JP2002037615A - Metal-including fullerene ion - Google Patents

Metal-including fullerene ion

Info

Publication number
JP2002037615A
JP2002037615A JP2000226427A JP2000226427A JP2002037615A JP 2002037615 A JP2002037615 A JP 2002037615A JP 2000226427 A JP2000226427 A JP 2000226427A JP 2000226427 A JP2000226427 A JP 2000226427A JP 2002037615 A JP2002037615 A JP 2002037615A
Authority
JP
Japan
Prior art keywords
metal
anion
visible
encapsulated fullerene
absorption spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000226427A
Other languages
Japanese (ja)
Other versions
JP4674345B2 (en
Inventor
Takeshi Akasaka
健 赤阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2000226427A priority Critical patent/JP4674345B2/en
Publication of JP2002037615A publication Critical patent/JP2002037615A/en
Application granted granted Critical
Publication of JP4674345B2 publication Critical patent/JP4674345B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Abstract

PROBLEM TO BE SOLVED: To improve an unstable characteristic which a metal-including fullerene posseses and also to provide a metal-including fullerene material having a new characteristic. SOLUTION: The metal-including fullerene formed by electrolysis has an electronic structure of a closed shell and is represented by the general formula M Cn (M=Sc, Y, La, Lanthanide element, Actinoid element, n = an even number of 60, 70>=).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属内包フラーレ
ンを電解的に還元または酸化することにより形成される
アニオン種、カチオン種に関する。本発明の金属内包フ
ラーレンアニオンおよびカチオンは、その電子構造が閉
殻構造をとり、通常の空フラーレンと同様な電子構造を
有し、イオン性であることにより種々の分子の変換を起
こさせることができる。さらに、化学修飾後、閉殻構造
を有する金属内包フラーレンに変換することができ、こ
のような分子変換により、金属内包フラーレンを幅広く
応用することが可能となる。この新しい金属内包フラー
レンのカチオンおよびアニオンの特性を利用した、電導
性の向上による電気・電子材料分野などの機能性材料、
反応性の増大による触媒としての利用や医薬などの誘導
体を生成させる修飾化金属内包フラーレンへの変換利用
が期待できる。
The present invention relates to an anionic species and a cationic species formed by electrolytically reducing or oxidizing a metal-encapsulated fullerene. The metal-encapsulated fullerene anion and cation of the present invention have a closed-shell electronic structure, have an electronic structure similar to ordinary empty fullerene, and can cause conversion of various molecules by being ionic. . Further, after the chemical modification, it can be converted to a metal-encapsulated fullerene having a closed shell structure, and such a molecular conversion allows the metal-encapsulated fullerene to be widely applied. Utilizing the cation and anion properties of this new metal-encapsulated fullerene, functional materials such as electric and electronic materials with improved conductivity
It can be expected to be used as a catalyst due to an increase in reactivity, or to be converted into a modified metal-encapsulated fullerene to form a derivative such as a drug.

【0002】[0002]

【従来の技術】フラーレン科学の進歩は目覚ましく、空
フラーレン以外の新しいフラーレンの創製が注目されて
いる。空フラーレンの内部空洞に金属原子を内包した金
属内包フラーレンは、内部金属原子から炭素ケージへの
電子移動に伴って、新しい電子的特性を有する、例え
ば、R.Samalleyrらによる金属内包フラーレンLa@C
82の報告以来、Sc、Y、La原子などを内包したM@
82など(M=Sc、Y、Laなど)の金属内包フラー
レンが活発に研究されてきた。本発明者は、金属内包フ
ラーレンの初めての反応として、金属内包フラーレンの
二重結合にジシリランが付加した有機ケイ素誘導体の合
成方法に関する報告した(Nature 1995,374,600、J.Che
m.Commu.1995,1343)。しかしながら、これらの金属内
包フラーレンは、開殻構造を有するラジカルフラーレン
であるために空気中で不安定であり、取り扱いが困難な
化合物である。これらのことは、材料への応用にとって
大きな障害となっている。
2. Description of the Related Art The progress of fullerene science has been remarkable, and the creation of new fullerenes other than empty fullerenes has attracted attention. A metal-encapsulated fullerene having a metal atom encapsulated in the internal cavity of an empty fullerene has new electronic properties with the electron transfer from the internal metal atom to the carbon cage. For example, a metal-encapsulated fullerene La @ C by R. Samalleyr et al.
Since the report of 82 , M @ containing Sc, Y, La atoms, etc.
Metal-encapsulated fullerenes such as C 82 (M = Sc, Y, La, etc.) have been actively studied. The present inventor reported, as the first reaction of metal-encapsulated fullerenes, a method for synthesizing an organosilicon derivative in which disilirane was added to a double bond of metal-encapsulated fullerenes (Nature 1995, 374, 600, J. Che.
m. Commu. 1995,1343). However, since these metal-encapsulated fullerenes are radical fullerenes having an open shell structure, they are unstable in air and are difficult to handle. These are major obstacles to material applications.

【0003】このような中で、本発明者は先に比較的安
定な金属内包アザフラーレンカチオンをFAB(Fast A
tom Bombardment)法を用いて安定に生成させること、
および該安定なカチオンの分子磁石などの利用技術につ
いて報告している(特開2000−159513号公
報)。その結果、該カチオンのあたらしい物性を利用す
る電子材料分野や医療分野などでの新しい材料としての
応用が期待されている。しかしながら、前記カチオンを
安定に存在させる技術は、FAB内という特殊条件下に
おけるものであり、常温、常圧などの通常の条件におい
て取り扱うことができるものではないといった不都合が
あった。
Under such circumstances, the present inventor previously described a relatively stable metal-containing azafullerene cation by FAB (Fast A).
stable generation using the tom bombardment method,
And a technique for utilizing such a stable cation molecular magnet (JP-A-2000-159513). As a result, application as a new material in the field of electronic materials and medical fields utilizing the new physical properties of the cation is expected. However, the technique for stably presenting the cation is under special conditions such as in FAB, and has a disadvantage that it cannot be handled under normal conditions such as normal temperature and normal pressure.

【0004】[0004]

【発明が解決しようとする課題】本発明は、前記金属内
包フラーレンの持つ不安定な特性を改善し、かつ、新し
い特性を持った新規金属内包フラーレン材料を創製する
ことを課題とする。本発明者は、金属内包フラーレンの
不安定構造は、ラジカル(電子スピン)が炭素ゲージ上
にあり、開殻構造に基づくものであるから、閉殻構造に
変換することにより該不安定特性を改善できるものと考
え、該金属内包フラーレンに電子を与えたり、または電
子を奪うこと、換言すれば、該金属内包フラーレンを還
元または酸化することにより閉殻構造にでき、前記金属
内包フラーレンの不安定性が改善されると考えた。そこ
で、前記該金属内包フラーレンを還元または酸化する手
段を検討する中で、溶液中において電解的に酸化、還元
をすることによって、大気圧下、光の存在下においても
安定的に取り扱うことができる状態で該金属内包フラー
レンアニオンまたはカチオンを存在させることができる
ことを発見し、かつ、該安定なイオンの種々の特性を見
出すことにより、該イオンの種々の用途への可能性を検
討し、前記課題を解決した。
SUMMARY OF THE INVENTION It is an object of the present invention to improve the unstable characteristics of the metal-encapsulated fullerene and to create a new metal-encapsulated fullerene material having new characteristics. The inventor of the present invention has found that the unstable structure of the metal-encapsulated fullerene has a radical (electron spin) on the carbon gauge and is based on an open shell structure. It is considered that the metal-encapsulated fullerene has a closed shell structure by giving or removing electrons to the metal-encapsulated fullerene, in other words, by reducing or oxidizing the metal-encapsulated fullerene, thereby improving the instability of the metal-encapsulated fullerene. I thought. Therefore, in examining a means for reducing or oxidizing the metal-encapsulated fullerene, it is possible to stably handle even under atmospheric pressure and in the presence of light by electrolytically oxidizing and reducing in a solution. The present inventors have found that the metal-encapsulated fullerene anion or cation can be present in a state, and also studied various properties of the stable ion to examine the possibility of the ion for various uses. Was solved.

【0005】[0005]

【課題を解決するための手段】本発明は、電解法により
形成される電子構造が閉殻構造である一般式M@Cn
(但し、M=Sc、Y、La、ランタニド元素、アクチ
ノイド元素、n=60、70およびそれ以上の偶数)で
表される金属内包フラーレンイオンである。好ましく
は、nが82であることを特徴とする前記金属内包フラ
ーレンイオンであり、より好ましくは、MがLaまたは
Prであることを特徴とする前記金属内包フラーレンイ
オンである。
According to the present invention, there is provided a compound represented by the general formula M @ Cn wherein the electronic structure formed by the electrolytic method is a closed shell structure.
(However, M = Sc, Y, La, lanthanide element, actinoid element, n = 60, 70 and even more) and is a metal-encapsulated fullerene ion. Preferably, the metal-containing fullerene ion is characterized in that n is 82, and more preferably, the metal-containing fullerene ion is characterized in that M is La or Pr.

【0006】[0006]

【本発明の実施の態様】本発明をより詳細に説明する。
A.La@C82およびPr@C82など金属内包フラーレ
ンにも異性体が存在する。このことについては本発明者
が既に報告している(J,Phys.Chem.,1994,98,12831,Che
m.Phys.Lett.,2000,319,153)。LaおよびPr@C82
の場合、C82の構造が異なる(C82の構造異性体)ケー
ジにLaまたはPr原子が内包された2つの異性体が単
離されており、その際、主生成物(量が多く得られるも
の)と副生成物(主生成物に比べて得られる量が少ない
もの)に対して、各々LaまたはPr@C82−Aおよび
LaまたはPr@C82−B、あるいは、LaまたはPr
@C82−IおよびLaまたはPr@C82−IIと名付け
られている。ここでは、前者の命名にしたがって表現す
る。それぞれの異性体は、吸収スペクトル(図1,
2)、電子スピンスペクトル(図3)、レドック電位
等、全ての性質において異なる(図1から3、及び表1
参照)。表1にLa@C82−A、La@C82−B、Pr
@C82−AおよびPr@C 82−Bの酸化還元電位を示
す。表中OXEは酸化電位を、redEは還元電位をそれぞ
れ表す。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail.
A. La @ C82And Pr @ C82Metallic fuller etc.
There are also isomers. The inventor of this regard
(J, Phys. Chem., 1994, 98, 12831, Che
m.Phys.Lett., 2000, 319, 153). La and Pr @ C82
In the case of C82Have different structures (C82Structural isomer)
Two isomers containing La or Pr atoms in the di
The main product (which is obtained in large quantities)
) And by-products (the amount obtained is smaller than the main product)
), Respectively La or PrPC82-A and
La or Pr @ C82-B, or La or Pr
@C82-I and La or Pr @ C82Named -II
Have been. Here, it is expressed according to the former naming.
You. Each isomer has an absorption spectrum (FIG. 1,
2), electron spin spectrum (Fig. 3), redock potential
Etc. in all properties (Figures 1 to 3 and Table 1
reference). Table 1 shows La @ C82-A, La @ C82-B, Pr
@C82-A and Pr @ C 82Shows the oxidation-reduction potential of -B
You. In the tableOXE is the oxidation potential,redE is the reduction potential
Represent.

【0007】[0007]

【表1】 [Table 1]

【0008】[0008]

【実施例】以下の実施例において、用いられる機器類な
どをまとめて説明する。 1.紫外可視吸収スペクトル:Perkin-Elmer Lambda 19
& Hewlett-Paccardmodel 8453 スペクトルメーター 2.近赤外:Perkin-Elmer model 330 スペクトルメー
ター 3.ESR(Electron spin resonance):Bruker ER 1
00D(可変温度装置付きXバンド ESR スペクトルメータ
ー 4.三電極セルとしては、通常のCV測定器を用い、電
圧制御バルク電解には、動作電極および対向電極を構成
する2つのPt網を焼結ガラスフリットで分離したH型
セルを用いた。 5.金属内包フラーレンのアニオンおよびカチオンの生
成。 金属内包フラーレンのアニオンおよびカチオンは、それ
ぞれ、レドックス対M@C82 (n+1)-/M@C82 n-および
M@C82 n+/M@C82 (n-1)+のE1/2より150〜200mV負
または正の印加電圧をかけ、電解質TBAPを0.2M溶解
させてODCB/TCB(3:1)溶液中で生成させた。 略号の説明 TBAP=(n-Bu)4N(+)ClO4(-)=テトラ-n- ブチルアンモニウ
ムパークロレイト ODCB=Cl2C6H4=オルトジクロロベンゼン、TCB=ClC6H5=ク
ロロベンゼン
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the following embodiments, equipments and the like used will be described together. 1. UV-visible absorption spectrum: Perkin-Elmer Lambda 19
& Hewlett-Paccardmodel 8453 Spectrometer 2. Near infrared: Perkin-Elmer model 330 spectrometer ESR (Electron spin resonance): Bruker ER 1
00D (X band ESR spectrometer with variable temperature device 4. A normal CV measuring device is used as the three-electrode cell, and two Pt nets constituting the working electrode and the counter electrode are sintered glass for the voltage controlled bulk electrolysis. H-type cell separated by frit was used 5. Production of anions and cations of metal-encapsulated fullerene Anions and cations of metal-encapsulated fullerenes were redox vs. M @ C 82 (n + 1)) / M @ C, respectively. A negative or positive voltage of 150 to 200 mV is applied from E 1/2 of 82 n− and M @ C 82 n + / M @ C 82 (n−1) + to dissolve 0.2 M of the electrolyte TBAP, and ODCB / TCB ( 3: 1) Produced in solution TBAP = (n-Bu) 4 N (+) ClO 4 (-) = tetra-n-butylammonium perchlorate ODCB = Cl 2 C 6 H 4 = Orthodichlorobenzene, TCB = ClC 6 H 5 = chlorobenzene

【0009】実施例1 金属内包フラーレンLa@C82−A異性体の1mgを0.
2Mのテトラブチルアンモニウムパークロレート(TBA
P)/オルトジクロロベンゼン(ODCB)溶液8mLに溶か
し、アルゴンバブリングを20分間行った後、3種類の
電極(Pt動作電極、Pt補助電極、基準カロメル電極
(SCE)をセットしたH型セル中アルゴン雰囲気下で、
0Vで電解を行い、La@C82−Aのアニオンを合成し
た。アニオンの紫外可視近赤外吸収スペクトル(図
4)、核磁気共鳴スペクトルの測定を行った。図5に13
CNMR(125MHz)スペクトルを示す。スペクトルは、ほぼ
等しい強度の17本のピーク、および前記ピークの強度
の約半分の7本のピークからなる。全部で24のNMR
シグナルは、135〜158ppmの化学シフト範囲に現れ、こ
れは空C82(131〜151ppm)の化学シフト範囲よりやや
広い。La@C82−Aアニオンの溶液を、空気中で4ヶ
月間放置した後の紫外可視近赤外吸収スペクトルにおい
ては、変化は見られなかった。
Example 1 1 mg of the metal-encapsulated fullerene La @ C 82 -A isomer was added to 0.1 mg.
2M tetrabutylammonium perchlorate (TBA
Dissolve in 8 mL of P) / orthodichlorobenzene (ODCB) solution, and perform argon bubbling for 20 minutes. Under the atmosphere,
Electrolysis was performed at 0 V to synthesize La @ C 82 -A anion. The ultraviolet-visible-near-infrared absorption spectrum (FIG. 4) and the nuclear magnetic resonance spectrum of the anion were measured. 13 in FIG.
3 shows a CNMR (125 MHz) spectrum. The spectrum consists of seventeen peaks of approximately equal intensity and seven peaks, approximately half the intensity of said peak. 24 total NMR
Signals appear in the chemical shift range of 135~158Ppm, which is a little wider than the chemical shift range of the air-C 82 (131~151ppm). No change was observed in the UV-visible near-infrared absorption spectrum after the solution of the La @ C 82 -A anion was allowed to stand in air for 4 months.

【0010】実施例2 金属内包フラーレンLa@C82−A異性体の1mgを0.
2MのTBAP/ODCB溶液8mLに溶かし、アルゴン
バブリングを20分間行った後、3種類の電極(Pt動
作電極、Pt補助電極、基準カロメル電極(SCE)をセ
ットしたH型セル中アルゴン雰囲気下で、+0.8Vで
電解を行い、La@C82−Aのカチオンを合成した。カ
チオンの紫外可視近赤外吸収スペクトル(図4b)の測
定を行った。La@C82−Aカチオンの溶液を、空気中
で1週間放置した後の紫外可視近赤外吸収スペクトルに
おいては、変化は見られなかった。La@C82、La@
82(−)およびLa@C82(+)の紫外可視近赤外吸
収スペクトルを図4に示す。La@C82−Aのアニオン
およびカチオン生成の電位特性(SCE=基準カロメル
電極に対する)を図6(DPV=differential puls vol
tammetry)に示す。
Example 2 1 mg of the metal-encapsulated fullerene La @ C 82 -A isomer was added to 0.1 mg.
After dissolving in 8 mL of 2M TBAP / ODCB solution and performing argon bubbling for 20 minutes, under an argon atmosphere in an H-type cell in which three kinds of electrodes (Pt working electrode, Pt auxiliary electrode, and reference calomel electrode (SCE) are set) + 0.8 V at perform electrolysis, La @ C 82 a -A cation were synthesized. measure of .la @ C 82 -A cation been of ultraviolet-visible-near infrared absorption spectrum of the cation (FIG. 4b) solution, No change was observed in the ultraviolet-visible near-infrared absorption spectrum after standing for one week in air: La {C 82 , La}.
FIG. 4 shows UV-visible-near-infrared absorption spectra of C 82 (−) and La @ C 82 (+). FIG. 6 (DPV = differential puls vol.) Shows the potential characteristic of anion and cation formation of La @ C 82 -A (SCE = reference calomel electrode).
tammetry).

【0011】実施例3 金属内包フラーレンLa@C82−B異性体の1mgを0.
2MのTBAP/ODCB溶液8mLに溶かし、アルゴン
バブリングを20分間行った後、3種類の電極(Pt動
作電極、Pt補助電極、基準カロメル電極(SCE)をセ
ットしたH型セル中アルゴン雰囲気下で、0Vで電解を
行い、La@C82−Bのアニオンを合成した。アニオン
の紫外可視近赤外吸収スペクトル〔図7(a)〕、核磁気
共鳴スペクトル(図8)の測定を行った。La@C82
Bのアニオンの溶液を、空気中で1週間放置した後の紫
外可視近赤外吸収スペクトルにおいて、変化は見られな
かった。
Example 3 1 mg of the metal-encapsulated fullerene La @ C 82 -B isomer was added in 0.1 mg.
After dissolving in 8 mL of 2M TBAP / ODCB solution and performing argon bubbling for 20 minutes, under an argon atmosphere in an H-type cell in which three kinds of electrodes (Pt working electrode, Pt auxiliary electrode, and reference calomel electrode (SCE) are set) Electrolysis was performed at 0 V to synthesize an anion of LaLC 82 -B.The ultraviolet-visible-near-infrared absorption spectrum of the anion (FIG. 7A) and the nuclear magnetic resonance spectrum (FIG. 8) were measured. @C 82
No change was observed in the ultraviolet-visible-near infrared absorption spectrum after the solution of the anion B was allowed to stand in the air for one week.

【0012】実施例4 金属内包フラーレンLa@C82−B異性体の1mgを0.
2MのTBAP/ODCB溶液8mLに溶かし、アルゴン
バブリングを20分間行った後、3種類の電極(Pt動
作電極、Pt補助電極、基準カロメル電極(SCE)をセ
ットしたH型セル中アルゴン雰囲気下で、+0.8Vで
電解を行い、La@C82−Bのカチオンを合成した。カ
チオンの紫外可視近赤外吸収スペクトル〔図7(b)〕
の測定を行った。
Example 4 1 mg of the metal-encapsulated fullerene La @ C 82 -B isomer was added to 0.1 mg.
After dissolving in 8 mL of 2M TBAP / ODCB solution and performing argon bubbling for 20 minutes, under an argon atmosphere in an H-type cell in which three kinds of electrodes (Pt working electrode, Pt auxiliary electrode, and reference calomel electrode (SCE) are set) Electrolysis was carried out at +0.8 V to synthesize a cation of La @ C 82 -B, and the ultraviolet-visible-near-infrared absorption spectrum of the cation [FIG.
Was measured.

【0013】実施例5 金属内包フラーレンPr@C82−A異性体の1mgを0.
2MのTBAP/ODCB溶液8mLに溶かし、アルゴン
バブリングを20分間行った後、3種類の電極(Pt動
作電極、Pt補助電極、基準カロメル電極(SCE)をセ
ットしたH型セル中アルゴン雰囲気下で、0Vで電解を
行い、Pr@C82−Aのアニオンを合成した。アニオン
の紫外可視近赤外吸収スペクトル〔図9(a)〕、核磁気
共鳴スペクトル(図10)の測定を行った。
Example 5 1 mg of the metal-encapsulated fullerene Pr @ C 82 -A isomer was added to 0.1 mg.
After dissolving in 8 mL of 2M TBAP / ODCB solution and performing argon bubbling for 20 minutes, under an argon atmosphere in an H-type cell in which three kinds of electrodes (Pt working electrode, Pt auxiliary electrode, and reference calomel electrode (SCE) are set) Electrolysis was performed at 0 V to synthesize an anion of Pr @ C 82 -A. The UV-visible-near infrared absorption spectrum of the anion (FIG. 9A) and the nuclear magnetic resonance spectrum (FIG. 10) were measured.

【0014】実施例6 金属内包フラーレンPr@C82−A異性体の1mgを0.
2MのTBAP/ODCB溶液8mLに溶かし、アルゴン
バブリングを20分間行った後、3種類の電極(Pt動
作電極、Pt補助電極、基準カロメル電極(SCE)をセ
ットしたH型セル中アルゴン雰囲気下で、+0.8Vで
電解を行い、Pr@C82−Aのカチオンを合成した。カ
チオンの紫外可視近赤外吸収スペクトル〔図9(b)〕の
測定を行った。
Example 6 1 mg of the metal-encapsulated fullerene Pr @ C 82 -A isomer was added to 0.1 mg.
After dissolving in 8 mL of 2M TBAP / ODCB solution and performing argon bubbling for 20 minutes, under an argon atmosphere in an H-type cell in which three kinds of electrodes (Pt working electrode, Pt auxiliary electrode, and reference calomel electrode (SCE) are set) Electrolysis was performed at +0.8 V to synthesize a cation of Pr @ C 82 -A, and the ultraviolet-visible-near-infrared absorption spectrum of the cation (FIG. 9B) was measured.

【0015】実施例7 金属内包フラーレンPr@C82−B異性体の1mgを0.
2MのTBAP/オルトジクロロベンゼンODCB溶液
8mLに溶かし、アルゴンバブリングを20分間行った
後、3種類の電極(Pt動作電極、Pt補助電極、基準
カロメル電極(SCE)をセットしたH型セル中アルゴン
雰囲気下で、0Vで電解を行い、Pr@C8 2−Bのアニ
オンを合成した。アニオンの紫外可視近赤外吸収スペク
トル〔図11(a)〕の測定を行った。
Example 7 1 mg of the metal-encapsulated fullerene Pr @ C 82 -B isomer was added in 0.1 mg.
2M TBAP / ortho-dichlorobenzene ODCB solution
After dissolving in 8 mL and performing argon bubbling for 20 minutes, electrolysis was performed at 0 V under an argon atmosphere in an H-type cell in which three types of electrodes (Pt working electrode, Pt auxiliary electrode, and reference calomel electrode (SCE)) were set. Pr @ were synthesized anions of C 8 2 -B. ultraviolet-visible-near infrared absorption spectrum of the anion [FIG 11 (a)] measurements were performed.

【0016】実施例8 金属内包フラーレンPr@C82−B異性体の1mgを0.
2MのTBAP/ODCB溶液8mLに溶かし、アルゴン
バブリングを20分間行った後、3種類の電極(Pt動
作電極、Pt補助電極、基準カロメル電極(SCE)をセ
ットしたH型セル中アルゴン雰囲気下で、+0.8Vで
電解を行い、Pr@C82−Bのカチオンを合成した。カ
チオンの紫外可視近赤外吸収スペクトル〔図11(b)〕
の測定を行った。
Example 8 1 mg of the metal-encapsulated fullerene Pr @ C 82 -B isomer was added to 0.1 mg.
After dissolving in 8 mL of 2M TBAP / ODCB solution and performing argon bubbling for 20 minutes, under an argon atmosphere in an H-type cell in which three kinds of electrodes (Pt working electrode, Pt auxiliary electrode, and reference calomel electrode (SCE) are set) Electrolysis was performed at +0.8 V to synthesize a cation of Pr @ C 82 -B.UV-NIR absorption spectrum of the cation [FIG.
Was measured.

【0017】実施例9 1.5×10-5MのLa@C82−AアニオンのODCB溶液1m
Lを凍結脱気後、UVセル中に封管し、NIRを測定し
た。150度のオーブン中にて10分間加熱した後、紫外
可視近赤外吸収スペクトルを測定したが変化が見られな
かった。さらに170度で10分間加熱したがアニオンは
安定であった。これらのことからこのアニオンは熱的に
安定であることが明らかになった〔図12(a)〕。
Example 9 1 m of an ODCB solution of 1.5 × 10 −5 M La @ C 82 -A anion
After freeze degassing L, the tube was sealed in a UV cell, and NIR was measured. After heating in an oven at 150 ° C. for 10 minutes, an ultraviolet-visible-near-infrared absorption spectrum was measured, but no change was observed. Further heating at 170 ° C. for 10 minutes showed that the anions were stable. These facts revealed that this anion was thermally stable [FIG. 12 (a)].

【0018】実施例10 1.5×10-5MのLa@C82−AアニオンのODCB溶液1m
Lを凍結脱気後、UVセル中に封管し、紫外可視近赤外
吸収スペクトルを測定した。500nm以上の光照射を1
分、5分および400nm以上の光照射を1分、5分行った
後、紫外可視近赤外吸収スペクトルを測定したが変化が
見られなかった。次に、300nm以上の光照射を1分間行
ったところ、アニオン由来の950nm付近の吸収が消失し
た。また、この溶液の質量分析を行ったところLa@C
82−Aに対応するシグナルが得られた。これらのことよ
りアニオンは400nm以上の光には安定であるが、300nm以
上の光照射では速やかに重合反応などにより多量体を形
成することが明かとなった〔図12(b)〕。
Example 10 1 m of an ODCB solution of 1.5 × 10 −5 M La @ C 82 -A anion
After freeze-degassing L, the tube was sealed in a UV cell, and an ultraviolet-visible-near-infrared absorption spectrum was measured. Light irradiation of 500nm or more
After irradiation with light of 400 nm or more for 1 minute and 5 minutes, the ultraviolet-visible near-infrared absorption spectrum was measured, but no change was observed. Next, when light irradiation of 300 nm or more was performed for 1 minute, absorption around 950 nm derived from anions disappeared. In addition, mass analysis of this solution showed that La @ C
A signal corresponding to 82- A was obtained. From these results, it was clarified that the anion was stable to light of 400 nm or more, but that it rapidly formed a polymer by polymerization reaction or the like when irradiated with light of 300 nm or more [FIG. 12 (b)].

【0019】実施例11 1.5×10-5MのLa@C82−AアニオンのODCB溶液1m
LのNIRを測定し初期値とした。この溶液に、フェノ
ール(pKa=10)、チオフェノール(pKa=8)、p
−ニトロフェノール(pKa=7)、2,4−ジニトロフ
ェノール(pKa=4)を加えても紫外可視近赤外吸収
スペクトルに変化はなかった。これらのことから、La
@C82−Aアニオンは弱酸中では安定であることがわか
った。水中においても安定であることも確認されてい
る。これに対して、酢酸(pKa=5)を加えたところ若
干の吸収の減少が見られた。ジクロロ酢酸(pKa=1)
を加えたところ950nm付近のアニオン吸収の消失と共に1
000nm付近にLa@C82−Aによる吸収が現れた。すな
わち、強酸により速やかに酸化されることが明らかとな
った。La@C82−A(−)、および前記各化合物を添
加した際のスペクトル変化を図13に示す。
Example 11 1 m of an ODCB solution of 1.5 × 10 −5 M La @ C 82 -A anion
The NIR of L was measured and used as the initial value. Phenol (pKa = 10), thiophenol (pKa = 8), p
Addition of -nitrophenol (pKa = 7) and 2,4-dinitrophenol (pKa = 4) did not change the ultraviolet-visible-near-infrared absorption spectrum. From these facts, La
The @C 82 -A anion was found to be stable in weak acids. It has been confirmed that it is stable even in water. On the other hand, when acetic acid (pKa = 5) was added, a slight decrease in absorption was observed. Dichloroacetic acid (pKa = 1)
Was added, the disappearance of the anion absorption around 950 nm and 1
Absorption by La @ C 82 -A appeared around 000 nm. That is, it was clarified that oxidation was quickly performed by a strong acid. FIG. 13 shows the changes in the spectrum when La @ C 82 -A (-) and the above compounds were added.

【0020】実施例12 1.5×10-5MのLa@C82−BアニオンのODCB溶液1
mLを凍結脱気後、UVセル中に封管し、紫外可視近赤外
吸収スペクトルを測定した。125度のオーブン中にて
10分間加熱した後、紫外可視近赤外吸収スペクトルを
測定したが変化が見られなかった。さらに160度で1
0分間加熱したがアニオンは安定であった。これらのこ
とからこのアニオンは熱的に安定であることが明らかに
なった〔図14(a)〕。
Example 12 ODCB solution of 1.5 × 10 -5 M La @ C 82 -B anion 1
After freezing and degassing the mL, the tube was sealed in a UV cell, and an ultraviolet-visible-near-infrared absorption spectrum was measured. After heating in a 125 ° C. oven for 10 minutes, the ultraviolet-visible-near infrared absorption spectrum was measured, but no change was observed. 1 at 160 degrees
Upon heating for 0 minutes, the anions were stable. These facts revealed that this anion was thermally stable [FIG. 14 (a)].

【0021】実施例13 1.5×10-5MのLa@C82−BアニオンのODCB溶液1
mLを凍結脱気後、UVセル中に封管し、紫外可視近赤外
吸収スペクトルを測定した。400nm以上の光照射を1
分、10分行った後、紫外可視近赤外吸収スペクトルを
測定したが変化が見られなかった。次に、300nm以上の
光照射を30秒間行ったところ、アニオン由来の吸収が消
失した。また、この溶液の質量分析を行ったところLa
@C82−Bに対応するシグナルが得られた。これらのこ
とよりアニオンは400nm以上の光には安定であるが、300
nm以上の光照射では速やかに重合反応などにより多量体
を形成することが明かとなった〔図14(b)〕。
Example 13 ODCB solution 1 of 1.5 × 10 -5 M La @ C 82 -B anion
After freezing and degassing the mL, the tube was sealed in a UV cell, and an ultraviolet-visible-near-infrared absorption spectrum was measured. Light irradiation of 400nm or more
After 10 minutes, the ultraviolet-visible near-infrared absorption spectrum was measured, but no change was observed. Next, when light irradiation of 300 nm or more was performed for 30 seconds, absorption due to anions disappeared. In addition, mass analysis of this solution showed that La
A signal corresponding to ΔC 82 -B was obtained. From these facts, the anion is stable to light of 400 nm or more,
It was clarified that light irradiation of nm or more quickly formed a polymer by polymerization reaction or the like [FIG. 14 (b)].

【0022】実施例14 1.5×10-5MのLa@C82−AアニオンのODCB溶液1m
Lを過剰量のアダマンチルジアジリン(反応式1)、ジ
フェニルジアゾメタン(反応式2)を凍結脱気後、UV
セル中に封管し、紫外可視近赤外吸収スペクトルを測定
した。室温では反応は全く進行していなかったため150
度に加熱したところ、アニオン由来の吸収が消失した。
本溶液の質量分析測定を行ったところ付加体(1〜3付
加した)の生成が明らかになった。
Example 14 1 m of ODCB solution of 1.5 × 10 −5 M La @ C 82 -A anion
L is desorbed from excess adamantyldiazirine (reaction formula 1) and diphenyldiazomethane (reaction formula 2)
The tube was sealed in a cell, and an ultraviolet-visible-near-infrared absorption spectrum was measured. The reaction did not proceed at room temperature,
Upon heating, absorption due to anions disappeared.
When the mass spectrometry of this solution was performed, the formation of an adduct (1 to 3 was added) was clarified.

【0023】[0023]

【化1】 Embedded image

【0024】[0024]

【化2】 Embedded image

【0025】実施例15、16 アントラセンおよびアセチレン誘導体(CH3OOC≡
COOCH3)についても前記実施例14と同様の条件
において反応を行ったところ、実施例14と同様に付加
物の生成が確認された。
Examples 15 and 16 Anthracene and acetylene derivatives (CH 3 OOC≡)
COOCH 3 ) was also reacted under the same conditions as in Example 14, and the formation of an adduct was confirmed as in Example 14.

【0026】実施例17、18 La@C82アニオン(n-Bu4Nカチオン)は水不溶、
水に対して安定、大気中で安定であるが、硫酸ジメチル
〔(CH30)2SO2〕により分解する。La@C82
ニオンは化学酸化剤(p-BrC643 +SbCl6 -によ
り酸化されて、該アニオンから金属内包フラーレンを生
成することができる。さらに、中性の金属内包フラーレ
ンは、化学酸化剤(p-BrC643 +SbCl6 -により
酸化されて、該中性体からカチオンを生成することがで
きる。
Examples 17 and 18 The La @ C 82 anion (n-Bu 4 N cation) was insoluble in water.
Stable to water and stable in air, but decomposed by dimethyl sulfate [(CH 30 ) 2 SO 2 ]. The La @ C 82 anion can be oxidized by a chemical oxidizing agent (p-BrC 6 H 4 ) 3 + SbCl 6 to form a metal-encapsulated fullerene from the anion. Furthermore, metal-encapsulated fullerene neutral, chemical oxidants (p-BrC 6 H 4) 3 + SbCl 6 - is oxidized, it is possible to generate cations from neutral body.

【0027】これらのことから、本発明の金属内包フラ
ーレンは、安定で取り扱いが容易であり、かつ、条件を
設定した制御下に反応を進行させる試薬として有効に利
用できる可能性を示唆している。
From these facts, it is suggested that the metal-encapsulated fullerene of the present invention is stable and easy to handle, and can be effectively used as a reagent for promoting the reaction under controlled conditions. .

【0028】[0028]

【発明の効果】本発明の金属内包フラーレンのカチオン
種、アニオン種は各々閉殻構造を有する安定なフラーレ
ンであるため、取扱いが容易である。さらに、アニオン
種、カチオン種の酸化還元により、もとの開殻構造を有
する金属内包フラーレン誘導体に変換できる。すなわ
ち、金属内包フラーレンのカチオン種、アニオン種は、
内部金属原子から炭素ゲージへの電子移動に由来する金
属内包フラーレンの電子的特性と空フラーレン自身の持
つ電子的特性の両方を持ち合わせている。これらのこと
より、新しい金属内包フラーレンの分子変換法の開発を
通じて、金属内包フラーレンの機能性材料、医薬品誘導
体の合成原料、高活性触媒などへの適用が期待されると
いう優れた効果がもたらされる。
As described above, the cationic and anionic species of the metal-encapsulated fullerene of the present invention are stable fullerenes each having a closed shell structure, so that they are easy to handle. Furthermore, by redox of anionic species and cationic species, it can be converted to a metal-encapsulated fullerene derivative having an original open shell structure. That is, the cation species and the anion species of the metal-encapsulated fullerene are:
It has both the electronic properties of metal-encapsulated fullerenes derived from the transfer of electrons from internal metal atoms to the carbon gauge and the electronic properties of empty fullerenes themselves. From these facts, through the development of a new method for converting a metal-encapsulated fullerene into a molecule, an excellent effect is expected that the metal-encapsulated fullerene is expected to be applied to a functional material, a raw material for synthesizing a pharmaceutical derivative, a highly active catalyst, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 La@C82−AおよびPr@C82−Aの紫外
可視近赤外吸収スペクトル
FIG. 1 is an ultraviolet-visible-near-infrared absorption spectrum of La @ C 82 -A and Pr @ C 82 -A.

【図2】 La@C82−BおよびPr@C82−Bの紫外
可視近赤外吸収スペクトル
FIG. 2 is an ultraviolet-visible-near-infrared absorption spectrum of La @ C 82 -B and Pr @ C 82 -B.

【図3】 La@C82−AおよびLa@C82−Bの電子
スピン共鳴(ESR)スペクトル
FIG. 3. Electron spin resonance (ESR) spectra of La @ C 82 -A and La @ C 82 -B

【図4】 La@C82−A(−)、La@C82−A
(+)およびLa@C82−Aの紫外可視近赤外吸収スペ
クトル
FIG. 4 La @ C 82 -A (−), La @ C 82 -A
UV-visible near-infrared absorption spectrum of (+) and La @ C 82 -A

【図5】 La@C82−A(−)の13CNMRスペクト
FIG. 5 13 C NMR spectrum of La @ C 82 -A (-)

【図6】 La@C82−AのDPVFIG. 6: DPV of La @ C 82 -A

【図7】 La@C82−B(−)、La@C82−B
(+)およびLa@C82−Bの紫外可視近赤外吸収スペ
クトル
FIG. 7: La @ C 82 -B (-), La @ C 82 -B
(+) And La @ C 82 -B of the ultraviolet-visible-near-infrared absorption spectrum

【図8】 La@C82−B(−)の13CNMRスペクト
FIG. 8 13 C NMR spectrum of La @ C 82 -B (-)

【図9】 Pr@C82−A(−)、Pr@C82−A
(+)およびPr@C82−Aの紫外可視近赤外吸収スペ
クトル
FIG. 9: Pr @ C 82 -A (-), Pr @ C 82 -A
Ultraviolet-visible-near-infrared absorption spectrum of (+) and Pr @ C82- A

【図10】 Pr@C82−A(−)の13CNMRFIG. 10 13 C NMR of Pr @ C 82 -A (-)

【図11】 Pr@C82−B(−)、Pr@C82−B
(+)およびPr@C82−Bの紫外可視近赤外吸収ス
ペクトル
FIG. 11 Pr @ C 82 -B (−), PrPC 82 -B
Ultraviolet-visible-near-infrared absorption spectrum of (+) and Pr @ C82-B

【図12】 La@C82−A(−)の(a)熱および
(b)光に対する安定性
FIG. 12 shows the stability of La @ C 82 -A (-) to (a) heat and (b) light.

【図13】 La@C82−A(−)の酸に対する安定性FIG. 13 Stability of La @ C 82 -A (−) to acids

【図14】 La@C82−B(−)の(a)熱および
(b)光に対する安定
FIG. 14 shows the stability of La @ C 82 -B (−) to (a) heat and (b) light.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電解法により形成される電子構造が閉殻
構造である一般式M@Cn(但し、M=Sc、Y、L
a、ランタニド元素、アクチノイド元素、n=60、7
0およびそれ以上の偶数)で表される金属内包フラーレ
ンイオン。
1. A general formula M @ Cn (where M = Sc, Y, L) in which an electronic structure formed by an electrolytic method is a closed shell structure.
a, lanthanide element, actinoid element, n = 60, 7
Metal-encapsulated fullerene ion represented by an even number of 0 or more).
【請求項2】 nが82であることを特徴とする請求項
1に記載の金属内包フラーレンイオン。
2. The metal-encapsulated fullerene ion according to claim 1, wherein n is 82.
【請求項3】 MがLaまたはPrであることを特徴と
する請求項1または2に記載の金属内包フラーレンイオ
ン。
3. The metal-encapsulated fullerene ion according to claim 1, wherein M is La or Pr.
JP2000226427A 2000-07-27 2000-07-27 Metal-encapsulated fullerene ions Expired - Fee Related JP4674345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000226427A JP4674345B2 (en) 2000-07-27 2000-07-27 Metal-encapsulated fullerene ions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000226427A JP4674345B2 (en) 2000-07-27 2000-07-27 Metal-encapsulated fullerene ions

Publications (2)

Publication Number Publication Date
JP2002037615A true JP2002037615A (en) 2002-02-06
JP4674345B2 JP4674345B2 (en) 2011-04-20

Family

ID=18720047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000226427A Expired - Fee Related JP4674345B2 (en) 2000-07-27 2000-07-27 Metal-encapsulated fullerene ions

Country Status (1)

Country Link
JP (1) JP4674345B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004031075A1 (en) * 2002-10-04 2004-04-15 Institute Of Tsukuba Liaison Co., Ltd. Method of anionizing metal-including fullerene compound
WO2004065298A1 (en) * 2003-01-24 2004-08-05 Institute Of Tsukuba Liaison Co., Ltd. Method of separation and purification for metal-including fullerene isomer
WO2004094309A1 (en) * 2003-04-22 2004-11-04 Institute Of Tsukuba Liaison Co., Ltd. Method for separating and purifying metal including fullerene
JP2005053748A (en) * 2003-08-05 2005-03-03 Institute Of Tsukuba Liaison Co Ltd Method for separating and purifying nitrogen-including fullerenes
JP2007254195A (en) * 2006-03-22 2007-10-04 Univ Of Tsukuba Metal-including fullerene conductive material and its manufacturing method
WO2013191297A1 (en) * 2012-06-22 2013-12-27 イデア・インターナショナル株式会社 Electrolytic solution for electric double-layer capacitor, and electric double-layer capacitor
WO2015005353A1 (en) * 2013-07-08 2015-01-15 Matsuo Yutaka Endohedral fullerene salt and method for producing same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6010022289, NAGASE,S. et al, "The Ionization Energies and Electron Affinities of Endohedral Metallofullerenes MC82 (M=Sc,Y,La). De", J Chem Soc Chem Commun, 19940821, No.16, p.1837−1838 *
JPN6010022290, MANOLOPOULOS,D.E. et al, "Structural proposals for endohedral metal−fullerene complexes.", Chem Phys Lett, 19911129, Vol.187, No.1/2, p.1−7 *
JPN6010022291, MCELVANY,S.W. et al, "Production of Endohedral Yttrium−Fullerene Cations by Direct Laser Vaporization.", J Phys Chem, 19920611, Vol.96, No.12, p.4935−4937 *
JPN6010022292, 泉岡明他, "金属内包フラーレン塩の合成", 日本化学会講演予稿集, 199303, Vol.65th, No.1, p.243, JP *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004031075A1 (en) * 2002-10-04 2004-04-15 Institute Of Tsukuba Liaison Co., Ltd. Method of anionizing metal-including fullerene compound
WO2004065298A1 (en) * 2003-01-24 2004-08-05 Institute Of Tsukuba Liaison Co., Ltd. Method of separation and purification for metal-including fullerene isomer
WO2004094309A1 (en) * 2003-04-22 2004-11-04 Institute Of Tsukuba Liaison Co., Ltd. Method for separating and purifying metal including fullerene
JP2005053748A (en) * 2003-08-05 2005-03-03 Institute Of Tsukuba Liaison Co Ltd Method for separating and purifying nitrogen-including fullerenes
JP4528906B2 (en) * 2003-08-05 2010-08-25 国立大学法人 筑波大学 Separation and purification of nitrogen-containing fullerenes
JP2007254195A (en) * 2006-03-22 2007-10-04 Univ Of Tsukuba Metal-including fullerene conductive material and its manufacturing method
WO2013191297A1 (en) * 2012-06-22 2013-12-27 イデア・インターナショナル株式会社 Electrolytic solution for electric double-layer capacitor, and electric double-layer capacitor
US9653218B2 (en) 2012-06-22 2017-05-16 Idea International Inc. Electrolytic solution for electric double-layer capacitor, and electric double-layer capacitor
WO2015005353A1 (en) * 2013-07-08 2015-01-15 Matsuo Yutaka Endohedral fullerene salt and method for producing same

Also Published As

Publication number Publication date
JP4674345B2 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
Sullivan et al. Cis-trans isomerism in (trpy)(PPh3) RuC12. Comparisons between the chemical and physical properties of a cis-trans isomeric pair
Stallings et al. Redox chemistry of metal-catechol complexes in aprotic media. 1. Electrochemistry of substituted catechols and their oxidation products
Zhu et al. Urchinlike MnO2 nanoparticles for the direct electrochemistry of hemoglobin with carbon ionic liquid electrode
Murata et al. Synthesis, properties, and reactions of a stable carbanion derived from alkynyldihydrofullerene: 1-octynyl-C60 carbanion
Matsuo et al. Syntheses, structure, and derivatization of potassium complexes of penta (organo)[60] fullerene-monoanion,-dianion, and-trianion into hepta-and octa (organo) fullerenes
Fang et al. Electrochemical and spectroelectrochemical studies of diphosphorylated metalloporphyrins. Generation of a phlorin anion product
Maxwell et al. One-pot synthesis and characterization of a chromophore− donor− acceptor assembly
Meredith et al. Effects of ferrocene methylation on ferrocene-modified linear poly (ethylenimine) bioanodes
JP2002037615A (en) Metal-including fullerene ion
Tanaka et al. Synthesis of the singly bonded fullerene dimer C 120 H 2 and the difullerenylacetylene C 122 H 2, and generation of the all-carbon dianion C 122 2–
Sun et al. Electrochemical properties of metallofullerenes and their anions
Osterloh et al. Here’s looking at the reduction of noninnocent copper corroles via anion induced electron transfer
Nolan et al. Oxidation of [Co II W 12 O 40] 6–to [Co III W 12 O 40] 5–by peroxomonosulfate in strong and weak acid solutions, an example of zero-order kinetics
Stevens et al. Camphorae: Chiral intermediates for the total synthesis of steroids
JP2008504230A (en) Stable high oxidation state diamine metallocenes and processes for their preparation
Zhao et al. The synthesis, structure and properties of a new compound with 1D linear chain arsenomolybdate anion building block
Wakahara et al. Chemical reactivity and redox property of Sc3@ C82
Qu et al. Synthesis and properties of DNA complexes containing 2, 2, 6, 6‐tetramethyl‐1‐piperidinoxy (TEMPO) moieties as organic radical battery materials
Li et al. Reductive benzylation of singly bonded 1, 2, 4, 15-C60 dimers with an oxazoline or imidazoline heterocycle: unexpected formation of 1, 2, 3, 16-C60 adducts and insights into the reactivity of singly bonded C60 dimers
Ueno et al. Octaalkoxyfullerenes: Widely LUMO-Tunable C 2 v-Symmetric Fullerene Derivatives
Ebihara et al. Synthesis, structure, and properties of oxidized hexamolybdenum clusters [(Mo6X7Y) X'6] 2-(X= X'= Cl, Br; Y= S, Se)
Tkachenko et al. One-step synthesis of the polyaniline–single-walled carbon tubes nanocomposite in formic acid and its electrochemical properties
Lima et al. Cyclic voltammetric investigations on copper α-N, O-succinated chitosan interactions
CN105884676B (en) The preparation method of fullerene-polyoxometallate hybrid molecule
Zhang et al. Electrochemistry of Sc3N@ C78 and Sc3N@ C80 (Ih): On achieving reversible redox waves of the trimetal nitride endohedral fullerenes

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040729

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040827

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070308

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees