JP2002039182A - Noncontact bearing spindle device - Google Patents

Noncontact bearing spindle device

Info

Publication number
JP2002039182A
JP2002039182A JP2000222148A JP2000222148A JP2002039182A JP 2002039182 A JP2002039182 A JP 2002039182A JP 2000222148 A JP2000222148 A JP 2000222148A JP 2000222148 A JP2000222148 A JP 2000222148A JP 2002039182 A JP2002039182 A JP 2002039182A
Authority
JP
Japan
Prior art keywords
bearing
housing
bearing sleeve
sleeve
spindle device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000222148A
Other languages
Japanese (ja)
Inventor
Nobuyuki Suzuki
伸幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2000222148A priority Critical patent/JP2002039182A/en
Publication of JP2002039182A publication Critical patent/JP2002039182A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a noncontact bearing spindle device of good productivity, being compatible with a new bearing sleeve and easy to repair if damaged. SOLUTION: A main spindle 4 is supported by a static pressure/magnetic compound bearing or a single static pressure gas bearing 2. The static pressure gas bearing 2 has a bearing sleeve 11 fitted over the inside diameter surface of a housing 5 to form a bearing clearance d1 between the sleeve and the main spindle 4. The inside diameter surface of the bearing sleeve 11 is dimensioned and configured to form the predetermined bearing clearance d1 when the bearing sleeve 11 is fitted into the housing 5. In this case, a shrinkage fit between the bearing sleeve 11 and the housing 5 is not greater than half the desired bearing clearance. The housing 5 is made from a material having a greater coefficient of thermal expansion and a greater heat conductivity and a smaller modulus of longitudinal elasticity than the material from which the bearing sleeve 11 is made.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、静圧気体軸受ま
たは静圧磁気複合軸受を備えた非接触軸受スピンドル装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact bearing spindle device provided with a hydrostatic gas bearing or a hydrostatic magnetic composite bearing.

【0002】[0002]

【従来の技術】静圧気体スピンドル装置、あるいは静圧
磁気複合スピンドル装置においては、軸受隙間の管理が
たいへん重要であるため、通常の製作工程においては、
ステータとロータは現合が行われる。すなわち、ステー
タ側は、軸受スリーブをハウジングに焼き嵌めしたうえ
で、軸受面を研削により仕上げ加工し、その後、ロータ
となる主軸の外径を研削することで、軸受隙間が規定値
になるようにする。
2. Description of the Related Art In a static pressure gas spindle device or a static pressure magnetic compound spindle device, the management of bearing clearance is very important.
The stator and the rotor are merged. In other words, on the stator side, after the bearing sleeve is shrink-fitted into the housing, the bearing surface is finished by grinding, and then the outer diameter of the main shaft as the rotor is ground so that the bearing clearance becomes a specified value. I do.

【0003】[0003]

【発明が解決しようとする課題】このため、生産性が悪
いうえ、部品レベルでのユニット化が困難で、互換性が
ない。また、何らかの原因によりタッチダウンし、軸受
部が損傷した場合には、軸受面を再研磨し、内径が大き
くなった分だけ、主軸側にメッキ、溶射等を施して軸受
隙間が以前と変わらないように外径を研削することにな
る。このように、修理のための工程も多い。
As a result, productivity is poor, and it is difficult to unitize at the component level, and there is no compatibility. In addition, if the bearing part is damaged due to touch-down for any reason, the bearing surface is polished again and the main shaft is plated, sprayed, etc. as much as the inner diameter is increased, and the bearing gap remains the same as before. So that the outer diameter is ground. Thus, there are many steps for repair.

【0004】この発明の目的は、生産性が良く、また軸
受スリーブの新たな物との互換性が得られて、損傷時の
修理が容易な非接触軸受スピンドル装置を提供すること
である。この発明の他の目的は、軸受スリーブのハウジ
ングへの取付けを容易にし、かつ嵌合後の軸受スリーブ
の内径寸法および内径形状の精度が確保できるものとす
ることである。この発明のさらに他の目的は、運転中の
軸受損等による温度上昇による軸受隙間の影響を軽減す
ることである。
An object of the present invention is to provide a non-contact bearing spindle device which has good productivity, is compatible with a new bearing sleeve, and is easy to repair in case of damage. Another object of the present invention is to facilitate mounting of the bearing sleeve to the housing and to ensure accuracy of the inner diameter and the inner diameter shape of the fitted bearing sleeve. Still another object of the present invention is to reduce the influence of a bearing gap due to a temperature rise due to a bearing loss or the like during operation.

【0005】[0005]

【課題を解決するための手段】この発明の非接触軸受ス
ピンドル装置は、静圧気体軸受、または静圧気体軸受と
磁気軸受が複合化された静圧磁気複合軸受からなる非接
触軸受で主軸を支持し、上記非接触軸受は、ハウジング
の内径面に軸受スリーブが嵌合し、この軸受スリーブと
上記主軸との間に静圧気体軸受の軸受隙間を形成するも
のとする。この非接触軸受スピンドル装置において、上
記ハウジングに上記軸受スリーブを嵌め込むことによ
り、軸受スリーブの内径面が所定の軸受隙間を形成する
寸法および形状になるように、上記ハウジングおよび軸
受スリーブの関係を設定したものである。この構成によ
ると、ハウジングに上記軸受スリーブを嵌め込むことに
より、軸受スリーブが圧縮変形などして、軸受スリーブ
の内径面が所定の軸受隙間を形成する。そのため、現合
が不要で、嵌合により精度確保ができて、軸受の組立が
容易になる。また、軸受スリーブがタッチダウン等で損
傷した場合に、新たな軸受スリーブに交換することによ
り復旧でき、主軸側の処理が不要となる。そのため損傷
時の修理が容易である。なお、上記の所定の軸受隙間を
形成する寸法および形状とは、軸受スリーブの内径面が
目標とした公差の範囲内に収まる寸法および形状のこと
である。
A non-contact bearing spindle device according to the present invention comprises a non-contact bearing composed of a hydrostatic gas bearing or a hydrostatic magnetic composite bearing in which a hydrostatic gas bearing and a magnetic bearing are combined to form a main shaft. In the non-contact bearing, the bearing sleeve is fitted on the inner diameter surface of the housing, and a bearing gap of the hydrostatic gas bearing is formed between the bearing sleeve and the main shaft. In this non-contact bearing spindle device, the relationship between the housing and the bearing sleeve is set such that the bearing sleeve is fitted into the housing so that the inner diameter surface of the bearing sleeve has a size and shape that forms a predetermined bearing gap. It was done. According to this configuration, by fitting the bearing sleeve into the housing, the bearing sleeve is compressed and deformed, and the inner diameter surface of the bearing sleeve forms a predetermined bearing gap. Therefore, it is not necessary to combine the bearings, accuracy can be ensured by fitting, and assembly of the bearing is facilitated. In addition, when the bearing sleeve is damaged by touchdown or the like, it can be recovered by replacing the bearing sleeve with a new bearing sleeve, and the processing on the spindle side is not required. Therefore, repair in case of damage is easy. The dimension and shape for forming the predetermined bearing gap are dimensions and shape such that the inner diameter surface of the bearing sleeve falls within a target tolerance range.

【0006】この発明において、上記軸受スリーブは上
記ハウジングに焼き嵌めし、焼き嵌め代を目標軸受隙間
の1/2以下とすることが好ましい。このように、焼き
嵌め代を目標軸受隙間の1/2以下とすることにより、
焼き嵌め後の軸受隙間の精度が容易に確保できる。
In the present invention, the bearing sleeve is preferably shrink-fitted to the housing, and the shrink-fitting margin is preferably set to be not more than 1/2 of a target bearing clearance. As described above, by setting the shrink fit to 1/2 or less of the target bearing clearance,
Accuracy of the bearing gap after shrink fitting can be easily secured.

【0007】この発明において、上記ハウジングの材質
は、上記軸受スリーブの材質よりも熱膨張係数および熱
伝導率が大きく、縦弾性係数が小さいものとすることが
好ましい。このように、ハウジングの方が軸受スリーブ
よりも大きな熱膨張係数および熱伝導率を持つ材質とす
ることにより、焼き嵌め工程が非常に容易になり、組み
付け後の軸受スリーブの取り外しも可能になる。また、
軸受スリーブの縦弾性係数がハウジングよりも大きい場
合、両者の半径方向厚さを適宜に設計することにより、
焼き嵌めによる軸受スリーブの内径寸法変化は極僅かと
なり、形状精度も損なわれることがない。したがって、
主軸の外径は、軸受スリーブの焼き嵌め後に現合で仕上
げ加工しなくても、十分に精度確保できる。
In the present invention, it is preferable that the material of the housing has a larger coefficient of thermal expansion and thermal conductivity and a smaller coefficient of longitudinal elasticity than the material of the bearing sleeve. As described above, the housing is made of a material having a larger thermal expansion coefficient and a higher thermal conductivity than the bearing sleeve, so that the shrink-fitting process becomes very easy, and the bearing sleeve after assembly can be removed. Also,
When the longitudinal elastic modulus of the bearing sleeve is larger than that of the housing, by appropriately designing the radial thickness of both,
The change in the inner diameter of the bearing sleeve due to shrink fitting is extremely small, and the shape accuracy is not impaired. Therefore,
The outer diameter of the main shaft can be sufficiently ensured without finishing at the present time after shrink fitting of the bearing sleeve.

【0008】この発明において、上記ハウジングを冷却
する冷却手段を設けることが好ましい。スピンドル運転
中は、軸受損により軸受スリーブの温度が上昇し、ハウ
ジングとの焼き嵌め代が減少してしまう。そのため、ハ
ウジング外径を冷却手段で冷却することにより、このよ
うな運転中の温度上昇による焼き嵌め代の減少が防止さ
れる。
[0008] In the present invention, it is preferable to provide a cooling means for cooling the housing. During the operation of the spindle, the temperature of the bearing sleeve increases due to bearing loss, and the shrinkage allowance with the housing decreases. Therefore, by cooling the outer diameter of the housing by the cooling means, it is possible to prevent a reduction in shrinkage allowance due to such a rise in temperature during operation.

【0009】[0009]

【発明の実施の形態】この発明の一実施形態を図1と共
に説明する。この非接触軸受スピンドル装置1は、非接
触軸受であるラジアル型の静圧気体軸受2およびアキシ
アル型の静圧気体軸受3で主軸4を支持し、スピンドル
駆動源10を設けたものである。スピンドル駆動源10
はビルトイン型のモータであり、主軸4に設けられたロ
ータ21と、ハウジング5に設けられたステータ22と
でなる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIG. This non-contact bearing spindle device 1 has a main shaft 4 supported by a radial type static pressure gas bearing 2 and an axial type static pressure gas bearing 3 which are non-contact bearings, and a spindle drive source 10 is provided. Spindle drive source 10
Is a built-in type motor, which includes a rotor 21 provided on the main shaft 4 and a stator 22 provided on the housing 5.

【0010】ラジアル型の静圧気体軸受2は、スピンド
ル装置1のハウジング5の内径面に軸受スリーブ11が
嵌合し、この軸受スリーブ11と主軸4との間に軸受隙
間d1を形成する。軸受スリーブ11は、軸受隙間d1
に開口する絞りとなる給気孔14を設けられている。給
気孔14は、軸受スリーブ11の円周方向に並ぶ複数箇
所に設けられ、かつ軸方向に離れて複数設けられてい
る。アキシアル型の静圧気体軸受3は、主軸4に設けた
鍔部4aの両面に一対の軸受リング12,13を対面さ
せ、これら軸受リング12,13と鍔部4aとの間に静
圧気体軸受3の軸受隙間d2を形成したものである。軸
受リング12,13は、ハウジング5の内径面に嵌合さ
せてある。軸受リング12,13は、軸受隙間d2に開
口する絞りとなる給気孔15が設けられている。給気孔
15は、円周方向に並ぶ複数箇所に設けられている。
In the radial type hydrostatic gas bearing 2, a bearing sleeve 11 is fitted on the inner diameter surface of the housing 5 of the spindle device 1, and a bearing gap d 1 is formed between the bearing sleeve 11 and the main shaft 4. The bearing sleeve 11 has a bearing clearance d1.
An air supply hole 14 serving as a throttle is provided. The air supply holes 14 are provided at a plurality of locations aligned in the circumferential direction of the bearing sleeve 11 and are provided at a plurality of locations apart in the axial direction. The axial type hydrostatic gas bearing 3 has a pair of bearing rings 12 and 13 facing both sides of a flange 4 a provided on the main shaft 4, and a hydrostatic gas bearing is provided between the bearing rings 12 and 13 and the flange 4 a. No. 3 bearing gap d2 is formed. The bearing rings 12 and 13 are fitted on the inner diameter surface of the housing 5. Each of the bearing rings 12 and 13 is provided with an air supply hole 15 serving as a throttle opening into the bearing gap d2. The air supply holes 15 are provided at a plurality of locations arranged in the circumferential direction.

【0011】アキシアル型の静圧気体軸受3における主
軸先端部の軸受リング12は、タッチダウン時保護用の
静圧気体軸受18を兼用し、主軸4との間のラジアル軸
受隙間に開口する給気孔20を有している。上記ラジア
ル型の静圧気体軸受2の主軸後端側に並ぶ位置にも、タ
ッチダウン時保護用の静圧気体軸受19が設けられ、主
軸4との間のラジアル軸受隙間に開口する給気孔21を
有している。
The bearing ring 12 at the tip of the spindle in the axial type static pressure gas bearing 3 also serves as a static pressure gas bearing 18 for protection during touchdown, and is provided in a radial bearing gap between the bearing 4 and the main shaft 4. 20. A static pressure gas bearing 19 for touchdown protection is also provided at a position aligned with the rear end side of the main shaft of the radial type static pressure gas bearing 2, and an air supply hole 21 opening in a radial bearing gap between the main shaft 4 and the main shaft 4. have.

【0012】上記各静圧気体軸受2,3,18,19に
おける給気孔14,15,20,21は、ハウジング5
内に設けられた給気路16を介して、ハウジング5の外
部に開口する給気入口17に連通している。給気入口1
7は、コンプレッサ等の圧力気体の供給源(図示せず)
に配管接続される。また、ラジアル型およびアキシアル
型の各静圧気体軸受2,3における軸受隙間d1,d2
に対して、静圧気体を機外に逃がす放出経路39が、軸
受スリーブ11およびハウジング5等に設けられてい
る。
The air supply holes 14, 15, 20, 21 in each of the static pressure gas bearings 2, 3, 18, 19 are provided in the housing 5.
It communicates with an air supply inlet 17 that opens to the outside of the housing 5 through an air supply passage 16 provided therein. Air supply inlet 1
7 is a supply source of a pressurized gas such as a compressor (not shown)
Is connected to the pipe. In addition, bearing gaps d1, d2 in each of the radial type and the axial type hydrostatic gas bearings 2, 3
On the other hand, a discharge path 39 for releasing the static pressure gas out of the apparatus is provided in the bearing sleeve 11, the housing 5, and the like.

【0013】ハウジング5の外周部には、静圧気体軸受
2に対応する軸方向位置、およびスピンドル駆動源10
に対応する軸方向位置に、冷却手段23,24がそれぞ
れ設けられている。これら冷却手段23,24は、ジャ
ケット等で構成される冷却媒体流路からなり、冷却媒体
出入り口25,26から冷却ユニット(図示せず)に接
続される。
An outer peripheral portion of the housing 5 has an axial position corresponding to the hydrostatic gas bearing 2 and a spindle drive source 10.
Cooling means 23 and 24 are provided at axial positions corresponding to the above. These cooling means 23 and 24 are composed of a cooling medium flow path composed of a jacket or the like, and are connected to cooling units (not shown) from the cooling medium entrances and exits 25 and 26.

【0014】ハウジング5は、複数の部材に分割されて
いる。すなわち、ハウジング5は、軸受スリーブ11の
外周に嵌合するハウジング本体5Aと、このハウジング
本体5Aの外周に嵌合する冷却ジャケット5Bと、さら
に他のハウジング構成部材5C〜5Gとで構成されてい
る。上記ハウジング本体5Aと冷却ジャケット5Bとの
間に、上記冷却手段23の冷却媒体流路が形成される。
ハウジング5の前端のフランジ5aは、ハウジング構成
部材5cで構成される。
The housing 5 is divided into a plurality of members. That is, the housing 5 includes a housing body 5A fitted on the outer periphery of the bearing sleeve 11, a cooling jacket 5B fitted on the outer periphery of the housing body 5A, and other housing components 5C to 5G. . A cooling medium flow path of the cooling means 23 is formed between the housing body 5A and the cooling jacket 5B.
The flange 5a at the front end of the housing 5 is constituted by a housing component 5c.

【0015】軸受スリーブ11とハウジング5とは、つ
ぎの関係に構成される。軸受スリーブ11は、ハウジン
グ5に組み込む前に、内外径とも仕上げ加工をしてしま
い、完成部品として準備しておく。いわば、軸受スリー
ブ11はユニットとして完成しておく。軸受スリーブ1
1とハウジング5との焼き嵌め代(半径方向)は、軸受
隙間d1の目標値の1/2以下とする。ハウジング5の
材質は、軸受スリーブ11よりも熱膨張係数および熱伝
導率が大きく、縦弾性係数が小さいものとする。このよ
うな材質の関係を持つ例として、例えば、ハウジング5
をジュラルミンとし、軸受スリーブ11をステンレスと
することができる。なお、ハウジング5をこの実施形態
等のように分割構成とした場合、ハウジング5を構成す
る各部材の材質を異ならせても良いが、少なくとも軸受
スリーブ11の外周に嵌合する部分を構成する部材(こ
の実施形態ではハウジング本体5A)を上記の軸受スリ
ーブ11との材質,寸法の関係とする。
The bearing sleeve 11 and the housing 5 have the following relationship. Before the bearing sleeve 11 is incorporated into the housing 5, the inner and outer diameters of the bearing sleeve 11 are finished and prepared as a finished part. In other words, the bearing sleeve 11 is completed as a unit. Bearing sleeve 1
The shrinkage allowance (in the radial direction) between the housing 1 and the housing 5 is 1 / or less of the target value of the bearing gap d1. The material of the housing 5 has a larger coefficient of thermal expansion and thermal conductivity and a smaller coefficient of longitudinal elasticity than the bearing sleeve 11. As an example having such a material relationship, for example, a housing 5
Can be duralumin, and the bearing sleeve 11 can be stainless steel. In the case where the housing 5 has a divided structure as in this embodiment and the like, the materials of the members constituting the housing 5 may be different, but at least a member constituting a portion fitted to the outer periphery of the bearing sleeve 11. (In this embodiment, the housing main body 5A) has a material and dimension relationship with the bearing sleeve 11 described above.

【0016】上記構成の非接触軸受スピンドル装置によ
ると、ハウジング5の材質を、軸受スリーブ11よりも
熱膨張係数および熱伝導率が大きいものとし、焼き嵌め
代を軸受隙間d1の目標値の1/2以下としたため、ハ
ウジング5に軸受スリーブ11を焼き嵌めする工程が非
常に容易になり、組み付け後の軸受スリーブ11の取り
外しも可能となる。また、軸受スリーブ11の縦弾性係
数がハウジング5よりも大きいため、両者の半径方向厚
さを適宜の関係に設計することにより、焼き嵌めによる
軸受スリーブ11の内径変化は極僅かとなり、形状精度
も損なわれることがない。したがって、主軸4の外径
は、軸受スリーブ11の焼き嵌め後に現合で仕上げ加工
しなくても良い。スピンドル運転中は、軸受損により軸
受スリーブ11の温度が上昇し、そのままではハウジン
グ5との焼き嵌め代が減少するが、冷却手段23を設け
たため、運転中の焼き嵌め代の減少が防止される。
According to the non-contact bearing spindle device having the above structure, the material of the housing 5 is made to have a larger thermal expansion coefficient and thermal conductivity than that of the bearing sleeve 11, and the shrink fit is set to 1 / the target value of the bearing clearance d1. Since it is 2 or less, the step of shrink-fitting the bearing sleeve 11 to the housing 5 becomes very easy, and the bearing sleeve 11 after assembly can be removed. Further, since the longitudinal elastic coefficient of the bearing sleeve 11 is larger than that of the housing 5, by designing the thickness in the radial direction of the two members in an appropriate relationship, the inner diameter change of the bearing sleeve 11 due to shrink fitting becomes extremely small, and the shape accuracy is also improved. There is no loss. Therefore, the outer diameter of the main shaft 4 does not have to be finished at present after shrink fitting of the bearing sleeve 11. During spindle operation, the temperature of the bearing sleeve 11 rises due to bearing loss, and the shrinkage allowance with the housing 5 decreases as it is. However, the provision of the cooling means 23 prevents the shrinkage allowance during operation from decreasing. You.

【0017】なお、軸受隙間d1が小さい場合(例えば
数μm程度)は、従来のような現合の工程を省くことは
難しい。しかし、高速回転用スピンドル装置のように、
比較的大きな軸受隙間(例えば15μm以上)の場合
は、加工誤差による軸受隙間の変化割合が小さい。その
ため、上記のようにして軸受スリーブ11を互換性のあ
るものとでき、現合を行わなくても精度確保ができる。
When the bearing gap d1 is small (for example, about several μm), it is difficult to omit the conventional process as in the prior art. However, like the spindle device for high-speed rotation,
In the case of a relatively large bearing gap (for example, 15 μm or more), the rate of change of the bearing gap due to processing errors is small. Therefore, the bearing sleeve 11 can be made compatible as described above, and accuracy can be ensured without performing the integration.

【0018】図2は、この発明の他の実施形態を示す。
この非接触軸受スピンドル装置1Aは、非接触軸受であ
るラジアル型の静圧磁気複合軸受6,7およびアキシア
ル型の静圧磁気複合軸受8,9で主軸4を支持し、スピ
ンドル駆動源10を設けたものである。各静圧磁気複合
軸受6〜9は、それぞれ静圧気体軸受6A〜9Aと磁気
軸受6B〜9Bとを複合化したものである。ここで言う
軸受の複合化とは、静圧および磁気の両形式の軸受を共
通部分が生じるように組み合わせることを意味し、例え
ば両形式の軸受に一部の部品が共通化されるものであれ
ば良い。この例では、磁気軸受6B〜9Bのコアによ
り、静圧気体軸受6A〜9Aの軸受面の一部を構成して
いる。
FIG. 2 shows another embodiment of the present invention.
In the non-contact bearing spindle device 1A, the main shaft 4 is supported by radial-type hydrostatic composite bearings 6, 7 and axial-type hydrostatic composite bearings 8, 9, which are non-contact bearings, and a spindle drive source 10 is provided. It is a thing. Each of the hydrostatic and magnetic composite bearings 6 to 9 is a composite of a hydrostatic gas bearing 6A to 9A and a magnetic bearing 6B to 9B, respectively. The term “combination of bearings” as used herein means that both types of hydrostatic and magnetic bearings are combined so as to produce a common part. For example, even if some parts are shared by both types of bearings Good. In this example, the cores of the magnetic bearings 6B to 9B constitute part of the bearing surfaces of the hydrostatic gas bearings 6A to 9A.

【0019】ラジアル型の静圧気体軸受6,7は、軸受
スリーブ11Aに形成され、この軸受スリーブ11Aが
ハウジング5Aの内径面に嵌合している。軸受スリーブ
11Aは、磁気軸受6B,7Bのコアの一部を構成す
る。このハウジング5Aおよび軸受スリーブ11Aの関
係を、上記実施形態と同じ関係に設定してある。すなわ
ち、軸受スリーブ11Aは、ハウジング5Aに組み込む
前に、内外径とも仕上げ加工をしてしまい、完成部品と
して準備しておく。軸受スリーブ11Aとハウジング5
Aとの焼き嵌め代(半径方向)は、軸受隙間d1の目標
値の1/2以下とする。ハウジング5Aの材質は、軸受
スリーブ11Aよりも熱膨張係数および熱伝導率が大き
く、縦弾性係数が小さいものとする。なお、この実施形
態において、図1の実施形態と対応する部分は、同一符
号を付してその説明を省略する。
The radial type hydrostatic gas bearings 6, 7 are formed on a bearing sleeve 11A, and the bearing sleeve 11A is fitted on the inner diameter surface of the housing 5A. The bearing sleeve 11A forms a part of the core of the magnetic bearings 6B and 7B. The relationship between the housing 5A and the bearing sleeve 11A is set to the same relationship as in the above embodiment. That is, before the bearing sleeve 11A is assembled into the housing 5A, the inner and outer diameters of the bearing sleeve 11A are finished and prepared as a finished part. Bearing sleeve 11A and housing 5
The shrink-fitting margin (in the radial direction) with A is set to 1 / or less of the target value of the bearing gap d1. The material of the housing 5A has a larger coefficient of thermal expansion and thermal conductivity and a smaller coefficient of longitudinal elasticity than the bearing sleeve 11A. In this embodiment, portions corresponding to those in the embodiment of FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.

【0020】このように、非接触軸受が静圧磁気複合軸
受6,7とした場合も、上記と同様に、軸受スリーブ1
1Aを互換品としてハウジング5Aと軸受スリーブ11
Aとの現合を省くことができる。
As described above, when the non-contact bearings are the hydrostatic magnetic composite bearings 6 and 7, similarly to the above, the bearing sleeve 1 is provided.
1A as a compatible product, housing 5A and bearing sleeve 11
A with A can be omitted.

【0021】図3,図4は、非接触軸受スピンドル装置
を支持台に設置する支持構造の各例をそれぞれ示す。各
例において、スピンドル装置1には図1の実施形態のも
のが用いられている。図1のものに代えて、図2の例の
ものを用いても良い。この非接触軸受スピンドル装置の
支持構造は、図3,図4に各々示すように、スピンドル
装置1のハウジング5を、支持台40に対して、ハウジ
ング5の前端のフランジ5aで固定すると共に、ハウジ
ング5の後部を固定手段41,41Aで固定したもので
ある。支持台40は、非接触軸受スピンドル装置1が嵌
まり込む箱状ないし筒状のものである。ハウジング5の
前端のフランジ5aは、ボルト42で支持台40に固定
する。
FIGS. 3 and 4 show examples of a support structure in which a non-contact bearing spindle device is installed on a support base. In each example, the spindle device 1 of the embodiment of FIG. 1 is used. Instead of the one in FIG. 1, the one in FIG. 2 may be used. As shown in FIGS. 3 and 4, the support structure of the non-contact bearing spindle device fixes the housing 5 of the spindle device 1 to the support base 40 with a flange 5 a at the front end of the housing 5. 5 is fixed by fixing means 41 and 41A. The support 40 has a box-like or cylindrical shape into which the non-contact bearing spindle device 1 fits. The flange 5 a at the front end of the housing 5 is fixed to the support 40 with bolts 42.

【0022】図3の例は、ハウジング5の後部を固定す
る固定手段41を、支持台40に対して剛体として支持
するものであり、ボルトが用いられる。図4の例は、ハ
ウジング5の後部を固定する固定手段41Aを弾性的に
支持する弾性体としたものであり、例えばOリングが用
いられる。
In the example shown in FIG. 3, the fixing means 41 for fixing the rear portion of the housing 5 is rigidly supported on the support base 40, and a bolt is used. In the example of FIG. 4, the fixing means 41A for fixing the rear part of the housing 5 is made of an elastic body which elastically supports, and for example, an O-ring is used.

【0023】この支持構造の作用を説明する。非接触ス
ピンドル装置1は、ハウジング5の支持合成が不足する
と、固有振動数による最高回転数が制限され、また加工
に適用した場合に、びびり振動が発生し、加工面に悪影
響を与えることがある。特に、静圧気体軸受や静圧磁気
複合軸受スピンドル装置において、その構造上、ラジア
ル軸受部の軸方向長さが長く、モータ部が主軸最後部に
置かれることが多いため、ハウジング5の前部に設けら
れたフランジ部5aのみの固定では、十分な支持合成が
確保できない。これに対して、上記の各例のように、ハ
ウジング1の後部を支持する固定手段41,41Aを設
けることにより、支持剛性を得ることができ、びびり振
動等が防止できる。
The operation of the support structure will be described. When the support synthesis of the housing 5 is insufficient, the non-contact spindle device 1 limits the maximum number of revolutions due to the natural frequency, and when applied to machining, generates chatter vibration and may adversely affect the machined surface. . In particular, in a hydrostatic gas bearing or a hydrostatic magnetic composite bearing spindle device, the axial length of the radial bearing portion is long due to its structure, and the motor portion is often placed at the rearmost portion of the main shaft. In this case, it is not possible to secure a sufficient support composition by fixing only the flange portion 5a provided in the above. On the other hand, by providing the fixing means 41 and 41A for supporting the rear portion of the housing 1 as in each of the above examples, it is possible to obtain support rigidity and prevent chatter vibration and the like.

【0024】[0024]

【発明の効果】この発明の非接触軸受スピンドル装置
は、静圧気体軸受、または静圧気体軸受と磁気軸受が複
合化された静圧磁気複合軸受からなる非接触軸受で主軸
を支持し、上記非接触軸受は、ハウジングの内径面に軸
受スリーブが嵌合し、この軸受スリーブと上記主軸との
間に静圧気体軸受の軸受隙間を形成する非接触軸受スピ
ンドル装置において、上記ハウジングに上記軸受スリー
ブを嵌め込むことにより、軸受スリーブの内径面が所定
の軸受隙間を形成する寸法および形状になるように、上
記ハウジングおよび軸受スリーブの関係を設定したもの
であるため、生産性が良く、また軸受スリーブの新たな
物との互換性が得られて、損傷時の修理が容易である。
軸受スリーブのハウジングとの焼き嵌め代を目標軸受隙
間の1/2以下とした場合は、焼き嵌め後の軸受スリー
ブ内径の精度確保が容易である。上記ハウジングの材質
を、軸受スリーブよりも熱膨張係数および熱伝導率が大
きく、縦弾性係数が小さいものとした場合は、軸受スリ
ーブのハウジングへの取付けが容易であり、また嵌合後
の軸受スリーブの内径寸法および内径形状の精度が確保
できる。上記ハウジングを冷却する冷却手段を設けた場
合は、運転中の軸受損等による温度上昇によって生じる
軸受隙間の影響が軽減される。
According to the non-contact bearing spindle device of the present invention, the main shaft is supported by a non-contact bearing comprising a hydrostatic gas bearing or a hydrostatic magnetic composite bearing in which a hydrostatic gas bearing and a magnetic bearing are combined. The non-contact bearing is a non-contact bearing spindle device in which a bearing sleeve is fitted to an inner diameter surface of a housing and a bearing gap of a hydrostatic gas bearing is formed between the bearing sleeve and the main shaft. , The relationship between the housing and the bearing sleeve is set so that the inner diameter surface of the bearing sleeve has a size and shape that forms a predetermined bearing gap. Compatibility with new ones and easy repair in case of damage.
When the shrink fit of the bearing sleeve with the housing is set to 1/2 or less of the target bearing clearance, it is easy to secure the accuracy of the inner diameter of the bearing sleeve after shrink fitting. If the housing is made of a material having a larger coefficient of thermal expansion and thermal conductivity and a smaller coefficient of longitudinal elasticity than the bearing sleeve, the bearing sleeve can be easily attached to the housing, and the bearing sleeve after fitting is formed. The accuracy of the inner diameter size and inner diameter shape can be secured. When the cooling means for cooling the housing is provided, the influence of a bearing gap caused by a temperature rise due to a bearing loss or the like during operation is reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施形態にかかる非接触軸受スピ
ンドル装置の断面図である。
FIG. 1 is a sectional view of a non-contact bearing spindle device according to an embodiment of the present invention.

【図2】この発明の他の実施形態にかかる非接触軸受ス
ピンドル装置の断面図である。
FIG. 2 is a sectional view of a non-contact bearing spindle device according to another embodiment of the present invention.

【図3】図1の実施形態にかかる非接触軸受スピンドル
装置を支持台に設置する支持構造例の断面図である。
3 is a sectional view of an example of a support structure in which the non-contact bearing spindle device according to the embodiment of FIG. 1 is installed on a support base.

【図4】図1の実施形態にかかる非接触軸受スピンドル
装置を支持台に設置する他の支持構造例の断面図であ
る。
FIG. 4 is a cross-sectional view of another example of a support structure in which the non-contact bearing spindle device according to the embodiment of FIG. 1 is installed on a support base.

【符号の説明】[Explanation of symbols]

1,1A…非接触軸受スピンドル装置 2…静圧気体軸受 4…主軸 5…ハウジング 6,7…静圧磁気複合軸受 6A,7A…静圧気体軸受 6B,7B…磁気軸受 10…スピンドル駆動源 11…軸受スリーブ 23…冷却手段 d1…軸受隙間 1, 1A: Non-contact bearing spindle device 2: Hydrostatic gas bearing 4: Main shaft 5: Housing 6, 7: Static magnetic composite bearing 6A, 7A: Static pressure gas bearing 6B, 7B: Magnetic bearing 10: Spindle drive source 11 ... bearing sleeve 23 ... cooling means d1 ... bearing gap

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 静圧気体軸受、または静圧気体軸受と磁
気軸受が複合化された静圧磁気複合軸受からなる非接触
軸受で主軸を支持し、上記非接触軸受は、ハウジングの
内径面に軸受スリーブが嵌合し、この軸受スリーブと上
記主軸との間に静圧気体軸受の軸受隙間を形成する非接
触軸受スピンドル装置において、上記ハウジングに上記
軸受スリーブを嵌め込むことにより、軸受スリーブの内
径面が所定の軸受隙間を形成する寸法および形状になる
ように、上記ハウジングおよび軸受スリーブの関係を設
定したことを特徴とする非接触軸受スピンドル装置。
The main shaft is supported by a non-contact bearing comprising a hydrostatic gas bearing or a hydrostatic magnetic composite bearing in which a hydrostatic gas bearing and a magnetic bearing are combined, and the non-contact bearing is provided on an inner surface of a housing. In a non-contact bearing spindle device in which a bearing sleeve is fitted and forms a bearing gap of a hydrostatic gas bearing between the bearing sleeve and the main shaft, the inner diameter of the bearing sleeve is obtained by fitting the bearing sleeve into the housing. A non-contact bearing spindle device, wherein the relationship between the housing and the bearing sleeve is set such that the surface has a size and a shape forming a predetermined bearing clearance.
【請求項2】 上記軸受スリーブは上記ハウジングに焼
き嵌めし、焼き嵌め代を目標軸受隙間の1/2以下とし
た請求項1記載の非接触軸受スピンドル装置。
2. The non-contact bearing spindle device according to claim 1, wherein the bearing sleeve is shrink-fitted to the housing, and a shrink-fit margin is set to be not more than 1 / of a target bearing clearance.
【請求項3】 上記ハウジングの材質は、上記軸受スリ
ーブの材質よりも熱膨張係数および熱伝導率が大きく、
縦弾性係数が小さいものとした請求項1または請求項2
記載の非接触軸受スピンドル装置。
3. The material of the housing has a larger coefficient of thermal expansion and thermal conductivity than the material of the bearing sleeve.
3. The method according to claim 1, wherein the longitudinal elastic modulus is small.
A non-contact bearing spindle device according to claim 1.
【請求項4】 上記ハウジングを冷却する冷却手段を設
けた請求項1ないし請求項3のいずれかに記載の非接触
軸受スピンドル装置。
4. The non-contact bearing spindle device according to claim 1, further comprising cooling means for cooling the housing.
JP2000222148A 2000-07-24 2000-07-24 Noncontact bearing spindle device Pending JP2002039182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000222148A JP2002039182A (en) 2000-07-24 2000-07-24 Noncontact bearing spindle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000222148A JP2002039182A (en) 2000-07-24 2000-07-24 Noncontact bearing spindle device

Publications (1)

Publication Number Publication Date
JP2002039182A true JP2002039182A (en) 2002-02-06

Family

ID=18716428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000222148A Pending JP2002039182A (en) 2000-07-24 2000-07-24 Noncontact bearing spindle device

Country Status (1)

Country Link
JP (1) JP2002039182A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132560A (en) * 2004-11-02 2006-05-25 Yaskawa Electric Corp Static pressure air bearing spindle
CN106321634A (en) * 2016-11-18 2017-01-11 广州市昊志机电股份有限公司 Composite air flotation shafting structure
CN106594077A (en) * 2016-12-28 2017-04-26 中船重工(西安)东仪精密测量科技有限公司 Unbalance loading resisting large-bearing gas spindle
CN110185707A (en) * 2019-06-28 2019-08-30 无锡微硕精密机械制造有限公司 Turbine air-bearing
CN113147348A (en) * 2021-04-20 2021-07-23 一汽解放汽车有限公司 Hybrid power driving system and hybrid power vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132560A (en) * 2004-11-02 2006-05-25 Yaskawa Electric Corp Static pressure air bearing spindle
JP4529129B2 (en) * 2004-11-02 2010-08-25 株式会社安川電機 Hydrostatic air bearing spindle
CN106321634A (en) * 2016-11-18 2017-01-11 广州市昊志机电股份有限公司 Composite air flotation shafting structure
CN106594077A (en) * 2016-12-28 2017-04-26 中船重工(西安)东仪精密测量科技有限公司 Unbalance loading resisting large-bearing gas spindle
CN110185707A (en) * 2019-06-28 2019-08-30 无锡微硕精密机械制造有限公司 Turbine air-bearing
CN113147348A (en) * 2021-04-20 2021-07-23 一汽解放汽车有限公司 Hybrid power driving system and hybrid power vehicle

Similar Documents

Publication Publication Date Title
JPS6035939A (en) Rotor and method of producing same
JP4723595B2 (en) Permanent magnet generator rotor for gas turbine, manufacturing method thereof, and gas turbine
JP6872623B2 (en) Bearing devices for the drive shafts of turbo machines, and turbo machines with such bearing devices
JP2002233100A (en) Spindle motor and bearing assembly
JP4407780B2 (en) Turbocharger bearing structure
US6309177B1 (en) Concentricity ring
US6494620B1 (en) Fluid bearing and rotary drive apparatus using the same
US6400052B1 (en) Motor and rotary apparatus having motor
JP2002039182A (en) Noncontact bearing spindle device
US20070110348A1 (en) Fluid dynamic bearing unit
CN111365287A (en) Bearing support assembly, machining method thereof and centrifugal compressor
JP2002295470A (en) Gas bearing spindle
JPH10104544A (en) Rotary polygon mirror motor
US6729762B2 (en) Aerostatic gas bearing
JP6984383B2 (en) Rotating machine
CN108779800B (en) Magnetic bearing for turbomachinery
JP6403020B2 (en) Touchdown bearing and rotating machine
JP3039738B2 (en) Hydrostatic bearing
EP3473875B1 (en) Tilting pad journal bearing manufacturing method, tilting pad journal bearing, and compressor
CN111365293A (en) Compressor rotor, compressor and air conditioning equipment
JP3978978B2 (en) Spindle motor
JP4529129B2 (en) Hydrostatic air bearing spindle
JPH05106632A (en) Dynamic pressure fluid bearing and polygon scanner using it
JPH11303867A (en) Composite hydrostatic and magnetic bearing and spindle device
KR102617404B1 (en) Compressor rotor, compressor and refrigerant circulation system