σw が≧0.5σB またはσw ≧1.6Hvを達成する
という材料の設計指針を与えることを特徴とする高強度
鋼における高疲労強度材料の評価法。
1. In a steel having a known tensile strength σ B (unit: MPa) and Vickers hardness Hv, when the fracture origin is only the surface, the area of defects included in the steel is
(Unit: m) is 45.8 / σ B 2 or 4.47 / H
When v 2 or less, the fatigue limit σ w (in MPa) is
Evaluation of high fatigue strength material in high strength steel, characterized in that providing design guidelines of the material that sigma w to achieve ≧ 0.5σ B or σ w ≧ 1.6Hv.
【請求項2】 引張強度σB (単位はMPa)、ビッカ
ース硬さHvが既知である鋼において、破壊起点が内部
である場合、介在物の欠陥面積areaを測定し、疲労
限σw (単位はMPa)が、σw ≧3.38(area
i -1/4を達成するという材料の設計指針を与えること
を特徴とする高強度鋼における高疲労強度材料の評価
法。
2. In a steel having a known tensile strength σ B (unit: MPa) and Vickers hardness Hv, when a fracture starting point is inside, a defect area area of an inclusion is measured, and a fatigue limit σ w (unit: Is MPa), but σ w ≧ 3.38 (area
i ) An evaluation method for high-fatigue-strength materials in high-strength steels, which provides a material design guide to achieve -1/4 .
【請求項3】 請求項1または2の高疲労強度材料の評
価を可能とする方法であって、組織均一(不均一組織の
サイズ低下)あるいは組織微細化(ブロック巾低下)図
った場合、最大不均一組織欠陥面積areamax,m を測
定し、最大不均一組織欠陥領域√areamax,m (√a
reamax,m の単位はμm)の極値分布が、直線√ar
eamax,m =0と√areamax,m =0.9403y+
4.571(検査基準面積S0 =6.2×10-92
に囲まれる領域にあり、または、最大ブロック巾dmax
(dmax の単位はμm)の極値分布が、直線dmax =0
とdmax =0.217y+0.701(yは基準化変
数、検査基準面積1×10-10 2 )に囲まれる領域に
あることを特徴とする高強度組織の評価法。
3. A method for evaluating a material having high fatigue strength according to claim 1 or 2, wherein the structure is maximum when the structure is uniform (reduction in the size of a non-uniform structure) or the structure is refined (reduction in block width). The non-uniform tissue defect area area max, m is measured, and the maximum non-uniform tissue defect area √area max, m (√a
rea max, the extreme value distribution unit of m [mu] m), linear √ar
ea max, m = 0 and √area max, m = 0.9403y +
4.571 (inspection reference area S 0 = 6.2 × 10 −9 m 2 )
Or the maximum block width d max
The extreme value distribution (the unit of d max is μm) is represented by a straight line d max = 0
And d max = 0.217y + 0.701 (y is a standardized variable, inspection reference area 1 × 10 −10 m 2 ).
【請求項4】 高強度組織の評価を可能とする、組織均
一(不均一組織のサイズ低下)あるいは組織微細化(ブ
ロック巾低下)図った場合、最大不均一組織欠陥面積a
reamax,m を測定し、最大不均一組織欠陥領域√ar
eamax,m (√areamax,m の単位はμm)の極値分
布が、直線√areamax,m =0と√areamax,m
0.9403y+4.571に囲まれる領域にあり、ま
たは、最大ブロック巾dmax (dmax の単位はμm)の
極値分布が、直線dmax =0とdmax =0.217y+
0.701(yは基準化変数)に囲まれる領域にあるこ
とを特徴とする高強度組織の評価法のもとで、請求項1
または2の評価法により与えられた設計指針に沿って鋼
を製造することを特徴とする高疲労強度材料の製造方
法。
4. The maximum non-uniform structure defect area a when the structure is uniform (reduction in the size of the non-uniform structure) or the structure is refined (the block width is reduced) to enable the evaluation of the high-strength structure.
rea max, a m was measured, the maximum inhomogeneous structure area √ar
The extreme value distribution of ea max, m (the unit of √area max, m is μm) is represented by straight lines √area max, m = 0 and √area max, m =
0.9403y + 4.571, or the extreme value distribution of the maximum block width d max (the unit of d max is μm) is represented by straight lines d max = 0 and d max = 0.217y +
2. A method for evaluating a high-strength tissue according to claim 1, wherein the high-strength tissue is in an area surrounded by 0.701 (y is a normalization variable).
Or a method of manufacturing a high fatigue strength material, wherein steel is manufactured according to the design guidelines given by the evaluation method of 2.
【請求項5】 2×10-6Pa以上の高真空中で鋼を焼
戻す熱処理を施すことにより請求項1の評価方法により
与えられた材料の設計指針に沿った鋼を製造することを
特徴とする高疲労強度材料の製造方法。
5. The method according to claim 1, wherein the steel is subjected to a heat treatment for tempering the steel in a high vacuum of 2 × 10 −6 Pa or more to produce the steel in accordance with the material design guidelines given by the evaluation method. Method for producing a high fatigue strength material.
【請求項6】 高強度組織の評価を可能とする、組織均
一(不均一組織のサイズ低下)あるいは組織微細化(ブ
ロック巾低下)図った場合、最大不均一組織欠陥面積a
reamax,m を測定し、最大不均一組織欠陥領域√ar
eamax,m (√areamax,m の単位はμm)の極値分
布が、直線√areamax,m =0と√areamax,m
0.9403y+4.571に囲まれる領域にあり、ま
たは、最大ブロック巾dmax (dmax の単位はμm)の
極値分布が、直線dmax =0とdmax =0.217y+
0.701(yは基準化変数)に囲まれる領域にあるこ
とを特徴とする高強度組織の評価法のもとで、請求項1
または2の高強度鋼における高疲労強度材料の評価方法
によって与えられた設計指針に沿って製造されたことを
特徴とする高疲労強度材料。
6. The maximum non-uniform structure defect area a when the structure is made uniform (reduction in the size of the non-uniform structure) or the structure is refined (the block width is reduced) to enable evaluation of the high-strength structure.
rea max, a m was measured, the maximum inhomogeneous structure area √ar
The extreme value distribution of ea max, m (the unit of √area max, m is μm) is represented by straight lines √area max, m = 0 and √area max, m =
0.9403y + 4.571, or the extreme value distribution of the maximum block width d max (the unit of d max is μm) is represented by straight lines d max = 0 and d max = 0.217y +
2. A method for evaluating a high-strength tissue according to claim 1, wherein the high-strength tissue is in an area surrounded by 0.701 (y is a normalization variable).
Or a high fatigue strength material manufactured according to a design guide given by the method for evaluating a high fatigue strength material in the high strength steel of 2.
JP2000232531A 2000-07-31 2000-07-31 Evaluation method and manufacturing method of high fatigue strength in high strength steel Expired - Fee Related JP4360509B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000232531A JP4360509B2 (en) 2000-07-31 2000-07-31 Evaluation method and manufacturing method of high fatigue strength in high strength steel
US09/917,733 US6546808B2 (en) 2000-07-31 2001-07-31 Method of evaluating high fatigue strength material in high tensile strength steel and creation of high fatigue strength material
EP01306529A EP1178313A3 (en) 2000-07-31 2001-07-31 Method of estimating the fatigue strength of high tensile strength steel and method of producing a high fatigue strength material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000232531A JP4360509B2 (en) 2000-07-31 2000-07-31 Evaluation method and manufacturing method of high fatigue strength in high strength steel

Publications (2)

Publication Number Publication Date
JP2002048693A true JP2002048693A (en) 2002-02-15
JP4360509B2 JP4360509B2 (en) 2009-11-11

Family

ID=18725204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000232531A Expired - Fee Related JP4360509B2 (en) 2000-07-31 2000-07-31 Evaluation method and manufacturing method of high fatigue strength in high strength steel

Country Status (3)

Country Link
US (1) US6546808B2 (en)
EP (1) EP1178313A3 (en)
JP (1) JP4360509B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110041A1 (en) * 2009-03-25 2010-09-30 日本発條株式会社 High-strength and high-ductility steel for spring, method for producing same, and spring
WO2013128500A1 (en) * 2012-02-29 2013-09-06 日本精工株式会社 Die-cast product rigidity evaluation method and die-cast product
JP2017187408A (en) * 2016-04-07 2017-10-12 新日鐵住金株式会社 Quality assurance method of steel material and fatigue characteristics estimation method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4857425B2 (en) * 2001-03-23 2012-01-18 株式会社産学連携機構九州 Design method for long-life fatigue strength of metallic materials
JP5024764B2 (en) * 2008-01-22 2012-09-12 独立行政法人産業技術総合研究所 Fatigue test method in hydrogen gas
US8393226B2 (en) * 2010-07-29 2013-03-12 Nsk Ltd. Inclusion rating method
JP5059224B2 (en) * 2010-11-09 2012-10-24 新日本製鐵株式会社 Fatigue fracture evaluation apparatus for parts, fatigue fracture evaluation method for parts, and computer program
JP5865015B2 (en) * 2011-06-24 2016-02-17 株式会社リケン piston ring
JP5865014B2 (en) * 2011-06-24 2016-02-17 株式会社リケン piston ring
CN111855446B (en) * 2020-07-14 2023-07-04 天津钢管制造有限公司 Method for predicting fatigue limit of titanium alloy

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4222793A (en) * 1979-03-06 1980-09-16 General Motors Corporation High stress nodular iron gears and method of making same
US4388379A (en) * 1981-04-27 1983-06-14 General Motors Corporation Electrodeposition of low stress, hard iron alloy and article so produced
US5080732A (en) * 1989-06-20 1992-01-14 Exxon Production Research Company Method for determining the relative haz toughness of steel
US5171404A (en) * 1990-11-30 1992-12-15 S. D. Warren Company Method and apparatus for calendering paper with internally heated roll
JPH05157673A (en) * 1991-12-09 1993-06-25 Mitsubishi Heavy Ind Ltd Method for diagnosing remaining service life of steam turbine
US5808202A (en) * 1997-04-04 1998-09-15 Passarelli, Jr.; Frank Electromagnetic acoustic transducer flaw detection apparatus
US6305229B1 (en) * 1997-12-23 2001-10-23 Tanaka Systems Incorporated Detecting fatigue from magnetic characteristics

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110041A1 (en) * 2009-03-25 2010-09-30 日本発條株式会社 High-strength and high-ductility steel for spring, method for producing same, and spring
JP2010222671A (en) * 2009-03-25 2010-10-07 Nhk Spring Co Ltd High-strength and high-ductility steel for spring, method for producing same, spring
CN102362001A (en) * 2009-03-25 2012-02-22 日本发条株式会社 High-strength and high-ductility steel for spring, method for producing same, and spring
CN102362001B (en) * 2009-03-25 2013-10-02 日本发条株式会社 High-strength and high-ductility steel for spring, method for producing same, and spring
US8926768B2 (en) 2009-03-25 2015-01-06 Nhk Spring Co., Ltd. High-strength and high-ductility steel for spring, method for producing same, and spring
WO2013128500A1 (en) * 2012-02-29 2013-09-06 日本精工株式会社 Die-cast product rigidity evaluation method and die-cast product
JP2017187408A (en) * 2016-04-07 2017-10-12 新日鐵住金株式会社 Quality assurance method of steel material and fatigue characteristics estimation method

Also Published As

Publication number Publication date
JP4360509B2 (en) 2009-11-11
US20020033053A1 (en) 2002-03-21
US6546808B2 (en) 2003-04-15
EP1178313A3 (en) 2002-10-09
EP1178313A2 (en) 2002-02-06

Similar Documents

Publication Publication Date Title
Geenen et al. Corrosion behavior of 316L austenitic steel processed by selective laser melting, hot‐isostatic pressing, and casting
Lacroix et al. The fracture toughness of TRIP-assisted multiphase steels
KR101615844B1 (en) High-strength stainless steel wire having excellent heat deformation resistance, high-strength spring, and method for manufacturing same
Murakami et al. On the mechanism of fatigue failure in the superlong life regime (N> 107 cycles). Part 1: influence of hydrogen trapped by inclusions
Santos et al. Damage identification parameters of dual-phase 600–800 steels based on experimental void analysis and finite element simulations
JP2006183137A (en) Steel wire for high strength spring
Spriestersbach et al. Very high cycle fatigue of high-strength steels: Crack initiation by FGA formation investigated at artificial defects
JPWO2007114491A1 (en) Heat-treated steel for high-strength springs
KR20180031757A (en) Mechanical structural steel for cold working and its manufacturing method
JP2002048693A (en) Evaluation method for high-fatigue-strength material in high-strength steel and high-fatigue-strength material
Nikulin et al. Microstructure evolution associated with a superior low-cycle fatigue resistance of the Fe-30Mn-4Si-2Al alloy
EP3502295A1 (en) Thick steel plate and production method therefor
Lim et al. In-situ warm shot peening on Ti-6Al-4V alloy: effects of temperature on fatigue life, residual stress, microstructure and mechanical properties
JP2017155317A (en) Precipitation curing type martensitic stainless steel sheet for steel belt and manufacturing method
EP3633057A1 (en) Thick steel plate and method for manufacturing same
Basu et al. The role of phase hardness differential on the non-uniform elongation of a ferrite-martensite dual phase steel
Shoemaker et al. Comparing stress corrosion cracking behavior of additively manufactured and wrought 17-4PH stainless steel
Spriestersbach et al. Threshold values for very high cycle fatigue failure of high‐strength steels
Benedetti et al. On the variability in static and cyclic mechanical properties of extruded 7075‐T6 aluminum alloy
WO2022180954A1 (en) Steel sheet, and method for manufacturing same
Gencalp Irizalp et al. Effect of shot peening on residual stress distribution and microstructure evolution of artificially defected 50CrV4 steel
KR20240042470A (en) hot rolled steel plate
Wang et al. Enhanced grain refinement and texture weakening in Al–Mg–Si alloy through a novel thermomechanical processing
Guo et al. Crack initiation mechanism of M50 bearing steel under high cycle fatigue
Elsayed et al. Resistance of quench and partitioned steels against hydrogen embrittlement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090806

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees