JP2002039916A - Method and instrument for measuring polarized crosstalk of optical component - Google Patents

Method and instrument for measuring polarized crosstalk of optical component

Info

Publication number
JP2002039916A
JP2002039916A JP2000230055A JP2000230055A JP2002039916A JP 2002039916 A JP2002039916 A JP 2002039916A JP 2000230055 A JP2000230055 A JP 2000230055A JP 2000230055 A JP2000230055 A JP 2000230055A JP 2002039916 A JP2002039916 A JP 2002039916A
Authority
JP
Japan
Prior art keywords
polarization
optical component
optical fiber
extinction ratio
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000230055A
Other languages
Japanese (ja)
Inventor
Ryokichi Matsumoto
亮吉 松本
Yasuhiro Ouchi
康弘 大内
Noriaki Shimada
典昭 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2000230055A priority Critical patent/JP2002039916A/en
Publication of JP2002039916A publication Critical patent/JP2002039916A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately measure the polarized crosstalks of an optical component, having a plane-of-polarization preserving structure. SOLUTION: Light, comprising only a single polarized components, is made to be incident on a plane-of-polarization preserving optical fiber coupler 1 to be measured, and an extinction ratio of the emitted lights from the plane-of- polarization preserving optical fiber coupler 1 is measured, while the phase difference between two polarization components emitted from the plane-of- polarization preserving optical fiber coupler 1 is changed, at least from a value smaller than (2n+1)×(π/2)} to a value larger than (2n+1)×(π/2)} (n: an integer of than 0 larger). The minimum value of this extinction ratio is set to the absolute value of the polarized crosstalk.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、偏波面保存構造を
有する光部品について、その偏波クロストークを正確に
測定するための方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for accurately measuring polarization crosstalk of an optical component having a polarization plane preserving structure.

【0002】[0002]

【従来の技術】例えばシングルモード光ファイバは、伝
搬するモードがただ一つとなるように設計されている
が、実際には互いに独立な2つの偏波成分として伝搬さ
れている。偏波面保存光ファイバは、そのうちの1つの
偏波成分を伝搬モードでなくしてしまうか、利用する偏
波と利用しない偏波との間で混信がないようにするため
に、偏波の方向によって屈折率が異なる複屈折を有する
ように設計されている。偏波面保存光ファイバなどの偏
波面保存構造を有する光部品は、これに2つの偏波のう
ち一方の偏波のみを入射した場合、出射パワーも入射と
同じ偏波成分のみで構成されることが理想であるが、実
際には、一方の偏波成分のうちの若干のパワーが他方の
偏波成分へ結合して、2つの偏波成分が同時に伝搬され
ることになる。このように、光部品を通過する間に他方
の偏波成分へ漏れてしまうパワーの、入射の偏波成分の
まま伝送されるパワーに対する割合が、偏波クロストー
ク(漏話)と定義される。
2. Description of the Related Art For example, a single mode optical fiber is designed so that only one mode propagates, but in fact, it is transmitted as two independent polarization components. The polarization-maintaining optical fiber is provided with a polarization direction depending on the direction of the polarization in order to eliminate one of the polarization components in the propagation mode or to prevent interference between the used polarization and the unused polarization. The refractive indices are designed to have different birefringence. An optical component having a polarization-maintaining structure, such as a polarization-maintaining optical fiber, is configured such that when only one of the two polarizations is incident on the optical component, the output power also includes only the same polarization component as the incident. Is ideal, but in practice, some power of one polarization component is coupled to the other polarization component, and two polarization components are simultaneously propagated. As described above, the ratio of the power leaking to the other polarization component while passing through the optical component to the power transmitted as the incident polarization component is defined as polarization crosstalk (crosstalk).

【0003】この偏波クロストークを測定するための従
来の方法は、例えば偏波面保存光ファイバを伝送可能な
2つの直交する偏波のうち片方のみの偏波成分からなる
光を、偏波面保存光ファイバへ入射したときに、この偏
波面保存光ファイバから出射される光の消光比を測定す
る方法であった。消光比とは、偏波面保存光ファイバか
らの出射光が偏光板を通過した後のパワーを測定しなが
ら偏光板を回転させたときの、最大パワーと最小パワー
の差の値である。この測定方法により得られた消光比の
値は偏波クロストークの絶対値に相当し、偏波クロスト
ークは消光比の値にマイナス符号(−)を付けた値とし
て得られる。
[0003] A conventional method for measuring this polarization crosstalk is to use, for example, a polarization-conserving optical system that transmits only one polarization component of two orthogonal polarizations that can be transmitted through a polarization-maintaining optical fiber. This method measures the extinction ratio of light emitted from the polarization-maintaining optical fiber when the light enters the optical fiber. The extinction ratio is the value of the difference between the maximum power and the minimum power when the polarization plate is rotated while measuring the power after the light emitted from the polarization-maintaining optical fiber passes through the polarization plate. The value of the extinction ratio obtained by this measurement method corresponds to the absolute value of the polarization crosstalk, and the polarization crosstalk is obtained as a value obtained by adding a minus sign (-) to the value of the extinction ratio.

【0004】[0004]

【発明が解決しようとする課題】ところで、例えば偏波
面保存光ファイバを2つの偏波成分が同時に伝搬する場
合、偏波面保存光ファイバは複屈折を有しているので、
2つの偏波成分の伝搬速度は異なっている。このため、
光ファイバの長さ方向に光が伝搬するに従って2つの偏
波成分の位相差が変化していき、図4に示すように、光
ファイバの長さ方向(図中、Z方向)に沿って偏光状態
が楕円偏光→直線偏光→楕円偏光・・・と変化するように
なる。したがって、偏波面保存光ファイバの出射端面に
おける偏光状態は、2つの偏波成分の位相差に依存し、
円偏光であったり、直線偏光であったりする。
By the way, for example, when two polarization components propagate simultaneously in a polarization-maintaining optical fiber, the polarization-maintaining optical fiber has birefringence.
The propagation speeds of the two polarization components are different. For this reason,
As light propagates in the length direction of the optical fiber, the phase difference between the two polarization components changes, and as shown in FIG. 4, the polarization direction changes along the length direction of the optical fiber (the Z direction in the figure). The state changes from elliptically polarized light to linearly polarized light to elliptically polarized light. Therefore, the polarization state at the output end face of the polarization-maintaining optical fiber depends on the phase difference between the two polarization components,
Circularly polarized light or linearly polarized light.

【0005】前記した従来の測定方法では、偏波面保存
光ファイバの出射端面での偏光状態が直線偏光である
か、楕円偏光であるかによって、消光比の測定値が異な
り、このために偏波面保存光ファイバの偏波クロストー
クを正確に測定することができないという問題があっ
た。具体的には、偏波面保存光ファイバの出射端面にお
ける偏光状態が直線偏光である場合、偏光板を回転させ
ながら測定した光パワーの最大値と最小値との差(=消
光比)は、偏波面保存光ファイバの偏波クロストークに
相当する値よりも大きくなってしまう。また、偏波面保
存光ファイバを伝搬する2つの偏波成分の位相差は、2
つの偏波成分の光路長差に依存するので、出射端面にお
ける偏光状態は光ファイバの曲がりや温度変化によって
影響を受け、これにより消光比の測定値が非常に不安定
になり、偏波クロストークを精度良く測定できないとい
う問題もあった。
In the above-mentioned conventional measuring method, the measured value of the extinction ratio differs depending on whether the polarization state at the output end face of the polarization-maintaining optical fiber is linearly polarized light or elliptically polarized light. There is a problem that the polarization crosstalk of the storage optical fiber cannot be measured accurately. Specifically, when the polarization state at the output end face of the polarization-maintaining single-mode fiber is linearly polarized light, the difference (= extinction ratio) between the maximum value and the minimum value of the optical power measured while rotating the polarizing plate is equal to the polarization. It becomes larger than the value corresponding to the polarization crosstalk of the wavefront preserving optical fiber. The phase difference between two polarization components propagating through the polarization-maintaining optical fiber is 2
Since the polarization state depends on the optical path length difference between the two polarization components, the polarization state at the output end face is affected by the bending or temperature change of the optical fiber, which makes the measured value of the extinction ratio very unstable and causes polarization crosstalk. There was also a problem that it was not possible to measure with high accuracy.

【0006】本発明は前記事情に鑑みてなされたもの
で、偏波面保存光ファイバをはじめとする偏波面保存構
造を有する光部品の、偏波クロストークを正確に測定で
きるようにすることを目的とする。
The present invention has been made in view of the above circumstances, and has as its object to accurately measure polarization crosstalk of an optical component having a polarization maintaining structure such as a polarization maintaining optical fiber. And

【0007】[0007]

【課題を解決するための手段】前記課題を解決するため
に本発明の光部品の偏波クロストーク測定方法は、偏波
面保存構造を有する光部品の偏波クロストークを測定す
る方法であって、前記光部品に1つの偏波成分のみから
なる光を入射させ、前記光部品から出射される2つの偏
波成分の位相差を、少なくとも{(2n+1)×(π/
2)}以下の値から{(2n+1)×(π/2)}(n
は0以上のいずれかの整数)以上の値まで変化させなが
ら、前記光部品からの出射光の消光比を測定したときの
前記消光比の最小値を偏波クロストークの絶対値とする
ことを特徴とする。前記光部品に外力および/または温
度変化を加えることによって前記光部品から出射される
2つの偏波の位相差を変化させることが好ましい。ま
た、本発明の光部品の偏波クロストーク測定装置は、偏
波面保存構造を有する光部品に1つの偏波成分のみから
なる光を入射させる手段と、前記光部品からの出射光の
消光比を測定する手段と、前記光部品内を伝搬している
2つの偏波の位相差を変化させる手段とを備えてなるこ
とを特徴とする。好ましくは、前記位相差を変化させる
手段として、前記光部品に張力を印加可能な手段、前記
光部品を曲げ可能な手段、および/または前記光部品に
温度変化を印可可能な手段を備えてなる。
According to the present invention, there is provided a method for measuring the polarization crosstalk of an optical component, comprising the steps of: , A light consisting of only one polarization component is incident on the optical component, and the phase difference between the two polarization components emitted from the optical component is at least {(2n + 1) × (π /
2) From the following values, {(2n + 1) × (π / 2)} (n
Is any integer greater than or equal to 0) or more, and the minimum value of the extinction ratio when the extinction ratio of the light emitted from the optical component is measured is defined as the absolute value of the polarization crosstalk. Features. It is preferable that a phase difference between two polarized waves emitted from the optical component is changed by applying an external force and / or a temperature change to the optical component. In addition, the polarization crosstalk measuring apparatus for an optical component according to the present invention comprises: means for causing light consisting of only one polarization component to enter the optical component having a polarization plane preserving structure; and an extinction ratio of light emitted from the optical component. , And means for changing the phase difference between two polarized waves propagating in the optical component. Preferably, the means for changing the phase difference includes means for applying a tension to the optical component, means for bending the optical component, and / or means for applying a temperature change to the optical component. .

【0008】[0008]

【発明の実施の形態】以下、本発明を詳しく説明する。
以下、偏波面保存構造を有する光部品の例として偏波面
保存光ファイバからなる光ファイバカプラを例に挙げ
て、本発明の一実施形態を説明する。本発明者等は、偏
波面保存光ファイバを伝搬する2つの偏波成分について
詳細に検討した結果、2つの偏波成分の位相差が出射端
においてπ/2の(2n+1)倍(nは0以上の整数)
であるときに、出射端での偏光状態が最も扁平率が小さ
い楕円偏光となること、このときの出射端における消光
比の値を用いれば正確な偏波クロストークの値が得られ
ること、およびこのときの消光比の値は、一定長の偏波
面保存光ファイバが取り得る消光比の値のうちの最小値
であることを見い出して本発明に至った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
Hereinafter, an embodiment of the present invention will be described using an optical fiber coupler including a polarization maintaining optical fiber as an example of an optical component having a polarization maintaining structure. The present inventors have studied in detail two polarization components propagating through the polarization-maintaining optical fiber, and as a result, the phase difference between the two polarization components is (2n + 1) times π / 2 (2n + 1) at the output end. Integer greater than or equal to)
When is, that the polarization state at the output end is elliptically polarized light having the smallest oblateness, that an accurate polarization crosstalk value can be obtained by using the value of the extinction ratio at the output end, and The present inventors have found that the value of the extinction ratio at this time is the minimum value among the values of the extinction ratio that can be taken by the polarization-maintaining single-mode optical fiber.

【0009】図1は本実施形態において光ファイバカプ
ラの偏波クロストークを測定するのに好適な装置の例を
示した概略構成図である。図中符号1は偏波面保存光フ
ァイバからなる光ファイバカプラ、1a,1b,1c,
1dはリードファイバ、2は光を入射させる手段、3は
消光比を測定する手段である。本発明の方法により偏波
面保存光ファイバカプラ1の偏波クロストークを測定す
るには、まず測定しようとする偏波面保存光ファイバカ
プラ1に、1つの偏波成分のみからなる光を入射する。
この入射光としては、電界方向が、測定しようとする光
部品の2つの偏波軸のうち一方の偏波軸と同一方向であ
る直線偏波のみからなる光が用いられる。本実施形態に
おいては偏波面保存光ファイバカプラ1の入射側の1つ
のリードファイバ1aの偏波軸に、入射光の電界方向を
整合させる。またこの入射光は、偏光度が、測定しよう
とする偏波面保存光ファイバカプラ1の偏波クロストー
クの値より小さかったり同程度であると、偏波クロスト
ークを正確に測定することができないので、偏波面保存
光ファイバカプラ1の偏波クロストークの値より十分に
高い偏光度を有する光を使用する必要がある。具体的に
は、一般的に光部品の偏波クロストークに要求されるス
ペックは−20dB程度であることから、概ね30dB
以上の消光比であることが望ましい。
FIG. 1 is a schematic diagram showing an example of an apparatus suitable for measuring the polarization crosstalk of an optical fiber coupler in the present embodiment. In the figure, reference numeral 1 denotes an optical fiber coupler composed of a polarization maintaining optical fiber, 1a, 1b, 1c,
1d is a lead fiber, 2 is a means for entering light, and 3 is a means for measuring an extinction ratio. In order to measure the polarization crosstalk of the polarization-maintaining optical fiber coupler 1 by the method of the present invention, first, light having only one polarization component is incident on the polarization-maintaining optical fiber coupler 1 to be measured.
As this incident light, light composed of only linearly polarized light whose electric field direction is the same as one of the two polarization axes of the optical component to be measured is used. In this embodiment, the direction of the electric field of the incident light is matched with the polarization axis of one lead fiber 1a on the incident side of the polarization-maintaining optical fiber coupler 1. If the degree of polarization of the incident light is smaller than or equal to the value of the polarization crosstalk of the polarization-maintaining optical fiber coupler 1 to be measured, the polarization crosstalk cannot be accurately measured. It is necessary to use light having a polarization degree sufficiently higher than the polarization crosstalk value of the polarization-maintaining optical fiber coupler 1. More specifically, since the specification required for the polarization crosstalk of the optical component is generally about −20 dB, it is approximately 30 dB.
It is desirable that the extinction ratio be above.

【0010】測定しようとする偏波面保存光ファイバカ
プラ1に、このような入射光を入射させる手段2として
は、光源2a、および光源光を直線偏波成分のみからな
る光に変える偏光子2b備えた装置を用いればよい。光
源2aとしては、偏波保持光ファイバ出力型のLD(レ
ーザダイオード)やSLD(スーパールミネッセントダ
イオード)が好適である。偏光子2bとしてはコイル形
ファイバ偏光子等のインラインタイプのものが好適であ
る。入射光の偏光度は光源の偏光度および偏光子の消光
比によって規定される。また、入射光の電界方向は、偏
光子2bの出射端および被測定部品2の入射端の偏波保
持光ファイバ接続部分での偏波軸の整合のさせ方によっ
て制御することができる。
As means 2 for making such incident light incident on the polarization-maintaining optical fiber coupler 1 to be measured, there are provided a light source 2a and a polarizer 2b for converting the light from the light source into light consisting only of linearly polarized components. The device may be used. As the light source 2a, a polarization maintaining optical fiber output type LD (laser diode) or SLD (super luminescent diode) is suitable. As the polarizer 2b, an in-line type such as a coil type fiber polarizer is suitable. The degree of polarization of the incident light is defined by the degree of polarization of the light source and the extinction ratio of the polarizer. Further, the direction of the electric field of the incident light can be controlled by matching the polarization axes at the output end of the polarizer 2b and the polarization maintaining optical fiber connection portion of the incident end of the component 2 to be measured.

【0011】測定しようとする偏波面保存光ファイバカ
プラ1に、上記の如く1つの偏波成分のみからなる光を
入射させると、偏波面保存光ファイバカプラ1内を伝搬
していくうちに、入射光の偏波成分のうちの若干のパワ
ーが他方の偏波成分へ結合し、出射端からは2つの偏波
成分が出射されるので、この出射光の消光比を測定す
る。具体的には、偏波面保存光ファイバカプラ1の出射
側の1つのリードファイバ1cの出射端を消光比モニタ
装置3に接続すればよい。消光比モニタ装置3は、出射
光が偏光板を通過するように、かつその偏光板を回転さ
せながら光パワーを測定して消光比を求めるように構成
されている。
When light consisting of only one polarization component is incident on the polarization-maintaining optical fiber coupler 1 to be measured as described above, the incident light is propagated through the polarization-maintaining optical fiber coupler 1. Since some power of the polarized light component of the light is coupled to the other polarized light component and two polarized light components are emitted from the emission end, the extinction ratio of the emitted light is measured. Specifically, the emission end of one lead fiber 1c on the emission side of the polarization-maintaining optical fiber coupler 1 may be connected to the extinction ratio monitor device 3. The extinction ratio monitor device 3 is configured to measure the optical power while rotating the polarizing plate so that the emitted light passes through the polarizing plate, and obtain the extinction ratio.

【0012】また、消光比の測定時には、偏波面保存光
ファイバカプラ1から出射される2つの偏波成分の位相
差を{(2n+1)×(π/2)}以下の値から{(2
n+1)×(π/2)}(nは0以上のいずれかの整
数)の値まで変化させる。例えば、2つの偏波成分の位
相差π/2以下の値からπ/2以上の値まで変化させて
もよく、(3π)/2以下の値から(3π)/2以上の値
まで変化させてもよい。あるいはこれより広い範囲で変
化させてもよい。具体的には、偏波面保存光ファイバカ
プラ1の一部に外力および/または温度変化を加えるこ
とによって偏波面保存光ファイバカプラ1から出射され
る2つの偏波成分の位相差を変化させることができる。
図1中、符号4は2つの偏波の位相差を変化させる手段
を示しており、具体的には外力および/または温度変化
を加える手段である。外力および/または温度変化を加
える部位は、偏波面保存光ファイバカプラ1のうちの出
射端近傍が好ましい。本実施形態では、出射側のリード
ファイバ1cに外力および/または温度変化を加えるこ
とが好ましい。温度変化を加える手段は、光部品に熱変
動を印可し得る手段であり、偏波面保存光ファイバカプ
ラ1の出射側のリードファイバ1cの一部を収納可能に
構成されたヒーター等の加熱手段を好適に用いることが
できる。また外力を加える手段としては、例えば偏波面
保存光ファイバカプラ1の出射側のリードファイバ1c
の長さ方向に張力を加えるとともに、その張力の大きさ
を連続的かつ周期的に変化させる手段を用いることがで
き、具体的にはピエゾ素子を好適に用いることができ
る。あるいは外力を加える手段として、偏波面保存光フ
ァイバカプラ1の出射側のリードファイバ1cに曲げを
加えるとともに、曲げ方向を連続的かつ周期的に変化さ
せる手段を用いることができ、具体的には、例えば図2
に示すように、リール10にリードファイバ1cを巻い
てそのリール10をうちわのように周期的に動かす装置
を好適に用いることができる。
At the time of measuring the extinction ratio, the phase difference between the two polarization components emitted from the polarization-maintaining single-mode fiber coupler 1 is changed from a value of {(2n + 1) × (π / 2)} or less to {(2
(n + 1) × (π / 2)} (n is any integer of 0 or more). For example, the phase difference between the two polarization components may be changed from a value of π / 2 or less to a value of π / 2 or more, or from a value of (3π) / 2 or less to a value of (3π) / 2 or more. You may. Alternatively, it may be changed in a wider range. Specifically, it is possible to change the phase difference between two polarization components emitted from the polarization-maintaining optical fiber coupler 1 by applying an external force and / or a temperature change to a part of the polarization-maintaining optical fiber coupler 1. it can.
In FIG. 1, reference numeral 4 denotes a means for changing the phase difference between two polarized waves, and specifically means for applying an external force and / or a temperature change. The portion to which the external force and / or temperature change is applied is preferably near the emission end of the polarization-maintaining optical fiber coupler 1. In the present embodiment, it is preferable to apply an external force and / or a temperature change to the lead fiber 1c on the emission side. The means for applying a temperature change is a means capable of applying heat fluctuation to the optical component, and includes a heating means such as a heater configured to be able to accommodate a part of the lead fiber 1c on the emission side of the polarization-maintaining optical fiber coupler 1. It can be suitably used. As means for applying an external force, for example, the lead fiber 1c on the output side of the polarization-maintaining optical fiber coupler 1 is used.
A means for applying a tension in the length direction and changing the magnitude of the tension continuously and periodically can be used. Specifically, a piezo element can be suitably used. Alternatively, as means for applying an external force, means for bending the lead fiber 1c on the emission side of the polarization-maintaining optical fiber coupler 1 and changing the bending direction continuously and periodically can be used. For example, FIG.
As shown in (1), a device in which the lead fiber 1c is wound around the reel 10 and the reel 10 is periodically moved like a fan can be suitably used.

【0013】このようにして、偏波面保存光ファイバカ
プラ1から出射される出射光の2つの偏波成分の位相差
を変化させながら、出射光の消光比を測定すると、例え
ば図3に示すように、消光比の値は周期的に変化する。
図3のグラフは、横軸が偏波面保存光ファイバの加熱時
間(単位;秒)であり、縦軸が消光比(単位;dB)で
ある。前述したように、2つの偏波成分の位相差が出射
端において{(2n+1)×(π/2)}(nは0以上
の整数)であるときに、消光比が最小値をとる。したが
って、図3の例では、加熱時間が15秒のときと45秒
のとき消光比が最小となっていることから、加熱時間1
5秒のときに2つの偏波成分の位相差がπ/2となり加
熱時間45秒のときに2つの偏波成分の位相差が(3
π)/2になった、あるいはその逆になったと推定でき
る。そして、前述したように、2つの偏波成分の位相差
が出射端において{(2n+1)×(π/2)}(nは
0以上の整数)であるときに、出射端での偏光状態が最
も扁平率が小さい楕円偏光となり、このときの出射端に
おける消光比の値を用いれば正確な偏波クロストークの
値が得られるので、図3の例では、加熱時間が15秒ま
たは45秒のときの消光比、すなわち消光比の最小値を
偏波クロストークの絶対値として採用する。図3の例で
は消光比の最小値は23dBであるので、偏波クロスト
ークの値は−23dBと求められる。
When the extinction ratio of the emitted light is measured while changing the phase difference between the two polarized components of the emitted light emitted from the polarization-maintaining optical fiber coupler 1 as shown in FIG. 3, for example, as shown in FIG. In addition, the value of the extinction ratio changes periodically.
In the graph of FIG. 3, the horizontal axis represents the heating time (unit: second) of the polarization-maintaining optical fiber, and the vertical axis represents the extinction ratio (unit: dB). As described above, the extinction ratio takes the minimum value when the phase difference between the two polarization components is {(2n + 1) × (π / 2)} (n is an integer of 0 or more) at the emission end. Therefore, in the example of FIG. 3, the extinction ratio is minimum when the heating time is 15 seconds and when the heating time is 45 seconds.
At 5 seconds, the phase difference between the two polarization components is π / 2, and when the heating time is 45 seconds, the phase difference between the two polarization components is (3).
π) / 2, or vice versa. As described above, when the phase difference between the two polarization components is {(2n + 1) × (π / 2)} (n is an integer of 0 or more) at the output end, the polarization state at the output end is In the example of FIG. 3, the heating time is 15 seconds or 45 seconds, since an accurate polarization crosstalk value can be obtained by using the value of the extinction ratio at the emission end at this time. The extinction ratio at that time, that is, the minimum value of the extinction ratio is adopted as the absolute value of the polarization crosstalk. In the example of FIG. 3, since the minimum value of the extinction ratio is 23 dB, the value of the polarization crosstalk is obtained as −23 dB.

【0014】このように、本実施形態によれば、偏波面
保存光ファイバの出射光の偏光状態を強制的に変化させ
ながら消光比を測定して偏波クロストークを求めること
によって、正確な偏波クロストークの値を安定して得る
ことができる。なお、上記の実施形態では偏波面保存光
ファイバカプラを例に挙げて説明したが、本発明の方法
は、これ以外の偏波面保存構造を有する光部品にも同様
に適用することができる。本発明における被測定光部品
の具体例としては偏波ビームスプリッタ、ポーラライザ
(偏光子)等が挙げられる。
As described above, according to the present embodiment, the polarization crosstalk is obtained by measuring the extinction ratio while forcibly changing the polarization state of the light emitted from the polarization-maintaining optical fiber, thereby obtaining accurate polarization crosstalk. The value of wave crosstalk can be obtained stably. In the above embodiment, the polarization-maintaining optical fiber coupler has been described as an example, but the method of the present invention can be similarly applied to optical components having other polarization-maintaining structures. Specific examples of the optical component to be measured in the present invention include a polarization beam splitter and a polarizer (polarizer).

【0015】[0015]

【実施例】以下、具体的な実施例を示して本発明の効果
を明らかにする。 (実施例1)被測定光部品として、2本のPANDAフ
ァイバを用いてなる偏波面保存光ファイバカプラを用意
した。この光ファイバカプラは入射側および出射側にそ
れぞれ2本のリードファイバを有する。まず、この光フ
ァイバカプラの入射側の一方のリードファイバに、偏光
度が約40dBの直線偏光を、該リードファイバの偏波
軸方向と入射光の電界方向とが一致するように調整して
入射した。また光ファイバカプラの出射側の一方のリー
ドファイバの出射端を消光比モニタ装置に接続した。こ
の状態で、光ファイバカプラの出射側の一方のリードフ
ァイバの一部を長さ約6cmにわたってヒーター内に収
納し、1分間の加熱を行った。このとき、加熱前のヒー
ター内温度は約20℃で、加熱終了後のヒーター内温度
は約100℃であった。加熱開始時から加熱終了時まで
の、消光比の測定値の変動状態を示したのが図3であ
る。この図3のグラフにおいては、加熱時間の増加に伴
って、消光比の測定値が減少→増大のサイクルを2回繰
り返している。消光比は2つの偏波成分の位相差が(2
n+1)×π/2のとき最小となり、nπのとき最大と
なるので、本実施例では1分間の加熱により2π程度の
位相差が生じたと推定できる。したがって、2つの偏波
成分の位相差を0から2πまで変化させたときの消光比
の最小値は、図3のグラフより23dBであり、これよ
り被測定光部品である偏波面保存光ファイバカプラの偏
波クロストークの値は−23dBと求められる。
EXAMPLES Hereinafter, the effects of the present invention will be clarified by showing specific examples. (Example 1) A polarization-maintaining optical fiber coupler using two PANDA fibers was prepared as an optical component to be measured. This optical fiber coupler has two lead fibers on each of the input side and the output side. First, linearly polarized light having a degree of polarization of about 40 dB is adjusted into one of the lead fibers on the incident side of the optical fiber coupler so that the polarization axis direction of the lead fiber and the electric field direction of the incident light coincide with each other. did. The emission end of one lead fiber on the emission side of the optical fiber coupler was connected to an extinction ratio monitor. In this state, a part of one of the lead fibers on the emission side of the optical fiber coupler was housed in a heater over a length of about 6 cm, and was heated for one minute. At this time, the temperature in the heater before heating was about 20 ° C., and the temperature in the heater after heating was about 100 ° C. FIG. 3 shows a fluctuation state of the measured value of the extinction ratio from the start of heating to the end of heating. In the graph of FIG. 3, the cycle in which the measured value of the extinction ratio decreases → increases twice as the heating time increases. The extinction ratio is such that the phase difference between the two polarization components is (2
Since it becomes the minimum when n + 1) × π / 2 and becomes the maximum when nπ, in this embodiment, it can be estimated that a phase difference of about 2π has been generated by heating for 1 minute. Therefore, the minimum value of the extinction ratio when the phase difference between the two polarization components is changed from 0 to 2π is 23 dB according to the graph of FIG. 3, which indicates that the polarization-maintaining optical fiber coupler which is the optical component to be measured. Is obtained as −23 dB.

【0016】(実施例2)上記実施例1で用いたのと同
じ光ファイバカプラの入射側の一方のリードファイバ
に、偏光度が約40dBの直線偏光を、該リードファイ
バの偏波軸方向と入射光の電界方向とが一致するように
調整して入射した。また光ファイバカプラの出射側の一
方のリードファイバの出射端を消光比モニタ装置に接続
した。この状態で、光ファイバカプラの出射側の一方の
リードファイバの一部をピエゾ素子に巻き付け、このピ
エゾ素子を1Hzの周期で振動させることにより、リー
ドファイバに周期的な張力を付加した。このとき、消光
比の測定値は約4kHzの周期で周期的に変動し、その
最小値は23dBであった。本実施例ではピエゾ素子の
振動1周期で4π程度の位相差が生じたと推定できる。
したがって、2つの偏波成分の位相差を0から4πまで
変化させたときの消光比の最小値が23dBであり、こ
れより被測定光部品である偏波面保存光ファイバカプラ
の偏波クロストークの値は−23dBと求められる。
(Embodiment 2) Linear polarization having a degree of polarization of about 40 dB is applied to one lead fiber on the incident side of the same optical fiber coupler as used in Embodiment 1 above, with respect to the polarization axis direction of the lead fiber. The light was incident so as to be adjusted so that the direction of the electric field of the incident light coincided therewith. The emission end of one lead fiber on the emission side of the optical fiber coupler was connected to an extinction ratio monitor. In this state, a part of one of the lead fibers on the emission side of the optical fiber coupler was wound around a piezo element, and the piezo element was vibrated at a cycle of 1 Hz to apply a periodic tension to the lead fiber. At this time, the measured value of the extinction ratio fluctuated periodically at a period of about 4 kHz, and the minimum value was 23 dB. In this embodiment, it can be estimated that a phase difference of about 4π occurs in one cycle of the vibration of the piezo element.
Accordingly, when the phase difference between the two polarization components is changed from 0 to 4π, the minimum value of the extinction ratio is 23 dB, which indicates that the polarization crosstalk of the polarization-maintaining optical fiber coupler, which is the optical component to be measured, is smaller. The value is determined to be -23 dB.

【0017】(実施例3)上記実施例1で用いたのと同
じ光ファイバカプラの入射側の一方のリードファイバ
に、偏光度が約40dBの直線偏光を、該リードファイ
バの偏波軸方向と入射光の電界方向とが一致するように
調整して入射した。また光ファイバカプラの出射側の一
方のリードファイバの出射端を消光比モニタ装置に接続
した。この状態で、光ファイバカプラの出射側の一方の
ードファイバの一部を、図2に示すように直径約5c
mの円形のリールに巻き付け、このリールをりードファ
イバを軸としてうちわのように周期的に駆動させること
によりリードファイバに周期的な曲げ応力を付加した。
このとき、消光比の測定値はリールの回転に伴って周期
的に変動し、その最小値は23dBであった。これより
被測定光部品である偏波面保存光ファイバカプラの偏波
クロストークの値は−23dBと求められる。
(Embodiment 3) Linear polarization having a degree of polarization of about 40 dB is applied to one lead fiber on the incident side of the same optical fiber coupler as used in Embodiment 1 above, with respect to the polarization axis direction of the lead fiber. The light was incident so as to be adjusted so that the direction of the electric field of the incident light coincided therewith. The emission end of one lead fiber on the emission side of the optical fiber coupler was connected to an extinction ratio monitor. In this state, one of the output sides of the optical fiber coupler
Some of the re Dofaiba, about the diameter as shown in FIG. 2 5c
m was wound around a circular reel, and this reel was periodically driven like a fan around a lead fiber to apply a periodic bending stress to the lead fiber.
At this time, the measured value of the extinction ratio periodically fluctuated with the rotation of the reel, and the minimum value was 23 dB. From this, the value of the polarization crosstalk of the polarization-maintaining optical fiber coupler, which is the optical component to be measured, is determined to be −23 dB.

【0018】[0018]

【発明の効果】以上説明したように、本発明によれば、
偏波面保存構造を有する光部品の偏波クロストークを精
度良く測定することができる。
As described above, according to the present invention,
It is possible to accurately measure polarization crosstalk of an optical component having a polarization-maintaining structure.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の偏波クロストーク測定装置の一例を示
す概略構成図である。
FIG. 1 is a schematic configuration diagram showing an example of a polarization crosstalk measuring device of the present invention.

【図2】本発明に係る光部品に外力を印可する手段の例
を示す説明図である。
FIG. 2 is an explanatory diagram showing an example of a means for applying an external force to an optical component according to the present invention.

【図3】本発明に係る実施例における消光比の測定結果
を示すグラフである。
FIG. 3 is a graph showing a measurement result of an extinction ratio in an example according to the present invention.

【図4】偏波面保存光ファイバにおける偏光状態を模式
的に示した説明図である。
FIG. 4 is an explanatory diagram schematically showing a polarization state in a polarization-maintaining optical fiber.

【符号の説明】[Explanation of symbols]

1…偏波面保存光ファイバカプラ(偏波面保存構造を有
する光部品)、2…光を入射させる手段、3…消光比を
測定する手段、4…偏波の位相差を変化させる手段。
Reference numeral 1 denotes a polarization-maintaining optical fiber coupler (optical component having a polarization-maintaining structure); 2 means for inputting light; 3 means for measuring an extinction ratio; 4 means for changing the phase difference of polarization.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 偏波面保存構造を有する光部品の偏波ク
ロストークを測定する方法であって、 前記光部品に1つの偏波成分のみからなる光を入射さ
せ、前記光部品から出射される2つの偏波成分の位相差
を、少なくとも{(2n+1)×(π/2)}以下の値
から{(2n+1)×(π/2)}(nは0以上のいず
れかの整数)以上の値まで変化させながら、前記光部品
からの出射光の消光比を測定したときの前記消光比の最
小値を偏波クロストークの絶対値とすることを特徴とす
る光部品の偏波クロストーク測定方法。
1. A method for measuring polarization crosstalk of an optical component having a polarization-maintaining structure, comprising: causing light having only one polarization component to be incident on the optical component and being emitted from the optical component. The phase difference between the two polarization components is changed from a value of at least {(2n + 1) × (π / 2)} to a value of {(2n + 1) × (π / 2)} (n is any integer of 0 or more) or more. The polarization crosstalk measurement of an optical component, wherein the minimum value of the extinction ratio when the extinction ratio of light emitted from the optical component is measured while changing the extinction ratio to the absolute value of the polarization crosstalk is measured. Method.
【請求項2】 前記光部品に外力および/または温度変
化を加えることによって前記光部品から出射される2つ
の偏波の位相差を変化させることを特徴とする請求項1
記載の光部品の偏波クロストーク測定方法。
2. A phase difference between two polarized waves emitted from the optical component by applying an external force and / or a temperature change to the optical component.
A method for measuring polarization crosstalk of an optical component as described in the above.
【請求項3】 偏波面保存構造を有する光部品に1つの
偏波成分のみからなる光を入射させる手段と、前記光部
品からの出射光の消光比を測定する手段と、前記光部品
内を伝搬している2つの偏波の位相差を変化させる手段
とを備えてなることを特徴とする光部品の偏波クロスト
ーク測定装置。
3. An optical component having a polarization plane preserving structure, means for making light consisting of only one polarization component incident thereon, means for measuring an extinction ratio of light emitted from the optical component, and Means for changing a phase difference between two propagating polarized waves, the polarization crosstalk measuring apparatus for an optical component.
【請求項4】 前記位相差を変化させる手段として、前
記光部品に張力を印加可能な手段、前記光部品を曲げ可
能な手段、および/または前記光部品に温度変化を印可
可能な手段を備えてなることを特徴とする請求項3記載
の光部品の偏波クロストーク測定装置。
4. The means for changing the phase difference includes means for applying tension to the optical component, means for bending the optical component, and / or means for applying a temperature change to the optical component. 4. The apparatus for measuring polarization crosstalk of an optical component according to claim 3, wherein:
JP2000230055A 2000-07-28 2000-07-28 Method and instrument for measuring polarized crosstalk of optical component Pending JP2002039916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000230055A JP2002039916A (en) 2000-07-28 2000-07-28 Method and instrument for measuring polarized crosstalk of optical component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000230055A JP2002039916A (en) 2000-07-28 2000-07-28 Method and instrument for measuring polarized crosstalk of optical component

Publications (1)

Publication Number Publication Date
JP2002039916A true JP2002039916A (en) 2002-02-06

Family

ID=18723072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000230055A Pending JP2002039916A (en) 2000-07-28 2000-07-28 Method and instrument for measuring polarized crosstalk of optical component

Country Status (1)

Country Link
JP (1) JP2002039916A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004226209A (en) * 2003-01-22 2004-08-12 Optoquest Co Ltd Method of measuring polarized light extinction ratio or the like and system for measuring polarized light extinction ratio or the like using the same
CN104280216A (en) * 2014-10-11 2015-01-14 哈尔滨工程大学 Dual-channel optical performance simultaneous testing device for Y waveguide device and Y waveguide polarization crosstalk recognizing and processing method thereof
CN104280217A (en) * 2014-10-11 2015-01-14 哈尔滨工程大学 Dual-channel optical performance measuring device for Y waveguide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02203236A (en) * 1989-02-01 1990-08-13 Sumitomo Electric Ind Ltd Method for measuring crosstalk of polarization maintaining optical fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02203236A (en) * 1989-02-01 1990-08-13 Sumitomo Electric Ind Ltd Method for measuring crosstalk of polarization maintaining optical fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004226209A (en) * 2003-01-22 2004-08-12 Optoquest Co Ltd Method of measuring polarized light extinction ratio or the like and system for measuring polarized light extinction ratio or the like using the same
JP4637454B2 (en) * 2003-01-22 2011-02-23 株式会社 オプトクエスト Polarization extinction ratio measuring device and measuring method of polarization extinction ratio usable in the measuring device
CN104280216A (en) * 2014-10-11 2015-01-14 哈尔滨工程大学 Dual-channel optical performance simultaneous testing device for Y waveguide device and Y waveguide polarization crosstalk recognizing and processing method thereof
CN104280217A (en) * 2014-10-11 2015-01-14 哈尔滨工程大学 Dual-channel optical performance measuring device for Y waveguide
CN104280217B (en) * 2014-10-11 2017-10-03 哈尔滨工程大学 A kind of Y waveguide dual channel optical device for measuring properties

Similar Documents

Publication Publication Date Title
KR900006405B1 (en) Phase nulling optical gyroscope
US10345345B2 (en) Fiber-optic current sensor with spun fiber and temperature compensation
US4923290A (en) Polarization scrambler
EP0595595B1 (en) Superfluorescent source
JPH03503927A (en) Fiber optic gyroscope with improved bias stability and repeatability and method for manufacturing the same
JPH059769B2 (en)
Ma et al. High-performance side-polished fibers and applications as liquid crystal clad fiber polarizers
US6891622B2 (en) Current sensor
JP4067427B2 (en) Orthogonal circularly polarized light transmission in fiber
JP2002039916A (en) Method and instrument for measuring polarized crosstalk of optical component
Temkina et al. Manufacturing method and stability research of the fiber quarter-wave plate for fiber optic current sensor
Ibarra-Escamilla et al. Measurement of beat length in short low-birefringence fibers using the fiber optical loop mirror
Jeong et al. Polarimetric polarization-maintaining photonic crystal fiber vibration sensor with shortest sensor head
Zhang et al. High-Sensitivity Temperature Sensor Based on Transmissive Solc-Like Filter and Cascaded Fiber Bragg Grating
Mermelstein High-birefringence fiber-optic polarimeter with submicroradian phase delay detectability
JPH07243940A (en) Polarization-dependent loss measuring method and device
Afifi et al. Fiber optical coherence domain polarimetry for PM Fiber measurements
JPH0658712A (en) Optical fiber sensor
JP6586186B1 (en) Wavelength sweep light source, OFDR apparatus using the same, and measurement method
Ascorbe et al. Magnetic field optical sensor based on Lossy Mode Resonances
Chun et al. Integrated Optic Current Sensors Based on Silica Waveguide Devices
JPH10221014A (en) Optical wave guide path displacement sensor
US6631003B1 (en) Uncorrelated michelson interferometer
JP2002131186A (en) Measuring method of polarization crosstalk of optical component
Du et al. Noise analysis of solid-core polarization-maintaining photonic interferometer fiber optic gyroscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090403

A131 Notification of reasons for refusal

Effective date: 20090804

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100323