JP2002043801A - Signal non-phase shift feed circuit - Google Patents

Signal non-phase shift feed circuit

Info

Publication number
JP2002043801A
JP2002043801A JP2000225286A JP2000225286A JP2002043801A JP 2002043801 A JP2002043801 A JP 2002043801A JP 2000225286 A JP2000225286 A JP 2000225286A JP 2000225286 A JP2000225286 A JP 2000225286A JP 2002043801 A JP2002043801 A JP 2002043801A
Authority
JP
Japan
Prior art keywords
signal
phase
transmission line
phase shift
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000225286A
Other languages
Japanese (ja)
Other versions
JP4497669B2 (en
Inventor
Yoshihiko Takeuchi
嘉彦 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2000225286A priority Critical patent/JP4497669B2/en
Publication of JP2002043801A publication Critical patent/JP2002043801A/en
Application granted granted Critical
Publication of JP4497669B2 publication Critical patent/JP4497669B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable signals to be identical in phase to each other at various receiving points, even if the signals vary in phase shift volume, depending on the transmission lines, when signals are fed from a single signal source to a plurality of receiving points through the different transmission lines. SOLUTION: Parts of the signals, received by a signal-receiving section 3 are sent back to a signal feed division 1 by the same transmission cable 2, and the phase difference between these signals and signal outputted from a signal originating device 4 is detected by a phase detector 9. A phase shift control signal, which enables the output signal of the signal originating device 4 to be shifted by a phase shifter 6 in phase by a phase volume as large as the above phase difference, is sent to the phase shifter 6 from a phase shift controller 8 by the detection signal of the phase detector 9. With this feedback system, a correction θC made by the phase shifter 6 becomes equal to the phase shift volume Δθ of the transmission cable 2, so that a phase θOUT of signals at the signal receiving section 3 becomes identical to a phase θIN of output signals of the signal originating device 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高周波信号が1つ
の供給源から伝送路を経て複数の受給点へ供給される際
に、各受給点での位相が同相となるようにする位相制御
技術の分野に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phase control technique for making a phase at each receiving point in-phase when a high-frequency signal is supplied from a single source to a plurality of receiving points via a transmission line. Belongs to the field.

【0002】[0002]

【従来の技術】近年、周波数資源の逼迫のため、移動体
通信において、マルチパスによる通信品質の劣化等によ
り、必ずしも使用に適さない比較的高周波帯域を用いた
通信が一般的になってきた。加えて、通信回線容量増加
のため、送受信ビーム形状を変化させて、目的の移動局
方向にビームを絞って送受信することにより、目的の移
動局との通信をより低電力で行い、また、他局からの干
渉を避けるため、干渉波方向のアンテナ指向性を下げ
る、もしくはヌル指向性を形成する、いわゆるアダプテ
ィブ・アンテナ指向性制御を行うための研究が盛んにな
ってきた。このアダプティブ・アンテナ指向性を制御す
る方法として、複数のアンテナ・エレメントを一次元も
しくは二次元に配置させることにより、容易にビーム指
向性の制御できるアレイ・アンテナが注目されている。
2. Description of the Related Art In recent years, due to a shortage of frequency resources, communication using a relatively high frequency band, which is not always suitable for use, has become common in mobile communication due to deterioration of communication quality due to multipath. In addition, in order to increase the capacity of the communication line, by changing the transmission / reception beam shape and narrowing the beam toward the target mobile station for transmission / reception, communication with the target mobile station is performed with lower power, and In order to avoid the interference from the station, research for performing so-called adaptive antenna directivity control, which lowers the antenna directivity in the direction of the interference wave or forms null directivity, has been actively conducted. As a method of controlling the adaptive antenna directivity, an array antenna that can easily control the beam directivity by arranging a plurality of antenna elements in one or two dimensions has attracted attention.

【0003】このアレイ・アンテナは複数のアンテナ・
エレメントから信号を送信し、送受信すべき方向へは同
相となる様、また送受信を阻止する方向(ヌル方向)に
は互いに信号が打ち消し合う様逆相となる様、送受信す
るため、全てのアンテナ・エレメントの位相が充分制御
されて送受信されねばならない。また、振幅は送受信ビ
ームのサイドローブの大きさに影響し、振幅もまた正確
に制御されて送受信されねばならない。
This array antenna has a plurality of antennas.
All the antennas are used to transmit and receive signals from the element so that they are in phase in the direction in which they are to be transmitted and received, and in such a way that the signals cancel each other out in the direction of blocking transmission and reception (null direction). The phases of the elements must be well controlled and transmitted and received. Also, the amplitude affects the size of the side lobe of the transmitted and received beams, and the amplitude must also be accurately controlled for transmission and reception.

【0004】このため、各アンテナエレメント毎に振幅
・位相制御送受信部(アレイアンテナ無線部という)が
設けられているが、このアレイアンテナ無線部の振幅・
位相特性に個別的、経時的な差が生じては正確な制御が
行われなくなるので、自動較正を行うようにしている
(例えば、特願平11−149150 多元接続通信装
置、特願2000−58983 多元接続通信装置)。
For this reason, an amplitude / phase control transmitting / receiving section (referred to as an array antenna radio section) is provided for each antenna element.
Since accurate control is not performed if there is an individual or temporal difference in phase characteristics, automatic calibration is performed (for example, Japanese Patent Application No. 11-149150, a multiple access communication device, and Japanese Patent Application No. 2000-58983). Multiple access communication device).

【0005】この較正法においては、受信周波数の信号
源から各アレイアンテナ無線部へ同相で信号を供給しな
ければならないし、送受信周波数の差周波数の信号源か
ら各アレイアンテナ無線部へ同相で信号を供給しなけれ
ばならない。
In this calibration method, a signal must be supplied in-phase from a signal source of a reception frequency to each array antenna radio unit, and a signal must be supplied in-phase from a signal source of a difference frequency between the transmission and reception frequencies to each array antenna radio unit. Must be supplied.

【0006】従来は、このような1つの信号源から別々
の伝送路を経て複数の受給点へ供給する信号が受給点で
同相になるように送る手段としては、信号源からの伝送
ケーブルの長さを同じにし、且つ同じ経路を這わせるよ
うにしたり、或いは、事前に各受給点間の位相差を測定
してその差をなくする位相補正器を挿入する等の手段が
講じられていた。
Conventionally, as means for transmitting signals supplied from a single signal source to a plurality of receiving points via separate transmission paths so that the signals have the same phase at the receiving points, a length of a transmission cable from the signal source is used. In other words, measures have been taken to make them the same and to crawl along the same path, or to measure the phase difference between each receiving point in advance and insert a phase corrector to eliminate the difference.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、ケーブ
ル長を同じにするにしても、位相補正器を設けるにして
もいずれも固定的なものであるため、環境変化、特に温
度の変化や経時変化によってケーブル間に差異が生じて
もこれを補正することができなくなるという問題があ
る。
However, regardless of whether the cable length is the same or the phase corrector is provided, both are fixed, so that they are subject to environmental changes, especially temperature changes and aging changes. There is a problem that even if there is a difference between the cables, it cannot be corrected.

【0008】たとえ、ケーブル長を同じにし、束ねて出
来るだけ同じ所を張り渡しても日の当たる側と陰になる
側とでは温度に差を生じ、温度差による位相差を生じる
うえ、膨張程度に差異を生じ長さが異なることとなり、
そのことにより位相差が生じることになるという問題が
あるし、また、日の当たる側と当たらない側、或いは外
側と内側とでは経時変化の程度が異なるため、これによ
り位相が異なってくることになるという問題もある。
[0008] Even if the cable lengths are the same and the cables are bundled and stretched over the same place as much as possible, there is a difference in temperature between the sunlit side and the shaded side, causing a phase difference due to the temperature difference. And the length is different,
There is a problem that a phase difference is caused by that, and also, since the degree of aging changes between the sunlit side and the non-sunlit side, or between the outside and the inside, this causes a phase difference. There is also the problem of becoming.

【0009】以上の他、所定の期間を経過してケーブル
を交換することになったときに、ケーブル長を従前の通
りに合わせたり、這わせる経路、場所を交換前と違わな
いようにするため、注意と手数を要するという問題もあ
る。
[0009] In addition to the above, when the cable is replaced after a predetermined period, the cable length is adjusted to the same as before, and the route and place to crawl are not different from before the replacement. However, there is also a problem that it requires attention and trouble.

【0010】本発明の目的は、上記従来技術の問題点に
鑑みて、環境変化や経時変化の影響を受けることなく、
伝送路を経た後の受給点での位相が信号源の位相と同じ
になる信号無移相供給回路を提供することにある。
In view of the above-mentioned problems of the prior art, an object of the present invention is to provide an image processing apparatus that is not affected by environmental changes and changes over time.
It is an object of the present invention to provide a signal-shiftless supply circuit in which the phase at a receiving point after passing through a transmission path becomes the same as the phase of a signal source.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の信号無移相供給回路の第1の構成は、信
号供給部と伝送路と信号受給部とからなり、各部がそれ
ぞれ下記の構成を具備することを特徴とする。 I 信号供給部として (イ)送るべき信号を発信する信号発信器 (ロ)信号発信器の出力を入力とし、その位相を、移相
制御信号により移相して出力する移相器 (ハ)移相器の出力を伝送路へ送り出すとともに、同じ
伝送路を逆進してくる入力信号を取り出すサーキュレー
タ (ニ)サーキュレータから取り出された逆進入力信号と
発信信号との位相差角を検出する位相検波器 (ホ)位相検波器からの位相差角信号を受け、前記移相
器の移相角が前記位相差角と等しくなるようにする位相
制御信号を移相器へ出力する移相制御器 II 信号受給部として (ヘ)伝送路で伝送されて来た信号を受け、これを信号
使用回路の方へ送るとともに、受けた信号の分岐された
一部を再び同じ伝送路へ逆送するサーキュレータ
In order to achieve the above-mentioned object, a first configuration of a signal phase-shift supply circuit according to the present invention comprises a signal supply section, a transmission line, and a signal reception section. Each is characterized by having the following configuration. (1) A signal transmitter for transmitting a signal to be sent (b) A phase shifter which receives the output of the signal transmitter as an input, and shifts the phase of the signal by a phase shift control signal and outputs the phase. A circulator that sends the output of the phase shifter to the transmission line and extracts the input signal that travels backward on the same transmission line. (D) A phase that detects the phase difference angle between the reverse input signal extracted from the circulator and the transmission signal. (E) A phase shift controller that receives a phase difference angle signal from a phase detector and outputs to the phase shifter a phase control signal that causes the phase shift angle of the phase shifter to be equal to the phase difference angle. II. As a signal receiving unit (f) A circulator that receives the signal transmitted on the transmission line, sends it to the signal use circuit, and sends the branched part of the received signal back to the same transmission line again

【0012】本発明の第2の構成は、第1の構成の
(ハ)のサーキュレータに代えて、方向性結合器を用い
たものである。
A second configuration of the present invention uses a directional coupler in place of the circulator of the first configuration (c).

【0013】本発明の第3の構成は、第1の構成の
(ヘ)のサーキュレータに代えて、伝送路で伝送されて
来た信号に対して、これを信号使用回路の方へ送るとと
もに、受けた信号の一部を同じ伝送路へ反射させるため
の伝送路インピーダンス不連続点を用いたことを特徴と
するものである。
According to a third configuration of the present invention, instead of the circulator of the first configuration (f), a signal transmitted through a transmission path is sent to a signal using circuit, A transmission path impedance discontinuity point for reflecting a part of a received signal to the same transmission path is used.

【0014】本発明の第4の構成は、信号供給部と往復
伝送路と信号受給部とからなり、各部がそれぞれ下記の
構成を具備することを特徴とするものである。 I 信号供給部として (イ)送るべき信号を発信する信号発信器 (ロ)信号発信器の出力を入力とし、その位相を移相制
御信号により移相して往路伝送路へ出力する移相器 (ハ)復路伝走路からの入力信号と発信信号との位相差
角を検出する位相検波器 (ニ)位相検波器からの位相差角信号を受け、前記移相
器の移相角が位相差角と等しくなるようにする移相制御
信号を移相器へ出力する移相制御器 II 信号受給部として (ホ)往路伝送路で伝送されて来た信号を受け、これを
信号使用回路の方へ送るとともに、受けた信号の一部を
分岐して復路伝走路へ逆送する分岐回路
A fourth configuration of the present invention comprises a signal supply unit, a reciprocating transmission line, and a signal reception unit, and each unit has the following configuration. (1) A signal transmitter for transmitting a signal to be sent. (B) A phase shifter that receives the output of the signal transmitter as input, shifts its phase by a phase shift control signal, and outputs it to the outward transmission line. (C) a phase detector for detecting a phase difference angle between the input signal from the return path and the transmission signal; and (d) receiving a phase difference angle signal from the phase detector, and detecting a phase difference angle of the phase shifter. A phase shift controller that outputs a phase shift control signal to make the angle equal to the angle to the phase shifter. II. As a signal receiving unit, (e) receives the signal transmitted on the outward transmission line and sends it to the signal use circuit. Branch circuit that sends a part of the received signal and branches it back to the return path

【0015】[0015]

【発明の実施の形態】本発明の実施の形態は、信号供給
部の信号発信器の発信信号を伝送路を伝送させて信号受
給部の受給点へ送るに当たり、伝送路で受ける移相量を
予め発信信号に対して補正してから伝送路へ出力するこ
とにより、受給点の位相が信号発信器出力における位相
と同位相になるようにするというものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the embodiment of the present invention, when transmitting a transmission signal of a signal transmitter of a signal supply unit to a transmission point and transmitting the signal to a reception point of the signal reception unit, the amount of phase shift received by the transmission line is determined. By correcting the transmission signal in advance and outputting it to the transmission line, the phase at the receiving point is made to be the same as the phase at the output of the signal transmitter.

【0016】その補正の仕方として、受給点での信号の
一部を同一伝送路、或いは往復伝送路であれば復路伝送
路を通して信号供給部へ戻し、その信号と発信信号との
位相差を検出し、発信信号をその位相差分だけ、移相器
を用いて補正移相させてから伝送路へ送り出すようにし
ている。こうして、一種の帰還システムが形成されるこ
とにより、移相器による移相量(補正量)は常に伝送路
における移相量と一致し、伝送路の移相量が環境変化、
温度変化或いは経時変化等によって変化しても移相器の
移相量もこの変化に追随して変化することになり、受給
点の位相が常に発信信号の位相と同じということにな
る。
As a correction method, a part of the signal at the receiving point is returned to the signal supply unit through the same transmission path or the return transmission path if the transmission path is a reciprocal transmission path, and the phase difference between the signal and the transmission signal is detected. Then, the transmission signal is phase-corrected by the phase difference using the phase shifter, and then transmitted to the transmission line. Thus, by forming a kind of feedback system, the amount of phase shift (correction amount) by the phase shifter always matches the amount of phase shift in the transmission line, and the amount of phase shift in the transmission line changes due to environmental changes.
Even if the phase shifter changes due to a temperature change or a change over time, the phase shift amount of the phase shifter changes following the change, and the phase of the receiving point is always the same as the phase of the transmission signal.

【0017】なお、移相器の出力を伝送路へ送り出すと
ともに、同一伝送路上を受給点から逆送されてくる信号
を取り出すためにはサーキュレータ或いは方向性結合器
を用いる。受給点から逆送させる手段は、サーキュレー
タを用いて行っても、また、伝送路のインピーダンス不
連続点の反射を用いてもよい。
A circulator or a directional coupler is used to send the output of the phase shifter to the transmission line and to take out the signal transmitted backward from the receiving point on the same transmission line. The means for feeding back from the receiving point may be performed by using a circulator, or may be the reflection at the impedance discontinuity point of the transmission line.

【0018】伝送路が往復伝送路である場合には、受給
点から逆送させる信号は、復路伝送路を逆送させればよ
いので、直接復路伝送路から取り出せばよくサーキュレ
ータや方向性結合器を用いる必要はない。なお、本発明
は送信信号の位相の補正制御に関するものであり、周波
数に関する制約はない。
If the transmission path is a reciprocating transmission path, the signal to be sent backward from the receiving point may be sent back from the return path, and may be taken directly from the return path. There is no need to use. The present invention relates to correction control of the phase of a transmission signal, and there is no restriction on the frequency.

【0019】[0019]

【実施例】以下、本発明の信号無移相供給回路の実施例
を図面を参照して説明する。図1は、本発明の信号無移
相供給回路の第1の実施例の構成を示すブロック図であ
る。信号供給部1の信号発信器4から出力された送信す
べき信号(送信信号)は抽出カプラ5を経て移相器6へ
入力され、ここで後に説明する量の移相を受けた後サー
キュレータ7のポートaへ入力されポートbから出力さ
れて伝送ケーブル2へ送り出される。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of a signal phase-shift supply circuit according to the present invention. FIG. 1 is a block diagram showing the configuration of a first embodiment of the signal phase-shift supply circuit of the present invention. The signal to be transmitted (transmission signal) output from the signal transmitter 4 of the signal supply unit 1 is input to the phase shifter 6 via the extraction coupler 5, and after being subjected to a phase shift of an amount described later, the circulator 7 And is output from port b and sent to transmission cable 2.

【0020】伝送ケーブル2上を伝送された送信信号は
信号受給部3のサーキュレータ10のポートaへ入力さ
れ、ポートbから出力される。ポートbからの出力信号
は分岐回路11を経て信号使用回路、例えばアレイアン
テナ無線部の入力端へと送られる。
The transmission signal transmitted on the transmission cable 2 is input to the port a of the circulator 10 of the signal receiving unit 3 and output from the port b. An output signal from the port b is sent to a signal-using circuit, for example, an input terminal of an array antenna radio unit via a branch circuit 11.

【0021】分岐回路11では入力した信号の一部が分
岐して取り出されサーキュレータ10のポートcへ入力
される。ポートcへ入力された信号は、サーキュレータ
10の機能によりポートaから出力され伝送ケーブル2
へ出力され伝送ケーブル2を逆進して、信号供給部1の
サーキュレータ7のポートbへ入力される。ポートbへ
入力された逆進信号はサーキュレータ7の機能によりポ
ートcへ出力される。ポートcから出力された信号は、
位相検波器9へ入力される。
In the branch circuit 11, a part of the input signal is branched and taken out, and is input to the port c of the circulator 10. The signal input to the port c is output from the port a by the function of the circulator 10 and transmitted to the transmission cable 2.
The signal is transmitted to the transmission cable 2, and is transmitted to the port b of the circulator 7 of the signal supply unit 1. The reverse signal input to port b is output to port c by the function of circulator 7. The signal output from port c is
It is input to the phase detector 9.

【0022】他方、位相検波器9へは、抽出カプラ5で
抽出された送信信号の一部が入力されており、ここで、
送信信号と、信号受給部3まで行って戻って来た逆進信
号との位相差が検出される。
On the other hand, a part of the transmission signal extracted by the extraction coupler 5 is input to the phase detector 9, where
The phase difference between the transmission signal and the reverse signal that has returned to the signal receiving unit 3 is detected.

【0023】この位相差角信号は、移相制御器8へ送ら
れる。移相制御器8は、この位相差角信号に基づいて、
移相器6での送信信号に対する移相量が丁度、位相検波
器で検出された位相差角と同じになるようにする移相制
御信号を移相器6へ送る。
This phase difference angle signal is sent to the phase shift controller 8. Based on the phase difference angle signal, the phase shift controller 8
A phase shift control signal is sent to the phase shifter 6 so that the phase shift amount of the transmission signal in the phase shifter 6 becomes exactly the same as the phase difference angle detected by the phase detector.

【0024】このようにすることにより、移相器6の移
相量が、伝送ケーブル2における移相量Δθを丁度補正
するようになり、信号受給部3での位相が、信号供給部
1の信号発信器4の出力信号(送信信号)の位相と同じ
になる。
By doing so, the phase shift amount of the phase shifter 6 just corrects the phase shift amount Δθ in the transmission cable 2, and the phase in the signal receiving unit 3 is The phase of the output signal (transmission signal) of the signal transmitter 4 becomes the same.

【0025】その理由は以下の通りである。今、信号発
信器4の出力である送信信号の位相をθIN、移相器6で
の移相量をθC 、伝送ケーブルでの移相量をΔθ、信号
受給部3における受信信号の位相をθOUT とし、信号供
給部1および信号受給部3における他の部分の位相のズ
レは伝送ケーブル2の移相量Δθや移相器6の移相量θ
C に較べて無視し得るものとする。
The reason is as follows. Now, the phase of the transmission signal output from the signal transmitter 4 is θ IN , the phase shift amount in the phase shifter 6 is θ C , the phase shift amount in the transmission cable is Δθ, and the phase of the reception signal in the signal receiving unit 3 is the theta and OUT, the phase shift of the signal supply unit 1 and the signal receiving portion of the phase shift of the other portions in the 3 transmission cable 2 phase shift amount Δθ and the phase shifter 6 theta
It should be negligible compared to C.

【0026】そして、送信信号の位相θINは、移相器6
でθC だけ進められ、伝送ケーブル2でΔθだけ遅れる
ので、遅れをマイナス、進みをプラスとすれば、θIN
θOU T との間に数式1が成立する。
The phase θ IN of the transmission signal is
In advanced by theta C, since delayed by Δθ in the transmission cable 2, if a delay minus, take positive, Equation 1 is established between the theta IN and theta OU T.

【0027】[0027]

【数1】θIN+θC −Δθ=θOUT [Equation 1] θ IN + θ C -Δθ = θ OUT

【0028】一方、移相器6の移相量θC は、前述のよ
うに、位相検波器9で検出される位相差角と同じである
ところ、位相検波器の一方の入力信号の位相はθINであ
り、他方の入力は逆進して来た信号であり、その位相
は、信号受給部3における位相θOUT より伝送ケーブル
2の移相量Δθだけ遅れたものであるからθOUT −Δθ
となり、θINより遅れているから、θINから(θOUT
Δθ)を差し引いたものが検出された位相差角、即ち、
θC ということになり、数式2が成立する。
On the other hand, the phase shift amount θ C of the phase shifter 6 is the same as the phase difference angle detected by the phase detector 9 as described above, but the phase of one input signal of the phase detector is changed. θ IN , and the other input is a signal that has reversed, and its phase is delayed from the phase θ OUT in the signal receiving unit 3 by the phase shift amount Δθ of the transmission cable 2, so that θ OUT − Δθ
Next, because they later than θ IN, from θ INOUT -
Δθ) is subtracted from the detected phase difference angle, that is,
will be called θ C, equation (2) is satisfied.

【0029】[0029]

【数2】θC =θIN−(θOUT −Δθ)## EQU2 ## θ C = θ IN − (θ OUT −Δθ)

【0030】ここで、数式2のθC を数式1へ代入する
と数式3が成立し、信号受給部3における位相θOUT
送信信号の位相θINに等しくなることが分かる。
Here, when θ C in Expression 2 is substituted into Expression 1, Expression 3 is established, and it can be seen that the phase θ OUT in the signal receiving unit 3 is equal to the phase θ IN of the transmission signal.

【0031】[0031]

【数3】θOUT =θIN [Equation 3] θ OUT = θ IN

【0032】そして、数式3を数式2の右辺へ代入する
と数式4のようになり、移相器6での補正量θC が、伝
送ケーブル2での移相量Δθに一致することが分かる。
Then, when Equation 3 is substituted into the right side of Equation 2, Equation 4 is obtained, and it can be seen that the correction amount θ C in the phase shifter 6 matches the phase shift amount Δθ in the transmission cable 2.

【0033】[0033]

【数4】θC =ΔθEquation 4 θ C = Δθ

【0034】以上のように、本発明の供給回路では一種
のフィードバックシステムが形成されているところか
ら、伝送ケーブルの移相量Δθが環境の変化或いは経時
変化によって変動しても、またケーブル交換工事によっ
て従前の長さと違ってしまったことにより変動しても、
移相器6の移相量θC がこの変動に追随するので、常に
数式3および数式4の状態を維持できることになる。
As described above, since a kind of feedback system is formed in the supply circuit of the present invention, even if the phase shift amount Δθ of the transmission cable fluctuates due to environmental change or aging, the cable replacement work can be performed. Even if it fluctuates due to having been different from the previous length,
Since the phase shift amount θ C of the phase shifter 6 follows this variation, the states of Expressions 3 and 4 can always be maintained.

【0035】以上のことから、1つの信号源から別々の
伝送路で複数箇所へ同相の信号を伝送する必要のあると
きは、信号供給部1内に、移相器6、サーキュレータ
7、位相制御器8、位相検波器9からなる言わば移相補
正回路を複数個設け、同じく信号受給部3も複数個設け
ることにより目的を達成することができる。
As described above, when it is necessary to transmit an in-phase signal from one signal source to a plurality of locations via separate transmission paths, the phase shifter 6, the circulator 7, the phase control The object can be achieved by providing a plurality of phase shift correction circuits including the detector 8 and the phase detector 9, and also by providing a plurality of signal receiving units 3.

【0036】更にまた、1つの信号受給部を信号源(信
号発信器4)として後へ図1の回路を構成することによ
り枝別れ的に多数の受給点へ同相の信号を供給すること
ができる。
Further, by using one signal receiving unit as a signal source (signal transmitter 4) and configuring the circuit of FIG. 1 later, in-phase signals can be supplied to a number of receiving points in a branched manner. .

【0037】図2は本発明の第2の実施例の構成を示す
ブロック図であり、図1との相違点は、図1の信号供給
部1のサーキュレータ7を方向性結合器12に置き代え
た点である。この方向性結合器12はポートaから入力
した信号はポートbから出力され、ポートbから入力し
た信号はポートcへ出力され、図1のサーキュレータ7
と同様の機能を果す。
FIG. 2 is a block diagram showing the configuration of the second embodiment of the present invention. The difference from FIG. 1 is that the circulator 7 of the signal supply unit 1 of FIG. It is a point. In the directional coupler 12, the signal input from the port a is output from the port b, the signal input from the port b is output to the port c, and the circulator 7 shown in FIG.
Performs the same function as.

【0038】図3は本発明の第3の実施例の構成を示す
ブロック図であり、信号供給部は図1もしくは図2と同
じである。2は伝送ケーブル、3は信号受給部、31は
インピーダンス不連続点、32はインピーダンス整合回
路である。伝送ケーブル2がインピーダンス不連続点3
1にて異なるインピーダンスの回路に接続される場合、
信号はインピーダンス不連続点31にて反射し、図1,
図2の場合同様、伝送ケーブル2を逆送する信号を発生
する。ここで、インピーダンス不連続点31のインピー
ダンスが伝送ケーブル2の特性インピーダンスと比較し
て高いインピーダンスへの不連続の場合は、反射波の位
相変化は無く、図1,図2の場合と同様に信号無移相供
給回路が構成できる。一方、インピーダンス不連続点3
1において、インピーダンスが伝送ケーブル2の特性イ
ンピーダンスより低くインピーダンス変換される場合
は、インピーダンス不連続点31で、この反射波の位相
は、180°変化することが知られている。この場合、
信号供給部1にある移相制御器8にて、この180°の
補正を行なえばよい。
FIG. 3 is a block diagram showing the configuration of the third embodiment of the present invention, and the signal supply section is the same as in FIG. 1 or FIG. 2 is a transmission cable, 3 is a signal receiving unit, 31 is an impedance discontinuity point, and 32 is an impedance matching circuit. Transmission cable 2 has impedance discontinuity 3
When connected to circuits with different impedances at 1,
The signal is reflected at the impedance discontinuity point 31 and shown in FIG.
As in the case of FIG. 2, a signal for transmitting the transmission cable 2 backward is generated. Here, when the impedance at the impedance discontinuity point 31 is discontinuous to an impedance higher than the characteristic impedance of the transmission cable 2, there is no phase change of the reflected wave, and the signal is similar to the case of FIGS. A phase-shift supply circuit can be configured. On the other hand, impedance discontinuity point 3
It is known that the phase of the reflected wave changes by 180 ° at the impedance discontinuity point 31 when the impedance is converted to a value lower than the characteristic impedance of the transmission cable 2 in FIG. in this case,
The 180-degree correction may be performed by the phase shift controller 8 in the signal supply unit 1.

【0039】また、インピーダンス不連続点31で、リ
アクタンス成分を持つインピーダンスに変換される場
合、このインピーダンス不連続点での反射位相は、リア
クタンス成分により決定されるが、この位相をネットワ
ーク・アナライザ等で測定しておき、信号供給部1の移
相制御器8でこの位相分を補正する、もしくは信号受給
部3内に、図示してない位相補正器を挿入してもよい。
この位相補正器を用いる場合は、信号受給部3の入力位
相θINと同一の位相となる様補正すれば、図1,図2と
同様に信号無移相給電回路が実現でき、また別の位相に
補正した場合は、この位相分を信号供給部1の移相制御
器8で補正すればよい。また、信号受給部3にインピー
ダンス整合回路32を設けたのは、インピーダンス変化
点以外でのインピーダンスの不連続による反射を防ぐた
めである。
When the impedance is converted into an impedance having a reactance component at the impedance discontinuity point 31, the reflection phase at the impedance discontinuity point is determined by the reactance component. This phase is determined by a network analyzer or the like. The phase may be measured and corrected by the phase shift controller 8 of the signal supply unit 1, or a phase corrector (not shown) may be inserted into the signal reception unit 3.
When this phase corrector is used, if the phase is corrected so as to be the same as the input phase θ IN of the signal receiving unit 3, a signal non-phase-shift power supply circuit can be realized as in FIGS. When the phase is corrected, the phase may be corrected by the phase shift controller 8 of the signal supply unit 1. The reason why the impedance matching circuit 32 is provided in the signal receiving unit 3 is to prevent reflection due to discontinuity of impedance at a point other than the impedance change point.

【0040】図4は、本発明の第4の実施例の構成を示
すブロック図である。図1および図2との相違点は、図
1,図2の伝送ケーブル2が単路であったのに対して、
図4では往復伝送ケーブル13となった点、およびこれ
に伴って、信号供給部1におけるサーキュレータ7或い
は方向性結合器12が不要となり、復路伝送路の出力が
そのまま位相検波器9へ入力されている点、信号受給部
3においても、サーキュレータ10が不要となり、分岐
された信号が復路伝送路へ接続されている点である。
FIG. 4 is a block diagram showing the configuration of the fourth embodiment of the present invention. 1 and 2 is that the transmission cable 2 of FIGS. 1 and 2 is a single path,
In FIG. 4, the point of the reciprocating transmission cable 13 and the circulator 7 or the directional coupler 12 in the signal supply unit 1 become unnecessary, and the output of the return transmission path is directly input to the phase detector 9. Also, the circulator 10 is not required in the signal receiving unit 3 and the branched signal is connected to the return transmission line.

【0041】往復伝送ケーブル13は、環境変化や経時
変化があっても往路の移相量と復路の移相量が同じと見
做せるので、動作原理は図1および図2における動作原
理と同じである。
The operation principle of the reciprocating transmission cable 13 is the same as the operation principle in FIGS. 1 and 2 because the phase shift amount in the forward path and the phase shift amount in the return path can be regarded as the same even if there is an environmental change or a change with time. It is.

【0042】[0042]

【発明の効果】以上説明したように、本発明は、伝送路
の移相量が変動する信号供給回路で、信号受給部で受け
た信号の一部を信号供給部へ送り返し、信号供給部の信
号源の出力信号との位相差を検出し、出力信号の位相を
該位相差分だけ補正して伝送路へ送り出すようにしたの
で、伝送路の移相量が変動してもそれにかかわりなく信
号受給部での位相を信号源の出力位相と同じに維持する
ことができ、1つの信号源から別々の伝送路を経て複数
の受給点へ信号を供給する場合に各伝送路の移相量変動
がばらばらであっても複数の受給点同士の位相を同相に
することができるという利点がある。
As described above, the present invention relates to a signal supply circuit in which the amount of phase shift of a transmission line varies, sends a part of the signal received by the signal receiving section back to the signal supplying section, Since the phase difference from the output signal of the signal source is detected and the phase of the output signal is corrected by the phase difference and sent to the transmission line, the signal is received regardless of the phase shift amount of the transmission line. Section can maintain the same phase as the output phase of the signal source, and when signals are supplied from one signal source to multiple receiving points via separate transmission paths, the phase shift amount of each transmission path varies. There is an advantage that the phases of a plurality of receiving points can be the same even if they are disjointed.

【0043】その結果、適用例として、多数のアンテナ
エレメントから構成されるアレイアンテナの、各アンテ
ナエレメント毎に設けられているアレイアンテナ無線部
の位相補正のために必要な同相参照信号の供給が可能と
なり、従来のように、外気温の変化、日照変動による温
度変化等の環境の変化或いは経時変化が各伝送路毎にば
らばらに生じた場合の補正対策がなかった場合に較べ、
極めて誤差の少ないアンテナビーム制御が可能になると
いう利点がある。
As a result, as an application example, it is possible to supply an in-phase reference signal necessary for phase correction of an array antenna radio unit provided for each antenna element of an array antenna composed of a large number of antenna elements. As compared with the conventional case where there is no corrective measure in the case where the change of the outside air temperature, the change of the environment such as the temperature change due to the sunshine change or the change over time occur separately for each transmission line,
There is an advantage that antenna beam control with very little error can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の信号無移相供給回路の第1の実施例の
構成を示すブロック図である。
FIG. 1 is a block diagram showing the configuration of a first embodiment of a signal phase-shift supply circuit according to the present invention.

【図2】本発明の第2の実施例の構成を示すブロック図
である。
FIG. 2 is a block diagram showing a configuration of a second exemplary embodiment of the present invention.

【図3】本発明の第3の実施例の構成を示すブロック図
である。
FIG. 3 is a block diagram illustrating a configuration of a third exemplary embodiment of the present invention.

【図4】本発明の第4の実施例の構成を示すブロック図
である。
FIG. 4 is a block diagram showing a configuration of a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 信号供給部 2 伝送ケーブル 3 信号受給部 4 信号発信器 5 抽出カプラ 6 移相器 7 サーキュレータ 8 移相制御器 9 位相検波器 10 サーキュレータ 11 分岐回路 12 方向性結合器 13 往復伝送ケーブル 31 インピーダンス不連続点 32 インピーダンス整合回路 REFERENCE SIGNS LIST 1 signal supply unit 2 transmission cable 3 signal reception unit 4 signal transmitter 5 extraction coupler 6 phase shifter 7 circulator 8 phase shift controller 9 phase detector 10 circulator 11 branch circuit 12 directional coupler 13 reciprocal transmission cable 31 impedance non-impedance Continuous point 32 Impedance matching circuit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 信号供給部と伝送路と信号受給部とから
なり、各部がそれぞれ下記の構成を具備することを特徴
とする信号無移相供給回路。I 信号供給部として (イ)送るべき信号を発信する信号発信器 (ロ)信号発信器の出力を入力とし、その位相を、移相
制御信号により移相して出力する移相器 (ハ)移相器の出力を伝送路へ送り出すとともに、同じ
伝送路を逆進してくる入力信号を取り出すサーキュレー
タ (ニ)サーキュレータから取り出された逆進入力信号と
発信信号との位相差角を検出する位相検波器 (ホ)位相検波器からの位相差角信号を受け、前記移相
器の移相角が前記位相差角と等しくなるようにする位相
制御信号を移相器へ出力する移相制御器II 信号受給部
として (ヘ)伝送路で伝送されて来た信号を受け、これを信号
使用回路の方へ送るとともに、受けた信号の分岐された
一部を再び同じ伝送路へ逆送するサーキュレータ
1. A signal phase-shifting supply circuit comprising a signal supply unit, a transmission line, and a signal reception unit, wherein each unit has the following configuration. (1) A signal transmitter for transmitting a signal to be sent (b) A phase shifter which receives the output of the signal transmitter as an input, and shifts the phase of the signal by a phase shift control signal and outputs the phase. A circulator that sends the output of the phase shifter to the transmission line and extracts the input signal that travels backward on the same transmission line. (D) A phase that detects the phase difference angle between the reverse input signal extracted from the circulator and the transmission signal. (E) A phase shift controller that receives a phase difference angle signal from a phase detector and outputs to the phase shifter a phase control signal that causes the phase shift angle of the phase shifter to be equal to the phase difference angle. II. As a signal receiving unit (f) A circulator that receives the signal transmitted on the transmission line, sends it to the signal use circuit, and sends the branched part of the received signal back to the same transmission line again
【請求項2】 請求項1の(ハ)のサーキュレータに代
えて、方向性結合器を用いたことを特徴とする信号無移
相供給回路。
2. A signal phase-shift supply circuit using a directional coupler in place of the circulator according to claim 1.
【請求項3】 請求項1の(ヘ)のサーキュレータに代
えて、伝送路で伝送されて来た信号に対して、これを信
号使用回路の方へ送るとともに、受けた信号の一部を同
じ伝送路へ反射させるための伝送路インピーダンス不連
続点を用いたことを特徴とする信号無移相供給回路。
3. A signal transmitted through a transmission line instead of the circulator according to claim 1 is sent to a signal using circuit, and a part of the received signal is replaced with the same signal. A signal non-phase-shifting supply circuit using a transmission line impedance discontinuity point for reflection to a transmission line.
【請求項4】 信号供給部と往復伝送路と信号受給部と
からなり、各部がそれぞれ下記の構成を具備することを
特徴とする信号無移相供給回路。 I 信号供給部として (イ)送るべき信号を発信する信号発信器 (ロ)信号発信器の出力を入力とし、その位相を移相制
御信号により移相して往路伝送路へ出力する移相器 (ハ)復路伝走路からの入力信号と発信信号との位相差
角を検出する位相検波器 (ニ)位相検波器からの位相差角信号を受け、前記移相
器の移相角が位相差角と等しくなるようにする移相制御
信号を移相器へ出力する移相制御器 II 信号受給部として (ホ)往路伝送路で伝送されて来た信号を受け、これを
信号使用回路の方へ送るとともに、受けた信号の一部を
分岐して復路伝走路へ逆送する分岐回路
4. A signal phase-shifting supply circuit comprising a signal supply unit, a reciprocating transmission line, and a signal receiving unit, wherein each unit has the following configuration. (1) A signal transmitter for transmitting a signal to be sent. (B) A phase shifter that receives the output of the signal transmitter as input, shifts its phase by a phase shift control signal, and outputs it to the outward transmission line. (C) a phase detector for detecting a phase difference angle between the input signal from the return path and the transmission signal; and (d) receiving a phase difference angle signal from the phase detector, and detecting a phase difference angle of the phase shifter. A phase shift controller that outputs a phase shift control signal to make the angle equal to the angle to the phase shifter. II. As a signal receiving unit, (e) receives the signal transmitted on the outward transmission line and sends it to the signal use circuit. Branch circuit that sends a part of the received signal and branches it back to the return path
JP2000225286A 2000-07-26 2000-07-26 Signal-free phase-shift supply circuit Expired - Fee Related JP4497669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000225286A JP4497669B2 (en) 2000-07-26 2000-07-26 Signal-free phase-shift supply circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000225286A JP4497669B2 (en) 2000-07-26 2000-07-26 Signal-free phase-shift supply circuit

Publications (2)

Publication Number Publication Date
JP2002043801A true JP2002043801A (en) 2002-02-08
JP4497669B2 JP4497669B2 (en) 2010-07-07

Family

ID=18719082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000225286A Expired - Fee Related JP4497669B2 (en) 2000-07-26 2000-07-26 Signal-free phase-shift supply circuit

Country Status (1)

Country Link
JP (1) JP4497669B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123811A (en) * 2003-10-15 2005-05-12 Kddi Corp Apparatus and method for regulating rf circuit transmission characteristic for array antenna

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5634215A (en) * 1979-08-29 1981-04-06 Sony Corp Phase compensating circuit
JPS60226255A (en) * 1984-04-24 1985-11-11 Nec Corp Phase compensating circuit
JPS6188328U (en) * 1984-11-14 1986-06-09
JPS62196912A (en) * 1986-02-25 1987-08-31 Nec Corp Phase compensating circuit
JPS63187807A (en) * 1987-01-30 1988-08-03 Fujitsu Ltd Phase shift circuit
JPH02179034A (en) * 1988-10-27 1990-07-12 Alcatel Transmission Par Faisceaux Hertziens Atfh Device for correcting group propagation time at ultra-high frequency
JPH09223945A (en) * 1996-02-16 1997-08-26 Nec Eng Ltd Phase adjustment device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5634215A (en) * 1979-08-29 1981-04-06 Sony Corp Phase compensating circuit
JPS60226255A (en) * 1984-04-24 1985-11-11 Nec Corp Phase compensating circuit
JPS6188328U (en) * 1984-11-14 1986-06-09
JPS62196912A (en) * 1986-02-25 1987-08-31 Nec Corp Phase compensating circuit
JPS63187807A (en) * 1987-01-30 1988-08-03 Fujitsu Ltd Phase shift circuit
JPH02179034A (en) * 1988-10-27 1990-07-12 Alcatel Transmission Par Faisceaux Hertziens Atfh Device for correcting group propagation time at ultra-high frequency
JPH09223945A (en) * 1996-02-16 1997-08-26 Nec Eng Ltd Phase adjustment device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123811A (en) * 2003-10-15 2005-05-12 Kddi Corp Apparatus and method for regulating rf circuit transmission characteristic for array antenna

Also Published As

Publication number Publication date
JP4497669B2 (en) 2010-07-07

Similar Documents

Publication Publication Date Title
KR101019521B1 (en) Adjust equipment and method for array antenna transmitting link
US7764935B2 (en) Phase and power calibration in active antennas
JP4215173B2 (en) Antenna calibration method and apparatus
EP2232635B1 (en) Phased array antenna having integral calibration network and method for measuring calibration ratio thereof
EP1329983A2 (en) Array antenna calibration apparatus and array antenna calibration method
US8754811B1 (en) Digital beamforming phased array
EP1784658A2 (en) Antenna array calibration
KR20110007207A (en) Calibrating radiofrequency paths of a phased-array antenna
US9620865B2 (en) Antenna beam scan module, and communication apparatus using the same
US20100251050A1 (en) Time-division duplex transmit-receive apparatus
US4965809A (en) Uplink cross-polarization interference canceller using correlation calculator and stepwise tracking controller
JP2001136115A (en) Method for eliminating sneak-path wave for antenna system for relay station
JP3673732B2 (en) Array antenna transmission pattern calibration method
JP2006267036A (en) Interference wave suppressor
US10903870B1 (en) Angle of propagation estimation in a multipath communication system
US6600935B1 (en) Radio transmission device and transmission directivity adjusting method
KR101557823B1 (en) Protection circuit for transceiver module
US6255986B1 (en) Calibration method and arrangement
JP2002043801A (en) Signal non-phase shift feed circuit
KR20030058265A (en) Apparatus of tranceiver for beam-forming and estimating the direction of arrival
JP6431775B2 (en) Phase detector and satellite repeater
KR101301825B1 (en) Online RF calibration apparatus and method for smart antenna
JPH1146113A (en) Array antenna receiver and phase rotation amount correction method for reception signal
JP2000324033A (en) Method and device for repeating identical frequency
JP2504159B2 (en) Array antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4497669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees