JP2002039819A - Poppet valve type flow measuring device - Google Patents

Poppet valve type flow measuring device

Info

Publication number
JP2002039819A
JP2002039819A JP2000218592A JP2000218592A JP2002039819A JP 2002039819 A JP2002039819 A JP 2002039819A JP 2000218592 A JP2000218592 A JP 2000218592A JP 2000218592 A JP2000218592 A JP 2000218592A JP 2002039819 A JP2002039819 A JP 2002039819A
Authority
JP
Japan
Prior art keywords
poppet valve
valve
flow rate
inflow port
poppet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000218592A
Other languages
Japanese (ja)
Inventor
Hideyo Kato
英世 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP2000218592A priority Critical patent/JP2002039819A/en
Publication of JP2002039819A publication Critical patent/JP2002039819A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Safety Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a poppet valve type flow measuring device with simple constitution, easy to work, and capable of accurately detecting a flow rate. SOLUTION: This device has a poppet valve 10 for communicating with or shutting out an inflow port and an outflow part by being inserted into a body causing 1 forming the inflow port 2 and the outflow port 3 coaxially as the inflow port, and movably so as to contact with or separate from a valve seat 4 installed between the inflow port and the outflow port. The device also has a spring 11 energizing the poppet valve in the valve closing direction; a pressure receiving part 14 energizing the poppet valve in the valve closing direction by the pressure of pressure oil of the outflow port; and a projecting restriction part 12 projecting from a valve body part 10a contacting with or separating from the valve seat to a position upstream than the inflow port, and also functioning as a pressure receiving part energizing the poppet valve in the valve opening direction by the pressure of pressure fluid of the inflow port. The outer surface of the restriction part is formed by connecting plural tapered concentric conical slopes gradually forming an acute angle toward the tip of the restriction part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はポペット弁形流量計
測装置に係わり、特に、例えば建設機械などの油圧機械
において、油圧管路内を流れる圧油の流量を計測するの
に好適なポペット弁形流量計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a poppet valve type flowmeter, and more particularly to a poppet valve type flowmeter suitable for measuring the flow rate of pressurized oil flowing in a hydraulic pipeline in a hydraulic machine such as a construction machine. The present invention relates to a flow measurement device.

【0002】[0002]

【従来の技術】圧油の流量を計測する場合として、例え
ば、油圧ショベルにおいて、可変容量形油圧ポンプの傾
転量制御の一つであるネガティブ流量制御を行う場合が
ある。これは、油圧ポンプからセンターバイパス形の操
作弁を介しタンクヘ至る油圧回路に流量計測装置を配置
し、その回路を流れる流量を計測し、その出力を油圧ポ
ンプの傾転制御に用いるものである。流量計測装置はポ
ペット弁あるいはディスクを使用し、このポペット弁あ
るいはディスクにより生じる流量相当の圧力を出力する
ものや、ポペット弁あるいはディスクの変位を電気的に
検出し、その変位信号を出力するものなどがある。
2. Description of the Related Art As a case of measuring the flow rate of pressure oil, for example, in a hydraulic shovel, there is a case where negative flow rate control, which is one type of tilt amount control of a variable displacement hydraulic pump, is performed. In this method, a flow rate measuring device is disposed in a hydraulic circuit from a hydraulic pump to a tank via a center bypass type operation valve to a tank, the flow rate flowing through the circuit is measured, and the output is used for tilt control of the hydraulic pump. The flow rate measurement device uses a poppet valve or disc, and outputs a pressure corresponding to the flow rate generated by the poppet valve or disc, or a device that electrically detects the displacement of the poppet valve or disc and outputs the displacement signal. There is.

【0003】<特開平9−4568号公報>この従来技
術では、流量に応じた圧力を出力としており、この圧力
を得るために、直列に配した複数段の固定絞りを設けて
いる。
[0003] In this prior art, a pressure corresponding to the flow rate is output, and in order to obtain this pressure, a plurality of stages of fixed throttles arranged in series are provided.

【0004】<特開平5−202904号公報>この従
来技術では、流量に応じたポペット弁変位を出力として
おり、当該変位を変位センサにより磁気的に検出する構
成である。この変位を得るために、ポペット弁絞り部を
ノッチ(切り欠)で形成する。
<Japanese Patent Laid-Open No. 5-202904> In this conventional technique, a displacement of a poppet valve according to a flow rate is output, and the displacement is magnetically detected by a displacement sensor. In order to obtain this displacement, the throttle portion of the poppet valve is formed with a notch (notch).

【0005】<特開平8−43156号公報>この従来
技術では、流量に応じたポペット弁変位を出力としてお
り、当該変位を変位センサにより電気的に検出する構成
である。ケーシング管路側にテーパ壁面を設け、この壁
面と弁との間に絞り部を形成する。
[0005] Japanese Patent Application Laid-Open No. 8-43156 discloses a configuration in which a poppet valve displacement corresponding to a flow rate is output and the displacement is electrically detected by a displacement sensor. A tapered wall surface is provided on the casing pipe side, and a throttle portion is formed between the wall surface and the valve.

【0006】<特許第2693792号公報>この従来
技術でも、流量に応じたポペット弁変位を出力としてお
り、当該変位を変位センサにより磁気的に検出する構成
である。ケーシング流路側に湾曲した壁面を設け、この
壁面と弁との間に絞り部を形成する。
<Japanese Patent No. 2693792> This prior art also has a configuration in which a poppet valve displacement corresponding to a flow rate is output and the displacement is magnetically detected by a displacement sensor. A curved wall surface is provided on the casing flow path side, and a throttle portion is formed between the wall surface and the valve.

【0007】<特公平62−25881号公報>この従
来技術でも、流量に応じたポペット弁変位を出力として
おり、当該変位を変位センサにより電気的に検出する構
成である。ケーシング管路側にテーパ壁面を設け、この
壁面と弁との間に絞り部を形成する。
<Japanese Patent Publication No. 62-25881> In this prior art as well, the displacement of the poppet valve according to the flow rate is output, and the displacement is electrically detected by a displacement sensor. A tapered wall surface is provided on the casing pipe side, and a throttle portion is formed between the wall surface and the valve.

【0008】[0008]

【発明が解決しようとする課題】特開平9−4568号
公報に記載の従来技術では、流量に応じた圧力を得るた
めに固定絞りを設けているので、流量と圧力の関係が非
線形となる。このため、特に流量が大となる領域では圧
力変化が大きくなり、流量に対する出力(圧力)特性が
不安定となるため、精度良く流量を検出できず、ポンプ
制御へ適用し難いという問題がある。
In the prior art described in Japanese Patent Application Laid-Open No. 9-4568, since a fixed throttle is provided to obtain a pressure corresponding to the flow rate, the relationship between the flow rate and the pressure becomes non-linear. For this reason, especially in a region where the flow rate is large, the pressure change becomes large, and the output (pressure) characteristics with respect to the flow rate become unstable. Therefore, the flow rate cannot be detected accurately, and there is a problem that it is difficult to apply to the pump control.

【0009】特開平5−202904号公報に記載の従
来技術では、流量に応じたポペット弁変位を得るために
ポペット弁絞り部をノッチ構造としているので、絞り部
のノッチ形状を適切に形成できれば流量と変位の関係を
線形にできる。しかし、絞り部の加工は複雑であり、線
形の出力特性を得るためのノッチ部の加工は極めて難し
い。また、装置組みによりノッチと流路の配置関係で圧
油の流れ場が変わり易く、流体力の影響により出力特性
が不安定となる。したがって、この従来技術でも精度良
く流量を検出することは難しい。
In the prior art described in Japanese Patent Application Laid-Open No. 5-202904, the poppet valve restrictor has a notch structure in order to obtain a poppet valve displacement corresponding to the flow rate. And the displacement can be made linear. However, processing of the drawing portion is complicated, and processing of the notch portion to obtain a linear output characteristic is extremely difficult. In addition, the flow field of the pressure oil tends to change depending on the arrangement of the notch and the flow path depending on the device assembly, and the output characteristics become unstable due to the influence of the fluid force. Therefore, it is difficult to accurately detect the flow rate even with this conventional technique.

【0010】特開平8−43156号公報に記載の従来
技術では、ケーシング管路側に設けたテーパ壁面と弁と
の間で絞り部を形成する構成であるので、テーパ壁面の
形状を適切に形成できれば流量と変位の関係を線形にで
きる。しかし、ケーシング管路内にテーパ面加工するの
は難しく手間がかかる。
In the prior art described in Japanese Patent Application Laid-Open No. 8-43156, a throttle portion is formed between the tapered wall surface provided on the casing pipe side and the valve. Therefore, if the shape of the tapered wall surface can be appropriately formed. The relationship between flow rate and displacement can be made linear. However, it is difficult and troublesome to form a tapered surface in the casing pipe.

【0011】特許第2693792号公報及び特公平6
2−25881号公報に記載の従来技術も流路側に湾曲
形状或いはテーパ面を加工するので、特開平8−431
56号公報と同様の問題がある。
[0011] Japanese Patent No. 2693792 and Japanese Patent Publication No.
The conventional technique described in Japanese Patent Application Laid-Open No. 2-25881 also processes a curved shape or a tapered surface on the flow path side.
There is a problem similar to that of the '56 publication.

【0012】本発明の目的は、構成が比較的簡単で加工
が容易であり、精度良く流量を検出することができるポ
ペット弁形流量計測装置を提供するである。
An object of the present invention is to provide a poppet valve type flow rate measuring device which has a relatively simple structure, is easy to process, and can detect a flow rate with high accuracy.

【0013】[0013]

【課題を解決するための手段】(1)上記目的を達成す
るために、本発明は、本体ケーシング内に形成された流
入ポート及び流出ポートと、前記本体ケーシング内に前
記流入ポートと同軸に、前記流入ポートと流出ポート間
に設けられた弁座に対して接離するよう移動可能に嵌挿
され、前記流入ポートと流出ポート間を連通、遮断する
ポペット弁と、このポペット弁の前記流入ポートと反対
側に設けられ、ポペット弁を閉弁方向に付勢するばね
と、前記ポペット弁の前記ばねと同じ側に設けられ、前
記流出ポートの圧油の圧力によりポペット弁を閉弁方向
に付勢する受圧部と、前記ポペット弁の前記流入ポート
側に設けられ、前記弁座に対して接離する弁体部分から
前記流入ポートの上流側へと突出し、前記流入ポートの
圧油の圧力により前記ポペット弁を開弁方向に付勢する
受圧部としても機能する凸状の絞り部とを備え、前記凸
状の絞り部は、前記ポペット弁が開弁するとき前記弁座
との間に、前記ポペット弁の変位量が増加するに従い開
口面積を増大させる環状通路を形成する外面形状を有
し、前記ポペット弁の変位量あるいは絞り部により生じ
る流入ポートと流出ポート間の圧力差により前記ポペッ
ト弁の通過流量を計測するものとする。
(1) In order to achieve the above object, the present invention provides an inflow port and an outflow port formed in a main body casing, and coaxially with the inflow port in the main body casing. A poppet valve that is movably inserted so as to be in contact with and separate from a valve seat provided between the inflow port and the outflow port, and communicates and shuts off the inflow port and the outflow port; and the inflow port of the poppet valve A spring provided on the opposite side of the poppet valve to bias the poppet valve in the valve closing direction; and a spring provided on the same side of the poppet valve as the spring, and biasing the poppet valve in the valve closing direction by the pressure of the pressure oil at the outflow port. A pressure receiving portion, which is provided on the inflow port side of the poppet valve, protrudes from a valve body portion that comes into contact with and separates from the valve seat to an upstream side of the inflow port, and is provided by pressure of pressure oil of the inflow port. Previous A convex throttle portion that also functions as a pressure receiving portion that urges the poppet valve in the valve opening direction, wherein the convex throttle portion is located between the valve seat and the valve seat when the poppet valve opens. It has an outer surface shape that forms an annular passage that increases the opening area as the amount of displacement of the poppet valve increases, and the amount of displacement of the poppet valve or the pressure difference between the inflow port and the outflow port caused by the restricting portion causes the poppet valve to move. The flow rate shall be measured.

【0014】このようにポペット弁に関して流入ポート
と流出ポート側のそれぞれに受圧部を設け、ポペット弁
をそれぞれの圧油の圧力で開弁方向及び閉弁方向に付勢
すると共に、ポペット弁に開弁方向作用の受圧部を兼ね
る凸状の絞り部を設け、この凸状の絞り部の外面形状に
よりポペット弁の変位量に応じて弁座との間の開口面積
を変化させる構成とすることにより、加工部位はポペッ
ト弁側となるため、構成が比較的簡単で加工が容易とな
る。また、凸状の絞り部の外面形状を適切に加工するこ
とで流量に応じた出力(弁変位あるいは圧力差)特性が
安定的な概略線形関係となり、精度良く流量を検出する
ことができる。
As described above, the pressure receiving portions are provided on the inflow port and the outflow port side with respect to the poppet valve, and the poppet valve is urged in the valve opening direction and the valve closing direction by the pressure of the respective pressure oils. By providing a convex restricting portion that also serves as a pressure receiving portion acting in the valve direction, by changing the opening area between the valve seat according to the displacement amount of the poppet valve by the outer surface shape of the convex restricting portion. Since the processing portion is on the poppet valve side, the configuration is relatively simple and the processing is easy. Further, by appropriately processing the outer shape of the convex throttle portion, the output (valve displacement or pressure difference) characteristic according to the flow rate has a stable approximate linear relationship, and the flow rate can be detected with high accuracy.

【0015】(2)また、上記(1)において、好まし
くは、前記凸状の絞り部の外面形状は、前記ポペット弁
の弁体部分の中心軸と同心で前記絞り部の先端に向かっ
て漸次鋭角となる複数のテーパ状の円錐斜面で連接形成
されている。
(2) In the above (1), preferably, the outer shape of the convex throttle portion is gradually concentric with the center axis of the valve body portion of the poppet valve toward the tip of the throttle portion. It is connected and formed by a plurality of tapered conical slopes having acute angles.

【0016】これにより絞り部の外面形状の加工が更に
容易となる。
This further facilitates the processing of the outer shape of the drawn portion.

【0017】(3)上記(1)又は(2)において、好
ましくは、前記ポペット弁の弁体部分より下流側の位置
で前記ポペット弁に同軸に設けられた円形状のつば部を
更に備える。
(3) In the above (1) or (2), preferably, further provided is a circular flange provided coaxially with the poppet valve at a position downstream of the valve body of the poppet valve.

【0018】これにより絞り部を通過した流体がつば部
に当たって開弁方向の力を生じるので、当該流体の絞り
部通過時に生じる軸方向の閉弁方向の力(流体力)が補
償され、流量特性の線形性を安定的に得ることができ、
更に精度良く流量を検出することができる。
As a result, the fluid that has passed through the throttle portion hits the collar portion to generate a force in the valve opening direction, so that the force (fluid force) in the valve closing direction in the axial direction generated when the fluid passes through the throttle portion is compensated, and the flow rate characteristic Stably obtain the linearity of
Further, the flow rate can be detected with higher accuracy.

【0019】(4)また、上記(1)又は(2)におい
て、好ましくは、前記凸状の絞り部の外面形状は、前記
環状通路の開口面積が、概略、前記ポペット弁の変位量
の1/2乗の関数となるように形成されている。
(4) In the above (1) or (2), preferably, the outer shape of the convex constricted portion is such that the opening area of the annular passage is approximately 1% of the displacement of the poppet valve. / Square function.

【0020】これによりポペット弁の通過流量に対する
ポペット弁の変位量あるいは絞り部による生じる流入ポ
ートと流出ポート間の圧力差の流量検出特性が概略線形
関係となる。
As a result, the flow rate detection characteristic of the displacement amount of the poppet valve with respect to the flow rate of the poppet valve or the pressure difference between the inflow port and the outflow port caused by the restrictor has a substantially linear relationship.

【0021】(5)更に、上記(1)又は(2)におい
て、好ましくは、前記絞り部の外面形状は、前記ポペッ
ト弁の通過流量に対するポペット弁の変位量あるいは前
記絞り部による生じる流入ポートと流出ポート間の圧力
差の流量検出特性が概略線形関係となるように形成され
ている。
(5) Further, in the above (1) or (2), preferably, the outer shape of the throttle portion is such that a displacement amount of the poppet valve with respect to a flow rate of the poppet valve or an inflow port generated by the throttle portion. The flow rate detection characteristic of the pressure difference between the outlet ports is formed so as to have a substantially linear relationship.

【0022】これにより流量に応じた出力(弁変位ある
いは圧力差)特性が安定的な概略線形関係となり、精度
良く流量を検出することができる。
As a result, the output (valve displacement or pressure difference) characteristic according to the flow rate has a stable approximate linear relationship, and the flow rate can be detected accurately.

【0023】[0023]

【発明の実施の形態】以下、本発明の実施の形態を図面
を用いて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0024】図1は、本発明の第1の実施の形態による
ポペット弁形流量計測装置の断面図である。
FIG. 1 is a sectional view of a poppet valve type flow rate measuring device according to a first embodiment of the present invention.

【0025】図1において、本実施の形態の流量計測装
置は、ケーシング本体1と、このケーシング本体1内に
配置されたポペット弁10と、ケーシング本体1にフラ
ンジ5を介してポペット弁10と同軸に固定設置され、
ポペット弁10の変位を検出する変位センサ30とを備
えている。ケーシング1内には流入ポート2と流出ポー
ト3を有する主流体通路が設けられ、流出ポート3は流
入ポート2に対して直角をなす通路部分3aと、流入ポ
ート2が開口し通路部分3aに接続される環状ポート部
分3bを有し、環状ポート部分3bに対する流入ポート
2の開口部に弁座4が形成されている。流入ポート2の
環状ポート部分3bを挟んだ反対側には、流入ポート2
と同軸に、環状ポート部分3bに開口するシリンダ孔1
aが設けられ、このシリンダ孔1aにポペット弁10の
シリンダ部16が摺動自在に嵌挿され、このシリンダ部
16の摺動移動によりポペット弁10が弁座4に対して
接離するよう変位移動し、流入ポート2と流出ポート3
間を連通、遮断する。
Referring to FIG. 1, a flow rate measuring apparatus according to the present embodiment includes a casing main body 1, a poppet valve 10 disposed in the casing main body 1, and a coaxial with the poppet valve 10 via a flange 5 on the casing main body 1. Fixedly installed in
A displacement sensor 30 for detecting the displacement of the poppet valve 10. A main fluid passage having an inflow port 2 and an outflow port 3 is provided in the casing 1, and the outflow port 3 is connected to a passage portion 3a perpendicular to the inflow port 2 and the inflow port 2 is opened and connected to the passage portion 3a. The valve seat 4 is formed in the opening of the inflow port 2 with respect to the annular port portion 3b. On the opposite side of the inflow port 2 across the annular port portion 3b, the inflow port 2
Cylinder hole 1 opening in annular port portion 3b coaxially with
The cylinder portion 16 of the poppet valve 10 is slidably fitted into the cylinder hole 1a, and the cylinder portion 16 is displaced so that the poppet valve 10 comes into contact with or separates from the valve seat 4 by sliding movement. Move to inflow port 2 and outflow port 3
Communication and shut-off between them.

【0026】図2にポペット弁部分の拡大図を示す。FIG. 2 is an enlarged view of a poppet valve portion.

【0027】ポペット弁10は上記のシリンダ部16と
同軸で一体をなしており、かつ弁座4に対して接離する
弁体部分10aと、この弁体部分10aと同軸で一体の
凸状の絞り部12と、弁体部分10aより下流側の環状
ポート部分3b内で弁体部分10aと同軸で一体に、ポ
ペット弁12の軸線に対し直角方向に突出するよう形成
された円形状のつば部13とを備えている。絞り部12
は弁体部分10aから流入ポート2の上流側へと突出す
る先細の外面形状を有している。
The poppet valve 10 is coaxial with and integral with the above-mentioned cylinder portion 16, and has a valve body portion 10a which comes into contact with and separates from the valve seat 4, and a convex shape which is coaxial and integral with the valve body portion 10a. A constriction portion 12 and a circular collar portion formed coaxially and integrally with the valve body portion 10a in an annular port portion 3b downstream of the valve body portion 10a so as to protrude in a direction perpendicular to the axis of the poppet valve 12. 13 is provided. Aperture unit 12
Has a tapered outer surface shape protruding from the valve body portion 10a to the upstream side of the inflow port 2.

【0028】シリンダ孔1aは環状ポート部分3bと反
対側で、シリンダ孔1aと同軸に形成されたフランジ5
の取り付け孔18に開口している。フランジ5は位置決
め突起5aを有し、この位置決め突起5aが孔18に挿
入され、ケーシング本体1にボルト止めされている。
The cylinder hole 1a is opposite to the annular port portion 3b, and has a flange 5 formed coaxially with the cylinder hole 1a.
In the mounting hole 18. The flange 5 has a positioning projection 5a, which is inserted into the hole 18 and is bolted to the casing body 1.

【0029】シリンダ部16内には絞り部12と反対側
の端面14で開口する孔16aが形成され、この孔16
aと孔18内にポペット弁10を閉弁方向に付勢するば
ね11とポペット弁10と共に変位する心棒20が配置
されている。心棒20は基部20aと軸部20bを有
し、心棒20の基部20a側はシリンダ部16の孔16
a内に位置し、ばね11の一端で孔16aの底部に押し
付けられ、心棒20の軸部20bは孔16aから孔18
内へと突出し、その端部に変位センサ30のセンシング
棒31がネジ止めされている。ばね11の他端はフラン
ジ5の位置決め突起5aの端面に支持されている。
A hole 16a is formed in the cylinder portion 16 at the end face 14 opposite to the throttle portion 12.
A spring 11 for urging the poppet valve 10 in the valve closing direction and a mandrel 20 displaced together with the poppet valve 10 are arranged in the hole 18. The mandrel 20 has a base portion 20a and a shaft portion 20b.
a, and one end of the spring 11 is pressed against the bottom of the hole 16a, and the shaft 20b of the mandrel 20 is moved from the hole 16a to the hole 18a.
A sensing rod 31 of the displacement sensor 30 is screwed to an end thereof. The other end of the spring 11 is supported on the end surface of the positioning projection 5a of the flange 5.

【0030】また、孔16aと、孔18のシリンダ部1
6の端面14と位置決め突起5aの端面間とで背圧室6
が形成され、背圧室6はポペット弁10に設けられた径
方向の小孔15a及び軸方向の小孔15bと心棒20の
基部20aに設けられた凹所20c,20d(後述)を
介して環状ポート部分3bと連通し、背圧室6に流出ポ
ート3の圧油が導かれ、シリンダ部16の端面14はそ
の圧力によりポペット弁10を閉弁方向(図示左方)に
付勢する受圧部として機能している。一方、ポペット弁
10の絞り部12は、流入ポート2を流れる圧油の圧力
が作用しポペット弁10を開弁方向に付勢する受圧部と
して機能する。
The hole 16a and the cylinder portion 1 of the hole 18
6 between the end face 14 and the end face of the positioning protrusion 5a.
The back pressure chamber 6 is formed through a small hole 15a and a small hole 15b in the axial direction provided in the poppet valve 10 and concave portions 20c and 20d (described later) provided in the base 20a of the mandrel 20. The pressure oil of the outflow port 3 is guided to the back pressure chamber 6 by communicating with the annular port portion 3b, and the end face 14 of the cylinder portion 16 receives the pressure to urge the poppet valve 10 in the valve closing direction (leftward in the drawing) by the pressure. Functioning as a unit. On the other hand, the throttle portion 12 of the poppet valve 10 functions as a pressure receiving portion that receives the pressure of the pressure oil flowing through the inflow port 2 and urges the poppet valve 10 in the valve opening direction.

【0031】心棒20の詳細を図3に示す。心棒20
は、基部20aと軸部20bとを有し、基部20aの端
面には凹所20cが形成され、基部20aの周面には複
数(図示の例では4個)の凹所20dが形成され、基部
20aの端面が孔16aの底部に押し付けられた状態で
小孔15が凹所20c,20dを介して背圧室6に連通
するようになっている。軸部20bには変位センサ30
のセンシング棒31をネジ止めするためのネジ孔20e
が形成されている。
The details of the mandrel 20 are shown in FIG. Mandrel 20
Has a base 20a and a shaft 20b, a recess 20c is formed on an end surface of the base 20a, and a plurality (four in the illustrated example) of recesses 20d are formed on a peripheral surface of the base 20a. The small hole 15 communicates with the back pressure chamber 6 via the recesses 20c and 20d in a state where the end face of the base 20a is pressed against the bottom of the hole 16a. A displacement sensor 30 is provided on the shaft portion 20b.
Screw hole 20e for screwing the sensing rod 31
Are formed.

【0032】図2に戻り、ポペット弁10の絞り部12
は、ポペット弁10が開弁するときに弁体部分10aと
弁座3との間に形成される環状通路の開口面積が、概
略、ポペット弁10の変位量の1/2乗の関数となる外
面形状を有し、これによりポペット弁10の通過流量に
対するポペット弁10の変位量あるいは絞り部12によ
る生じる流入ポート2及び流入ポート3間の圧力差の流
量検出特性が概略線形関係となるように構成されてい
る。
Returning to FIG. 2, the throttle portion 12 of the poppet valve 10 will be described.
The opening area of the annular passage formed between the valve element portion 10a and the valve seat 3 when the poppet valve 10 opens is approximately a function of the displacement of the poppet valve 10 to the half power. It has an outer surface shape, so that the flow rate detection characteristic of the displacement amount of the poppet valve 10 with respect to the flow rate of the poppet valve 10 or the pressure difference between the inflow port 2 and the inflow port 3 generated by the throttle portion 12 has a substantially linear relationship. It is configured.

【0033】また、絞り部12の上記の外面形状は、ポ
ペット弁10の弁体部分10aの中心軸と同心で絞り部
12の先端に向かって漸次鋭角となる複数のテーパ状の
円錐斜面で連接形成されている。
The above-mentioned outer surface shape of the throttle portion 12 is connected by a plurality of tapered conical slopes which are concentric with the central axis of the valve body portion 10a of the poppet valve 10 and gradually become acute angles toward the tip of the throttle portion 12. Is formed.

【0034】ポペット弁10の絞り部12の外面形状の
決め方及びポペット弁10の流量検出特性について図4
〜図6を用いて説明する。
FIG. 4 shows how to determine the outer shape of the throttle portion 12 of the poppet valve 10 and the flow rate detection characteristics of the poppet valve 10.
This will be described with reference to FIG.

【0035】ポペット弁10の静的釣り合いは、 αΔP=k(x+x0)+Ff (1) ここで、ΔP:ポペット弁絞り部12の前後差圧 x:ポペット弁絞り部12のストローク(弁変位) x0:ばね11のプリセット長 α:ポペット弁10の受圧部の面積(受圧面積) k:ばね定数 Ff:定常流体力(=ρQvcosφ) φ:噴流角 v:流速 ρ:油の密度 ポペット弁絞り部12の通過流量Qは、 Q=cA(x)√(2ΔP/ρ) (2) ここで、A(x):ポペット弁絞り部12の開口面積c:
流量係数(1),(2)式より、定常流体力Ffを無視
すると、 Q=c√(2/ρ)√(k/α)A(x)√(x)√(1+x0/x) =KqA(x)√(x)√(1+x0/x) (3) ただし、Kq:定数(=c√(2/ρ)・√(k/
α)) よって、流量とポペット弁10の変位とに、 Q=Kq・α・x (4) の比例関係を与えると、ポペット弁絞り部12の開口面
積A(x)は、ばね11のプリセット力項及び流体力項を
無視した場合、弁変位xの1/2乗(ルート)関数とな
る次式(5)で表される通りとなる。
The static balance of the poppet valve 10 is αΔP = k (x + x 0 ) + F f (1) where ΔP: differential pressure across the poppet valve restrictor 12 x: stroke of the poppet valve restrictor 12 (valve displacement) ) X 0 : preset length of spring 11 α: area of pressure receiving portion of poppet valve 10 (pressure receiving area) k: spring constant F f : steady fluid force (= ρQvcosφ) φ: jet angle v: flow velocity ρ: oil density poppet Q = cA (x) 絞 り (2ΔP / ρ) (2) where A (x): opening area c of poppet valve restrictor 12:
From the flow coefficient equations (1) and (2), ignoring the steady-state fluid force F f , Q = c√ (2 / ρ) √ (k / α) A (x) √ (x) √ (1 + x 0 / x ) = K q A (x) √ (x) √ (1 + x 0 / x) (3) where K q : constant (= c√ (2 / ρ) · √ (k /
α)) Therefore, when the proportional relationship of Q = K q · α · x (4) is given to the flow rate and the displacement of the poppet valve 10, the opening area A (x) of the poppet valve throttle unit 12 becomes When the preset force term and the fluid force term are neglected, the equation is expressed by the following equation (5), which is a function of the square (root) of the valve displacement x.

【0036】 A(x) =α√(x)/√(1+x0/x) ≒α√x=πdξ√x (5) ただし、x≫x0 α:比例定数(=πdξ) d:ポペット弁絞り部12の弁座直径 ξ:開口面積係数 本実施の形態では、このように弁変位の1/2乗(ルー
ト)関数として与えられる開口面積を基本開口面積と
し、これを実際のポペット弁10の絞り部12の形状で
得るため、ポペット弁10の絞り部12の外面形状を、
弁座4に触座する位置に対し上流側となる先端方向に向
かって、弁中心軸と同心で漸次鋭角となる複数のテーパ
状の円錐斜面で連接形成される形状とし、このテーパ状
円錐面のテーパ角度による開口面積と(5)式を関連づ
けるものである。
A (x) = α√ (x) / √ (1 + x 0 / x) ≒ α√x = πdξ√x (5) where x≫x 0 α: proportionality constant (= πdξ) d: poppet valve In the present embodiment, the opening area given as a function of the square of the valve displacement (root) is defined as the basic opening area, and this is used as the actual poppet valve 10 in the present embodiment. In order to obtain the shape of the throttle portion 12, the outer shape of the throttle portion 12 of the poppet valve 10 is
The tapered conical surface is formed in such a manner that the tapered conical surface is formed by a plurality of tapered conical slopes that are concentric with the valve center axis and have an acute angle gradually toward the distal end on the upstream side with respect to the position where the valve seat 4 is touched. Is related to the opening area based on the taper angle of Equation (5).

【0037】すなわち、テーパ状円錐面のテーパ角度と
はポペット弁10の中心軸となす角度であり、これを図
4に示すように半頂角θとすると、弁座4のエッジ部と
ポペット弁10の半頂角θのテーパ面とからなる絞りの
開口面積は、 A(x) =πdsinθ・x(1−(x/d)sinθcosθ) ≒πdsinθ・x (6) であり、この(6)式と(5)式で示される基本開口面
積とが等しいことから、ポペット弁半頂角θは、ばねプ
リセット力を無視した場合、次式で与えられる。 θ=sin-1(ξ/√(x+x0)) ≒sin-1(ξ/√x) (7) これにより、弁変位xに対する半頂角θが定まり、これ
に基づき、テーパ状円錐面が形成可能となり、流量に対
して弁変位が比例関係を得ることができる。
That is, the taper angle of the tapered conical surface is an angle formed with the center axis of the poppet valve 10, and when this is set to a half apex angle θ as shown in FIG. 4, the edge portion of the valve seat 4 and the poppet valve The aperture area of the stop formed by a tapered surface having a half-vertical angle θ of 10 is A (x) = πdsinθ · x (1− (x / d) sinθcosθ) ≒ πdsinθ · x (6) Since the basic opening area represented by the equation (5) is equal to the basic opening area, the poppet valve half apex angle θ is given by the following equation when the spring preset force is ignored. θ = sin -1 (ξ / √ (x + x 0 )) ≒ sin -1 (ξ / √x) (7) Thereby, the half vertex angle θ with respect to the valve displacement x is determined, and based on this, the tapered conical surface becomes It can be formed, and the valve displacement can be proportional to the flow rate.

【0038】そして、このような弁変位xに対する半頂
角θを異なる複数の弁変位xで計算し、それぞれの弁変
位で求めた半頂角θのテーパ状円錐面を連接して絞り部
12の外面形状とすることにより、それぞれの弁変位x
で流量に対して弁変位が比例関係(線形関係)を得るこ
とができる。
Then, the half vertex angle θ with respect to the valve displacement x is calculated by a plurality of different valve displacements x, and the tapered conical surface of the half vertex angle θ obtained by each of the valve displacements is connected to form the narrowed portion 12. , Each valve displacement x
Thus, a proportional relationship (linear relationship) between the valve displacement and the flow rate can be obtained.

【0039】この場合、流量と弁変位の線形関係の精度
を上げるためには弁変位xの全範囲で(7)式の第1
式、つまりθ=sin-1(ξ/√(x+x0))でテーパ状
円錐面の半頂角θを計算し、決定するのが好ましい。し
かし、特に上記のx≫x0の関係が成り立ち難いのは弁
変位xが小さい領域であるので、弁変位xが小さい領域
では(7)式の第1式でテーパ状円錐面の半頂角θを計
算し、x≫x0の関係が顕著となる弁変位xが大きい領
域では、(7)式の第2式、つまりθ≒sin-1(ξ/√
x)でテーパ状円錐面の半頂角θを計算してもよい。
In this case, in order to improve the accuracy of the linear relationship between the flow rate and the valve displacement, the first range of the equation (7) must be satisfied over the entire range of the valve displacement x.
It is preferable to calculate and determine the half vertex angle θ of the tapered conical surface using the equation, that is, θ = sin −1 (ξ / √ (x + x 0 )). However, especially in the region where the valve displacement x is small, the relation of x が x 0 hardly holds. Therefore, in the region where the valve displacement x is small, the half apex angle of the tapered conical surface is calculated by the first equation of the equation (7). θ is calculated, and in a region where the valve displacement x is large where the relationship of x≫x 0 is remarkable, the second expression of the expression (7), that is, θ ≒ sin −1 (ξ / √)
The half vertex angle θ of the tapered conical surface may be calculated in x).

【0040】図5に、(7)式の第1式でテーパ状円錐
面の半頂角θを計算し、ポペット弁10の絞り部12の
外面形状を複数のテーパ状の円錐斜面で連接形成した場
合に設定される開口面積の一例を示す。この例は、弁座
径d=0.8(cm)、開口面積係数ξ=0.25(cm
1/2)とした場合で、太線が、ばね11のプリセット
力、すなわちポペット弁10の絞り部12が開放開始す
るクラッキング圧力ΔPo(=kxO/a)がΔPo=
0(kgf/cm2)の場合、また、細線はΔP0=2(kgf/
cm2)の場合である。ΔP0=2(kgf/cm2)を設定した
場合、つまりばね11でプリセット力を与えた場合は、
そのクラッキング圧ΔPoを補償するように開口面積が
減少補正されることが分かる。
In FIG. 5, the half apex angle θ of the tapered conical surface is calculated by the first expression of the expression (7), and the outer surface shape of the throttle portion 12 of the poppet valve 10 is formed by connecting a plurality of tapered conical slopes. An example of the opening area set in the case of the above is shown. In this example, the valve seat diameter d = 0.8 (cm) and the opening area coefficient ξ = 0.25 (cm
1/2 ), the thick line indicates the preset force of the spring 11, that is, the cracking pressure ΔPo (= kx O / a) at which the throttle portion 12 of the poppet valve 10 starts opening is ΔPo =
0 (kgf / cm 2 ), and the thin line is ΔP0 = 2 (kgf / cm 2 ).
cm 2 ). When ΔP0 = 2 (kgf / cm 2 ) is set, that is, when a preset force is applied by the spring 11,
It can be seen that the opening area is reduced and compensated to compensate for the cracking pressure ΔPo.

【0041】図6は、図5の設定での流量特性を示して
いる。この図から、クラッキング圧ΔPoを補償する開
口面積設定により、流量と弁変位とが線形関係となる特
性が得られることが分かる。図6には、クラッキング圧
があっても、開口面積を補正せず基本開口面積のままで
末補償の場合も併記しており、この場合は線形関係は得
られなくなる。また、図6には、図5の設定での差圧特
性も示している。差圧と弁変位はもともと線形関係であ
るため、流量と弁変位とが線形関係となる結果、流量と
差圧も線形関係となる。
FIG. 6 shows the flow rate characteristics in the setting of FIG. From this figure, it can be seen that by setting the opening area to compensate for the cracking pressure ΔPo, a characteristic is obtained in which the flow rate and the valve displacement have a linear relationship. FIG. 6 also shows the case where the opening area is not corrected and the basic opening area is compensated even if there is a cracking pressure. In this case, a linear relationship cannot be obtained. FIG. 6 also shows the differential pressure characteristics in the setting of FIG. Since the differential pressure and the valve displacement are originally in a linear relationship, the flow rate and the valve displacement are in a linear relationship. As a result, the flow rate and the differential pressure are also in a linear relationship.

【0042】以上のように本実施形態によれば、ポペッ
ト弁10の絞り部12の外面形状により流量に応じた出
力(弁変位あるいは圧力差)特性が安定的な概略線形関
係となり、精度良く流量を検出することができる。
As described above, according to the present embodiment, the output (valve displacement or pressure difference) characteristic according to the flow rate has a stable approximate linear relationship due to the outer surface shape of the throttle portion 12 of the poppet valve 10, and the flow rate can be accurately determined. Can be detected.

【0043】また、つば部13が絞り部12に連接形成
される構造により、つば部13への噴流の衝突によって
開弁方向の軸方向の力が生じて、閉弁方向の定常流体力
を補償するよう働くので、これによっても流量特性の線
形性を安定的に得ることができる。
Further, the structure in which the collar portion 13 is connected to the throttle portion 12 generates an axial force in the valve opening direction due to the collision of the jet flow with the collar portion 13, thereby compensating the steady fluid force in the valve closing direction. Therefore, the linearity of the flow characteristic can be stably obtained.

【0044】また、流量と弁変位の線形関係を得るのに
ポペット弁10に凸状の絞り部12を設けるだけの構成
なので、構成が簡単で加工が容易であり、特に、絞り部
12の外面形状を複数のテーパ状円錐面を連接形成した
形状としたので、加工が容易となる。
Further, since the poppet valve 10 is simply provided with the convex throttle portion 12 in order to obtain a linear relationship between the flow rate and the valve displacement, the structure is simple and processing is easy. Since the shape is a shape formed by connecting a plurality of tapered conical surfaces, processing becomes easy.

【0045】また、ポペット弁10の心棒20を変位セ
ンサ30のセンシング心棒31に連結し、ポペット弁体
10の変位移動とともに心棒20を介してセンシング心
棒31が変位するので、変位センサ30による流量相当
の変位計測が可能となる。
The mandrel 20 of the poppet valve 10 is connected to the sensing mandrel 31 of the displacement sensor 30, and the sensing mandrel 31 is displaced via the mandrel 20 with the displacement movement of the poppet valve element 10. Can be measured.

【0046】本発明の他の実施の形態を図7により説明
する。本実施の形態は流量に対する出力として差圧を検
出するものである。図中、図1に示す部分と同等のもの
には同じ符号を付している。
Another embodiment of the present invention will be described with reference to FIG. In the present embodiment, a differential pressure is detected as an output for a flow rate. In the figure, components equivalent to those shown in FIG. 1 are denoted by the same reference numerals.

【0047】本実施の形態では、図1の変位センサ30
と心棒30をはずし、プラグ32が装着される。差圧計
測のための差圧センサ40がブロック50に装備され、
ブロック50はケーシング本体1と接合されるととも
に、ケーシング本体1に通路7,8を形成し、ブロック
50に通路51,52を形成し、通路51、通路7を介
して流入ポート2の圧力が導入検出され、通路52、通
路8を介して流出ポート3の圧力が導入検出される。
In this embodiment, the displacement sensor 30 shown in FIG.
The mandrel 30 is removed, and the plug 32 is mounted. A differential pressure sensor 40 for measuring a differential pressure is provided in the block 50,
The block 50 is joined to the casing body 1, and the passages 7 and 8 are formed in the casing body 1, the passages 51 and 52 are formed in the block 50, and the pressure of the inflow port 2 is introduced through the passages 51 and 7. Then, the pressure of the outflow port 3 is detected through the passage 52 and the passage 8.

【0048】図6で説明したように流量と差圧も線形関
係にあるため、本実施の形態によっても、ポペット弁1
0の絞り部12により生じた流量相当の圧力差を差圧セ
ンサ40により計測し、精度良く流量を検出することが
できる。
As described with reference to FIG. 6, the flow rate and the differential pressure are also in a linear relationship.
The pressure difference corresponding to the flow rate generated by the zero throttle unit 12 is measured by the differential pressure sensor 40, and the flow rate can be detected with high accuracy.

【0049】次に、本発明のポペット弁型流量計測装置
の適用例を図8を用いて説明する。 (a)ブリードオフ流量計測装置 ポンプ傾転制御に係る流量計測として用いる例である。
例えば、オープンセンタ形コントロールバルブ60,6
1を備えた油圧システムにおいて、コントロールバルブ
60,61のセンタバイパス絞りの最下流に本発明のポ
ペット弁型流量計測装置Aを配置し、油圧ポンプ62の
吐出流量の余剰流量を計測する。この余剰流量に対応し
てコントローラ63、電磁比例減圧弁64によりポンプ
傾転量制御を行う。 (b)ポンプ吐出流量計測装置 油圧ポンプ62の吐出路に本発明のポペット弁型流量計
測装置Bを配置し、実吐出流量の計測装置として用い
る。これにより、ポンプ運転状況把握や故障診断などを
行う。例えば、ポンプ可変流量制御、馬力制御などによ
り指示される傾転量による流量と、実際の吐出流量との
比較によりポンプの実運転状況が把握できる。 (c)メータイン流量計測装置 コントロールバルブ60,61の入力ラインに本発明の
ポペット弁型流量計測装置C1,C2を配置し、バルブ
絞り部の通過流量計測の一つであるメータイン流量の計
測装置として用いる。これにより、アクチュエータ6
5,66の速度制御などを行う。例えば、レバー指令に
応じたアクチュエータ速度(相当のメータイン流量)
と、実際のメータイン流量との比較によりアクチュエー
タの駆動制御を行う。
Next, an application example of the poppet valve type flow rate measuring device of the present invention will be described with reference to FIG. (A) Bleed-off flow rate measuring device This is an example used as flow rate measurement related to pump tilt control.
For example, open center type control valves 60, 6
1, the poppet valve type flow rate measuring device A of the present invention is disposed at the most downstream of the center bypass throttle of the control valves 60 and 61, and measures the surplus flow rate of the discharge flow rate of the hydraulic pump 62. In accordance with the surplus flow rate, the controller 63 and the electromagnetic proportional pressure reducing valve 64 control the amount of pump tilt. (B) Pump discharge flow rate measuring apparatus The poppet valve type flow rate measuring apparatus B of the present invention is disposed in the discharge path of the hydraulic pump 62, and is used as a measuring apparatus of the actual discharge flow rate. Thereby, the pump operation status is grasped and a failure diagnosis is performed. For example, the actual operation state of the pump can be grasped by comparing the flow rate based on the amount of tilt indicated by the pump variable flow rate control, the horsepower control, and the like with the actual discharge flow rate. (C) Meter-in flow rate measuring device The poppet valve type flow measuring devices C1 and C2 of the present invention are arranged on the input lines of the control valves 60 and 61, and are used as a meter-in flow rate measuring device which is one of the flow rate measurement of the valve restrictor. Used. Thereby, the actuator 6
5, 66 speed control and the like are performed. For example, actuator speed according to lever command (equivalent meter-in flow rate)
Is compared with the actual meter-in flow rate to drive the actuator.

【0050】[0050]

【発明の効果】本発明によれば、ポペット弁に設けた凸
状の絞り部により変位量に応じて開口面積を変え、流量
を計測するので、凸状の絞り部の外面形状を適切に加工
することで流量に応じた出力(弁変位あるいは圧力差)
特性が安定的な概略線形関係となり、精度良く流量を検
出することができる。また、加工部位はポペット弁側と
なるため、構成が比較的簡単で加工が容易となる。
According to the present invention, since the opening area is changed according to the amount of displacement and the flow rate is measured by the convex throttle provided in the poppet valve, the outer shape of the convex throttle is appropriately processed. Output (valve displacement or pressure difference) according to the flow rate
The characteristics have a stable approximate linear relationship, and the flow rate can be accurately detected. Further, since the processing portion is on the poppet valve side, the configuration is relatively simple and the processing is easy.

【0051】また、本発明によれば、凸状の絞り部の外
面形状を複数のテーパ状の円錐斜面で連接形成するの
で、絞り部の外面形状の加工が更に容易となる。
Further, according to the present invention, since the outer shape of the convex constricted portion is continuously formed by a plurality of tapered conical slopes, the processing of the outer shape of the constricted portion is further facilitated.

【0052】また、本発明によれば、ポペット弁に円形
状のつば部を設け、絞り部を通過した流体がつば部に当
たって開弁方向の力を生じるので、当該流体の絞り部通
過時に生じる軸方向の閉弁方向の力(流体力)が補償さ
れ、流量特性の線形性を安定的に得ることができ、更に
精度良く流量を検出することができる。
According to the present invention, since the poppet valve is provided with the circular flange and the fluid passing through the throttle hits the flange to generate a force in the valve opening direction, the shaft generated when the fluid passes through the throttle is generated. The force (fluid force) in the valve closing direction is compensated, the linearity of the flow characteristic can be stably obtained, and the flow can be detected with higher accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態によるポペット弁形
流量計測装置(変位計測式)を示す図である。
FIG. 1 is a diagram showing a poppet valve type flow measurement device (displacement measurement type) according to a first embodiment of the present invention.

【図2】図1に示すポペット弁形流量計測装置の要部の
拡大して示す図である。
FIG. 2 is an enlarged view of a main part of the poppet valve type flow rate measuring device shown in FIG.

【図3】図1に示した心棒の詳細を示す図であり、
(a)は正面図、(b)は側面図、(c)は斜視図であ
る。
FIG. 3 is a view showing details of the mandrel shown in FIG. 1;
(A) is a front view, (b) is a side view, and (c) is a perspective view.

【図4】テーパ状円錐面のテーパ角度である半頂角θと
弁変位と開口面積との関係を説明する図である。
FIG. 4 is a diagram illustrating the relationship between the half-vertical angle θ, which is the taper angle of the tapered conical surface, the valve displacement, and the opening area.

【図5】図1に示したポペット弁の絞り部により設定さ
れる開口面積の一例を示す図である。
FIG. 5 is a diagram illustrating an example of an opening area set by a throttle section of the poppet valve illustrated in FIG. 1;

【図6】図5に示した開口面積の設定例で得られる流量
特性の一例を示す図である。
FIG. 6 is a diagram illustrating an example of a flow rate characteristic obtained in the setting example of the opening area illustrated in FIG. 5;

【図7】本発明の第2の実施の形態によるポペット弁形
流量計測装置(差圧計測式)を示す図である。
FIG. 7 is a view showing a poppet valve type flow rate measuring device (differential pressure measuring type) according to a second embodiment of the present invention.

【図8】本発明で得られるポペット弁形流量計測装置の
適用例を示す図である。
FIG. 8 is a diagram showing an application example of a poppet valve type flow rate measuring device obtained by the present invention.

【符号の説明】[Explanation of symbols]

1 ケーシング 1a シリンダ孔 2 流入ポート 3 流出ポート 4 弁座 5 フランジ 6 背圧室 7 通路 8 通路 10 ポペット弁 11 ばね 12 絞り部 13 つば 14 端部 15a,15b 小孔 16 シリンダ部 20 心棒 30 変位センサ 31 変位センサ心棒 32 プラグ 40 差圧センサ 50 ブロック 51 通路 52 通路 DESCRIPTION OF SYMBOLS 1 Casing 1a Cylinder hole 2 Inflow port 3 Outflow port 4 Valve seat 5 Flange 6 Back pressure chamber 7 Passage 8 Passage 10 Poppet valve 11 Spring 12 Restricted part 13 Collar 14 End part 15a, 15b Small hole 16 Cylinder part 20 Mandrel 30 Displacement sensor 31 Displacement sensor mandrel 32 Plug 40 Differential pressure sensor 50 Block 51 Passage 52 Passage

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】本体ケーシング内に形成された流入ポート
及び流出ポートと、 前記本体ケーシング内に前記流入ポートと同軸に、前記
流入ポートと流出ポート間に設けられた弁座に対して接
離するよう移動可能に嵌挿され、前記流入ポートと流出
ポート間を連通、遮断するポペット弁と、 このポペット弁の前記流入ポートと反対側に設けられ、
ポペット弁を閉弁方向に付勢するばねと、 前記ポペット弁の前記ばねと同じ側に設けられ、前記流
出ポートの圧油の圧力によりポペット弁を閉弁方向に付
勢する受圧部と、 前記ポペット弁の前記流入ポート側に設けられ、前記弁
座に対して接離する弁体部分から前記流入ポートの上流
側へと突出し、前記流入ポートの圧油の圧力により前記
ポペット弁を開弁方向に付勢する受圧部としても機能す
る凸状の絞り部とを備え、 前記凸状の絞り部は、前記ポペット弁が開弁するとき前
記弁座との間に、前記ポペット弁の変位量が増加するに
従い開口面積を増大させる環状通路を形成する外面形状
を有し、前記ポペット弁の変位量あるいは絞り部により
生じる流入ポートと流出ポート間の圧力差により前記ポ
ペット弁の通過流量を計測することを特徴とするポペッ
ト弁形流量計測装置。
1. An inflow port and an outflow port formed in a main body casing, and a valve seat provided between the inflow port and the outflow port coaxially with the inflow port in the main body casing. A poppet valve which is movably inserted and communicates and shuts off between the inflow port and the outflow port, and is provided on a side of the poppet valve opposite to the inflow port,
A spring for urging the poppet valve in the valve closing direction; a pressure receiving unit provided on the same side of the poppet valve as the spring, for urging the poppet valve in the valve closing direction by the pressure of the pressure oil at the outflow port; The poppet valve is provided on the inflow port side of the poppet valve, protrudes from the valve body portion that comes into contact with and separates from the valve seat to the upstream side of the inflow port, and opens the poppet valve in the valve opening direction by the pressure of the pressure oil in the inflow port. A convex throttle portion that also functions as a pressure receiving portion that urges the valve, the convex throttle portion has a displacement amount of the poppet valve between the poppet valve and the valve seat when the poppet valve opens. Measuring an amount of displacement of the poppet valve or a flow rate of the poppet valve based on a displacement amount of the poppet valve or a pressure difference between an inflow port and an outflow port caused by a throttle portion, the outer shape defining an annular passage that increases an opening area as the number increases. Especially Poppet and Bengata flow rate measuring device.
【請求項2】請求項1記載のポペット弁形流量計測装置
において、前記凸状の絞り部の外面形状は、前記ポペッ
ト弁の弁体部分の中心軸と同心で前記絞り部の先端に向
かって漸次鋭角となる複数のテーパ状の円錐斜面で連接
形成されていることを特徴とするポペット弁形流量計測
装置。
2. The poppet valve type flow rate measuring device according to claim 1, wherein an outer surface shape of said convex throttle portion is concentric with a center axis of a valve body portion of said poppet valve toward a tip of said throttle portion. A poppet valve type flow rate measuring device, which is formed continuously by a plurality of tapered conical slopes having gradually increasing acute angles.
【請求項3】請求項1又は2記載のポペット弁形流量計
測装置において、前記ポペット弁の弁体部分より下流側
の位置で前記ポペット弁に同軸に設けられた円形状のつ
ば部を更に備えることを特徴とするポペット弁形流量計
測装置。
3. The poppet valve type flow rate measuring device according to claim 1, further comprising a circular flange provided coaxially with said poppet valve at a position downstream of a valve body of said poppet valve. A poppet valve type flow measurement device characterized by the above-mentioned.
【請求項4】請求項1又は2記載のポペット弁形流量計
測装置において、前記凸状の絞り部の外面形状は、前記
環状通路の開口面積が、概略、前記ポペット弁の変位量
の1/2乗の関数となるように形成されていることを特
徴とするポペット弁形流量計測装置。
4. The poppet valve type flow rate measuring device according to claim 1, wherein an outer surface shape of the convex throttle portion is such that an opening area of the annular passage is approximately 1 / (displacement amount) of the poppet valve. A poppet valve type flow rate measuring device characterized by being formed so as to be a function of square.
【請求項5】請求項1又は2記載のポペット弁形流量計
測装置において、前記絞り部の外面形状は、前記ポペッ
ト弁の通過流量に対するポペット弁の変位量あるいは前
記絞り部による生じる流入ポートと流出ポート間の圧力
差の流量検出特性が概略線形関係となるように形成され
ていることを特徴とするポペット弁形流量計測装置。
5. The poppet valve type flow rate measuring device according to claim 1, wherein an outer surface of the throttle portion has a displacement amount of the poppet valve with respect to a flow rate of the poppet valve or an inflow port and an outflow port generated by the throttle portion. A poppet valve type flow rate measuring device, wherein a flow rate detection characteristic of a pressure difference between ports has a substantially linear relationship.
JP2000218592A 2000-07-19 2000-07-19 Poppet valve type flow measuring device Pending JP2002039819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000218592A JP2002039819A (en) 2000-07-19 2000-07-19 Poppet valve type flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000218592A JP2002039819A (en) 2000-07-19 2000-07-19 Poppet valve type flow measuring device

Publications (1)

Publication Number Publication Date
JP2002039819A true JP2002039819A (en) 2002-02-06

Family

ID=18713516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000218592A Pending JP2002039819A (en) 2000-07-19 2000-07-19 Poppet valve type flow measuring device

Country Status (1)

Country Link
JP (1) JP2002039819A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258250A (en) * 2005-03-18 2006-09-28 Tokyo Institute Of Technology Double seat electromagnetic valve
JP2014219359A (en) * 2013-05-10 2014-11-20 株式会社テージーケー Flow rate sensor
CN107906805A (en) * 2017-12-18 2018-04-13 温岭市恒发空调部件有限公司 A kind of expansion valve

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258250A (en) * 2005-03-18 2006-09-28 Tokyo Institute Of Technology Double seat electromagnetic valve
JP4683467B2 (en) * 2005-03-18 2011-05-18 国立大学法人東京工業大学 Seat type two-stage solenoid valve
JP2014219359A (en) * 2013-05-10 2014-11-20 株式会社テージーケー Flow rate sensor
CN107906805A (en) * 2017-12-18 2018-04-13 温岭市恒发空调部件有限公司 A kind of expansion valve
CN107906805B (en) * 2017-12-18 2023-07-28 浙江泽顺制冷科技有限公司 Expansion valve

Similar Documents

Publication Publication Date Title
JP4009881B2 (en) Fuel flow control valve
Johnston et al. Experimental investigation of flow and force characteristics of hydraulic poppet and disc valves
KR101036589B1 (en) Flow measurement valve
EP1492973B1 (en) Flow control valve with integral sensor and controller
US4791956A (en) Constant flow valve
US11226641B2 (en) Fluid control device
KR100418684B1 (en) Differential pressure type fluid mass flow controller for controlling flow gases used in semiconductor device fabrication
US10203704B2 (en) Fluid metering valve
JP2004157719A (en) Mass-flow controller
JP2547734B2 (en) Control device for at least one hydraulically operated actuator
JP6253493B2 (en) Flow control valve assembly
JP2002039819A (en) Poppet valve type flow measuring device
EP1315059A3 (en) FLow control valve
JPH09257534A (en) Flow measuring device
JP2560291Y2 (en) Displacement control device for variable displacement hydraulic pump
JP3083152B2 (en) Hydraulic drive for construction machinery
JPH0276902A (en) Fluid control valve
JP5423456B2 (en) Differential pressure control valve and fuel flow control device
US3285280A (en) Fluid pressure regulator
JP2001003905A (en) Control device for fluid pressure actuator
US12000723B2 (en) Method and apparatus for pressure based mass flow control
GB2472511A (en) Pressure measurement for flow metering device
JP3415512B2 (en) Valve device
JP2001289726A (en) Hydraulic control valve for measurement-compensating minute error due to flow velocity of oil
JPH08101176A (en) Gas chromatograph

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090210