JP2002040368A - Optically driven type wave front correction video method and device - Google Patents

Optically driven type wave front correction video method and device

Info

Publication number
JP2002040368A
JP2002040368A JP2000227874A JP2000227874A JP2002040368A JP 2002040368 A JP2002040368 A JP 2002040368A JP 2000227874 A JP2000227874 A JP 2000227874A JP 2000227874 A JP2000227874 A JP 2000227874A JP 2002040368 A JP2002040368 A JP 2002040368A
Authority
JP
Japan
Prior art keywords
phase modulation
phase
light
medium
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000227874A
Other languages
Japanese (ja)
Other versions
JP3455775B2 (en
Inventor
Tomohiro Shirai
智宏 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000227874A priority Critical patent/JP3455775B2/en
Publication of JP2002040368A publication Critical patent/JP2002040368A/en
Application granted granted Critical
Publication of JP3455775B2 publication Critical patent/JP3455775B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform wave front correction for preventing an obtained image from becoming unclear by phase fluctuation such as the fluctuation of a medium in an optical path in video equipment such as a microscope, a telescope and a camera in real time by an optical write type liquid crystal space phase modulation element. SOLUTION: A laser beam passing through a disturbance medium between an object to be measured and an observation surface is made incident on the phase modulation surface 3 of the phase modulation element 2 as a laser for driving a compensation optical system. The reflected light is image-formed on a virtual plane F1 through a beam splitter BS3, the image is led to an interference optical system and an interference fringe reflecting the phase distribution of the disturbance medium is formed on the virtual plane F2. The image is image-formed on the write surface 4 of the phase modulation element 2. Thus, the phase modulation surface 3 is turned to the phase distribution for canceling the phase fluctuation of the disturbance medium and the compensation optical system is formed. When the image of the object to be measured is radiated to the phase modulation surface 3 in this state, the reflected light is turned to the image without the influence of the disturbance medium.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、工業計測や医療機
器として用いられる顕微鏡、望遠鏡、カメラ等の映像装
置において、光路中の媒質の位相変動により、得られた
像が不鮮明となることを防止する波面補正映像方法及び
その方法を実施する装置に関し、特に、その波面補正を
光書き込み型液晶空間位相変調素子により実時間で行う
ようにした光駆動型波面補正映像方法及びその方法を実
施する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microscope, a telescope, a camera, and other imaging devices used for industrial measurement and medical equipment, which prevents an obtained image from being blurred due to phase fluctuation of a medium in an optical path. -Related wavefront correction imaging method and apparatus for implementing the method, and in particular, an optically driven wavefront correction imaging method and an apparatus for implementing the method, wherein the wavefront correction is performed in real time by a light-writing type liquid crystal spatial phase modulator. About.

【0002】[0002]

【従来の技術】工業計測や医療機器として利用される顕
微鏡、望遠鏡、カメラ等の映像装置は、除去することが
本質的に難しい光路中の媒質の位相変動によって、その
分解能が制限されることが知られている。例えば機械加
工技術分野において、加工物を現場でモニタリングする
際には工作機械の振動や発生熱に由来する空気のゆらぎ
により、また、医療用の眼底カメラにおいては眼の収差
(乱視)の影響により、得られた像が不鮮明となってし
まうことが知られている。
2. Description of the Related Art Imaging devices such as microscopes, telescopes, and cameras used as industrial instruments and medical equipment are often limited in resolution by phase fluctuations of a medium in an optical path that is inherently difficult to remove. Are known. For example, in the field of machining technology, when monitoring a workpiece on-site, it is caused by the fluctuation of air caused by the vibration of the machine tool or generated heat, and in the case of a medical fundus camera, by the effect of eye aberration (astigmatism). It is known that the obtained image becomes unclear.

【0003】即ち、顕微鏡、望遠鏡、カメラ等に代表さ
れる各種映像システムは、物体(被写体)と結像面(観
察面)とを結ぶ光路中に存在する媒質の位相変動によ
り、その分解能が著しく低下する。その位相変動の影響
を実時間で補正する技術は補償光学(もしくは、アダプ
ティブ・オプティクス)と言われ既に、大型の天体望遠
鏡等に設置されその有効性が確かめられている。
That is, various image systems represented by a microscope, a telescope, a camera, and the like have a remarkable resolution due to phase fluctuation of a medium existing in an optical path connecting an object (subject) and an imaging plane (observation plane). descend. A technique for correcting the effect of the phase fluctuation in real time is called adaptive optics (or adaptive optics), and its effectiveness has already been confirmed in large astronomical telescopes and the like.

【0004】従来より広く用いられているシステムの構
成を図6に示す。基本的には、光路中の媒質の位相変動
の影響によって乱された波面60を形状可変鏡61で反
射させ、その反射光の一部をビームスプリッター(B
S)62によって取り出し、それを波面センサー63に
入射させる。ここで、形状可変鏡61とは、薄い鏡64
の背面に電歪素子65が多数取り付けられ、それぞれの
電歪素子65に印可する電圧に応じて鏡の形状を任意に
変化させることができる装置である。
FIG. 6 shows the configuration of a system that has been widely used in the past. Basically, the wavefront 60 disturbed by the influence of the phase fluctuation of the medium in the optical path is reflected by the deformable mirror 61, and a part of the reflected light is split by the beam splitter (B).
S) Take it out by 62 and make it incident on the wavefront sensor 63. Here, the deformable mirror 61 is a thin mirror 64
This is a device in which a large number of electrostrictive elements 65 are attached to the back of the mirror and the shape of the mirror can be arbitrarily changed according to the voltage applied to each electrostrictive element 65.

【0005】波面センサー63では波面の乱れが計測さ
れ、そのデータが制御装置66へと導かれる。制御装置
66では、そのデータに基づいて波面を補正するために
必要な鏡の形状、すなわち各電歪素子65に印可する電
圧が計算され、それに基づいて形状可変鏡の形状を変化
させる。この一連の動作を素早く行うことで、反射光の
波面を実時間で補正することができる。この形状可変鏡
61を映像システムに組み込むことにより、波面の乱れ
によって低下した映像システムの分解能を向上させるこ
とができる。
[0005] The wavefront sensor 63 measures the disturbance of the wavefront, and the data is guided to the control device 66. The controller 66 calculates the shape of the mirror required to correct the wavefront based on the data, that is, the voltage applied to each electrostrictive element 65, and changes the shape of the deformable mirror based on the calculated voltage. By performing this series of operations quickly, the wavefront of the reflected light can be corrected in real time. By incorporating the deformable mirror 61 into an image system, it is possible to improve the resolution of the image system which has been reduced due to the disturbance of the wavefront.

【0006】これを映像システムの一例である天体望遠
鏡に組み込むには、望遠鏡内部の反射鏡をこの形状可変
鏡61に置き換え、そこからの反射光の一部を波面セン
サー63に導入して鏡の制御信号を生成し、それに基づ
き鏡の形状を制御する。実際には、明るい星(参照星)
を観察することにより、大気のゆらぎによって乱された
光の波面を検出し、反射の過程で乱れた波面が補正され
るよう形状可変鏡を変形させる。この状態で、参照星の
近傍にある目的の星を観測すると、大気のゆらぎが補正
され鮮明な天体像が得られる。
In order to incorporate this into an astronomical telescope which is an example of an image system, the reflecting mirror inside the telescope is replaced by this deformable mirror 61, and a part of the reflected light therefrom is introduced into a wavefront sensor 63 to be used as a mirror. A control signal is generated, and the shape of the mirror is controlled based on the control signal. In fact, bright stars (reference stars)
By observing the wavefront, the wavefront of the light disturbed by the fluctuation of the atmosphere is detected, and the deformable mirror is deformed so that the wavefront disturbed in the reflection process is corrected. In this state, when a target star near the reference star is observed, the fluctuation of the atmosphere is corrected and a clear astronomical image is obtained.

【0007】[0007]

【発明が解決しようとする課題】形状可変鏡は上記のよ
うに、薄い鏡の背面に電歪素子を多数(数十個から数百
個程度)貼り付け、個々の電歪素子に高電圧を印可する
ことによって、鏡の形状を変化させる装置である。その
ため、この形状可変鏡を用いた補償光学システムは、シ
ステム全体が高価となるばかりか、消費電力が莫大であ
り、かつ装置の駆動電源が電歪素子の数だけ必要となる
ため、システム全体が大規模になってしまう欠点があ
る。また、鏡の形状変化には物理的な限界があるため波
面補正の高分解能化が困難であり、さらに、例え電歪素
子の数を増加させ波面補正の高分解能化を図ったとして
も、素子の増加に伴い各素子を駆動する信号を生成する
ための演算が膨大となり実時間での波面補正が不可能と
なる。
As described above, in the deformable mirror, a large number (about several tens to several hundreds) of electrostrictive elements are attached to the back of a thin mirror, and a high voltage is applied to each electrostrictive element. This is a device that changes the shape of the mirror by applying it. Therefore, the adaptive optics system using the deformable mirror not only makes the entire system expensive, but also consumes enormous power and requires a drive power supply for the device by the number of electrostrictive elements. There is a disadvantage that it becomes large. In addition, it is difficult to increase the resolution of the wavefront correction due to the physical limitation of the mirror shape change, and even if the number of electrostrictive elements is increased and the resolution of the wavefront correction is increased, With the increase in the number of calculations, the computation for generating the signals for driving the respective elements becomes enormous, and the wavefront correction in real time becomes impossible.

【0008】上記のような形状可変鏡を用いた従来の補
償光学システムでは、 1)装置が高価となる。 2)消費電力が増大する。 3)装置が大規模化する。 4)波面補正の高分解能化が困難である。 5)波面補正の高分解能化に伴い実時間での波面補正が
困難になる。 等の問題があった。これらの問題により、この装置を各
種工業計測や医療機器に応用することは極めて困難とな
る。
In a conventional adaptive optics system using a deformable mirror as described above, 1) the apparatus becomes expensive. 2) The power consumption increases. 3) The scale of the device increases. 4) It is difficult to increase the resolution of wavefront correction. 5) The wavefront correction in real time becomes difficult as the resolution of the wavefront correction increases. And so on. These problems make it extremely difficult to apply this device to various industrial measurements and medical equipment.

【0009】したがって本発明は、小形で安価な装置で
あって消費電力が少なく、波面補正の高分解能化が容易
であり、且つ波面補正を実時間で行うことができるよう
にした光駆動型波面補正映像方法及び装置を提供するこ
とを目的とする。
Accordingly, the present invention is an optically driven wavefront which is a small and inexpensive device, consumes little power, can easily increase the resolution of wavefront correction, and can perform wavefront correction in real time. It is an object of the present invention to provide a corrected image method and apparatus.

【0010】[0010]

【課題を解決するための手段】本発明は、上記1)〜
4)の問題を解決するために、波面を補正する素子とし
て高分解能の液晶空間位相変調素子を導入し、さらに
5)を解決するために、素子の駆動のための演算を一切
必要としない光学的フィードバック干渉計に基づく光駆
動型の補償光学システムを導入した。すなわち、波面の
補正装置として高分解能の光書き込み型液晶空間位相変
調素子を利用し、それを光学的フィードバック干渉計に
組み込むことにより、光駆動型の補償光学システムを構
築し、それを映像システムに組み込んだものである。ま
た、この装置では、各種工業計測や医療用機器で使用す
ることを主な目的としているため、被測定物体を照明す
る光、及びこの補償光学システムを駆動する光は、高輝
度で干渉性に優れたレーザー光を利用している。
The present invention provides the above-mentioned 1) to
In order to solve the problem 4), a high-resolution liquid crystal spatial phase modulation device is introduced as a device for correcting the wavefront, and in order to solve the problem 5), optics that does not require any operation for driving the device. An optically driven adaptive optics system based on dynamic feedback interferometer was introduced. In other words, a high-resolution optically-written liquid crystal spatial phase modulator is used as a wavefront correction device, and it is built into an optical feedback interferometer to construct an optically driven adaptive optics system, which is used in an image system It has been incorporated. In addition, since the main purpose of this device is to use it in various industrial measurement and medical equipment, the light for illuminating the object to be measured and the light for driving the adaptive optics system have high brightness and coherence. Uses excellent laser light.

【0011】上記のような考え方を元に、請求項1に係
る発明は、書き込み面に照射した光の強さに依存して、
その裏側の位相変調面の変調位相が変化する液晶空間位
相変調素子を用い、被測定物体と観察面間の空間の擾乱
媒質を通過し前記位相変調面に参照光を入射し、前記位
相変調面で反射した前記参照光から擾乱媒質の位相分布
を反映した干渉縞を得て、前記書き込み面にこれを照射
することにより擾乱媒質の位相分布を打ち消すように位
相変調面を形成し、被測定物体から前記擾乱媒質を通り
前記位相変調面に入射して反射した被測定光を観察する
ことを特徴とする光駆動型波面補正映像方法としたもの
である。
Based on the above concept, the invention according to claim 1 depends on the intensity of light applied to the writing surface,
Using a liquid crystal spatial phase modulation element in which the modulation phase of the phase modulation surface on the back side changes, a reference light is incident on the phase modulation surface through a disturbance medium in the space between the measured object and the observation surface, and the phase modulation surface is Obtain interference fringes reflecting the phase distribution of the disturbing medium from the reference light reflected in the above, form a phase modulation surface so as to cancel the phase distribution of the disturbing medium by irradiating the writing surface with the interference fringes, and And observing the light to be measured reflected from the phase modulation surface after passing through the disturbing medium from above.

【0012】また、請求項2に係る発明は、書き込み面
に照射した光の強さに依存して、その裏側の位相変調面
の変調位相が変化する液晶空間位相変調素子と、被測定
物体と観察面間の空間の擾乱媒質を通過し前記位相変調
面に参照光を入射する参照光照射手段と、前記位相変調
面で反射した前記参照光から擾乱媒質の位相分布を反映
した干渉縞を得て、前記書き込み面にこれを照射するこ
とにより擾乱媒質の位相分布を打ち消すように位相変調
面を形成する補償光学手段と、被測定物体から前記擾乱
媒質を通り前記位相変調面に入射して反射した被測定光
を観察する被測定物体観察手段とを備えたことを特徴と
する光駆動型波面補正映像装置としたものである。
Further, the invention according to claim 2 provides a liquid crystal spatial phase modulation element in which the modulation phase of the phase modulation surface on the back side changes depending on the intensity of light irradiated on the writing surface; Reference light irradiation means for passing reference light through the disturbance medium in the space between the observation surfaces and entering the reference light into the phase modulation surface, and obtaining interference fringes reflecting the phase distribution of the disturbance medium from the reference light reflected by the phase modulation surface. Irradiating the writing surface with this to form a phase modulation surface so as to cancel the phase distribution of the disturbing medium; and inputting and reflecting the object from the measured object through the disturbing medium to the phase modulation surface. And an object to be measured observing means for observing the measured light.

【0013】また、請求項3に係る発明は、前記被測定
物体が加工物の表面である請求項2記載の光駆動型波面
補正映像装置としたものである。
According to a third aspect of the present invention, there is provided an optically driven wavefront correction image apparatus according to the second aspect, wherein the object to be measured is a surface of a workpiece.

【0014】また、請求項4に係る発明は、前記被測定
物体が遮蔽空間内の物体である請求項2記載の光駆動型
波面補正映像装置としたものである。
According to a fourth aspect of the present invention, there is provided the optically driven wavefront correction image apparatus according to the second aspect, wherein the object to be measured is an object in a shielded space.

【0015】また、請求項5に係る発明は、前記液晶空
間位相変調素子の書き込み面に、映写機器により前記干
渉縞を撮像した映像を照射する請求項2記載の光駆動型
波面補正映像装置としたものである。
According to a fifth aspect of the present invention, there is provided an optically-driven wavefront correction image apparatus according to the second aspect, wherein an image obtained by imaging the interference fringe is projected on a writing surface of the liquid crystal spatial light modulator by a projection device. It was done.

【0016】[0016]

【発明の実施の形態】本発明の実施例を図面に沿って説
明する。この発明の基本的な構成を図1及び図2に示
す。なお、紙面の関係上、一つの装置を二分割して表示
している。図1は、主に映像システムの部分であり、図
2は波面を補正する素子を駆動する補償光学システムの
部分を、一部重複して示している。
Embodiments of the present invention will be described with reference to the drawings. 1 and 2 show a basic configuration of the present invention. In addition, due to space limitations, one device is divided into two and displayed. FIG. 1 mainly shows a part of an image system, and FIG. 2 shows a part of an adaptive optics system for driving an element for correcting a wavefront in a partially overlapped manner.

【0017】図1において、直線偏光のレーザー光から
平面波を作成し、それによって被測定物体1を照明す
る。被測定物体1を透過した光波は、レンズL1、ビー
ムスプリッターBS1、レンズL2、L3を通過し、光
書き込み型液晶空間位相変調素子2の位相変調面3で反
射され、その反射光がビームスプリッターBS2とレン
ズL4を通過して観察面としての結像面6に結像され
る。
In FIG. 1, a plane wave is created from a linearly polarized laser beam, and thereby the object to be measured 1 is illuminated. The light wave transmitted through the measured object 1 passes through the lens L1, the beam splitter BS1, the lenses L2 and L3, is reflected by the phase modulation surface 3 of the optical writing type liquid crystal spatial phase modulation element 2, and the reflected light is the beam splitter BS2. Through the lens L4 to form an image on an imaging surface 6 as an observation surface.

【0018】上記光書き込み型液晶空間位相変調素子2
は、書き込み面4に照射した光の強さに依存して、その
裏側の位相変調面3の変調位相が変化する素子である。
ただし、位相変調には偏光依存性があり、液晶分子の配
向方向と平行な偏光成分の光波のみの位相を変調させ
る。また、この素子は書き込み面4に照射する強度パタ
ーンに応じて任意に位相変調を行うことができるため、
高分解能な波面補正能力を持つ。波面を乱す擾乱媒質5
はビームスプリッターBS1とレンズL2の間で、かつ
位相変調面3に対してレンズL2とL3による結像面と
なるように配置される。各レンズの焦点距離は、レンズ
L1とL4、及びレンズL2とL3をそれぞれ等しくす
る。これらの配置については、各レンズの焦点が一致す
るアフォーカル系とする。
The above-mentioned optical writing type liquid crystal spatial phase modulation element 2
Is an element in which the modulation phase of the phase modulation surface 3 on the back side changes depending on the intensity of light applied to the writing surface 4.
However, phase modulation has polarization dependence, and modulates only the phase of a light wave of a polarization component parallel to the alignment direction of liquid crystal molecules. Further, since this element can arbitrarily perform phase modulation according to the intensity pattern applied to the writing surface 4,
Has high resolution wavefront correction capability. Disturbing medium 5 that disturbs the wavefront
Is disposed between the beam splitter BS1 and the lens L2 and on the phase modulation surface 3 so as to form an image plane by the lenses L2 and L3. The focal length of each lens is equal for the lenses L1 and L4 and for the lenses L2 and L3. These arrangements are of an afocal system in which the focal points of the lenses match.

【0019】この光学系においては、液晶空間位相変調
素子2の位相変調面の位相が擾乱媒質5の位相と向きが
反対で大きさがその半分の分布となると、反射の過程で
両者が相殺し合い、この映像システムにおける擾乱媒質
の影響が除去される。このとき、擾乱媒質の影響によっ
てぼやけていた結像面6上(この部分をのぞき込んで直
接見るか、カメラや顕微鏡等を設置する)の像は、鮮明
な像へと変化する。ただし、液晶空間位相変調素子2の
位相変調特性には偏光依存性があるため、反射した光波
の位相が十分に変調されるよう入射光の偏光方向は液晶
分子の配向方向(図では紙面に対して垂直方向とする)
と平行にしなければならない。
In this optical system, when the phase of the phase modulating surface of the liquid crystal spatial phase modulating element 2 is opposite to the phase of the disturbance medium 5 and has a distribution of half the size, the two cancel each other out in the reflection process. The effect of the disturbing medium in this imaging system is eliminated. At this time, the image on the imaging surface 6 (directly looking into this portion or installing a camera, a microscope, or the like), which has been blurred due to the influence of the disturbance medium, changes to a clear image. However, since the phase modulation characteristic of the liquid crystal spatial phase modulation element 2 has polarization dependency, the polarization direction of the incident light is adjusted so that the phase of the reflected light wave is sufficiently modulated with respect to the orientation direction of the liquid crystal molecules (in FIG. Vertical direction)
Must be parallel to

【0020】液晶空間位相変調素子2の位相変調面3の
位相分布を、擾乱媒質5の位相変動を相殺する分布にす
るには、図2に示す補償光学システムを用いる。まず、
前記図1に示すように、ビームスプリッターBS1を介
して擾乱媒質を直線偏光のレーザー光から作成した平面
波(前述の天体観測における『参照星』に相当)で照明
し、それをレンズL2とL3を介して位相変調素子の位
相変調面3に結像する。位相変調面3からの反射光は、
ビームスプリッターBS3を経て、レンズL5へと導か
れる(図2参照)。位相変調面3上の光波の分布はレン
ズL5とL6を介して仮想的な平面F1に入射され、更
に偏光ビームスプリッター7に入射する。この仮想的平
面F1はマッハ・ツェンダー型干渉計の入口となってい
る。
In order to make the phase distribution of the phase modulation surface 3 of the liquid crystal spatial phase modulation element 2 a distribution that cancels out the phase fluctuation of the disturbance medium 5, an adaptive optical system shown in FIG. 2 is used. First,
As shown in FIG. 1, the turbulent medium is illuminated via a beam splitter BS1 with a plane wave (corresponding to the “reference star” in the above-mentioned astronomical observation) created from linearly polarized laser light, and the lenses L2 and L3 are illuminated. An image is formed on the phase modulating surface 3 of the phase modulating element via the optical modulator. The reflected light from the phase modulation surface 3 is
The light is guided to the lens L5 via the beam splitter BS3 (see FIG. 2). The light wave distribution on the phase modulation surface 3 is incident on the virtual plane F1 via the lenses L5 and L6, and further incident on the polarization beam splitter 7. This virtual plane F1 is the entrance of the Mach-Zehnder interferometer.

【0021】この干渉計では、光波の垂直偏光成分が偏
光ビームスプリッター7で反射され、レンズL7とL
8、半波長板8、さらにビームスプリッターBS4を介
して別の仮想的平面F2に入射される。一方、水平偏光
成分は偏光ビームスプリッター7を透過し、レンズL9
とL10を介してその大きさが拡大され乱れた波面から
擬似的に参照平面波が作成され仮想的平面F2上に結像
される。その結果F2上には映像システム中に存在する
擾乱媒質の位相分布を忠実に反映した干渉縞が形成され
る。
In this interferometer, the vertical polarization component of the light wave is reflected by the polarization beam splitter 7, and the lenses L7 and L7
8, a half-wave plate 8, and then enter another virtual plane F2 via a beam splitter BS4. On the other hand, the horizontal polarization component passes through the polarization beam splitter 7 and passes through the lens L9.
And L10, a reference plane wave is simulated from the distorted wavefront and formed on the virtual plane F2. As a result, an interference fringe is formed on F2 that faithfully reflects the phase distribution of the disturbing medium present in the video system.

【0022】なお、干渉縞を形成するためには重ね合わ
せられる二光波の偏光方向を揃える必要があるため、半
波長板を導入して一方の光波の偏光方向を90度回転さ
せ、二光波の偏光方向を揃えている。また、このシステ
ムを駆動するためのレーザーの偏光方向は、重ね合わせ
られる二光波の強度が等しくなるように調整する。
In order to form interference fringes, it is necessary to align the polarization directions of the two light waves to be superimposed. Therefore, by introducing a half-wave plate, the polarization direction of one light wave is rotated by 90 degrees, and the two light waves are rotated. The polarization directions are aligned. The polarization direction of the laser for driving this system is adjusted so that the intensities of the two superimposed light waves are equal.

【0023】上記のように仮想的平面F2面上に形成さ
れた干渉縞は、レンズL11とL12によって光書き込
み型液晶空間位相変調素子2の書き込み面4(位相変調
面3の裏側)に結像される。ただし、そのままでは像が
反転してしまうので、それを補うべく像回転プリズム9
を挿入している。個々のレンズの焦点距離については、
レンズL5とL12、L6とL11、L7とL8を等し
くし、各レンズの焦点が一致するアフォーカル系となる
ように配置する。
The interference fringes formed on the virtual plane F2 as described above are imaged by the lenses L11 and L12 on the writing surface 4 (behind the phase modulation surface 3) of the optical writing type liquid crystal spatial light modulator 2. Is done. However, since the image is inverted as it is, the image rotation prism 9 is used to compensate for this.
Is inserted. For the focal length of each lens,
The lenses L5 and L12, L6 and L11, L7 and L8 are made equal, and the lenses are arranged so as to form an afocal system in which the focal points of the lenses match.

【0024】レンズL9とL10については、参照平面
波を作成するための拡大率に合わせて決定する(例え
ば、5倍の拡大率を得るためには、レンズL9とL10
の焦点距離の比を1対5にする)。以上を実現すると、
光書き込み型液晶空間位相変調素子2の偏光依存性によ
り、素子の位相変調面では、入射光のうち垂直偏光成分
の光波のみの位相が変調されることになり、約20年前
に米国MITのグループによってその原理が創出された
フイードバック干渉計が実現される。その結果、液晶空
間位相変調素子2の位相変調面3の位相分布が擾乱媒質
5の位相変動を打ち消すような分布となり、補償光学シ
ステムとして動作することになる。
The lenses L9 and L10 are determined in accordance with the magnification for producing the reference plane wave (for example, in order to obtain a magnification of 5 times, the lenses L9 and L10 are required).
Is set to 1 to 5). If you realize the above,
Due to the polarization dependence of the optical writing type liquid crystal spatial phase modulation device 2, the phase of only the light wave of the vertical polarization component of the incident light is modulated on the phase modulation surface of the device. The group implements a feedback interferometer whose principle has been created. As a result, the phase distribution of the phase modulation surface 3 of the liquid crystal spatial phase modulation element 2 becomes a distribution that cancels out the phase fluctuation of the disturbance medium 5, and operates as an adaptive optical system.

【0025】なお、この光学系を正確に組むと、映像に
用いる光(物体照明用レーザー)が、BS3を介して図
2に示す補償光学システムを通って液晶空間位相変調素
子の書き込み面に入り込み、その正常な動作を妨げるこ
とになる。この現象は、物体を照明する光の入射方向を
若干傾けることにより回避する。一方、補償光学システ
ムを駆動する光(補償光学システム駆動用レーザー)
も、ビームスプリッターBS2を介して映像システムの
結像面に入り込むが、その光は結像面上では小さなスポ
ットとなることから、映像システムの動作に大きな影響
は与えない。
When this optical system is correctly assembled, light (laser for illuminating an object) used for an image enters the writing surface of the liquid crystal spatial light modulator through the adaptive optics system shown in FIG. Will interfere with its normal operation. This phenomenon is avoided by slightly tilting the incident direction of the light illuminating the object. On the other hand, light for driving the adaptive optics system (laser for driving the adaptive optics system)
Although the light enters the image plane of the image system via the beam splitter BS2, the light becomes a small spot on the image plane, and thus does not significantly affect the operation of the image system.

【0026】なお、上記実施例では各種工業計測や医療
用機器に用いる例を示しているため、高輝度で干渉性の
良いレーザー光を参照光及び被測定物体の照明光として
利用する構成としている。
Since the above-described embodiment shows an example in which the present invention is used for various types of industrial measurement and medical equipment, a laser beam having high luminance and good coherence is used as reference light and illumination light for an object to be measured. .

【0027】以前より光駆動型の補償光学システムは、
それ自身の概念の提案と動作の検証実験に関する報告は
なされているものの、それを具体的な映像システムに組
み込んだ装置全体に関する具体的な提案はなされていな
い。これは、主に、補償光学システムの駆動に使う光と
映像システムに用いる光が互いに影響を及ぼし合うため
に、装置全体が正常に動作しないことが原因であると考
えられる。その点本発明の装置では、映像に用いる光波
と補償光学システムの駆動に用いる光波が互いに影響を
及ぼさないようになされているので、光駆動型補償光学
システムの機能が、映像システムに組み込んだ場合にで
も十分に発揮することができるようになったものであ
る。
An optically driven adaptive optics system has been
Although reports have been made on the proposal of its own concept and the verification experiment of its operation, no specific proposal has been made on the entire device incorporating the concept into a specific video system. This is considered to be mainly because the light used for driving the adaptive optics system and the light used for the video system affect each other, so that the entire device does not operate normally. In that regard, in the device of the present invention, the light wave used for the image and the light wave used for driving the adaptive optics system are made so as not to affect each other. It can now be fully demonstrated.

【0028】上記のような基本原理に基づく本発明は各
種の技術に用いることができる。その中の代表的な実施
例を説明する。図3には本発明の一実施例として、工場
での加工物をその場でモニタリングするシステムを示
す。加工物の多くは光を透過させて観察することが難し
いため、ここではビームスプリッターBS0を用い、被
測定物体である加工物10を正面からレーザーで照射し
ている。一般に、このままの状態で加工物10を観察す
ると、稼働している機械の振動や発生熱の影響で被測定
物体と観測面との間の空気がゆらぎ、観測面上での像が
劣化する。それを補償するために図3のシステムが用い
られる。このシステムは、基本的には図1に示したもの
と同様に機能する。ただし、このシステムにおける機器
の配置においては、補正すべき空気のゆらぎ11が、ビ
ームスプリッターBS1とレンズL2の間に来るように
配置する。なお、補償光学システムについては、前記図
2のシステムが用いられる。
The present invention based on the above basic principle can be used for various techniques. Representative examples among them will be described. FIG. 3 shows a system for monitoring a workpiece in a factory on the spot as an embodiment of the present invention. Since it is difficult to observe most of the workpieces by transmitting light, a workpiece 10 which is an object to be measured is irradiated with a laser from the front using a beam splitter BS0 here. Generally, when the workpiece 10 is observed in this state, the air between the object to be measured and the observation surface fluctuates due to the vibration of the operating machine and the generated heat, and the image on the observation surface deteriorates. The system of FIG. 3 is used to compensate for it. This system functions basically as shown in FIG. However, in the arrangement of the devices in this system, the arrangement is such that the air fluctuation 11 to be corrected comes between the beam splitter BS1 and the lens L2. The system shown in FIG. 2 is used for the adaptive optics system.

【0029】本発明の他の実施例として、図4に遮蔽さ
れた空間15内にある物体のモニタリングシステムを示
す。高密度集積回路を初めとする微細加工物は、微小な
ダストの影響を受けやすいため、多くの場合はクリーン
ルーム内での作業が要求される。そこで加工されている
物体を観察するには、観察用の窓を介した撮影が必須と
なる。また、原子炉等、内部にカメラ等の精密機器を持
ち込めず、内部の状態の観察を遮蔽された空間の外部か
ら窓越しに行う状況も存在する。このとき、窓の厚さ、
密度の不均一さに由来する位相変動や、内部と外部との
環境の相違(温度差・気圧差等)に由来する界面での光
波の乱れが、観測面上での像の乱れを誘発する。図4の
配置においては、遮蔽された空間15の観察用窓16の
位置を、ちょうどビームスプリッターBS1とレンズL
2の間に来るように配置しているため、前記の補償光学
システムを用いることにより、その窓付近で発生する位
相の擾乱が補正され、像の乱れが回復される。
As another embodiment of the present invention, FIG. 4 shows a system for monitoring an object in a shielded space 15. Since microfabricated products such as high-density integrated circuits are easily affected by minute dust, work in a clean room is often required. In order to observe the processed object, photographing through an observation window is indispensable. In addition, there is a situation in which precision equipment such as a camera cannot be brought into the inside of a nuclear reactor or the like, and the inside state is observed through a window from outside the shielded space. At this time, the thickness of the window,
Phase fluctuations due to non-uniform density and disturbances of light waves at the interface due to differences in environment between the inside and outside (temperature difference, pressure difference, etc.) induce image disturbance on the observation surface. . In the arrangement of FIG. 4, the position of the observation window 16 in the shielded space 15 is exactly the same as the beam splitter BS1 and the lens L.
2, the use of the adaptive optics system described above corrects the phase disturbance occurring near the window, and recovers the image disturbance.

【0030】光駆動型の補償光学システムの基本構成は
前記図2に示したが、その構成を変形して用いることが
できる。その一つを図5に示す。同図では、仮想的平面
F2に形成される干渉縞を、CCDカメラ20等で撮影
し。それをビデオプロジェクター21等の映写機器を使
って、実時間で位相変調素子2の書き込み面4に結像さ
せる。このとき、位相変調面3の光波と書き込み面4の
光波が1対1に対応するように、干渉縞の拡大もしくは
縮小を映写機器側で行う必要がある。基本的には、仮想
的平面F2上に形成される干渉縞を位相変調素子3の書
き込み面4に結像させているため、この光学系は図2の
光学系と全く同じ動作が行われる。
Although the basic configuration of the optically driven adaptive optics system is shown in FIG. 2, the configuration can be modified and used. One of them is shown in FIG. In the figure, the interference fringes formed on the virtual plane F2 are photographed by the CCD camera 20 or the like. This is imaged on the writing surface 4 of the phase modulation element 2 in real time using a projection device such as a video projector 21. At this time, it is necessary to enlarge or reduce the interference fringes on the projection device side so that the light wave on the phase modulation surface 3 and the light wave on the writing surface 4 correspond one to one. Basically, since the interference fringes formed on the virtual plane F2 are imaged on the writing surface 4 of the phase modulation element 3, this optical system performs exactly the same operation as the optical system of FIG.

【0031】[0031]

【発明の効果】本発明は上記のように構成したので、高
分解能の液晶空間位相変調素子を利用したことにより、
形状可変鏡を利用する補償光学システムと比較すると、
小型、安価、低消費電力、高分解能の補正能力をもつと
いう効果がある。更に、位相変調素子の制御に電子的な
演算処理を必要としないので、位相変調素子が今後さら
に飛躍的に高分解能化されても、制御の実時間性が失わ
れない利点がある。
As described above, the present invention is constructed as described above, and by utilizing a high-resolution liquid crystal spatial phase modulator,
Compared to adaptive optics systems that use deformable mirrors,
There is the effect of having a small, inexpensive, low power consumption, and high resolution correction capability. Further, since no electronic arithmetic processing is required for controlling the phase modulation element, there is an advantage that the real-time control is not lost even if the resolution of the phase modulation element is further dramatically increased in the future.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の基本的構成において、主に映像システ
ム部分を示す光学機器構成図である。
FIG. 1 is an optical device configuration diagram mainly showing a video system portion in a basic configuration of the present invention.

【図2】本発明の基本的構成において、主に補償光学シ
ステム部分を示す光学機器構成図である。
FIG. 2 is an optical device configuration diagram mainly showing an adaptive optics system portion in the basic configuration of the present invention.

【図3】本発明を工場での加工物をその場でモニタリン
グするために用いた例を示す、映像システムの部分の光
学機器構成図である。
FIG. 3 is an optical device configuration diagram of a part of an image system showing an example in which the present invention is used for monitoring a workpiece in a factory on the spot.

【図4】本発明を遮蔽された空間内の被測定物体の観察
に用いた例を示す、映像システムの部分の光学機器構成
図である。
FIG. 4 is an optical device configuration diagram of a portion of an image system showing an example in which the present invention is used for observing an object to be measured in a shielded space.

【図5】光駆動型の補償光学システムの他の実施例を示
す光学機器構成図である。
FIG. 5 is a configuration diagram of an optical apparatus showing another embodiment of an optically driven adaptive optics system.

【図6】形状可変鏡を用いた従来の補償光学システムの
概念図である。
FIG. 6 is a conceptual diagram of a conventional adaptive optics system using a deformable mirror.

【符号の説明】[Explanation of symbols]

1 被測定物体 2 光書き込み型液晶空間位相変調素子 3 位相変調面 4 書き込み面 5 擾乱媒質 6 結像面 7 偏光ビームスプリッター 8 半波長板 9 像回転プリズム DESCRIPTION OF SYMBOLS 1 Object to be measured 2 Optical writing type liquid crystal spatial phase modulation element 3 Phase modulation surface 4 Writing surface 5 Disturbing medium 6 Imaging surface 7 Polarization beam splitter 8 Half-wave plate 9 Image rotation prism

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 書き込み面に照射した光の強さに依存し
て、その裏側の位相変調面の変調位相が変化する液晶空
間位相変調素子を用い、 被測定物体と観察面間の空間の擾乱媒質を通過し前記位
相変調面に参照光を入射し、 前記位相変調面で反射した前記参照光から擾乱媒質の位
相分布を反映した干渉縞を得て、前記書き込み面にこれ
を照射することにより擾乱媒質の位相分布を打ち消すよ
うに位相変調面を形成し、 被測定物体から前記擾乱媒質を通り前記位相変調面に入
射して反射した被測定光を観察することを特徴とする光
駆動型波面補正映像方法。
1. A liquid crystal spatial phase modulation element in which the modulation phase of a phase modulation surface on the back side changes depending on the intensity of light applied to a writing surface, and a disturbance in a space between an object to be measured and an observation surface. By passing a reference light into the phase modulation surface through a medium, obtaining an interference fringe reflecting the phase distribution of the disturbing medium from the reference light reflected by the phase modulation surface, and irradiating the writing surface with the interference fringe. Forming a phase modulation surface so as to cancel the phase distribution of the disturbing medium, and observing the light to be measured reflected from the object to be measured, which is incident on the phase modulation surface through the disturbing medium and reflected. Correction video method.
【請求項2】 書き込み面に照射した光の強さに依存し
て、その裏側の位相変調面の変調位相が変化する液晶空
間位相変調素子と、 被測定物体と観察面間の空間の擾乱媒質を通過し前記位
相変調面に参照光を入射する参照光照射手段と、 前記位相変調面で反射した前記参照光から擾乱媒質の位
相分布を反映した干渉縞を得て、前記書き込み面にこれ
を照射することにより擾乱媒質の位相分布を打ち消すよ
うに位相変調面を形成する補償光学手段と、 被測定物体から前記擾乱媒質を通り前記位相変調面に入
射して反射した被測定光を観察する被測定物体観察手段
とを備えたことを特徴とする光駆動型波面補正映像装
置。
2. A liquid crystal spatial phase modulation element in which the modulation phase of a phase modulation surface on the back side changes depending on the intensity of light applied to a writing surface, and a disturbance medium in a space between an object to be measured and an observation surface. Reference light irradiating means for passing the reference light to the phase modulation surface after passing through, and obtaining interference fringes reflecting the phase distribution of the disturbance medium from the reference light reflected by the phase modulation surface, and applying the interference fringes to the writing surface. An adaptive optics means for forming a phase modulation surface so as to cancel the phase distribution of the disturbing medium by irradiating the object; and an object for observing light to be measured reflected from the object to be measured incident on the phase modulation surface through the disturbing medium through the disturbance medium. An optically driven wavefront correction image apparatus, comprising: a measurement object observation unit.
【請求項3】 前記被測定物体が加工物の表面である請
求項2記載の光駆動型波面補正映像装置。
3. The optically driven wavefront correction imaging apparatus according to claim 2, wherein the object to be measured is a surface of a workpiece.
【請求項4】 前記被測定物体が遮蔽空間内の物体であ
る請求項2記載の光駆動型波面補正映像装置。
4. The light-driven wavefront correction image apparatus according to claim 2, wherein the object to be measured is an object in a shielded space.
【請求項5】 前記液晶空間位相変調素子の書き込み面
に、映写機器により前記干渉縞を撮像した映像を照射す
る請求項2記載の光駆動型波面補正映像装置。
5. The light-driven wavefront correction image apparatus according to claim 2, wherein an image obtained by imaging the interference fringes by a projection device is applied to a writing surface of the liquid crystal spatial light modulator.
JP2000227874A 2000-07-27 2000-07-27 Optically driven wavefront correction imaging method and apparatus Expired - Lifetime JP3455775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000227874A JP3455775B2 (en) 2000-07-27 2000-07-27 Optically driven wavefront correction imaging method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000227874A JP3455775B2 (en) 2000-07-27 2000-07-27 Optically driven wavefront correction imaging method and apparatus

Publications (2)

Publication Number Publication Date
JP2002040368A true JP2002040368A (en) 2002-02-06
JP3455775B2 JP3455775B2 (en) 2003-10-14

Family

ID=18721266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000227874A Expired - Lifetime JP3455775B2 (en) 2000-07-27 2000-07-27 Optically driven wavefront correction imaging method and apparatus

Country Status (1)

Country Link
JP (1) JP3455775B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284573A (en) * 2005-04-01 2006-10-19 Baumer Electric Ag Method and optical sensor for restraining error caused by scattered light
KR101159380B1 (en) 2004-03-11 2012-06-27 이코스비젼 시스팀스 엔.브이. Methods and apparatus for wavefront manipulations and improved 3-d measurements
JP2012134799A (en) * 2010-12-22 2012-07-12 Nippon Hoso Kyokai <Nhk> Image pickup apparatus and control method using adaptive optics
KR20140122254A (en) * 2012-01-25 2014-10-17 캠브리지 엔터프라이즈 리미티드 Optical device and methods
WO2015041320A1 (en) 2013-09-20 2015-03-26 大学共同利用機関法人自然科学研究機構 Adaptive optical system and optical device
CN105785609A (en) * 2016-04-28 2016-07-20 长春理工大学 Wavefront correction method and device based on transmission-type liquid crystal space light modulator
JP2018200302A (en) * 2017-03-27 2018-12-20 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. System and method for glare suppression and ranging
USRE48338E1 (en) 2010-12-21 2020-12-01 Cailabs Method and system for configuring a device for correcting the effect of a medium on a light signal, method, device and system for correcting said effect
US10996399B2 (en) 2016-12-06 2021-05-04 Roadmap Systems Ltd Space-division multiplexed reconfigurable, wavelength selective switch
CN114859583A (en) * 2022-04-11 2022-08-05 汕头大学 Device for optimizing performance of liquid crystal light-driven display sample and light adjusting method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101159380B1 (en) 2004-03-11 2012-06-27 이코스비젼 시스팀스 엔.브이. Methods and apparatus for wavefront manipulations and improved 3-d measurements
JP2006284573A (en) * 2005-04-01 2006-10-19 Baumer Electric Ag Method and optical sensor for restraining error caused by scattered light
USRE48338E1 (en) 2010-12-21 2020-12-01 Cailabs Method and system for configuring a device for correcting the effect of a medium on a light signal, method, device and system for correcting said effect
JP2012134799A (en) * 2010-12-22 2012-07-12 Nippon Hoso Kyokai <Nhk> Image pickup apparatus and control method using adaptive optics
KR20140122254A (en) * 2012-01-25 2014-10-17 캠브리지 엔터프라이즈 리미티드 Optical device and methods
JP2015509215A (en) * 2012-01-25 2015-03-26 ケンブリッジ・エンタープライズ・リミテッドCambridge Enterprise Limited Optical device and method
US10856057B2 (en) 2012-01-25 2020-12-01 Cambridge Enterprise Limited Optical device and methods
KR102074007B1 (en) * 2012-01-25 2020-03-02 캠브리지 엔터프라이즈 리미티드 Optical device and methods
US10254538B2 (en) 2013-09-20 2019-04-09 Inter-University Research Institute Corporation National Institutes Of Natural Sciences Adaptive optics system and optical device
WO2015041320A1 (en) 2013-09-20 2015-03-26 大学共同利用機関法人自然科学研究機構 Adaptive optical system and optical device
US11422363B2 (en) 2013-09-20 2022-08-23 Inter-University Research Institute Corporation National Institutes Of Natural Sciences Adaptive optics system and optical device
CN105785609A (en) * 2016-04-28 2016-07-20 长春理工大学 Wavefront correction method and device based on transmission-type liquid crystal space light modulator
US10996399B2 (en) 2016-12-06 2021-05-04 Roadmap Systems Ltd Space-division multiplexed reconfigurable, wavelength selective switch
JP2018200302A (en) * 2017-03-27 2018-12-20 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. System and method for glare suppression and ranging
JP7122842B2 (en) 2017-03-27 2022-08-22 ハネウェル・インターナショナル・インコーポレーテッド Glare suppression and ranging system and method
CN114859583A (en) * 2022-04-11 2022-08-05 汕头大学 Device for optimizing performance of liquid crystal light-driven display sample and light adjusting method
CN114859583B (en) * 2022-04-11 2023-12-12 汕头大学 Device for optimizing performance of liquid crystal light-driven display sample and light adjustment method

Also Published As

Publication number Publication date
JP3455775B2 (en) 2003-10-14

Similar Documents

Publication Publication Date Title
US6992779B2 (en) Interferometer apparatus for both low and high coherence measurement and method thereof
JP7153552B2 (en) Variable focal length lens system including focus reference subsystem
US5548403A (en) Phase shifting diffraction interferometer
US8934097B2 (en) Laser beam centering and pointing system
US20060291031A1 (en) Arrangement of aperture diaphragms and/or filters, with changeable characteristics for optical devices
JP2018506063A (en) Alignment evaluation method
US8115933B2 (en) Interferometer for optically measuring an object
US7502154B2 (en) Spatial light modulator alignment
JP3455775B2 (en) Optically driven wavefront correction imaging method and apparatus
JPH10142067A (en) Instrument for measuring phase error of electromagnetic wave
JP3627014B2 (en) Fundus camera with adaptive optics
JP7111108B2 (en) pattern drawing device
CN113654656B (en) Light beam drift detection device and method based on three-light-beam interference
JP2008082781A (en) Interference tyep surface shape measuring apparatus
KR101239409B1 (en) 2d shape and 3d shape measuring apparatus and method based on phase shifting interferometry
KR20060080878A (en) Method and apparatus for inspection of optical component
US3706492A (en) Photoelectric system and method for detecting the longitudinal location of surfaces
CN106462077B (en) Lithographic equipment including the optical projection system controlled for image size
CN102880018B (en) Reference grating space image adjusting device used for alignment system and adjusting method
JP3915978B2 (en) Laser Doppler vibrometer
JPH0221207A (en) Interference method and interferometer for measuring non-spherical surface by optical space phase modulation element using liquid crystal
JP4869502B2 (en) Differential interference microscope
JP2022112904A (en) Shape measuring method and interferometer
Miller Development and demonstration of new focal plane wavefront sensing techniques for high-contrast direct imaging of exoplanets
JP2771665B2 (en) Optical correlation processing method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3455775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term