JP2002039977A - Method for measuring heat quantity of heat shield part - Google Patents

Method for measuring heat quantity of heat shield part

Info

Publication number
JP2002039977A
JP2002039977A JP2000221978A JP2000221978A JP2002039977A JP 2002039977 A JP2002039977 A JP 2002039977A JP 2000221978 A JP2000221978 A JP 2000221978A JP 2000221978 A JP2000221978 A JP 2000221978A JP 2002039977 A JP2002039977 A JP 2002039977A
Authority
JP
Japan
Prior art keywords
heat
solar
paint
temperature
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000221978A
Other languages
Japanese (ja)
Other versions
JP3375603B2 (en
Inventor
Katsuo Miki
勝夫 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000221978A priority Critical patent/JP3375603B2/en
Publication of JP2002039977A publication Critical patent/JP2002039977A/en
Application granted granted Critical
Publication of JP3375603B2 publication Critical patent/JP3375603B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To determine a correct reduction rate of an overall heat transfer quantity by calculating a heat quantity load finely to conform to the reality. SOLUTION: There is provided the method for measuring effects of the heat shield paint. According to the method, after a color of the paint is determined, a solar factor defined by JIS A5759 of this paint is measured, and a solar absorptance is calculated from the measured solar factor. An equivalent ambient temperature is calculated on the basis of the solar absorptance by an equation A of the equivalent ambient temperature = a temperature + a solar radiation × the solar absorptance/20. Moreover, a break-through heat quantity is calculated by an equation B of the break-through heat quantity = a K value × an area × (the equivalent ambient temperature - a room temperature) wherein the K value (thermal resistance) is an overall heat transfer coefficient of a material to be painted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、太陽熱を遮熱する
塗料の熱量の測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a calorific value of a paint for shielding solar heat.

【0002】[0002]

【従来の技術】本件出願人は、先に、太陽の日射を受け
る陸上、海上の各種構造物、船舶、建築物、自動車、家
電製品等の外面を被覆し、これらの内部温度の上昇を抑
えることにより、空調費の低減あるいは内容物の蒸発減
耗の低減を図り、エネルギーの節約に顕著な効果を期待
し得るとともに、長期耐久性に優れ、環境衛生上の問題
もなく、着色可能で美観も兼ね備える太陽熱遮蔽塗料
で、膜厚をそれほど大きくしなくとも所定の太陽熱遮熱
効果を発揮でき、また、有機系顔料を使用することで色
彩に幅を持たせることができ、さらに、黒、グレ−に限
定されることなく任意の色に、しかも濃彩色でも、ま
た、冴えた色調も実現可能な太陽熱遮蔽塗料を発明し、
これを特願平11−17046号として特許出願した。
2. Description of the Related Art The applicant of the present application previously covers the outer surfaces of various structures, ships, buildings, automobiles, home electric appliances, etc. on land and at sea, which are exposed to the solar radiation, and suppresses the rise in the internal temperature thereof. By reducing air-conditioning costs or evaporative loss of contents, it is possible to expect a remarkable effect on energy saving, and it has excellent long-term durability, no environmental health problems, and can be colored and aesthetically pleasing. A solar heat-shielding paint that has the function of providing a predetermined solar heat-shielding effect without increasing the film thickness. Further, by using an organic pigment, the color can be given a wide range. Invented a solar heat shielding paint that can realize any color without being limited to, and even a dark color, and a clear color tone,
This was filed as a patent application as Japanese Patent Application No. 11-17046.

【0003】この特願平11−17046号の太陽熱遮
蔽塗料は、上塗、中塗、下塗もしくは電着の全塗装系の
全てを、または、上塗、中塗、下塗もしくは電着の全塗
装系のうち、中塗塗料を、または、上塗を除いた一部塗
料を、顔料とビヒクルとを主成分とし、顔料は近赤外領
域で反射を示し、JIS A5759に定義される日射
反射率が15%以上であって、かつCIE 1976
L*a*b*色空間におけるL*値が20以下の有機系
または有機系および無機系の太陽熱遮蔽着色顔料を複数
混合してなる太陽熱遮蔽塗料で塗装することを要旨とす
るものである。
[0003] The solar heat shielding paint disclosed in Japanese Patent Application No. 11-17046 is all of the top coat, middle coat, undercoat and electrodeposition coating systems, or of the top coat, middle coat, undercoat and electrodeposition all coating systems. The intermediate paint or a partial paint excluding the top coat is mainly composed of a pigment and a vehicle. The pigment reflects in the near infrared region, and has a solar reflectance of 15% or more as defined in JIS A5759. And CIE 1976
The gist of the present invention is to apply a solar heat shielding paint obtained by mixing a plurality of organic or organic and inorganic solar heat coloring pigments having an L * value of 20 or less in an L * a * b * color space.

【0004】この太陽熱遮蔽塗料によれば、表面温度で
は著しい効果がみられ、太陽の直射を受ける船舶、各種
建造物の外面を覆することにより、長期間太陽熱を遮蔽
し、内部の温度上昇を抑制し、空調費の改善あるいは内
容物の蒸発消耗を抑制して、エネルギーの節減に顕著な
効果を期待しうる太陽熱遮蔽塗料ならびにそれの塗装が
可能となるものであり、産業の発展に貢献するところ極
めて大なるものがある。
According to this solar heat shielding paint, a remarkable effect is observed at the surface temperature. By covering the outer surfaces of ships and various buildings which are directly exposed to the sun, the solar heat is shielded for a long time, and the rise in the internal temperature is reduced. It is possible to improve the air-conditioning cost or suppress the evaporative consumption of the contents, thereby making it possible to apply solar heat shielding paint and its coating, which can be expected to have a remarkable effect on energy saving, and contribute to industrial development. However, there is something very large.

【0005】これに加えて、膜厚をそれほど大きくしな
くとも所定の太陽熱遮熱効果を発揮でき、また、有機系
顔料を使用することで色彩に幅を持たせることができ、
さらに、黒、グレ−に限定されることなく任意の色に、
しかも濃彩色でも、また、冴えた色調も実現可能なもの
である。
[0005] In addition to this, it is possible to exhibit a predetermined solar heat shielding effect without increasing the film thickness so much, and it is possible to give a wide range of colors by using an organic pigment.
Furthermore, to any color without being limited to black and gray,
In addition, it is possible to realize dark colors and clear color tones.

【0006】ところで、このような太陽熱遮蔽塗料を建
物に塗装してその効果を得ようとする場合に、どの程度
の量を塗装すれば、どの程度の遮熱効果が得られるかが
問題となる。より、少ない塗装量で最大の遮熱効果を上
げることが望ましいからである。
[0006] In the case where such a solar heat shielding paint is applied to a building to obtain the effect, it is important to determine the amount of the applied paint and the heat shield effect. . This is because it is more desirable to increase the maximum heat shielding effect with a small amount of coating.

【0007】建物における太陽熱遮熱効果は、これを冷
房顕熱負荷として捕らえることができる。冷房顕熱負荷
は以下に挙げる諸要因によって作り出される熱負荷の合
計である。 (1)内外温度差による壁体貫流熱 壁体面積*熱貫流率*内外温度差 (2)日射による壁体貫流熱 壁体面積*熱貫流率*相当外気温度上昇 (3)日射による窓透過熱 窓面積*窓遮蔽係数*入射日射量 (4)内外温度差による換気熱 換気量*0.3(空気容積比熱)*内外温度差 (5)建家内発生熱 機器容量(kw)*使用率*860 人数*在室率*人体代謝量 これらのうちで、遮熱塗料に関係するのは(1)と
(2)の壁体貫流熱である。
[0007] The solar heat shielding effect in a building can be regarded as a cooling sensible heat load. The cooling sensible heat load is the sum of the heat loads generated by the following factors. (1) Heat flow through the wall due to temperature difference between inside and outside Wall area * Heat transfer rate * Temperature difference between inside and outside (2) Heat flow through the wall due to sunlight Wall area * Heat transfer rate * Equivalent outside temperature rise (3) Window penetration due to sunlight Heat Window area * Window shielding coefficient * Incident solar radiation (4) Ventilation heat due to temperature difference between inside and outside * Ventilation volume * 0.3 (specific heat of air volume) * Temperature difference between inside and outside (5) Heat generated inside the building Equipment capacity (kw) * Usage rate * 860 number of people * room occupancy rate * human metabolism Of these, the heat flowing through the wall of (1) and (2) is related to the thermal barrier paint.

【0008】(2)の日射による壁体貫流熱の計算式に
現れる相当外気温度上昇Δθとは、 ここに、α :壁体表面の日射吸収率 α。:外表面熱伝達率(常用値:20.0kcal/m
h℃) J :入射日射量(kcal/mh) で表されるもので、入射日射量の熱効果は、外気温がΔ
θだけ上昇したのと等価であることを表している。
これと真の外気温θ。とを合わせたものを「相当外気温
度θ」と呼んでいる。 θ=θ。+Δθ (2)
The equivalent outside air temperature rise Δθ e appearing in the equation for calculating the heat flowing through the wall due to the solar radiation in (2) is as follows: Here, α: solar radiation absorption rate α on the wall surface. : Heat transfer coefficient of outer surface (ordinary value: 20.0 kcal / m)
2 h ° C.) J: It is expressed by the amount of incident solar radiation (kcal / m 2 h).
indicates that equivalent to that raised by theta e.
This and the true outside temperature θ. The combination of the above is referred to as “equivalent outside air temperature θ E ”. θ E = θ. + Δθ E (2)

【0009】(1)と(2)の2つの壁体貫流熱は相当
外気温度の導入により、合算されて、 ここに、θ:外気温度 θ:室内温度 という形で計算するのが通常のやり方である。
The heats flowing through the two walls (1) and (2) are added together by introducing a considerable outside air temperature. Here, it is usual to calculate in the form of θ U : outside air temperature θ R : indoor temperature.

【0010】[0010]

【発明が解決しようとする課題】図6は屋根面より貫流
熱量の算出方法の従来例を示すもので、従来、(1)式
に現れる日射吸収率αについて、在来の熱負荷計算法で
は、α=0.8という固定値が用いられてきた。この値
はコンクリートもしくはモルタルの地肌の吸収率を想定
したものであり、これまで、外壁表面の日射吸収率を意
図的に制御するという発想があまりなかったので、この
値をすべての建材表面に適用して問題はなかったのであ
る。
FIG. 6 shows a conventional example of a method of calculating the amount of heat flowing through a roof surface. Conventionally, the solar radiation absorption rate α appearing in the equation (1) is calculated by the conventional heat load calculation method. , Α = 0.8 has been used. This value is based on the absorption rate of the concrete or mortar surface, and until now there was not much idea of intentionally controlling the solar radiation absorption rate on the outer wall surface, so apply this value to all building material surfaces. There was no problem.

【0011】しかし、前記特願平11−17046号の
太陽熱遮蔽塗料のごとき遮熱塗料では、あらためて日射
吸収率についてもっと厳密に取り扱う必要が生じてき
た。
However, in the case of a thermal barrier paint such as the solar thermal shield paint of Japanese Patent Application No. 11-17046, it has become necessary to deal with the solar absorptivity more strictly.

【0012】本発明の目的はこのような事情に鑑みて、
実際に即したきめ細かい熱量負荷の算出を行って、正確
な熱貫流量削減率を決めることができる遮熱塗料の熱量
の測定方法を提供することにある。
[0012] The object of the present invention in view of such circumstances,
It is an object of the present invention to provide a method for measuring the calorific value of a thermal barrier paint, which can calculate a precise calorific value load in accordance with an actual situation and can determine an accurate reduction rate of a heat flow rate.

【0013】[0013]

【課題を解決するための手段】本発明は前記目的を達成
するため、塗料の塗色の決定をした後、この塗料のJI
S A5759に定義される日射反射率を測定し、測定
した日射反射率から日射吸収率を算出し、この日射吸収
率をもとに下記A式により相当外気温を算出し、さら
に、下記B式により貫流熱量を算出することを要旨とす
るものである。 A式:相当外気温度=気温+日射量×日射吸収率/20 B式:貫流熱量=K値×面積×(相当外気温度−室温) ただし K値(熱貫流抵抗)は被塗装材の熱貫流率
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention determines the coating color of a paint and then determines the JI of the paint.
The solar reflectance defined in SA5759 is measured, the solar absorptance is calculated from the measured solar reflectance, the corresponding outside air temperature is calculated by the following formula A based on the solar absorptance, and further the following formula B is calculated. The gist is to calculate the once-through heat quantity by using Formula A: Equivalent outdoor temperature = air temperature + solar radiation x solar absorptivity / 20 Formula B: once-through heat = K value x area x (equivalent outdoor temperature-room temperature) where K value (heat flow resistance) is the heat flow of the material to be coated. rate

【0014】請求項1記載の発明によれば、従来、固定
値が用いられてきた日射吸収率について、これを日射反
射率を測定し、測定した日射反射率から算出するように
したことで、建材の外側面を占めるという塗料特有の遮
熱作用に対する熱量負荷の算出がきめ細かく可能とな
る。
According to the first aspect of the present invention, the solar absorptance, for which a fixed value has been used conventionally, is measured by measuring the solar reflectance and calculating from the measured solar reflectance. It is possible to calculate the calorific load for the heat shielding effect peculiar to the paint, which occupies the outer surface of the building material, in a detailed manner.

【0015】[0015]

【発明の実施の形態】以下、図面について本発明の実施
の形態を詳細に説明する。図1は本発明の遮熱塗料の効
果の測定方法の1実施形態を示す説明図、図2は同上縦
断正面図で、屋根面よりの貫流熱量の算出方法を示す。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is an explanatory view showing one embodiment of the method for measuring the effect of the thermal barrier paint of the present invention, and FIG. 2 is a vertical sectional front view of the same, showing a method of calculating the amount of heat flowing from the roof surface.

【0016】図1に示すように、本発明は、塗料の塗色
の決定をした後、この塗料のJISA5759に定義さ
れる日射反射率を測定する。そして測定した日射反射率
から日射吸収率を算出する。
As shown in FIG. 1, in the present invention, after determining the paint color, the solar reflectance of this paint defined in JIS A5759 is measured. Then, the solar absorptivity is calculated from the measured solar reflectance.

【0017】日射反射率を測定に関してはJIS A5
759に有る通り、分光光度計を用いて、波長350m
mから2100mmまでを波長間隔50mmごとに36
波長点の分光透過率(Rλ)を測定し()、次
式によって日射反射率を計算するか又は反射率計を用い
て直接日射反射率を求める。 ここにR:日射透過率(%) Eλ:日射の分光分布の値 Rλ:分光反射率 ただし、分光反射率の分布曲線が振動波形を示すフィル
ムは、山と谷の中間を通る平均的な分布曲線によって、
各波長における分光反射率を求めて計算する。 注() Rλの測定に際しては、試験片を約1
0度傾けて取付け、正反射光を積分球に捕らえるように
する。
Regarding the measurement of solar reflectance, JIS A5
759, using a spectrophotometer at a wavelength of 350 m
from m to 2100 mm at intervals of 50 mm
The spectral transmittance (Rλ i ) at the wavelength point is measured ( 2 ), and the solar reflectance is calculated by the following equation, or the direct solar reflectance is obtained using a reflectometer. Here, R E : solar transmittance (%) Eλ i : value of spectral distribution of solar radiation Rλ i : spectral reflectance However, a film whose spectral reflectance distribution curve shows a vibration waveform has an average passing between the peak and the valley. Typical distribution curve,
The spectral reflectance at each wavelength is calculated. Note ( 2 ) When measuring Rλ i ,
It is attached at an angle of 0 degrees so that the specularly reflected light is captured by the integrating sphere.

【0018】日射反射率から日射吸収率を算出するには
逆数を取ればよい。例えば、日射反射率βがβ=0.2
の場合には日射吸収率αはα=0.8となる。(図2と
図6の比較参照)
In order to calculate the solar absorptivity from the solar reflectance, the reciprocal may be obtained. For example, the solar reflectance β is β = 0.2
In this case, the solar absorptivity α is 0.8. (See comparison between FIG. 2 and FIG. 6)

【0019】この日射吸収率をもとにA式:相当外気温
度=気温+日射量×日射吸収率/20から相当外気温を
算出する。
Based on the solar radiation absorption rate, the equivalent external temperature is calculated from the formula A: Equivalent outdoor temperature = air temperature + solar radiation quantity × solar absorption rate / 20.

【0020】さらに、B式:貫流熱量=K値×面積×
(相当外気温度−室温)から貫流熱量を算出する。
Further, formula B: once-through heat = K value × area ×
The through heat is calculated from (equivalent outside air temperature-room temperature).

【0021】ただしK値(熱貫流抵抗)は被塗装材(屋
根材)の熱貫流率であり、 1/20 外部熱貫流抵抗(外部伝達率)〔R0〕 塗膜の熱貫流抵抗 (厚さ/熱伝達率)〔R1〕 鋼板(屋根材)の熱貫流抵抗 (厚さ/熱伝達率)〔R2〕 断熱材の熱貫流抵抗 (厚さ/熱伝達率) 1/10 内部熱貫流抵抗(内部伝達率)〔R3〕
Here, the K value (heat transmission resistance) is the heat transmission coefficient of the material to be coated (roof material). 1/20 External heat transmission resistance (external transmission coefficient) [R0] Heat transmission resistance of coating film (thickness) / Heat transfer coefficient) [R1] Heat flow resistance of steel plate (roof material) (thickness / heat transfer coefficient) [R2] Heat flow resistance of heat insulating material (thickness / heat transfer coefficient) 1/10 Internal heat flow resistance ( Internal transmission rate) [R3]

【0022】図2、図6で、R0の外部熱貫流抵抗は1
/20であり、R1の塗膜の熱貫流抵抗は塗料の厚さL
1と塗料の熱伝導率から求めるものであり、R2の鋼板
(屋根材)の熱貫流抵抗は、鋼板(屋根材)の厚さL2
と鋼板(屋根材)の熱伝導率から求めるものであり(断
熱材がある場合は断熱材の厚さと断熱材の熱伝導率が関
与する)、R3の内部伝達率 1/10である。R0と
R3は固定数値となる。
2 and 6, the external heat transmission resistance of R0 is 1
/ 20, and the heat flow resistance of the coating film of R1 is the thickness L of the coating material.
1 and the thermal conductivity of the paint, and the heat flow resistance of the steel plate (roof material) of R2 is represented by the thickness L2 of the steel plate (roof material).
And the thermal conductivity of the steel plate (roof material) (if there is a thermal insulator, the thickness of the thermal insulator and the thermal conductivity of the thermal insulator are involved), and the internal conductivity of R3 is 1/10. R0 and R3 are fixed numerical values.

【0023】前記特願平11−17046号の太陽熱遮
蔽塗料(遮熱塗料)ならびに一般塗装のデータをもと
に、日射吸収率が熱負荷に及ぼす影響についてケースス
タディを試みた。各種塗装の日射吸収率データは下記表
1の通りである。
A case study was conducted on the influence of the solar absorptivity on the heat load based on the data of the solar heat shield paint (heat shield paint) and the general paint of Japanese Patent Application No. 11-17046. Table 1 below shows the solar absorptivity data of various coatings.

【0024】[0024]

【表1】 [Table 1]

【0025】この日射吸収率データは前記のごとくJI
S A5759に定義される日射反射率を測定し、測定
した日射反射率から日射吸収率を算出した。
The solar absorptivity data is based on JI
The solar reflectance defined in SA5759 was measured, and the solar absorptance was calculated from the measured solar reflectance.

【0026】相当外気温度については、空気調和衛生工
学会編「空気調和衛生工学便覧」によると、東京におけ
る冷房設計用外界気象条件は下記表2のようになってい
る。(同書空調設備篇第2章)。
According to the "Air Conditioning Sanitation Engineering Handbook" edited by the Society of Air Conditioning Sanitation Engineers, the ambient weather conditions for cooling design in Tokyo are as shown in Table 2 below. (Chapter 2 of the same book air-conditioning equipment).

【0027】[0027]

【表2】 [Table 2]

【0028】前記表2にもとづいて、屋根(水平面)に
表1の特性を持つ塗装が施されている場合の相当外気温
度を計算すると、図3の通りとなる。この結果による
と、ホワイトは一般塗装でも日射反射率が高いために遮
熱塗装と大きな差を生じないが、ブラック、グレーのよ
うな色調のある塗装では、日ざかり時刻において10〜
15℃程度の相当外気温度の低下が見られる。
Based on Table 2 above, the equivalent outside air temperature when the roof (horizontal surface) is coated with the characteristics shown in Table 1 is calculated as shown in FIG. According to the results, white has no significant difference from the thermal barrier coating due to the high solar reflectance even in a general coating, but in a coating having a color tone such as black and gray, 10 to 10 in the dawn time
A considerable decrease in the outside air temperature of about 15 ° C. is observed.

【0029】壁体貫流熱は前記(3)式で計算される。
面積1000mの水平屋根があり、これにケースス
タディ1の6種の表面塗装を施すものとする。屋根構造
は非断熱(K=8.00kcal/mh℃) 、断
熱(断熱厚:50mm,K=0.503kcal/m
h℃)の2種類を考える。建家内は室温26℃に制
御されているとする。
The heat flowing through the wall is calculated by the above equation (3).
There is a horizontal roof with an area of 1000 m 2 , which is to be subjected to six types of surface painting of Case Study 1. The roof structure is non-insulated (K = 8.00 kcal / m 2 h ° C.), insulated (insulation thickness: 50 mm, K = 0.503 kcal / m)
2 h.degree. C.). It is assumed that the inside of the building is controlled to a room temperature of 26 ° C.

【0030】以上の条件で屋根からの貫流熱量を求める
と、図4のようになる。結果を一見して分かるように、
遮熱塗装は厚50mmといった断熱に匹敵するものでは
ない。しかし、同じ断熱状態で一般塗装と比較すると、
ホワイトでも約20%、グレー、ブラックでは30−4
0%の貫流熱量の減少(日ざかり時刻)が見られる。
FIG. 4 shows the amount of heat flowing through the roof from the above conditions. As you can see at a glance,
Thermal barrier coating is not comparable to thermal insulation with a thickness of 50 mm. However, when compared with general paint under the same heat insulation condition,
About 20% for white, 30-4 for gray and black
A decrease in the amount of heat flowing through by 0% (daylight time) is observed.

【0031】冷房負荷と自然温度の関係は、東西50
m、南北20m(床面積1000m )、軒高さ5mの
倉庫状の建家を想定すると、屋根は非断熱と断熱、グレ
ーの一般塗装と遮熱塗装の組み合わせで合計4種類を考
える。屋根以外の壁面については、屋根と同じ断熱で、
日射吸収率は0.8とする。次にこの建家の換気量をV
〔m/h〕とすると、建家内自然室温θ〔℃〕
は、 ここに、Q:建屋全体の冷房熱負荷〔kcal/h〕 右辺分母:建屋の総熱貫流率〔kcal/h℃〕 で得られる。換気回数を1,10〔回/h〕の2種とし
て、合わせて前記表1の8ケースにつき、冷房負荷Qを
計算した結果、換気回数l回/hの方を見ると、遮熱塗
装により日ざかり時刻で20〜25%の冷房負荷の減少
となっている。一方、10回/h換気の場合には、導入
される外気の温度が支配的になり、断熱も遮熱塗装もそ
の効果は相対的に小さくなる。それでも一般塗装+非断
熱と遮熱塗装+断熱では5℃程度の効果は見られた。
The relationship between cooling load and natural temperature is 50
m, north and south 20m (floor area 1000m2 ), Eave height 5m
Assuming a warehouse-like building, the roof is non-insulated and insulated,
-A total of 4 types of combinations of general paint and thermal barrier paint
I can. For the walls other than the roof, the same insulation as the roof,
The solar radiation absorption rate is 0.8. Next, the ventilation volume of this house
[M3/ H], the natural room temperature θ in the buildingR[℃]
IsHere, Q: Cooling heat load of the entire building [kcal / h] Right side denominator: Total heat transmission rate of the building [kcal / h ° C] The number of ventilation is 1, 10 [times / h]
In addition, the cooling load Q for the eight cases shown in Table 1
As a result of calculation, when looking at the ventilation rate l times / h,
20 to 25% reduction in cooling load at daytime
It has become. On the other hand, in case of 10 times / h ventilation
The temperature of the outside air is dominant.
Is relatively small. Still general painting + unapproved
The effect of about 5 ° C was seen with heat and thermal barrier coating + heat insulation.

【0032】[0032]

【発明の効果】以上のべたように本発明の遮熱塗料の熱
量の測定方法は、実際に即したきめ細かい熱量負荷の算
出を行って、正確な熱貫流量削減率を決めることができ
るものである。
As described above, the method for measuring the calorific value of the thermal barrier paint according to the present invention is capable of accurately calculating the calorific load in accordance with the actual condition and determining the accurate heat-penetrating flow reduction rate. is there.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の遮熱塗料の熱量の測定方法の1実施形
態を示す説明図である。
FIG. 1 is an explanatory view showing one embodiment of a method for measuring the calorific value of a thermal barrier paint according to the present invention.

【図2】本発明の遮熱塗料の熱量の測定方法の1実施形
態を示す縦断正面図である。
FIG. 2 is a vertical sectional front view showing one embodiment of the method for measuring the calorific value of the thermal barrier paint of the present invention.

【図3】相当外気温度のグラフである。FIG. 3 is a graph of an equivalent outside air temperature.

【図4】屋根面からの貫流熱負荷の比較を示すグラフで
ある。
FIG. 4 is a graph showing a comparison of a once-through heat load from a roof surface.

【図5】自然室温を示すグラフである。FIG. 5 is a graph showing natural room temperature.

【図6】従来例を示す縦断正面図である。FIG. 6 is a vertical sectional front view showing a conventional example.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成13年2月1日(2001.2.1)[Submission date] February 1, 2001 (2001.2.1)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0021】ただしK値(熱貫流抵抗)は被塗装材(屋
根材)の熱貫流率であり、 1/20 外部熱貫流抵抗(外部伝達率)〔R0〕 塗膜の熱貫流抵抗 (厚さ/熱伝導率)〔R1〕 鋼板(屋根材)の熱貫流抵抗 (厚さ/熱伝導率)〔R2〕 断熱材の熱貫流抵抗 (厚さ/熱伝導率) 1/10 内部熱貫流抵抗(内部伝達率)〔R3〕
Here, the K value (heat transmission resistance) is the heat transmission coefficient of the material to be coated (roof material). 1/20 External heat transmission resistance (external transmission coefficient) [R0] Heat transmission resistance of coating film (thickness) / Thermal conductivity) [R1] Heat flow resistance of steel plate (roof material) (thickness / thermal conductivity) [R2] Heat flow resistance of heat insulating material (thickness / thermal conductivity) 1/10 Internal heat flow resistance ( Internal transmission rate) [R3]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0022[Correction target item name] 0022

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0022】図2、図6で、R0の外部熱貫流抵抗は1
/20であり、R1の塗膜の熱貫流抵抗は塗料の厚さL
1と塗料の熱伝導率から求めるものであり、R2の鋼板
(屋根材)の熱貫流抵抗は、鋼板(屋根材)の厚さL2
と鋼板(屋根材)の熱伝導率から求めるものであり(断
熱材がある場合は断熱材の厚さと断熱材の熱伝導率が関
与する)、R3の内部熱貫流抵抗は1/10である。R
0とR3は固定数値となる。
2 and 6, the external heat transmission resistance of R0 is 1
/ 20, and the heat flow resistance of the coating film of R1 is the thickness L of the coating material.
1 and the thermal conductivity of the paint, and the heat flow resistance of the steel plate (roof material) of R2 is represented by the thickness L2 of the steel plate (roof material).
And the thermal conductivity of the steel plate (roof material) (if there is a thermal insulator, the thickness of the thermal insulator and the thermal conductivity of the thermal insulator are involved), and the internal heat flow resistance of R3 is 1/10. . R
0 and R3 are fixed numerical values.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図1[Correction target item name] Fig. 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 塗料の塗色の決定をした後、この塗料の
JIS A5759に定義される日射反射率を測定し、
測定した日射反射率から日射吸収率を算出し、この日射
吸収率をもとに下記A式により相当外気温を算出し、さ
らに、下記B式により貫流熱量を算出することを特徴と
した遮熱塗料の熱量の測定方法。 A式:相当外気温度=気温+日射量×日射吸収率/20 B式:貫流熱量=K値×面積×(相当外気温度−室温) ただし K値(熱貫流抵抗)は被塗装材の熱貫流率
After determining the paint color of the paint, the solar reflectance defined in JIS A5759 of the paint is measured,
Calculating a solar absorptance from the measured solar absorptance, calculating an equivalent outside air temperature by the following equation A based on the solar absorptivity, and further calculating a once-through calorie by the following equation B A method for measuring the calorific value of paint. Formula A: Equivalent outdoor temperature = air temperature + solar radiation x solar absorptivity / 20 Formula B: once-through heat = K value x area x (equivalent outdoor temperature-room temperature) where K value (heat flow resistance) is the heat flow of the material to be coated. rate
JP2000221978A 2000-07-24 2000-07-24 How to measure the calorie of thermal barrier paint Expired - Fee Related JP3375603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000221978A JP3375603B2 (en) 2000-07-24 2000-07-24 How to measure the calorie of thermal barrier paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000221978A JP3375603B2 (en) 2000-07-24 2000-07-24 How to measure the calorie of thermal barrier paint

Publications (2)

Publication Number Publication Date
JP2002039977A true JP2002039977A (en) 2002-02-06
JP3375603B2 JP3375603B2 (en) 2003-02-10

Family

ID=18716288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000221978A Expired - Fee Related JP3375603B2 (en) 2000-07-24 2000-07-24 How to measure the calorie of thermal barrier paint

Country Status (1)

Country Link
JP (1) JP3375603B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004137520A (en) * 2002-10-15 2004-05-13 Nakabohtec Corrosion Protecting Co Ltd Method for preventing corrosion of coated steel product
JP2007017265A (en) * 2005-07-07 2007-01-25 Nippon Paint Co Ltd Heat quantity prediction method, heat quantity prediction system, and heat quantity prediction program
JP2007249693A (en) * 2006-03-16 2007-09-27 Takenaka Komuten Co Ltd Solar battery installation evaluation device, solar battery installation evaluation program and solar battery installation evaluation calculation method
JP2009229238A (en) * 2008-03-21 2009-10-08 Dainippon Toryo Co Ltd Program and system for simulating thermal insulation effect
JP2011065238A (en) * 2009-09-15 2011-03-31 Ecogold Co Ltd In-structure temperature calculation method and program for executing the calculation method
CN102778473A (en) * 2012-07-10 2012-11-14 东华大学 Field detection method for thermal resistance of building envelope
JP2016070675A (en) * 2014-09-26 2016-05-09 大和ハウス工業株式会社 Heat-transfer coefficient estimation system, heat-transfer coefficient estimation method and program, and heat-transfer coefficient test device
CN115165955A (en) * 2022-06-01 2022-10-11 浙江大学 Ground material albedo testing method and system based on heat change

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145472U (en) * 1984-03-07 1985-09-27 菊水化学工業株式会社 Simulated solar experimental device
JPS6128852A (en) * 1984-07-19 1986-02-08 Asahi Chem Ind Co Ltd Apparatus for measuring heat insulating property
JPH04124453U (en) * 1991-04-23 1992-11-12 株式会社クラレ Solar heat shielding simulation device
JPH0611438A (en) * 1992-06-24 1994-01-21 Kuwabara Yasunaga Film warmth keeping performance measuring method
JPH09119599A (en) * 1995-09-07 1997-05-06 Perkin Elmer Corp:The Heat-insulating vessel for liquefied gas
JP2000137012A (en) * 1998-10-30 2000-05-16 Central Res Inst Of Electric Power Ind Heat resistance measurement of coating layer
JP2000212475A (en) * 1999-01-26 2000-08-02 Katsuo Miki Solar heat shielding paint

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145472U (en) * 1984-03-07 1985-09-27 菊水化学工業株式会社 Simulated solar experimental device
JPS6128852A (en) * 1984-07-19 1986-02-08 Asahi Chem Ind Co Ltd Apparatus for measuring heat insulating property
JPH04124453U (en) * 1991-04-23 1992-11-12 株式会社クラレ Solar heat shielding simulation device
JPH0611438A (en) * 1992-06-24 1994-01-21 Kuwabara Yasunaga Film warmth keeping performance measuring method
JPH09119599A (en) * 1995-09-07 1997-05-06 Perkin Elmer Corp:The Heat-insulating vessel for liquefied gas
JP2000137012A (en) * 1998-10-30 2000-05-16 Central Res Inst Of Electric Power Ind Heat resistance measurement of coating layer
JP2000212475A (en) * 1999-01-26 2000-08-02 Katsuo Miki Solar heat shielding paint

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004137520A (en) * 2002-10-15 2004-05-13 Nakabohtec Corrosion Protecting Co Ltd Method for preventing corrosion of coated steel product
JP2007017265A (en) * 2005-07-07 2007-01-25 Nippon Paint Co Ltd Heat quantity prediction method, heat quantity prediction system, and heat quantity prediction program
JP2007249693A (en) * 2006-03-16 2007-09-27 Takenaka Komuten Co Ltd Solar battery installation evaluation device, solar battery installation evaluation program and solar battery installation evaluation calculation method
JP2009229238A (en) * 2008-03-21 2009-10-08 Dainippon Toryo Co Ltd Program and system for simulating thermal insulation effect
JP2011065238A (en) * 2009-09-15 2011-03-31 Ecogold Co Ltd In-structure temperature calculation method and program for executing the calculation method
CN102778473A (en) * 2012-07-10 2012-11-14 东华大学 Field detection method for thermal resistance of building envelope
JP2016070675A (en) * 2014-09-26 2016-05-09 大和ハウス工業株式会社 Heat-transfer coefficient estimation system, heat-transfer coefficient estimation method and program, and heat-transfer coefficient test device
CN115165955A (en) * 2022-06-01 2022-10-11 浙江大学 Ground material albedo testing method and system based on heat change

Also Published As

Publication number Publication date
JP3375603B2 (en) 2003-02-10

Similar Documents

Publication Publication Date Title
Berdahl et al. Preliminary survey of the solar reflectance of cool roofing materials
Alwetaishi Impact of glazing to wall ratio in various climatic regions: A case study
US6500555B1 (en) Thermochromic laminates and methods for controlling the temperature of a structure
Suehrcke et al. Effect of roof solar reflectance on the building heat gain in a hot climate
Eicker Energy efficient buildings with solar and geothermal resources
Costanzo et al. Proper evaluation of the external convective heat transfer for the thermal analysis of cool roofs
Chirarattananon et al. Daylighting through light pipes in the tropics
Vox et al. Evaluation of the radiometric properties of roofing materials for livestock buildings and their effect on the surface temperature
Pomerantz et al. Reflective surfaces for cooler buildings and cities
Xue et al. The methods for creating energy efficient cool gray building coatings—Part I: Preparation from white and black pigments
Muscio et al. An index for the overall performance of opaque building elements subjected to solar radiation
JP2002039977A (en) Method for measuring heat quantity of heat shield part
Zinzi et al. Properties and performance of advanced reflective paints to reduce the cooling loads in buildings and mitigate the heat island effect in urban areas
Cremers et al. Comparative study of a new IR-absorbing film to improve solar shading and thermal comfort for ETFE structures
Baneshi et al. Cool black roof impacts into the cooling and heating load demand of a residential building in various climates
Aelenei et al. Analysis of the condensation risk on exterior surface of building envelopes
Ihara et al. Accelerated aging of treated aluminum for use as a cool colored material for facades
Li et al. Average daylight factor for the 15 CIE standard skies
Gorantla et al. Day lighting and thermal analysis using various double reflective window glasses for green energy buildings.
Lodi et al. Analysis of combined low-level indicators for the hot-season performance of roof components
Chaiyosburana et al. Optimizing high solar reflective paint to reduce heat gain in building
Hernández-Pérez et al. Thermal evaluation of building roofs with conventional and reflective coatings
JPH10174928A (en) Roof made of coated metal
Hassan et al. Analysis on the OTTV of Modern-Style Apartment Facades in Bandar Sri Permaisuri, Kuala Lumpur
JP3221739U (en) Building structure

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101129

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111129

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121129

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131129

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees