JP2002036487A - Plate making method of thermosensible stencil paper, plate making apparatus, and stencil printing plate - Google Patents

Plate making method of thermosensible stencil paper, plate making apparatus, and stencil printing plate

Info

Publication number
JP2002036487A
JP2002036487A JP2001126015A JP2001126015A JP2002036487A JP 2002036487 A JP2002036487 A JP 2002036487A JP 2001126015 A JP2001126015 A JP 2001126015A JP 2001126015 A JP2001126015 A JP 2001126015A JP 2002036487 A JP2002036487 A JP 2002036487A
Authority
JP
Japan
Prior art keywords
heat
film
contour
heating element
perforation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001126015A
Other languages
Japanese (ja)
Other versions
JP4302332B2 (en
Inventor
Atsushi Nakamura
淳 中村
Shoichi Ikejima
昭一 池嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riso Kagaku Corp
Original Assignee
Riso Kagaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riso Kagaku Corp filed Critical Riso Kagaku Corp
Priority to JP2001126015A priority Critical patent/JP4302332B2/en
Priority to US09/858,910 priority patent/US6532867B2/en
Priority to CNB011192488A priority patent/CN1162280C/en
Publication of JP2002036487A publication Critical patent/JP2002036487A/en
Priority to US10/255,712 priority patent/US6659003B2/en
Priority to US10/255,754 priority patent/US20030033945A1/en
Application granted granted Critical
Publication of JP4302332B2 publication Critical patent/JP4302332B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/14Forme preparation for stencil-printing or silk-screen printing
    • B41C1/144Forme preparation for stencil-printing or silk-screen printing by perforation using a thermal head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/24Stencils; Stencil materials; Carriers therefor
    • B41N1/245Stencils; Stencil materials; Carriers therefor characterised by the thermo-perforable polymeric film heat absorbing means or release coating therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • Y10T428/24322Composite web or sheet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Or Reproduction Of Printing Formes (AREA)
  • Printing Plates And Materials Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a perforation form with the dispersion of shapes reduced while the size of the perforations of the film of thermosensible stencil paper by controlling the lowering of heat transfer efficiency by the influence of a profile and without requiring high temperature conditions to a plate making device. SOLUTION: In a plate making method of the paper in which independent dot-shaped perforations corresponding to an image are formed by selectively heating the heat shrinkable film of the base paper having the film by a heating device, the perforation has a profile enclosing a through hole, and the height h in relation to the film surface before perforation of the profile upheaving to the side facing a heating element on the film meets formulas [1] and [2] of h<=4 [μm] [1] and h<=0.05√(pxpy) [μm] [2].

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、孔版印刷に用い
られる感熱孔版原紙のフィルムに、サーマルヘッド等の
加熱デバイスによって穿孔を施すことからなる感熱孔版
原紙の製版方法及び装置並びにそれによって得られた孔
版印刷版に関し、特に、熱伝達効率の低下をおさえて製
版デバイスに大きい印加エネルギーや高い温度条件を要
求することなく、穿孔の大きさを適切に保ち、また、ラ
ンダムにまたは画像パターンに依存して局所的に発生す
る穿孔の形状のばらつきをおさえ、さらに、フィルムの
樹脂が発熱素子に固着することを防止する、などの利点
を備えた穿孔形態に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for making a heat-sensitive stencil sheet, which comprises perforating a film of a heat-sensitive stencil sheet used for stencil printing with a heating device such as a thermal head, and an apparatus obtained therefrom. Regarding stencil printing plates, in particular, to maintain the size of the perforations appropriately, without reducing the heat transfer efficiency and requiring large applied energy and high temperature conditions to the stencil making device, and to rely on random or image patterns. The present invention relates to a perforation mode having advantages such as suppressing variation in the shape of perforations that occur locally and preventing resin of a film from sticking to a heating element.

【0002】[0002]

【従来の技術】感熱孔版原紙の熱可塑性樹脂フィルム
(以下、“熱可塑性樹脂フィルム”を単に“フィルム”
とよぶ)は、サーマルヘッドやレーザー等の加熱デバイ
スによる熱を受けてインクが通過するための穿孔が形成
される性質をもつ。印刷時はこの穿孔を通ってインクが
紙に転移する。そのフィルムの材料は今までに種々提案
されており、特開昭41-7623号ではポリプロピレン、ポ
リアミド、ポリエチレン、塩化ビニル・塩化ビニリデン
共重合体が、特開昭47-1184号ではプロピレン系共重合
体が、特開昭47-1185号では塩素化ポリ塩化ビニルが、
特開昭47-1186号では高結晶性塩化ビニルが、特開昭49-
6566号ではプロピレン・α-オレフィン共重合体が、特
開昭49-10860号ではエチレン・酢酸ビニル共重合体が、
特開昭51-2512号ではアクリロニトリル系樹脂が、特開
昭51-2513号ではポリエチレンテレフタレートが、特許1
669893号ではポリフッ化ビニリデンが、特許2030681号
ではポリエチレンナフタレート共重合体などがあげられ
ている。現在、市場で実用化されている感熱孔版原紙の
フィルムには、これらのうち、主に穿孔感度(少ない熱
量で十分な大きさの穿孔を得る性能)と機械適性(製版
時や印刷時にしわ、たるみ、伸び、変形が発生しにくい
性能)の理由により、ポリエチレンテレフタレート、ま
たは塩化ビニリデン系共重合体を2軸延伸した熱収縮性
フィルムが一般に用いられており、特に製版から印刷ま
で自動でおこなう孔版印刷機用にはポリエチレンテレフ
タレートが主流になっている。
2. Description of the Related Art Thermoplastic resin film of heat-sensitive stencil paper (hereinafter "thermoplastic resin film" is simply referred to as "film").
) Has the property that holes are formed for the passage of ink by receiving heat from a heating device such as a thermal head or a laser. During printing, ink is transferred to the paper through the perforations. Various materials for the film have been proposed so far, including polypropylene, polyamide, polyethylene, and vinyl chloride / vinylidene chloride copolymers in JP-A-41-7623, and propylene-based copolymers in JP-A-47-1184. Coalescence, in JP-A-47-1185, chlorinated polyvinyl chloride,
In JP-A-47-1186, highly crystalline vinyl chloride is used.
No. 6566 is a propylene-α-olefin copolymer, and in JP-A-49-10860, an ethylene-vinyl acetate copolymer is
Japanese Patent Application Laid-Open No. 51-2512 discloses an acrylonitrile resin, and Japanese Patent Application Laid-Open No. 51-2513 discloses a polyethylene terephthalate.
No. 669893 discloses polyvinylidene fluoride, and Japanese Patent No. 2030681 discloses a polyethylene naphthalate copolymer. At present, the heat-sensitive stencil film currently put to practical use in the market mainly includes the perforation sensitivity (performance of obtaining a perforation of a sufficient size with a small amount of heat) and mechanical aptitude (wrinkles at the time of plate making and printing, A heat-shrinkable film obtained by biaxially stretching polyethylene terephthalate or a vinylidene chloride-based copolymer is generally used because of its ability to prevent sagging, elongation and deformation. Polyethylene terephthalate is mainly used for printing machines.

【0003】一方、熱により穿孔を形成するためには、
延伸された熱収縮性フィルムでなくとも、低融点の樹脂
をキャストしたフィルムでもよい。この例として特許16
68117号や特開昭62-173296号には合成樹脂の溶液または
エマルションからキャストしたフィルムが、特開平4-78
590号にはシリコーンオイルを含有したキャストによる
熱可塑性樹脂フィルムが提案されている。キャストフィ
ルムの場合、熱収縮性を示さないが、融点の低い樹脂を
使用するので、熱せられた部分が溶融して穿孔を生じる
(このフィルムを以下“熱溶融性フィルム”とよぶ)。
On the other hand, in order to form perforations by heat,
Instead of the stretched heat-shrinkable film, a film obtained by casting a resin having a low melting point may be used. Patent 16
68117 and JP-A-62-173296 discloses a film cast from a solution or an emulsion of a synthetic resin.
No. 590 proposes a cast thermoplastic resin film containing silicone oil. In the case of a cast film, it does not exhibit heat shrinkage, but uses a resin having a low melting point, so that a heated portion is melted to cause perforation (hereinafter, this film is referred to as a “heat-meltable film”).

【0004】しかし、この熱溶融性フィルムは、現在、
市場では感熱孔版原紙として実用化されていない。その
理由は主に穿孔感度の低さと、穿孔形状の不安定さ、さ
らに製版物の印刷中における機械的強度の不足にあると
考えられる。
However, this hot-melt film is
It has not been commercialized as a heat sensitive stencil sheet in the market. It is considered that the reasons are mainly low perforation sensitivity, instability of perforation shape, and insufficient mechanical strength during printing of a plate-making product.

【0005】現在実用化されている孔版印刷機用の感熱
孔版原紙の熱収縮性フィルムは、厚さ1.5〜3μm程度を
実現していて、特許1668117号などで主張されている10
μm以下のフィルムを安定して製膜しラミネートするこ
との困難さはなくなっている。
The heat-shrinkable film of heat-sensitive stencil paper for stencil printing presses currently in practical use has achieved a thickness of about 1.5 to 3 μm, and is claimed in Japanese Patent No. 1668117.
The difficulty of stably forming and laminating a film of μm or less has disappeared.

【0006】また、穿孔挙動における樹脂の移動は、熱
溶融性フィルムが表面張力のみに頼っているのに比べ
て、熱収縮性フィルムは表面張力より十分大きい熱収縮
応力に頼っているため、膜厚と溶融粘度が同程度ならば
熱溶融性フィルムよりも熱収縮性フィルムが格段に高感
度であり、すなわち小さい熱量で十分な大きさの穿孔が
得られる。
[0006] The movement of the resin in the perforation behavior is based on the fact that the heat-shrinkable film relies on a heat shrinkage stress that is sufficiently larger than the surface tension, whereas the heat-meltable film relies on only the surface tension. If the thickness and the melt viscosity are approximately the same, the heat-shrinkable film is much more sensitive than the heat-meltable film, that is, a sufficiently large perforation can be obtained with a small amount of heat.

【0007】熱収縮性フィルムの熱収縮応力は温度依存
性が明確で、このことによりサーマルヘッドの発熱素子
などによって得られる温度パターンに忠実な穿孔が得ら
れている。一方、熱溶融性フィルムを加熱しその表面張
力によって穿孔する場合、発熱素子の温度パターンが穿
孔形状に忠実に反映されない。なぜなら、溶融して粘度
が低下した樹脂が表面張力によって移動する方向は発熱
素子の中心から遠い低温度の方向とは限らず、支持体繊
維の周辺に集まったり、発熱素子との相対移動によるズ
リによって不規則に流されたりするからである。したが
って、熱溶融性フィルムを使用した感熱孔版原紙を製版
して、印刷条件に適した開孔率を実現しても、個々の穿
孔の類似性は非常に低い。つまり、微視的には大きな穿
孔と小さな穿孔が混在し、画像のベタ部分などにおける
均一な濃度を実現しにくい。
[0007] The heat shrinkage stress of the heat shrinkable film has a clear temperature dependency, and as a result, perforations faithful to the temperature pattern obtained by the heating element of the thermal head are obtained. On the other hand, when a hot-melt film is heated and perforated by its surface tension, the temperature pattern of the heating element is not faithfully reflected in the perforated shape. This is because the direction in which the resin whose viscosity has decreased due to melting is moved by the surface tension is not limited to the direction of low temperature far from the center of the heating element, but may be gathered around the support fiber or slipped due to relative movement with the heating element. This is because they may be washed away irregularly. Therefore, even if a heat-sensitive stencil sheet using a hot-melt film is made into a stencil to realize a porosity suitable for printing conditions, the similarity of individual perforations is very low. In other words, microscopically, large holes and small holes are mixed, and it is difficult to realize a uniform density in a solid portion or the like of an image.

【0008】さらに、熱溶融性フィルムの樹脂は低融点
とはいえ、現在の孔版印刷機の製版装置の製版条件であ
る微小エリア(画素密度300〜600dpi)及び短時間(副
走査の周期が2〜4ms)といった条件下において、表面張
力による樹脂の十分な移動を得るためには、熱収縮性フ
ィルムに対するよりも非常に高い温度を発熱素子に与え
る必要があり、このことが発熱素子を過熱劣化させる原
因となる。
Further, although the resin of the heat-meltable film has a low melting point, it has a small area (pixel density of 300 to 600 dpi) and a short time (sub-scan cycle of 2 In order to obtain sufficient movement of the resin due to surface tension under conditions such as ~ 4 ms), it is necessary to apply a much higher temperature to the heating element than to the heat-shrinkable film, which causes the heating element to overheat and deteriorate. This can cause

【0009】また、印刷中の感熱孔版原紙は、版胴の回
転方向に印刷用紙とのズリによる応力を受ける。キャス
トされた熱溶融性フィルムを使用する感熱孔版原紙は、
延伸された熱収縮性フィルムを使用する感熱孔版原紙に
比べて、一般的に弾性率や破断強度が低い。このため
に、熱溶融性フィルムを備えた感熱孔版原紙は、熱収縮
性フィルムを備えた感熱孔版原紙よりも、印刷画像の変
形や、場合によっては原紙の切れによる画像の汚損を起
こしやすい。
Further, the heat-sensitive stencil sheet during printing is subjected to stress due to misalignment with the printing paper in the rotation direction of the plate cylinder. Heat-sensitive stencil paper using a cast hot-melt film,
Generally, the elastic modulus and the breaking strength are lower than those of a heat-sensitive stencil sheet using a stretched heat-shrinkable film. For this reason, the heat-sensitive stencil sheet provided with the heat-fusible film is more liable to cause deformation of a printed image and, in some cases, image contamination due to cutting of the base sheet, than the heat-sensitive stencil sheet provided with the heat-shrinkable film.

【0010】以上の理由から、感熱孔版原紙としては、
熱収縮性フィルムを備えたものが現在および今後の主流
であるといえる。したがって、感熱孔版原紙に関する以
下の議論は、熱収縮性フィルムを備えた感熱孔版原紙に
関するものに限定する。
For the above reasons, heat-sensitive stencil paper is
It can be said that those having a heat-shrinkable film are the mainstream at present and in the future. Accordingly, the following discussion of heat-sensitive stencil paper is limited to heat-sensitive stencil paper with a heat-shrinkable film.

【0011】感熱孔版原紙は、印刷機にセットされ印刷
動作をおこなう際に受ける力による伸び、しわ(これら
は印刷画像のゆがみを生じさせる)、破損(これは印刷
画像を汚す)を避ける目的で、必要な強度を与えるため
に、通常、すでに述べたフィルムに多孔性支持体を貼り
合わせた構成とすることが多い。多孔性支持体は、感熱
孔版原紙に強度を与えるとともに、開孔部をとおしてイ
ンクを通過させるという孔版印刷版の機能を満足させる
構造をもつ。多孔性支持体の材料としては、(1)こう
ぞ、みつまた、マニラ麻などの天然繊維を抄造した、い
わゆる和紙、(2)レーヨン、ビニロン、ポリエステ
ル、ナイロンなどの再生繊維や合成繊維を紙状に抄造し
たシート、(3)前記(1)の天然繊維と前記(2)の再
生繊維や合成繊維とを混合して抄造した混抄紙、(4)
ポリエステル系繊維とバインダー繊維としての未延伸ポ
リエステル系繊維とを混合して抄造した薄葉紙を熱ロー
ルで熱圧加工した、いわゆるポリエステル紙などが知ら
れている。
The heat-sensitive stencil sheet is used for the purpose of avoiding elongation, wrinkles (these cause distortion of a printed image), and breakage (which stains the printed image) due to the force received when the printing stencil sheet is set in a printing machine and performs a printing operation. Usually, in order to give a necessary strength, a structure in which a porous support is attached to the film described above is often used. The porous support has a structure that imparts strength to the heat-sensitive stencil sheet and satisfies the function of the stencil printing plate to allow ink to pass through the apertures. As the material of the porous support, (1) so-called Japanese paper made from natural fibers such as Kouzo, Mitsuma and Manila hemp, and (2) recycled fibers and synthetic fibers such as rayon, vinylon, polyester and nylon into paper form (4) a mixed sheet made by mixing the natural fiber of (1) with the recycled fiber or the synthetic fiber of (2);
There is known a so-called polyester paper obtained by mixing a polyester fiber with an undrawn polyester fiber as a binder fiber and subjecting the tissue paper to hot-press processing with a hot roll.

【0012】一方、このようなフィルムと多孔性支持体
を貼り合わせた構成の感熱孔版原紙は、印刷機の印刷動
作による力に耐える強度を実現するが、後述するフィル
ムに施された穿孔をとおしてインクが感熱孔版原紙を通
過する際の、多孔性支持体の繊維の分散状態により発生
するインク通過性の不均一(これは印刷画像の濃度の均
一性を低下させる)を生じさせることがあり、これを嫌
って感熱孔版原紙を実質的にフィルムの単層構造とする
提案もなされている。
On the other hand, a heat-sensitive stencil sheet having such a structure in which a film and a porous support are bonded together realizes strength enough to withstand the force of the printing operation of a printing machine. In addition, when the ink passes through the heat-sensitive stencil sheet, unevenness of the ink permeability caused by the dispersion state of the fibers of the porous support (which may reduce the uniformity of the density of the printed image) may occur. To avoid this, a proposal has been made to make the heat-sensitive stencil paper substantially a single-layer structure of a film.

【0013】ところで、感熱孔版原紙のフィルムに穿孔
を形成して製版する方法としては、感熱孔版原紙のフィ
ルム側とカーボンを含む画線部をもつ原稿とを密着させ
て赤外線を照射し画線部の発熱によりフィルムを穿孔す
る方法や、感熱孔版原紙のフィルム側とサーマルヘッド
とを密着し相対移動させて原稿画像に対応する発熱素子
を発熱させフィルムを穿孔する方法や、感熱孔版原紙の
フィルム上に原稿画像に対応する変調をかけたレーザー
ビームをスキャンさせフィルムを穿孔する方法などがあ
る。このうち赤外線による方法は原稿の種類に制限があ
り、また文書や画像のデータ編集に対応できない。レー
ザーによる方法は主に製版時間の長さが原因で実用化で
きていない。したがって、現在のところ、サーマルヘッ
ドによる方法が主流である。
As a method of making a plate by forming perforations in the film of the heat-sensitive stencil sheet, the film side of the heat-sensitive stencil sheet is brought into close contact with a document having an image portion containing carbon to irradiate infrared rays to the image portion. A method of perforating a film by heat generation of a heat-sensitive stencil, a method of closely moving a film side of a heat-sensitive stencil sheet and a thermal head and moving the heating element corresponding to an original image to perforate the film, For example, there is a method of perforating a film by scanning a modulated laser beam corresponding to a document image. Of these methods, the method using infrared rays has a limitation on the type of original and cannot cope with data editing of documents and images. The laser method has not been put to practical use mainly due to the length of the plate making time. Therefore, at present, the method using a thermal head is mainly used.

【0014】サーマルヘッドによる製版では、主走査方
向と副走査方向の2次元的に配列された多数の穿孔を形
成する。このとき穿孔はそれぞれがほぼ等しい形状で印
刷条件に適した開孔率を実現することが望ましい。穿孔
形状がそろっていると、画線部、特にベタ部において微
視的なインク転移状態が均一化され、均一な濃度が得ら
れるためである。逆に穿孔形状が不ぞろいだと、微視的
なインク転移状態が一定せず、細線がかすれたり、ベタ
の濃度が不均一であったり、過大な穿孔によって部分的
にインク転移が過多になることで裏移りを発生させるこ
とになる。このため、各発熱素子による穿孔形状を安定
させるために、発熱素子形状について種々の提案がなさ
れている。特許2732532号では、主走査のピッチと副走
査のピッチを等しくし、発熱素子の主走査方向長さを副
走査方向長さより短くし、発熱素子の副走査方向長さを
副走査のピッチよりも短くし、主走査方向にも副走査方
向にも独立した穿孔を得る方法が提案されている。特開
平4-314552号では、主走査方向に隣接する発熱素子間に
熱伝導率の大きい材料を用いた冷却部材を配置し、主走
査方向に隣接する穿孔の連結を防ぐ方法が提案されてい
る。特開平6-115042号では、熱可塑性樹脂フィルム単体
からなる感熱孔版原紙を、発熱素子の主走査方向長さが
主走査のピッチの15〜75%の範囲内にし、発熱素子の副
走査方向長さが副走査のピッチの15〜75%の範囲内にし
たサーマルヘッドで製版する方法が提案されている。
In plate making using a thermal head, a large number of perforations are formed two-dimensionally arranged in the main scanning direction and the sub-scanning direction. At this time, it is desirable that the perforations have substantially the same shape and realize an opening ratio suitable for printing conditions. This is because if the perforated shapes are uniform, the microscopic ink transfer state is uniformed in the image area, particularly in the solid area, and a uniform density can be obtained. Conversely, if the perforation shape is irregular, the microscopic ink transfer state is not constant, the thin lines are blurred, the solid density is uneven, or the ink transfer is partially excessive due to excessive perforation. Will cause set-off. For this reason, various proposals have been made regarding the shape of the heating element in order to stabilize the shape of the hole formed by each heating element. In Japanese Patent No. 2732532, the pitch of the main scanning and the pitch of the sub-scanning are equal, the length of the heating element in the main scanning direction is shorter than the length of the sub-scanning direction, and the length of the heating element in the sub-scanning direction is smaller than the pitch of the sub-scanning. There has been proposed a method of shortening the length to obtain independent perforations in both the main scanning direction and the sub-scanning direction. Japanese Patent Application Laid-Open No. 4-314552 proposes a method in which a cooling member using a material having high thermal conductivity is arranged between heating elements adjacent in the main scanning direction to prevent connection of perforations adjacent in the main scanning direction. . Japanese Patent Application Laid-Open No. Hei 6-15042 discloses that a heat-sensitive stencil sheet made of a thermoplastic resin film alone has a length in the main scanning direction of a heating element within a range of 15 to 75% of a pitch of a main scanning, and a length in a sub-scanning direction of the heating element. There has been proposed a method of making a plate using a thermal head in which the pitch is set within a range of 15 to 75% of the pitch of the sub-scan.

【0015】従来、穿孔形態については、貫通孔の平面
形状(直径、縦横比、面積)、またはその統計的な状態
(平均値、ばらつき)がもっぱら議論され、望ましいイ
ンクの転移状態を与える穿孔の輪郭形状については以下
のような例を除いてはほとんど言及されていない。すな
わち、特許2638390号では、発熱素子の主走査方向長さ
および副走査方向長さと穿孔の主走査方向長さおよび副
走査方向長さの4者の関係を規定し、主走査方向にも副
走査方向にも独立した穿孔を得る方法が提案されてお
り、この中で穿孔の輪郭の存在が述べられている。特開
平6-320700号では、実質的にフィルムのみからなる感熱
孔版原紙の一方の面から第1のサーマルヘッドで加熱
し、その後他方の面から第2のサーマルヘッドで加熱し
て穿孔する方法が提案されており、この中で穿孔の断面
形状が述べられている。特開平8-20123号では、感熱孔
版原紙の支持体に起因する穿孔形状のばらつきを除去す
るために、感熱孔版原紙が実質的に3.5μm以上の厚さの
熱可塑性樹脂フィルムのみからなり、形成された孔はす
り鉢状の断面を有し、そのすり鉢断面の寸法を主走査の
ピッチとの関係で規定した感熱孔版原紙の製版方法が提
案されている。
Conventionally, regarding the perforation form, the planar shape (diameter, aspect ratio, area) of the perforation or its statistical state (average value, variation) has been exclusively discussed, and the perforation of the perforation which gives a desirable ink transfer state has been discussed. Almost no mention is made of the contour shape except for the following examples. That is, in Japanese Patent No. 2638390, the relationship between the length of the heating element in the main scanning direction and the length in the sub-scanning direction and the length of the hole in the main scanning direction and the length in the sub-scanning direction is defined. Methods have been proposed for obtaining perforations that are also independent in the direction, in which the presence of perforations is described. JP-A-6-320700 discloses a method in which a heat-sensitive stencil sheet consisting essentially of a film is heated from one side by a first thermal head, and then heated from the other side by a second thermal head and perforated. A cross-sectional shape of the perforation is described therein. In JP-A-8-20123, in order to remove variations in perforated shape caused by the support of the heat-sensitive stencil sheet, the heat-sensitive stencil sheet is substantially composed of only a thermoplastic resin film having a thickness of 3.5 μm or more, and formed. The perforated hole has a mortar-shaped cross section, and a plate making method of heat-sensitive stencil paper in which the size of the mortar cross section is defined in relation to the pitch of main scanning has been proposed.

【0016】前記特許2732532号、特開平4-314552号、
特開平6-115042号は、隣接する穿孔同士の連結による拡
大を防ぎ、個々の穿孔形状をそろえ、望ましいインク転
移状態を実現するための有力な方法であるが、フィルム
の物性によって穿孔挙動がことなるために、多様な熱収
縮性フィルムに対して穿孔形状を制御する最良の方法を
示しているとはいえない。
Patent No. 2732532, JP-A-4-314552,
Japanese Patent Application Laid-Open No. Hei 6-15042 is a powerful method for preventing enlargement due to the connection of adjacent perforations, aligning individual perforations, and achieving a desired ink transfer state, but the perforation behavior depends on the physical properties of the film. For this reason, it cannot be said that it shows the best way to control the perforation shape for various heat-shrinkable films.

【0017】また、前記特許2638390号、特開平6-32070
0号には穿孔の輪郭や穿孔の断面形状についての記述が
あるが、いずれもその存在を示しているにすぎず、穿孔
の輪郭や断面形状が穿孔形状に与える影響や、熱伝達効
率を低下させないための方法や、穿孔形状を均一化する
方法についての示唆は得られない。
Also, the above-mentioned Japanese Patent No. 2638390, Japanese Patent Laid-Open No. 6-32070
No. 0 describes the outline of the drilling and the cross-sectional shape of the drilling, but they only indicate its existence, and the effect of the drilling outline and cross-sectional shape on the drilling shape and the heat transfer efficiency are reduced. There is no suggestion about a method for preventing the perforation or a method for making the perforated shape uniform.

【0018】また、前記特開平8-20123号に記載されて
いる製版方法は、上述のように、すり鉢断面の寸法を主
走査のピッチとの関係を規定しているが、このような多
孔性支持体をもたない厚手の熱可塑性樹脂フィルムのみ
からなる感熱孔版原紙は現在、市場における製品として
実施されておらず、その穿孔形態以前の問題が解決され
ていない。また、熱可塑性樹脂フィルムと多孔性支持体
とを貼り合わせた従来の形態を含めた一般的な感熱孔版
原紙に施した穿孔の断面形状については言及しておら
ず、輪郭の断面形状や高さが熱伝達効率に影響し、穿孔
形状のばらつきに影響するという知見については一切開
示していない。
Further, in the plate making method described in JP-A-8-20123, the relationship between the dimensions of the mortar cross section and the pitch of the main scan is specified as described above. Heat-sensitive stencil paper consisting solely of a thick thermoplastic resin film without a support is not currently implemented as a product on the market, and the problem before its perforated form has not been solved. In addition, it does not mention the cross-sectional shape of perforations made in general thermosensitive stencil paper, including the conventional form in which a thermoplastic resin film and a porous support are bonded together, and does not refer to the cross-sectional shape or height of the contour. Does not disclose any finding that the influence of the influence on the heat transfer efficiency and the variation of the perforated shape.

【0019】[0019]

【発明が解決しようとする課題】孔版印刷版において、
一定の大きさの貫通孔を形成させようとする場合、サー
マルヘッドによって穿孔される部分の樹脂は貫通孔の周
囲の輪郭部分に移動するが、感熱孔版原紙のフィルムの
熱物性やサーマルヘッドの発熱素子の発熱条件などによ
っては、しばしばこの輪郭部分に集積された樹脂は、フ
ィルムの加熱される側の面より大きく隆起して形成され
る。
SUMMARY OF THE INVENTION In a stencil printing plate,
When trying to form a through hole of a certain size, the resin in the part perforated by the thermal head moves to the outline around the through hole, but the thermal properties of the film of the heat-sensitive stencil paper and the heat generated by the thermal head Depending on the heat generation conditions of the element, the resin accumulated on the contour is often formed to be larger than the surface of the film to be heated.

【0020】この隆起部分は、フィルムの被加熱面とサ
ーマルヘッドの発熱素子の間にはさまれて、フィルムの
被加熱面と発熱素子とを隔てるはたらきをする。その結
果、発熱素子からフィルムへの熱伝達効率を大きく低下
させて貫通孔の大きさを目標値に実現させることを困難
にする。貫通孔の大きさが目標値に達しない場合は、印
刷物の濃度不足を発生させる。また、それに対してサー
マルヘッドの発熱素子に印加するエネルギーを強める方
法によって目標値を実現しようとすると、発熱素子を損
傷するおそれもある。
The raised portion is interposed between the surface to be heated of the film and the heating element of the thermal head, and serves to separate the surface to be heated of the film from the heating element. As a result, it is difficult to greatly reduce the efficiency of heat transfer from the heating element to the film and to achieve the target size of the through hole. If the size of the through hole does not reach the target value, the density of the printed matter is insufficient. On the other hand, if an attempt is made to achieve the target value by increasing the energy applied to the heating element of the thermal head, the heating element may be damaged.

【0021】一方、形成された隆起がフィルムの被加熱
面と発熱素子とを隔てる距離は、穿孔が形成されない非
画像部分と、多数の穿孔が形成されるベタ部分とでは異
なる。そのため、上記の熱伝達効率の低下は画像率の影
響を受け、印刷物における濃度むらを発生させる。ま
た、輪郭の隆起部分がサーマルヘッドの発熱素子と圧着
され、ずりの力を受けて搬送されるために、穿孔の輪郭
の平面形状、すなわち貫通孔の形状をゆがませ、印刷物
における微視的な濃度むらや文字などのパターンの再現
性の低下を生じさせる。貫通孔の形状のゆがみが著しい
場合は、隣り合う穿孔の貫通孔が連結して、それによっ
て生じる大きな貫通孔から過多の量のインクが紙に転移
することによる裏移りなども発生させている。
On the other hand, the distance that the formed protrusion separates the heated surface of the film from the heating element is different between a non-image portion where no perforations are formed and a solid portion where a large number of perforations are formed. Therefore, the above-described decrease in the heat transfer efficiency is affected by the image ratio, and causes uneven density in the printed matter. In addition, since the raised portion of the contour is pressed against the heating element of the thermal head and conveyed by shearing force, the planar shape of the contour of the perforated hole, that is, the shape of the through hole is distorted, and the printed material is microscopically printed. This causes a reduction in the reproducibility of patterns such as uneven density and characters. When the shape of the through-hole is significantly distorted, the through-holes of adjacent perforations are connected to each other, thereby causing set-off due to transfer of an excessive amount of ink from the large through-hole to paper.

【0022】さらに、上記のずりによって変形されたフ
ィルムの樹脂がフィルムから脱落し、サーマルヘッドの
発熱素子の下流側に堆積し、それがさらに発熱素子とフ
ィルムとを隔てて製版性能を大きく低下させるという症
状をおこすこともある。
Furthermore, the resin of the film deformed by the above-mentioned shear falls off the film and deposits on the downstream side of the heating element of the thermal head, which further reduces the plate making performance by further separating the heating element from the film. May cause symptoms.

【0023】これらの症状の原因は、フィルムの熱物性
やサーマルヘッドの発熱素子の発熱条件などにあること
は知られていたが、穿孔の貫通孔の周囲に隆起する輪郭
の高さとの関係ではとりあげられていなかった。また、
穿孔の輪郭を含む穿孔形状を決定する因子についての具
体的な知見は明らかにされておらず、試行錯誤の状態で
あった。
It has been known that the causes of these symptoms are due to the thermophysical properties of the film and the heat generation conditions of the heating element of the thermal head. However, in relation to the height of the contour protruding around the through hole of the perforation, it is known. It was not picked up. Also,
Specific knowledge about the factors that determine the perforation shape, including the perforation outline, was not clarified, and was in a state of trial and error.

【0024】この発明は、この問題点を解決するための
ものであり、輪郭の影響による熱伝達効率の低下をおさ
えて製版デバイスに大きい印加エネルギーや高い温度条
件を要求することなく、穿孔の貫通孔の大きさを適切に
保ち、ランダムにまたは画像パターンに依存して局所的
に発生する穿孔形状のばらつきをおさえ、フィルムの樹
脂が発熱素子に固着することを防止する、などのための
穿孔形態を提供することを目的とする。
The present invention has been made to solve this problem, and suppresses the heat transfer efficiency due to the influence of the contour, and does not require a large applied energy and a high temperature condition for the plate making device. Perforation forms for maintaining the size of the holes appropriately, suppressing variations in the perforations that occur randomly or locally depending on the image pattern, and preventing the resin of the film from sticking to the heating element. The purpose is to provide.

【0025】[0025]

【課題を解決するための手段】本発明者は、上記目的の
下に感熱孔版原紙の穿孔挙動について鋭意研究した結
果、穿孔間のピッチに応じて輪郭の高さを一定条件に従
うように穿孔を形成することにより、フィルムの厚さや
融点にかかわらず、穿孔の形状のばらつきを抑え、良好
な印刷物が得られることを見いだした。
The inventor of the present invention has conducted intensive studies on the perforation behavior of heat-sensitive stencil paper under the above-mentioned object, and has found that the perforation is performed so that the height of the contour conforms to a certain condition according to the pitch between the perforations. It has been found that the formation suppresses variation in the shape of the perforations regardless of the thickness and melting point of the film, thereby obtaining a good printed matter.

【0026】すなわち、この発明の第一の局面によれ
ば、熱収縮性フィルムを備えた感熱孔版原紙の当該熱収
縮性フィルムを加熱デバイスで選択的に加熱して画像に
対応する独立した点状の穿孔を形成させる製版方法にお
いて、該穿孔は貫通孔を囲む輪郭をもち、熱収縮性フィ
ルム上の加熱される側の面に隆起する輪郭の、穿孔前の
フィルム面に対する高さhは、下記式[1]および式[2]を
満足することを特徴とする感熱孔版原紙の製版方法、 h≦4[μm] [1] h≦0.05√(px py)[μm] [2] (式中、pxは主走査のピッチ[μm]、pyは副走査のピ
ッチ[μm]である。)が提供される。
That is, according to the first aspect of the present invention, the heat-shrinkable film of the heat-sensitive stencil sheet provided with the heat-shrinkable film is selectively heated by a heating device to form an independent dot corresponding to an image. In the plate-making method for forming a perforation, the perforation has a contour surrounding the through-hole, and a height h of the contour rising on the surface on the heated side on the heat-shrinkable film with respect to the film surface before perforation is as follows. equation [1] and the formula the process for making a heat-sensitive stencil sheet which satisfies the [2], h ≦ 4 [ μm] [1] h ≦ 0.05√ (p x p y) [μm] [2] ( wherein, p x main scanning pitch [μm], p y is the sub-scanning pitch [[mu] m].) is provided.

【0027】また、この発明の第二の局面によれば、熱
収縮性フィルムを備えた感熱孔版原紙の当該熱収縮性フ
ィルムを加熱デバイスで選択的に加熱して画像に対応す
る独立した点状の穿孔を形成させる製版装置において、
該穿孔は貫通孔を囲む輪郭をもち、熱収縮性フィルム上
の加熱される側の面に隆起する輪郭の、穿孔前のフィル
ム面に対する高さhは、下記式[1]および式[2]を満足す
ることを特徴とする感熱孔版原紙の製版装置、 h≦4[μm] [1] h≦0.05√(px py)[μm] [2] (式中、pxは主走査のピッチ[μm]、pyは副走査のピ
ッチ[μm]である。)が提供される。
Further, according to the second aspect of the present invention, the heat-shrinkable film of the heat-sensitive stencil sheet provided with the heat-shrinkable film is selectively heated by a heating device to form an independent dot corresponding to an image. In a plate making apparatus for forming a perforation,
The perforation has a contour surrounding the through-hole, and the height h of the contour raised on the surface on the heated side on the heat-shrinkable film with respect to the film surface before perforation is represented by the following formulas [1] and [2]. plate making apparatus of the heat-sensitive stencil sheet which satisfies the, h ≦ 4 [μm] [ 1] h ≦ 0.05√ (p x p y) [μm] [2] ( wherein, the p x main scanning Pitch [μm], py is the sub-scanning pitch [μm]).

【0028】また、この発明の第三の局面によれば、加
熱デバイスで選択的に加熱して画像に対応する独立した
点状の穿孔が形成された熱収縮性フィルムを備えた孔版
印刷版であって、該穿孔は貫通孔を囲む輪郭をもち、熱
収縮性フィルム上の加熱される側の面に隆起する輪郭
の、穿孔前のフィルム面に対する高さhは、下記式[1]お
よび式[2]を満足することを特徴とする孔版印刷版、 h≦4[μm] [1] h≦0.05√(px py)[μm] [2] (式中、pxは主走査のピッチ[μm]、pyは副走査のピ
ッチ[μm]である。)が提供される。
According to the third aspect of the present invention, there is provided a stencil printing plate provided with a heat-shrinkable film in which independent dot-like perforations corresponding to an image are formed by being selectively heated by a heating device. The perforation has a contour surrounding the through hole, and the height h of the contour rising on the surface on the heated side on the heat-shrinkable film with respect to the film surface before perforation is represented by the following formula [1] and formula stencil printing plate, characterized by satisfying the [2], h ≦ 4 [ μm] [1] h ≦ 0.05√ (p x p y) [μm] [2] ( wherein, the p x main scanning Pitch [μm], py is the sub-scanning pitch [μm]).

【0029】また、この発明の第四の局面によれば、加
熱デバイスにより選択的に加熱されて画像に対応する独
立した点状の穿孔を形成する熱収縮性フィルムを備える
感熱孔版原紙であって、該穿孔は貫通孔を囲む輪郭をも
ち、熱収縮性フィルム上の加熱される側の面に隆起する
輪郭の、穿孔前のフィルム面に対する高さhは、下記式
[1]および式[2]を満足することを特徴とする感熱孔版原
紙、 h≦4[μm] [1] h≦0.05√(px py)[μm] [2] (式中、pxは主走査のピッチ[μm]、pyは副走査のピ
ッチ[μm]である。)が提供される。
According to a fourth aspect of the present invention, there is provided a heat-sensitive stencil sheet provided with a heat-shrinkable film which is selectively heated by a heating device to form independent dot-like perforations corresponding to images. The perforation has a contour surrounding the through hole, and the height h of the contour rising on the surface on the heated side on the heat-shrinkable film with respect to the film surface before perforation is represented by the following formula:
[1] and the heat-sensitive stencil sheet which satisfies the formula [2], h ≦ 4 [ μm] [1] h ≦ 0.05√ (p x p y) [μm] [2] ( wherein, p x is the pitch of the main scan [μm], and py is the pitch of the sub-scan [μm].

【0030】以下に、この発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0031】すでに述べたように、感熱孔版原紙は、そ
の構成から、フィルムと多孔性支持体との貼り合わせ構
造のものと、実質的にフィルムの単層構造であるものの
2種類がある。以下の議論はそのような感熱孔版原紙の
構成に依存しない、感熱孔版原紙のフィルムに施すべき
望ましい穿孔の形状的特徴、およびそのような形状的特
徴を持つ穿孔を形成させるための製版方法、製版装置、
感熱孔版原紙、また、それらによって得られる製版され
た感熱孔版原紙の性質に関するものであるので、以後、
感熱孔版原紙という場合、フィルムと多孔性支持体とを
貼り合わせた構造のものと、実質的にフィルムの単層構
造であるものの両方を総称し、特に区別しないことにす
る。実際、この発明は上記2種類の構成の感熱孔版原紙
のどちらにも適用することができる。また以後、孔版印
刷に用いるための製版された感熱孔版原紙を“孔版印刷
版”とよぶ。
As described above, there are two types of heat-sensitive stencil paper, from the structure thereof, those having a structure in which a film and a porous support are bonded to each other, and those having a substantially single-layer structure of a film. The following discussion is independent of the composition of such heat-sensitive stencil paper, the desired perforation features to be made in the film of heat-sensitive stencil paper, the plate making method for forming perforations having such shape characteristics, plate making apparatus,
Since it relates to the properties of the heat-sensitive stencil paper and the prepress-formed heat-sensitive stencil paper obtained therefrom,
In the case of heat-sensitive stencil paper, both those having a structure in which a film and a porous support are bonded together and those having a substantially single-layer structure of a film are generically referred to, and are not particularly distinguished. In fact, the present invention can be applied to both of the above two types of heat-sensitive stencil sheets. Hereinafter, a heat-sensitive stencil sheet made for stencil printing is referred to as a "stencil printing plate".

【0032】一般に、熱収縮性の感熱孔版原紙のフィル
ムに施された穿孔1は、図1に示すように、貫通部分2と
そのまわりに形成される変形を生じた部分3とで構成さ
れる。この貫通部分2を以下、“貫通孔”とよぶ。貫通
孔2のまわりに形成される変形を受けた部分3は、製版さ
れる前のフィルムに比べ、厚みが変化している。変形を
生じた部分3は一般に、楕円断面部分(この部分を、本
明細書では、“輪郭”とよぶ)4と、場合によってはそ
の内側に接する薄膜部分5とからなる。薄膜部分5がしめ
る体積は、輪郭4がしめる体積に比べ、非常にわずかな
ものである。フィルムや製版の条件によっては、薄膜部
分5が生じないこともある。輪郭4は、製版される前の状
態、または製版によって変形されない部分に比べ、厚く
なる。製版される前の、または製版によって変形されな
い部分の、感熱孔版原紙の加熱デバイスによって加熱さ
れる側のフィルム表面6を、本明細書では、“基準面”
とよぶ。基準面6に対し、輪郭4が加熱デバイスの方向に
隆起する最大の高さ7を、本明細書では、輪郭の“高
さ”と定義する。また、貫通孔2と変形を生じた部分3
を合わせた全体1を、本明細書では、“穿孔”とよぶ。
また、穿孔1を形成させることも、本明細書では、“穿
孔(する)”とよぶ。
Generally, perforations 1 formed in a film of a heat-shrinkable heat-sensitive stencil sheet are composed of a penetrating portion 2 and a deformed portion 3 formed therearound as shown in FIG. . This penetrating portion 2 is hereinafter referred to as “through hole”. The deformed portion 3 formed around the through hole 2 has a thickness changed compared to the film before plate making. The deformed portion 3 generally comprises an elliptical cross-section portion (this portion is referred to herein as a "contour") 4 and, in some cases, a thin film portion 5 that contacts the inside. The volume of the thin film portion 5 is very small compared to the volume of the outline 4. Depending on the conditions of the film or plate making, the thin film portion 5 may not be formed. The outline 4 is thicker than the state before plate making or a part that is not deformed by plate making. In the present specification, the film surface 6 on the side heated by the heating device of the heat-sensitive stencil sheet before the stencil making or the portion not deformed by the stencil making is referred to as “reference plane”
Call it. The maximum height 7 at which the contour 4 rises relative to the reference plane 6 in the direction of the heating device is defined herein as the "height" of the contour. Also, the through hole 2 and the deformed portion 3
In this specification, the entirety 1 combined with is referred to as “perforation”.
Forming the perforations 1 is also referred to as "perforating" in this specification.

【0033】本発明者らは、本発明に関する研究におい
て、従来にない新しい観点での穿孔現象の評価方法を見
いだした。すなわち、感熱孔版原紙の製版方法として現
在もっとも一般的なサーマルヘッドによって熱収縮フィ
ルムが穿孔される現象を、μmオーダーの顕微鏡視野で
μsオーダーの高速に撮像できる装置を使用し、時間と
ともにフィルムに穿孔が発生し拡大する挙動を観察し
た。これにより、穿孔の一連の挙動は以下の4段階に分
けられることがわかった。
The present inventors have found a method for evaluating the perforation phenomenon from a new viewpoint which has not been seen in the past, in a study on the present invention. In other words, using a device that can rapidly image the phenomenon of heat shrinkable film perforation by a thermal head, which is currently the most common thermal stencil sheet making method, in a micrometer order microscopic field of view in the order of microseconds, and perforate the film with time. Was observed and the behavior of expansion was observed. Thus, it was found that a series of perforation behaviors was divided into the following four stages.

【0034】第一に、発熱素子に電圧が印加され、ジュ
ール熱が発生する。これによってサーマルヘッドの発熱
素子は、図2のように、中心部がもっとも高温で、周辺
にいくほど温度が低くなる温度分布をもち、フィルムを
加熱する。それによって、フィルムは、図3のように、
発熱素子の中心と接する部分がもっとも高温になり、そ
こから離れるほど温度が下がる。もちろん、発熱素子の
温度分布も、フィルムの温度分布も、時間によって変化
する。
First, a voltage is applied to the heating element, and Joule heat is generated. As a result, as shown in FIG. 2, the heating element of the thermal head has a temperature distribution in which the temperature is highest at the center and lowers toward the periphery, and heats the film. Thereby, the film becomes as shown in FIG.
The portion in contact with the center of the heating element has the highest temperature, and the farther away from it, the lower the temperature. Of course, both the temperature distribution of the heating element and the temperature distribution of the film change with time.

【0035】フィルムは、図4のように、収縮し始める
温度8(以後、これを“収縮開始温度”とよぶ。収縮開
始温度8はフィルムのガラス転移温度を越えている)を
超えると、フィルム面の方向に互いに距離を縮めようと
する力(熱収縮応力)が発生するから、収縮開始温度8
以上の領域のいたるところで張力が発生する。張力の合
力の方向は、フィルム上の等温線にほぼ(熱収縮が等方
的なら、完全に)直交する。一方、フィルムの温度がガ
ラス転移温度を下まわる場所ではフィルムの樹脂は動か
ず、フィルムの温度がガラス転移温度を越える場所では
高温部分ほど変形しやすいから、フィルムの樹脂はフィ
ルムの最高温部から周辺部に向かって、すなわち図3の
斜面をすべり落ちるように移動していく。図5に主走査
方向に隣接する発熱素子が発熱したときの、フィルムの
温度の分布(等温線)を実線で示し、等温線に直交して
温度が低下する方向を点線の矢印で示した。すなわち、
フィルムの樹脂は図5の点線の向きに移動する。
As shown in FIG. 4, when the film exceeds a temperature 8 at which shrinkage starts (hereinafter referred to as “shrinkage start temperature”, the shrinkage start temperature 8 exceeds the glass transition temperature of the film). Since a force (heat shrinkage stress) is generated in the direction of the surface to reduce the distance, the shrinkage start temperature 8
Tension is generated throughout the above area. The direction of the resultant of the tensions is substantially perpendicular to the isotherm on the film (if thermal shrinkage is isotropic, completely). On the other hand, where the temperature of the film is lower than the glass transition temperature, the resin of the film does not move, and where the temperature of the film exceeds the glass transition temperature, the higher the temperature, the more easily the resin deforms. It moves toward the periphery, that is, sliding down the slope of FIG. In FIG. 5, the distribution of the temperature of the film (isothermal line) when the heating elements adjacent to each other in the main scanning direction generate heat is indicated by a solid line, and the direction in which the temperature decreases perpendicular to the isothermal line is indicated by a dotted arrow. That is,
The resin of the film moves in the direction of the dotted line in FIG.

【0036】第二に、フィルムの最高温部付近に最初の
小さな貫通孔が発生する(穿孔の発生)。
Second, the first small through-holes occur near the hottest part of the film (the occurrence of perforations).

【0037】第三に、発生した小さな貫通孔の外周が、
その外側からの張力によって、周辺部に向かって引っ張
られていく(熱収縮による穿孔の成長)。貫通孔の外周
は周辺部に向かって引っ張られながら、その経路にある
樹脂を取り込んで体積を増していき、輪郭を形成する。
輪郭の断面の形状は表面張力によって円または楕円に近
いかたちをとる。
Third, the outer periphery of the small through hole generated is
It is pulled toward the periphery by the tension from the outside (growth of perforations due to heat shrinkage). While the outer periphery of the through hole is pulled toward the peripheral portion, the volume in the resin is increased by taking in the resin along the path to form a contour.
The cross-sectional shape of the contour takes a shape close to a circle or an ellipse due to surface tension.

【0038】一般に、熱収縮性フィルムを熱収縮挙動を
示す温度領域に維持しつづけると、最終的には熱収縮挙
動を示さなくなる。穿孔の成長の段階では、輪郭は溶融
または軟化した樹脂からなり、熱収縮が終わった状態で
あると考えられる。したがって、ベタ部分のように隣接
画素の穿孔がある場合、隣接する穿孔の輪郭が、穿孔の
成長によってお互いに接触し、融合してしまったら、輪
郭を外側にひっぱる部分、すなわち熱収縮が終わってい
ない状態の部分がないので、輪郭は熱収縮によってそれ
以上穿孔を成長させることができない。
In general, when the heat-shrinkable film is kept in a temperature range where the heat-shrinkage behavior is exhibited, the heat-shrinkable behavior eventually does not exhibit the heat-shrinkage behavior. At the stage of perforation growth, the contour is considered to be in a state in which the heat shrinkage has been completed, consisting of a molten or softened resin. Therefore, when there is a perforation of an adjacent pixel such as a solid portion, if the outlines of the adjacent perforations come into contact with each other due to the growth of the perforation and merge, a portion that pulls the outline outward, that is, the heat shrinkage is over. Since there are no missing parts, the contour cannot grow any more perforations by heat shrinkage.

【0039】ところが、たとえば熱収縮によって拡がる
最大の貫通孔に対して、それによる紙への転移像の大き
さが十分でない、すなわちドットゲインが小さい場合等
では、画素間にすきまのない印刷物を得るためには、貫
通孔をより大きなものにする必要があり、さらに加熱を
続けることがある。このとき、穿孔は熱収縮によっては
成長していかないが、輪郭は加熱され十分軟らかくな
り、表面張力による移動がおこる。このようすを図6に
示す。表面張力による移動は、低粘度の部分(隣接する
貫通孔の中間の高温部分)から高粘度の部分(対角に隣
接する貫通孔の中間の低温部分)に向かっておこる(表
面張力による穿孔の成長)。ただし、対角に隣接する貫
通孔の間には、熱収縮が終わっていない状態の部分があ
り、貫通孔はさらに熱収縮によって対角に隣接する貫通
孔の方向に拡大する(図6の白色の太矢印参照)。
However, for example, in the case where the size of the transferred image to paper is not sufficient for the largest through-hole which is expanded by thermal shrinkage, that is, when the dot gain is small, a printed matter having no gap between pixels is obtained. For this purpose, it is necessary to increase the size of the through hole, and the heating may be continued. At this time, the perforations do not grow due to heat shrinkage, but the outline is heated and sufficiently softened, and the perforations move due to surface tension. This is shown in FIG. Movement due to surface tension occurs from a low-viscosity portion (a high-temperature portion between adjacent through holes) to a high-viscosity portion (a low-temperature portion between diagonally adjacent through holes). growth). However, there is a portion where the heat shrinkage is not finished between the diagonally adjacent through holes, and the through hole further expands in the direction of the diagonally adjacent through hole due to the heat shrinkage (white in FIG. 6). Bold arrow).

【0040】第四に、発熱素子への印加が終わって、発
熱素子の温度が下がり、その後、フィルムの温度も下が
っていくと、輪郭とその外側部分の温度が収縮開始温度
8を下回り、輪郭は周辺部に向かって引っ張られなくな
る。また、輪郭の温度が下がることによって粘度が上が
り、表面張力による移動がとまる。これらによって、穿
孔の形が固定化される(穿孔の終了)。
Fourth, when the temperature of the heating element drops after the application of the voltage to the heating element, and then the temperature of the film also decreases, the temperature of the contour and the outer part thereof becomes the contraction start temperature.
Below 8, the contour can no longer be pulled towards the periphery. Further, as the temperature of the contour decreases, the viscosity increases, and the movement due to surface tension stops. With these, the shape of the perforation is fixed (end of perforation).

【0041】現在、感熱孔版印刷機用として市販されて
いる一般的な感熱孔版原紙のフィルム面の表面粗さは、
算術平均粗さRaでおよそ1〜1.5μm、10点平均粗さRzで
およそ3.5〜5μmである。これらの値は、三鷹光器
(株)製、非接触三次元形状測定装置NH-3により、縦10
mm×横10mmのエリアを、縦横とも30μmのピッチで、カ
ットオフ波長を2.5mmとして、平面上に緊張させた感熱
孔版原紙のフィルム面を開放(圧力がかからない)状態
で測定したものであり、実際の製版時にサーマルヘッド
とプラテンローラーでニップされた状態のものではな
い。ニップされた状態での感熱孔版原紙のフィルム面の
表面粗さは、開放状態の値よりも小さくなると考えられ
るが、これを直接測定または推定する合理的な方法は、
現在のところ、得られていない。
At present, the surface roughness of the film surface of a general heat-sensitive stencil sheet commercially available for a heat-sensitive stencil printing machine is as follows:
The arithmetic average roughness Ra is about 1 to 1.5 μm, and the 10-point average roughness Rz is about 3.5 to 5 μm. These values were measured by a non-contact three-dimensional shape measuring device NH-3 manufactured by Mitaka Optical Co., Ltd.
mm × 10 mm area, vertical and horizontal pitch of 30 μm, the cut-off wavelength is 2.5 mm, and the film surface of the heat-sensitive stencil paper tensioned on a plane is measured in an open (no pressure applied) state, It is not the one that is nipped by the thermal head and the platen roller during actual plate making. The surface roughness of the film surface of the heat-sensitive stencil paper in the nip state is considered to be smaller than the value in the open state, but a reasonable method for directly measuring or estimating this is as follows.
Not yet obtained.

【0042】現在、孔版印刷機の製版装置に用いられて
いるサーマルヘッドは、スパッタリング工程によって形
成される薄膜型が一般的である。薄膜型サーマルヘッド
の発熱素子付近の形態的な特徴は、発熱素子の表面が、
その副走査方向に隣接する電極部分の表面より約1μmほ
ど凹んでいることである。サーマルヘッドの電極部分の
表面は感熱孔版原紙のフィルム側にもっとも近接し、そ
の算術平均粗さRaは約0.1μm以下、10点平均粗さRzは0.
2μm程度である。
At present, a thermal head used in a stencil printing machine generally has a thin film type formed by a sputtering process. The morphological feature near the heating element of the thin-film thermal head is that the surface of the heating element is
That is, it is recessed by about 1 μm from the surface of the electrode portion adjacent in the sub-scanning direction. The surface of the electrode part of the thermal head is closest to the film side of the heat-sensitive stencil paper, the arithmetic average roughness Ra is about 0.1 μm or less, and the 10-point average roughness Rz is 0.
It is about 2 μm.

【0043】ニップされ、穿孔されていない状態の、感
熱孔版原紙のフィルム面とサーマルヘッドの発熱素子の
表面との間の距離d0[μm]は、合理的な推定ではない
が、発熱素子表面の凹みh、サーマルヘッドの発熱素子
近傍の電極部分の表面の10点平均粗さRzt、感熱孔版原
紙のフィルム面の10点平均粗さRzfとから
The distance d 0 [μm] between the film surface of the heat-sensitive stencil sheet and the surface of the heat generating element of the thermal head in the nip and non-perforated state is not a reasonable estimate, Dent h, 10-point average roughness R zt of the surface of the electrode portion near the heating element of the thermal head, and 10-point average roughness R zf of the film surface of the heat-sensitive stencil paper.

【0044】[0044]

【数1】 (Equation 1)

【0045】の程度と見込むことができる。この想定に
よれば、d0は、
The degree can be expected. According to this assumption, d 0 is

【0046】[0046]

【数2】 (Equation 2)

【0047】となる。Is as follows.

【0048】サーマルヘッドとプラテンローラーにニッ
プされる部分の感熱孔版原紙のフィルムがまったく穿孔
されていない場合、輪郭の高さはゼロである。したがっ
て、この部分に最初の穿孔が発生する直前の、フィルム
面すなわち基準面とそれに接する発熱素子の表面との距
離d0[μm]は、ニップされた状態の両者の形状または
表面粗さに依存し、すでに述べたように、
When the film of the heat-sensitive stencil sheet at the portion nipped by the thermal head and the platen roller is not perforated at all, the height of the contour is zero. Therefore, the distance d 0 [μm] between the film surface, that is, the reference surface, and the surface of the heating element in contact with the film surface immediately before the first perforation occurs in this portion depends on the shape or surface roughness of both in the nip state. And, as already mentioned,

【0049】[0049]

【数3】 (Equation 3)

【0050】程度と想定できる。The degree can be assumed.

【0051】ところが、製版によってフィルムを穿孔さ
せると、上述した穿孔挙動の第三段階において穿孔が成
長すると同時に、穿孔の輪郭が発生し、その断面積が大
きくなる。すなわち、輪郭が隆起する。輪郭の隆起した
部分は発熱素子に近接する。したがって、基準面と発熱
素子との間に、輪郭の隆起部分がはさまれる。
However, when the film is perforated by plate making, the perforation grows at the same time as the third stage of the perforation behavior described above, and at the same time, the contour of the perforation occurs, and the cross-sectional area increases. That is, the contour is raised. The raised portion of the contour is close to the heating element. Therefore, the raised portion of the contour is sandwiched between the reference surface and the heating element.

【0052】また、発熱素子が副走査上の位置で画線部
の先端より後の部分にある場合、すなわちサーマルヘッ
ドとプラテンローラーにニップされる部分の感熱孔版原
紙の、発熱素子を通過した部分のフィルムがすでに穿孔
されている場合、すでに穿孔された部分の隆起した穿孔
の輪郭が、基準面と発熱素子の近傍との間にはさまれ
る。
When the heating element is located in the sub-scanning position after the leading end of the image area, that is, the portion of the heat-sensitive stencil sheet that is nipped by the thermal head and the platen roller, which has passed through the heating element. Is already perforated, the contour of the raised perforation in the already perforated portion is sandwiched between the reference plane and the vicinity of the heating element.

【0053】これらによる影響は、以下に述べる2つの
現象のどちらか、または両者として同時に現れる。
The influence of these appears as one of the following two phenomena or both at the same time.

【0054】第1の現象は、輪郭を外側にひっぱる部分
は、輪郭の最も隆起した部分にくらべ、輪郭の高さの分
だけ、発熱素子との距離が遠くなる。
The first phenomenon is that a portion that pulls the outline outward is farther from the heating element by the height of the outline than the most prominent portion of the outline.

【0055】正確には、すでに述べたように、穿孔の成
長の段階における輪郭は溶融または軟化した樹脂である
から、輪郭はニップ圧によっていくらか押しつぶされる
ことがある。また、製版された感熱孔版原紙を顕微鏡で
観察すると、押しつぶされて変形した穿孔の輪郭を確認
することができる。観察によれば、前述したフィルム面
の表面粗さの凸部分であって、その裏に支持体繊維が接
している画線部分では、穿孔の輪郭が変形することがあ
る。変形した輪郭の高さは必ずしもゼロになるわけでは
なく、変形前の高さの0〜100%まで広い範囲でばらつい
ている。輪郭の変形量がばらつくのは、変形部分にかか
る圧力がばらついていることと、かかる圧力に対して穿
孔の輪郭が高さゼロにならない程度の硬さを備えている
ことを示している。
Precisely, as already mentioned, since the contour during the growth of the perforations is a molten or softened resin, the contour may be somewhat crushed by the nip pressure. Further, by observing the perforated heat-sensitive stencil sheet with a microscope, it is possible to confirm the contour of the perforated hole that has been crushed and deformed. According to the observation, the contour of the perforation may be deformed in the above-mentioned convex portion of the surface roughness of the film surface and in the image portion where the support fiber is in contact with the back surface. The height of the deformed contour is not always zero, but varies over a wide range from 0 to 100% of the height before deformation. The variation in the contour deformation indicates that the pressure applied to the deformed portion varies and that the contour of the perforation has such a hardness that the height does not become zero with respect to the applied pressure.

【0056】また、発熱素子を通過したフィルム上の、
すでに穿孔された部分の輪郭は、急速に冷えて硬化し、
その後、輪郭の高さはニップ圧を受けても変形しなくな
る。この輪郭と発熱素子との副走査方向の距離が100μm
程度以内にあるとき、発熱素子の表面と、発熱素子が穿
孔しようとするフィルム表面すなわち基準面との密着を
さまたげる。
Further, on the film passing through the heating element,
The contour of the already perforated part quickly cools and hardens,
Thereafter, the contour height does not deform even when subjected to the nip pressure. The distance between this contour and the heating element in the sub-scanning direction is 100 μm
When the temperature is within the range, the contact between the surface of the heating element and the surface of the film on which the heating element is to be pierced, that is, the reference surface is prevented.

【0057】したがって、画線部の穿孔部分のほとんど
で、発熱素子の表面と基準面との距離の最小値は、輪郭
の高さの分だけ、遠くなる。輪郭の高さをα[μm]と
すると、このとき、基準面と発熱素子の表面との距離d
[μm]は、
Therefore, in most of the perforated portions of the image portion, the minimum value of the distance between the surface of the heating element and the reference surface is increased by the height of the contour. If the height of the contour is α [μm], then the distance d between the reference plane and the surface of the heating element
[Μm]

【0058】[0058]

【数4】 (Equation 4)

【0059】程度と想定できる。ここに、β[μm]
は、輪郭が生じることによる発熱素子の表面と基準面と
の距離の最大値の増分を示す。αとβは、
The degree can be assumed. Here, β [μm]
Indicates an increase in the maximum value of the distance between the surface of the heating element and the reference plane due to the occurrence of the contour. α and β are

【0060】[0060]

【数5】 (Equation 5)

【0061】であると考えられる。輪郭を外側にひっぱ
る部分の温度は、輪郭の高さの影響がないとしたときに
くらべて低下する。すなわち熱伝達効率が低下するとい
う問題が生じる。その程度は、輪郭の高さが高いほど顕
著である。これによって第三の穿孔過程が早期に終了し
て穿孔の成長がとまる。
It is considered that The temperature of the portion where the contour is pulled outward is lower than when the height of the contour is not affected. That is, there is a problem that the heat transfer efficiency is reduced. The degree is more remarkable as the height of the contour is higher. This terminates the third perforation process early and stops perforation growth.

【0062】輪郭の高さが高く、熱伝達効率が低い状態
で、発熱素子に十分な発熱量を与えられないと、穿孔の
大きさは目標値に達せず、印刷物の濃度が低下してしま
う。
In the state where the height of the contour is high and the heat transfer efficiency is low, if a sufficient amount of heat is not given to the heat generating element, the size of the perforations does not reach the target value, and the density of the printed matter decreases. .

【0063】輪郭の高さが高く、熱伝達効率が低い状態
で、発熱素子に十分な発熱量を与えて目標の大きさの穿
孔を実現すると、製版時の消費電力量が増える。また、
この印加条件を、印加時間を長くすることによって設定
すれば、一般に製版時間も長くなる。さらに、製版中に
発熱素子の温度を高く設定した場合、発熱素子が一定温
度以上に達するまでの時間が長くなるため、発熱素子が
劣化しやすい。感熱製版用加熱デバイスとして広く使用
されているサーマルヘッドの場合、もともと、発熱温度
領域(300〜400℃)が使用限界温度(400℃)
にかなり近いために、この傾向はより顕著である。
In a state where the height of the contour is high and the heat transfer efficiency is low, if a sufficient amount of heat is applied to the heat generating element to realize the target size of perforation, the power consumption during plate making increases. Also,
If the application conditions are set by increasing the application time, the plate making time generally increases. Furthermore, when the temperature of the heating element is set high during plate making, the time required for the heating element to reach a certain temperature or higher is lengthened, and the heating element is likely to deteriorate. Originally, in the case of a thermal head widely used as a heating device for thermal plate making, the heat generation temperature range (300 to 400 ° C.) is limited to the use limit temperature (400 ° C.).
This trend is more pronounced because

【0064】また、上述したように、発熱素子を通過し
た穿孔の輪郭は、ニップ圧を受けても変形せず、この輪
郭と発熱素子との副走査方向の距離が100μm程度以内に
あるとき、発熱素子の表面と、発熱素子が穿孔しようと
するフィルム表面すなわち基準面との密着をさまたげ
て、熱伝達効率を低下させる。この現象は画像内に一様
に起きるのではなく、画像のパターンに依存する。すな
わち、画線部の副走査方向のトップ部分、ベタの内部、
または細字や面積階調のグレー部分など低画像率部分の
それぞれにおいて、直前の副走査位置に形成された輪郭
の高さや、ニップ圧を受ける輪郭の面積が異なり、形成
される輪郭の高さが高いと、発熱素子の表面と基準面と
の距離が場所によって大きく変化する。したがって、画
像上の場所によって、穿孔の大きさがばらつき、印刷物
の濃度が局所的にばらつく。それゆえ、この症状はイン
クの粘度や色材比率、印刷圧力を操作して転移量や転移
濃度の平均値を調整することでは補償できない。
As described above, the contour of the perforation that has passed through the heating element does not deform even when subjected to the nip pressure, and when the distance between the contour and the heating element in the sub-scanning direction is within about 100 μm, The heat transfer efficiency is reduced by preventing the close contact between the surface of the heating element and the surface of the film on which the heating element is to be perforated, that is, the reference surface. This phenomenon does not occur uniformly in the image, but depends on the pattern of the image. That is, the top portion of the image portion in the sub-scanning direction, the inside of the solid,
Alternatively, in each of the low image ratio portions such as the thin portion and the gray portion of the area gradation, the height of the contour formed at the immediately preceding sub-scanning position and the area of the contour receiving the nip pressure are different, and the height of the formed contour is different. If the distance is high, the distance between the surface of the heating element and the reference plane greatly changes depending on the location. Therefore, the size of the perforations varies depending on the location on the image, and the density of the printed matter locally varies. Therefore, this symptom cannot be compensated for by adjusting the average value of the transfer amount and the transfer density by controlling the viscosity of the ink, the color material ratio, and the printing pressure.

【0065】第2の現象は、基準面と発熱素子にはさま
れた輪郭の隆起部分の樹脂は、熱収縮が終わった状態と
考えられ、加熱されて軟化または溶融した状態であるか
ら、製版時の圧力によって押しつぶされ、さらに発熱素
子との間にかかるズリ応力によって変形する。
The second phenomenon is that the resin in the raised portion of the contour sandwiched between the reference surface and the heating element is considered to be in a state in which the heat shrinkage has ended and is in a state of being heated and softened or melted. It is crushed by the pressure of the time, and is further deformed by shear stress applied to the heating element.

【0066】輪郭の隆起部分の樹脂が押しつぶされ、変
形した後の形状は、ばらつきをもつ。理由は、個々の画
素すなわち穿孔に対して、対応する発熱素子の発熱状態
が完全に均一ではないこと、フィルムの表面粗さのため
に熱伝達の距離にばらつきがあること、フィルムの場所
による熱収縮物性のばらつきや分散した支持体繊維の熱
容量の影響を受けること、などによって、穿孔形状にば
らつきが生じ、輪郭の体積や硬さ、輪郭にはたらくずり
応力がばらつくためである。輪郭の高さが高い場合、輪
郭が変形した後の形状、すなわち最終的な穿孔形状のば
らつきは顕著であり、輪郭が部分的に脱落して隣接する
穿孔同士がつながったり、押しつぶされた輪郭部分の樹
脂が主走査方向または副走査方向に隣接する穿孔を部分
的に、または完全にふさぐこともある。このような孔版
印刷版を用いて印刷をおこなうと、画線部のインク転移
量のばらつきが大きくなる。とりわけベタ部分がざらつ
いた感じを持ち、濃度の均一性が低下する。同時に細字
のかすれやつぶれが発生する。さらに、転移量が多い印
刷部分には、裏移り、裏抜けが発生する。
The shape of the resin at the protruding portion of the contour is crushed and deformed, and has a variation. The reason is that, for each pixel or perforation, the heating state of the corresponding heating element is not completely uniform, the distance of heat transfer varies due to the surface roughness of the film, and the heat due to the location of the film. This is because variations in shrinkage physical properties and influence of the heat capacity of the dispersed support fibers cause variations in the perforated shape, resulting in variations in the volume, hardness, and shearing stress of the contour. When the height of the contour is high, the shape after the contour is deformed, that is, the variation in the final perforated shape is remarkable, and the contour is partially dropped and the adjacent perforations are connected or the crushed contour portion May partially or completely block adjacent perforations in the main scanning direction or the sub-scanning direction. When printing is performed using such a stencil printing plate, the variation in the amount of ink transfer in the image area increases. In particular, the solid portion has a rough feel, and the uniformity of density is reduced. At the same time, fainting and crushing of fine characters occur. Further, set-off and strike-through occur in a printed portion having a large transfer amount.

【0067】輪郭の隆起部分の樹脂が押しつぶされ変形
する際には、フィルムの樹脂や、フィルムと多孔性支持
体とを貼り合わせるための接着剤の成分などが、発熱素
子に固着する(焼きつく)ことがある。フィルムには通
常、発熱素子との固着を防ぐための離型剤が塗布されて
いるが、輪郭の高さが高いと、目的の大きさの穿孔を得
るために発熱素子の発熱量を大きくするから、発熱素子
の温度が高くなる。さらに、輪郭の高さが高いために、
フィルムと発熱素子が強く接触し、ずり応力を受ける。
これらによって輪郭部分の樹脂や、輪郭部分にとりこま
れた接着剤成分は発熱素子に固着しやすくなる。
When the resin at the protruding portion of the contour is crushed and deformed, the resin of the film, the component of the adhesive for bonding the film to the porous support, and the like adhere to the heating element (burn). )Sometimes. The film is usually coated with a release agent to prevent sticking to the heating element. However, if the contour is high, the heating value of the heating element is increased in order to obtain a perforated hole of a desired size. Therefore, the temperature of the heating element increases. Furthermore, due to the high height of the contour,
The film and the heating element come into strong contact and receive shear stress.
As a result, the resin in the contour portion and the adhesive component incorporated in the contour portion are easily fixed to the heating element.

【0068】輪郭部分の樹脂や接着剤成分が発熱素子自
体に固着すれば、発熱素子の発熱量が低下したのと同じ
ことになり、穿孔の大きさが小さくなるか、穿孔不能に
なることがある。この場合の印刷物は、穿孔不良部分の
濃度不足、または穿孔不能部分の画像欠損となる。さら
に、固着する面積が大きい場合、広い領域のフィルムを
支持体から脱落させ、したがって印刷物は、画線部の下
流側の領域がひっかかれたように汚れる現象(スティッ
キング)をおこすことがある。当然、これによる裏移
り、裏抜けが生じる。
If the resin or the adhesive component in the outline portion adheres to the heating element itself, it is the same as a decrease in the amount of heat generated by the heating element, and the size of the perforation becomes small or the perforation becomes impossible. is there. In this case, the printed matter has insufficient density at the portion where the perforation is defective, or image loss at the portion where the perforation is impossible. Furthermore, if the area to be fixed is large, a large area of the film may fall off the support, and thus the printed matter may stick to the area downstream of the image area as if scratched (sticking). Naturally, this causes set-off and strike-through.

【0069】輪郭部分の樹脂や接着剤成分が発熱素子自
体に固着しなくとも、発熱素子の下流側のサーマルヘッ
ドの表面にわずかずつ堆積することがある。堆積する樹
脂は粘着性であり、初期には大きな問題とならないが、
堆積量が経時的に大きくなると、フィルム表面に付着し
ているちりやほこりを発熱素子の直後でせき止めたり、
堆積物が巨大化して、発熱素子とフィルムの間に距離を
つくってしまい、伝熱量が不足して穿孔の大きさが小さ
くなるか、穿孔不能になることがある。この場合の印刷
物も、穿孔不良部分の濃度不足、または穿孔不能部分の
画像欠損となる。
Even if the resin or adhesive component in the outline does not adhere to the heating element itself, it may be deposited little by little on the surface of the thermal head downstream of the heating element. The deposited resin is sticky and does not pose a major problem at first,
When the deposition amount increases over time, dust and dust adhering to the film surface are dammed immediately after the heating element,
The deposits become large, creating a distance between the heating element and the film, and the amount of heat transfer is insufficient, so that the size of the perforations may be reduced or the perforations may not be possible. In this case, the printed matter also has insufficient density at the portion where the perforation is defective, or image loss at the portion where the perforation is impossible.

【0070】サーマルヘッドによって感熱孔版原紙を製
版するとき、すでに述べたように、発熱素子に電圧が印
加され、ジュール熱が発生する。これによってサーマル
ヘッドの発熱素子は、図2のように、中心部がもっとも
高温で、周辺にいくほど温度が低くなる温度分布をも
ち、フィルムを加熱する。それによって、フィルムは図
3のように、発熱素子の中心が接する部分がもっとも高
温となり、そこから離れるほど温度が下がる。もちろ
ん、発熱素子の温度分布も、フィルムの温度分布も、時
間によって変化する。
When a heat-sensitive stencil sheet is made by a thermal head, as described above, a voltage is applied to the heating element, and Joule heat is generated. As a result, as shown in FIG. 2, the heating element of the thermal head has a temperature distribution in which the temperature is highest at the center and lowers toward the periphery, and heats the film. By doing so, the film
As shown in Fig. 3, the temperature at the portion where the center of the heating element is in contact is the highest, and the temperature decreases as the distance from the center increases. Of course, both the temperature distribution of the heating element and the temperature distribution of the film change with time.

【0071】目標となる大きさの貫通孔を得るために印
加するエネルギーをいかに少なくできるかは、感熱孔版
原紙の性能としての穿孔感度と、感熱製版装置の性能と
しての熱伝達効率とによる。
How much energy can be applied to obtain a target size of through hole depends on the perforation sensitivity as the performance of the heat-sensitive stencil sheet and the heat transfer efficiency as the performance of the heat-sensitive stencil making apparatus.

【0072】現在、孔版印刷機の製版装置に一般的に用
いられている薄膜型サーマルヘッドの発熱素子は、副走
査方向には電極としてのアルミニウムが、下層(感熱孔
版原紙と反対の方向)には断熱層としてのセラミック
が、上層(感熱孔版原紙の方向)には保護層としてのガ
ラスが接している。もっとも、保護層の厚さは数μmと
薄いため、電極や断熱層にくらべて熱容量が非常に小さ
い。保護層の表面(これを、この明細書のここまでの記
述では“発熱素子の表面”とよんできた。以下でも、特
に断らないかぎり、この意味で使う)から、次式に示す
厚さd[μm]程度の空気層をへだてて、フィルムに熱が
伝わる:
At present, a heating element of a thin-film thermal head generally used in a stencil printing machine has aluminum as an electrode in a sub-scanning direction, and has an underlying layer (a direction opposite to the heat-sensitive stencil sheet). Is a ceramic as a heat insulating layer, and a glass as a protective layer is in contact with the upper layer (in the direction of the heat-sensitive stencil sheet). However, since the thickness of the protective layer is as thin as several μm, the heat capacity is very small as compared with the electrodes and the heat insulating layer. From the surface of the protective layer (this is referred to as “the surface of the heating element” in the description so far in this specification, and hereinafter, unless otherwise specified, it is used in this sense) from the thickness d [ μm], the heat is transferred to the film by:

【0073】[0073]

【数6】 (Equation 6)

【0074】ここに、αは輪郭の高さ、βは、輪郭が生
じることによる発熱素子の表面と基準面との距離の最大
値の増分を示し、
Here, α is the height of the contour, β is the increment of the maximum value of the distance between the surface of the heating element and the reference plane due to the occurrence of the contour,

【0075】[0075]

【数7】 (Equation 7)

【0076】であると考えられる。発熱素子に接する上
記材料の熱伝導率[W m-1 K-1]は、文献(理科年表 '9
8年版、国立天文台編、丸善)によれば、アルミニウム
は230〜240、セラミック(磁器)は1.5、ガラス(石英
ガラス)は1〜2に対し、空気は0.02〜0.07と極端に小さ
い。つまり、空気層の厚さdがαによってわずかでも大
きくなると、フィルムの温度は大きく低下し、すでに述
べたように、熱伝達効率が低下する。これをさけるため
には、空気層の厚さ、すなわち発熱素子の表面と基準面
との間の距離はできるだけ小さくする必要がある。
It is considered that The thermal conductivity [W m -1 K -1 ] of the above material in contact with the heating element is described in the literature (Science Table '9
According to the 8-year edition, edited by the National Astronomical Observatory of Japan, Maruzen), aluminum is 230-240, ceramic (porcelain) is 1.5, glass (quartz glass) is 1-2, and air is extremely small, 0.02-0.07. That is, if the thickness d of the air layer is slightly increased by α, the temperature of the film is greatly reduced, and as described above, the heat transfer efficiency is reduced. In order to avoid this, the thickness of the air layer, that is, the distance between the surface of the heating element and the reference plane must be as small as possible.

【0077】空気層の厚さdを小さくするためには、上
式におけるαすなわち輪郭の高さを小さくする必要があ
る。
In order to reduce the thickness d of the air layer, it is necessary to reduce α in the above equation, that is, the height of the contour.

【0078】輪郭の高さαの許容できる上限値を、実験
によって調べた。実験は、サーマルヘッドの発熱素子の
近傍で、穿孔のひろがりに干渉しない位置に、スペーサ
ーとしての厚さαのフィルムを貼り、製版をおこなっ
た。製版による穿孔の輪郭とスペーサーフィルムとはニ
ップされた領域内では干渉しないように配慮した。その
結果、スペーサーフィルムの厚さαが4μmを越えると、
スペーサーフィルムを貼らない場合とくらべて、サーマ
ルヘッドの電気的設定が同じだと、穿孔形状の品質(貫
通孔の大きさの平均値とばらつき、形状のばらつき)と
印刷物の画質(画線部の濃度の平均値とばらつき、かす
れ)が大きく低下することがわかった。それに対し、サ
ーマルヘッドの印加エネルギーを大きくして、穿孔の貫
通孔の大きさの平均値をスペーサーフィルムを貼らない
場合と一致させると、穿孔の貫通孔の大きさの平均値と
印刷物の画像部の濃度の平均値は改善されたが、その他
の穿孔形状の品質(貫通孔の大きさのばらつき、形状の
ばらつき)と、その他の印刷物の画質(画線部の濃度の
ばらつき)は、やはり低下していて、さらに裏移り、裏
抜けが大きく悪化した。
The allowable upper limit of the contour height α was examined by experiment. In the experiment, a film having a thickness of α as a spacer was applied to a position near the heating element of the thermal head so as not to interfere with the spread of perforations, and plate making was performed. Care was taken to avoid interference between the outline of the perforated plate making and the spacer film in the nip area. As a result, when the thickness α of the spacer film exceeds 4 μm,
Compared to the case where the spacer film is not applied, if the electrical settings of the thermal head are the same, the quality of the perforated shape (average and variation in the size of through holes, variation in shape) and the image quality of printed matter (image area It was found that the average value, the variation and the blurring of the density were greatly reduced. On the other hand, when the energy applied to the thermal head is increased to make the average value of the size of the through hole of the perforation coincide with the case where the spacer film is not attached, the average value of the size of the through hole of the perforation and the image area of the printed matter are obtained. The average value of the density was improved, but the quality of other perforated shapes (variation in the size and shape of the through-holes) and the image quality of other printed matter (variation in the density of the image area) also decreased. And it was set off, and strikethrough was greatly worsened.

【0079】さらに、穿孔形状の品質と印刷物の画質に
影響し始めるスペーサーフィルムの厚さα1は、製版の
解像度によって変化することがわかった。すなわち、30
0dpiのときはα1≒4μm、400dpiのときはα1≒3.2μm、
600dpiのときはα1≒2.2μmであった。また、主走査解
像度=300dpi、副走査解像度=400dpiと異なる場合、α
1≒3.7μmであった。これらのα1の値は、主走査のピッ
チと副走査のピッチの相乗平均の約5%に等しい。感熱
孔版原紙が条件のよい、すなわちフィルム面の表面粗さ
の程度が小さいものであり、スペーサーフィルムの厚さ
αがそれぞれの解像度に対して上記の値α1以下であれ
ば、スペーサーフィルムを貼らない場合とくらべて、サ
ーマルヘッドの電気的設定を同じとしても、ほぼ同じ品
質の穿孔形状と印刷物の画質を得ることができた。
Further, it has been found that the thickness α 1 of the spacer film, which starts to affect the quality of the perforated shape and the image quality of the printed matter, changes depending on the resolution of the plate making. That is, 30
Α 1 ≒ 4 μm at 0 dpi, α 1 ≒ 3.2 μm at 400 dpi,
At 600 dpi, α 1 was 2.2 μm. When the main scanning resolution is different from 300 dpi and the sub scanning resolution is different from 400 dpi, α
1 ≒ 3.7 μm. The values of these alpha 1 is equal to about 5% of the geometric mean of the pitch and the sub-scanning pitch in the main scanning. Good stencil sheet condition, that is, those degree of surface roughness of the film surface is small, if the above value alpha 1 or less with respect to the thickness alpha respective resolutions spacer film, adhered to the spacer film Compared with the case where no thermal head was used, it was possible to obtain substantially the same quality of the perforated shape and the image quality of the printed matter even when the electrical settings of the thermal head were the same.

【0080】以上のことから、本発明者らは、上記本発
明の目的を達成するために、輪郭の高さを4μmを超えな
い範囲に設定すること、さらには、輪郭の高さを主走査
のピッチと副走査のピッチの相乗平均の5%を超えない
範囲に設定することを見いだした。
From the above, the present inventors set the contour height within a range not exceeding 4 μm in order to achieve the above object of the present invention, and furthermore, set the contour height in the main scanning direction. It was found to be set within a range not exceeding 5% of the geometric mean of the pitch of the sub-scan and the pitch of the sub-scan.

【0081】穿孔形態をこの発明の請求範囲に設定する
ためには、輪郭の高さを最適化する必要があり、そのた
めの任意の方法をとることができる。輪郭の高さは、輪
郭部分の樹脂の体積と、輪郭の断面の扁平率に依存す
る。輪郭部分の樹脂の体積は、穿孔前に貫通孔の場所に
あった樹脂の体積に依存する。すなわち、貫通孔の面積
をたもちながら、フィルムの厚さを選択することで、輪
郭部分の樹脂の体積を選択することができ、したがっ
て、輪郭の高さを選択することができる。また、加熱デ
バイスの温度の空間的分布(たとえばサーマルヘッドの
発熱素子形状や印加エネルギーなど)や時間的変化(た
とえばサーマルヘッドに印加するパワーと印加時間の組
み合わせなど)を選択することで、輪郭の断面の扁平率
を選択することができ、したがって輪郭の高さを選択す
ることができる。
In order to set the perforation form in the scope of the present invention, it is necessary to optimize the height of the contour, and any method can be used. The height of the contour depends on the volume of the resin in the contour part and the oblateness of the cross section of the contour. The volume of the resin in the contour part depends on the volume of the resin at the location of the through-hole before drilling. That is, by selecting the thickness of the film while keeping the area of the through hole, the volume of the resin in the contour portion can be selected, and therefore, the height of the contour can be selected. In addition, by selecting the spatial distribution of the temperature of the heating device (for example, the shape of the heating element of the thermal head and the applied energy) and the temporal change (for example, the combination of the power applied to the thermal head and the application time), the outline of the contour can be obtained. The flatness of the cross section can be selected, and therefore the height of the contour.

【0082】なお、以上における加熱デバイスとして、
しばしばサーマルヘッドの発熱素子を例に挙げたが、こ
の発明は熱収縮性フィルムを加熱することによって穿孔
させる現象一般について適用できるので、加熱デバイス
としてはサーマルヘッドに限定されず、レーザー光源や
活性エネルギー線源やその他多くのデバイスを用いるこ
とができる。
The heating device described above includes:
Although the heating element of the thermal head is often mentioned as an example, the present invention can be applied to a general phenomenon of perforation by heating a heat-shrinkable film, so that the heating device is not limited to the thermal head, but may be a laser light source or an active energy. Sources and many other devices can be used.

【0083】[0083]

【実施例】以下、この発明を実施例および比較例にもと
づいて説明する。各実施例と比較例における製版条件、
穿孔形状の測定値、穿孔の評価および印刷物の評価を表
1に示す。なお、表1に示した物性の測定方法は下記の
とおりである。以下、この発明を実施例および比較例に
もとづいて説明する。
The present invention will be described below with reference to examples and comparative examples. Plate making conditions in each example and comparative example,
Table 1 shows the measured values of the perforation shape, the evaluation of the perforations, and the evaluation of the printed matter. In addition, the measuring method of the physical property shown in Table 1 is as follows. Hereinafter, the present invention will be described based on examples and comparative examples.

【0084】製版物の評価条件 いずれの実施例および比較例も、製版は表1に示すそれ
ぞれの条件(解像度、ピッチ、発熱素子サイズ、印加エ
ネルギー、周期、フィルム物性)をみたす実験製版装置
および感熱孔版原紙によっておこなった。感熱孔版原紙
のその他の共通する条件は、材料として混合比を変えた
種々のポリエステル系樹脂を用いてこれを2軸延伸し、
表1に示す厚さと融点をもつフィルムを製膜し、これに
多孔性支持体としてマニラ麻とポリエステル繊維からな
る坪量10g/m2、厚さ35μmの混抄紙を塗布量0.5g/m
2のポリ酢酸ビニル樹脂を介して貼り合わせた後、フィ
ルムの表面にシリコーン系樹脂を0.1 g/m2塗布して作
製した。環境温度は室温である。
Evaluation conditions for plate-making products In each of the examples and comparative examples, the plate-making plate is an experimental plate-making apparatus and a heat-sensitive plate which meet the respective conditions (resolution, pitch, heating element size, applied energy, period, film properties) shown in Table 1. It was performed with stencil paper. The other common condition of the heat-sensitive stencil paper is that it is biaxially stretched using various polyester resins having different mixing ratios as materials.
A film having a thickness and a melting point shown in Table 1 was formed, and a mixed paper made of manila hemp and polyester fiber having a basis weight of 10 g / m 2 and a thickness of 35 μm as a porous support was applied at a coating amount of 0.5 g / m 2.
After bonding through the polyvinyl acetate resin of No. 2 , a silicone resin was applied to the surface of the film at 0.1 g / m 2 to produce the film. The ambient temperature is room temperature.

【0085】Min{4, 0.05√(p x p y )}の値 式[1]の右辺、または式[2]の右辺のうち、小さい方の値
を示す。この発明では、輪郭の高さが、この値以下であ
ることが特に好ましい。
Min {4, 0.05, (p x p y )} Indicates the smaller value of the right side of equation [1] or the right side of equation [2]. In the present invention, the height of the contour is particularly preferably equal to or less than this value.

【0086】感熱孔版原紙のフィルム面の表面粗さ 感熱孔版原紙のフィルム面の表面粗さとして、算術平均
粗さRaおよび10点平均粗さRzを、三鷹光器(株)製、非
接触三次元形状測定装置NH-3により、縦10mm×横10mmの
エリアを、縦横とも30μmのピッチで、カットオフ波長
を2.5mmとして、平面上に緊張させた感熱孔版原紙のフ
ィルム面を開放(圧力がかからない)状態で測定した。
算術平均粗さRaおよび10点平均粗さRzは、JIS B 0601
“表面粗さ−定義及び表示”の定義にしたがう。
The surface roughness of the film surface of the heat-sensitive stencil base paper The arithmetic average roughness Ra and the 10-point average roughness Rz were determined as the surface roughness of the film surface of the heat-sensitive stencil base paper by Mitaka Koiki Co., Ltd., non-contact tertiary. With the original shape measuring device NH-3, the film surface of the heat-sensitive stencil base paper, which is tensioned on a plane, is opened at a cut-off wavelength of 2.5 mm in an area of 10 mm long × 10 mm wide at a pitch of 30 μm both vertically and horizontally. (Not applied).
Arithmetic average roughness Ra and 10-point average roughness Rz are JIS B 0601
According to the definition of "Surface roughness-definition and indication".

【0087】貫通孔の直径、輪郭の高さ ベタのパターンを製版し、製版物上の熱履歴状態が同じ
ような状態の領域(製版開始ラインから副走査方向の下
流に5mm以上、15mm以内)における穿孔の表面粗さを、
レーザーテック株式会社製走査型レーザー顕微鏡1LM21
によって測定し、主走査方向と副走査方向における貫通
孔の直径と穿孔の高さを、それぞれ20個の穿孔における
平均としてもとめた。
A pattern in which the solid pattern is formed by making a solid pattern with the diameter of the through hole and the height of the contour, and the heat history state on the plate is the same (5 mm or more and 15 mm or less downstream from the plate making start line in the sub-scanning direction). The surface roughness of the perforation in
Laser Tech Co., Ltd. Scanning Laser Microscope 1LM21
The diameter of the through-hole and the height of the perforation in the main scanning direction and the sub-scanning direction were determined as an average in each of 20 perforations.

【0088】貫通孔の面積のSN比 ベタのパターンを製版し、製版物上の熱履歴状態が同じ
ような状態の領域(製版開始ラインから副走査方向の下
流に5mm以上、15mm以内)における、光学顕微鏡をとお
してCCDカメラでとりこんだ画像から、三谷商事(株)
製画像解析パッケージMacSCOPEを使用し、100個の穿孔
における貫通孔を2値化によって切り出し、それらによ
る貫通孔の面積のSN比をもとめた。
A pattern of the SN ratio solid pattern of the area of the through-hole is made into a plate, and in a region where the thermal history state on the plate is the same (5 mm or more and 15 mm or less downstream from the plate making start line in the sub-scanning direction), From images captured with a CCD camera through an optical microscope, Mitani Corporation
Using the image analysis package MacSCOPE, through holes in 100 perforations were cut out by binarization, and the SN ratio of the area of the through holes was determined.

【0089】貫通孔の面積のSN比は、望目特性のSN比で
ある。この値が大きいほど、穿孔面積のばらつきが少な
い。穿孔面積のSN比は、測定条件によって値が異なるの
で一元的には評価しにくいが、本発明者らは経験的に、
それぞれの穿孔からの均一な転移状態を得るために、現
実的には10db以上が必要で、13db以上であれば望まし
く、10dbに満たない場合は問題が大きいと考えている。
The S / N ratio of the area of the through hole is the S / N ratio of the desired characteristic. The larger the value, the smaller the variation in the perforated area. The SN ratio of the perforated area is difficult to evaluate unitarily because the value differs depending on the measurement conditions.
In order to obtain a uniform transition state from each perforation, 10 db or more is actually necessary, and 13 db or more is desirable. If less than 10 db, the problem is considered to be large.

【0090】印刷物の評価条件 いずれの実施例および比較例も、得られた版を手作業で
印刷ドラムに着版し、印刷は理想科学工業(株)製孔版
印刷機リソグラフ(登録商標)GR377の標準条件(電源O
N時の設定)でリソグラフインクGR-HD(商品名、理想科
学工業(株)製)を使用しておこなった。環境温度は室
温(25℃)である。
Evaluation Conditions of Printed Material In each of Examples and Comparative Examples, the obtained plate was manually applied to a printing drum, and printing was performed using a stencil printing machine RISOGRAPH (registered trademark) GR377 manufactured by Riso Kagaku Kogyo. Standard conditions (power supply O
This was performed using a lithographic ink GR-HD (trade name, manufactured by Riso Kagaku Kogyo Co., Ltd.) at N setting. The ambient temperature is room temperature (25 ° C.).

【0091】ベタの均一性 ベタの均一性は、印刷物のベタ部分において、穿孔形状
のばらつきに起因する微視的(周期が1mm程度以下)な
場所による濃度のばらつきの程度を主観評価で以下の基
準により示した: ◎:まったく濃度ばらつきが感じられない、 ○:わずかに濃度ばらつきはあるが、文字原稿のベタ再
現性、写真原稿の階調再現性ともに問題ないレベルであ
る、 △:文字原稿のベタ再現性は問題ないが、写真原稿のシ
ャドウ部の階調再現性が劣っている、 ×:濃度ばらつきが顕著で、文字原稿のベタ再現性、写
真原稿の階調再現性ともに劣っている。
The uniformity of solids was evaluated by subjectively evaluating the degree of density variations due to microscopic (period of about 1 mm or less) locations caused by variations in the perforated shape in the solid portion of the printed matter. Indicated by the standard: :: No density variation is felt at all, :: There is slight density variation, but both solid reproducibility of character originals and tone reproducibility of photographic originals are acceptable, △: Text originals Has no problem with solid reproducibility, but the gradation reproducibility of the shadow portion of the photographic document is poor. ×: The density variation is remarkable, and the solid reproducibility of the text document and the gradation reproducibility of the photographic document are poor. .

【0092】細字のかすれ 細字のかすれは、印刷物の細字部分において、穿孔形状
のばらつきに起因するかすれ(連続するべきパターンの
欠損)の程度を主観評価で以下の基準により示した: ◎:まったくかすれが感じられない、 ○:わずかにかすれがあるが、文字原稿の細字(白地に
黒文字)の再現性、写真原稿のハイライト部分の階調再
現性ともに問題ないレベルである、 △:文字原稿の細字(白地に黒文字)の再現性は問題な
いが、写真原稿のハイライト部分の階調再現性が劣って
いる、 ×:かすれが顕著で、文字原稿の細字(白地に黒文字)
の再現性、写真原稿のハイライト部分の階調再現性とも
に劣っている。
The blurring of the fine characters is described in the subjective evaluation of the degree of blurring (loss of the pattern to be continuous) attributable to the variation of the perforated shape in the fine character portion of the printed matter. Is not felt, ○: There is a slight blur, but the reproducibility of fine characters (black characters on a white background) and the gradation reproducibility of the highlight part of a photo document are at a level where there is no problem. There is no problem with the reproducibility of fine characters (black characters on a white background), but the gradation reproducibility of the highlight part of the photo document is poor. ×: The blur is remarkable, and the fine characters of the character document (black characters on a white background)
, And the gradation reproducibility of the highlight portion of the photographic original are inferior.

【0093】細字のつぶれ 細字のつぶれは、印刷物の細字部分において、穿孔形状
のばらつきに起因するつぶれ(近接した2つのパターン
間にあるべき白地の欠損)の程度を主観評価で以下の基
準により示した: ◎:まったくつぶれが感じられない、 ○:わずかにつぶれがあるが、文字原稿の細字(黒地に
白文字)の再現性、写真原稿のシャドウ部分の階調再現
性ともに問題ないレベルである、 △:文字原稿の細字(黒地に白文字)の再現性は問題な
いが、写真原稿のシャドウ部分の階調再現性が劣ってい
る、 ×:つぶれが顕著で、文字原稿の細字(黒地に白文字)
の再現性、写真原稿のシャドウ部分の階調再現性ともに
劣っている。
[0093] Fine character crushing Fine character crushing indicates, in a subjective evaluation, the degree of crushing (deletion of a white background that should be between two adjacent patterns) due to variations in the perforated shape in the fine character portion of a printed matter. A: ◎: No crushing is felt at all, :: Slight crushing, but there is no problem in the reproducibility of fine characters (white characters on black background) and the gradation reproducibility of shadows in photo documents , △: The reproducibility of fine characters (white characters on a black background) of a text document is not a problem, but the gradation reproducibility of the shadow portion of a photographic document is poor. White characters)
And the gradation reproducibility of the shadow portion of the photographic document are inferior.

【0094】裏移り 裏移りは、印刷により積み重ねられた印刷物の裏面が、
それに接する直前の印刷物の印刷面に転移したインクに
よって汚れる程度を主観評価で以下の基準により示し
た: ◎:まったく裏移りが感じられない、 ○:わずかに裏移りがあるが、ベタ部分が大きくインク
の転移量が多い原稿においても問題なく、公式な印刷物
として許容できるレベルである、 △:細字(白地に黒文字)やハイライトなどのインクの
転移量が少ない部分では問題ないが、大きなベタなどの
インクの転移量が多い部分においては汚れが目立つ。公
式な印刷物としては許容できないが、非公式な印刷物と
しては使える、 ×:裏移りが顕著で、ほとんどすべての原稿部分におい
て汚れが目立つ。非公式な印刷物としても許容できな
い。
[0094] smearing smearing, it backside of the printed material stacked by printing,
The degree of staining by the ink transferred to the print surface of the printed matter immediately before contact with the ink was evaluated by subjective evaluations according to the following criteria: :: No set-off was observed at all, ○: Slight set-off was observed, but the solid portion was large. There is no problem even for documents with a large amount of ink transfer, which is an acceptable level for official printed matter. △: There is no problem in areas where the amount of ink transfer is small, such as fine characters (black characters on white background) and highlights, but large solids The stain is conspicuous in the portion where the transfer amount of the ink is large. Cannot be accepted as an official print, but can be used as an informal print. X: Offset is remarkable, and stains are conspicuous in almost all original parts. Unofficial prints are unacceptable.

【0095】サーマルヘッドへの影響 サーマルヘッドへの影響とは、フィルムの樹脂や接着剤
成分が、発熱素子付近に固着または焼きつきをおこした
り、過大な印加エネルギーや発熱素子の過熱による発熱
素子の劣化(発熱能力の低下)をおこす程度を示す。B4
サイズの画像率33%のテストパターン画像を500版製版
した後、評価用画像を製版・印刷し、製版状態と印刷物
の画質を評価する。また、発熱素子付近を光学顕微鏡で
観察する。評価基準は以下のとおり: ◎:製版状態、印刷物の画質、発熱素子付近の状態のい
ずれも、500版製版後の状態が、初期の状態と変化して
いない、 ○:発熱素子付近にやや堆積物が確認できるが、微量で
あり、製版状態や印刷物の画質は500版製版後の状態
が、初期の状態と変化していない、 △:発熱素子付近に堆積物が確認でき、製版状態や印刷
物の画質は500版製版後の状態が、初期の状態にくらべ
劣化している、 ×:発熱素子付近に多量の堆積物が確認できるか、また
は発熱素子の劣化によって発熱能力が低下しており、製
版状態や印刷物の画質は500版製版後の状態が、初期の
状態にくらべ著しく劣化している。
Influence on the thermal head The effect on the thermal head is that the resin or adhesive component of the film sticks or burns in the vicinity of the heating element, or the applied heating of the heating element due to excessive applied energy or overheating of the heating element. Indicates the degree of deterioration (decrease in heat generation capacity). B4
After making a 500-plate version of a test pattern image with an image ratio of 33% of the size, an image for evaluation is made and printed, and the state of the plate and the image quality of the printed matter are evaluated. The vicinity of the heating element is observed with an optical microscope. The evaluation criteria are as follows: :: The state of the plate making, the image quality of the printed matter, and the state near the heating element are all unchanged from the initial state after the plate making of the 500 plate. :: Slight accumulation near the heating element. The material can be confirmed, but the amount is very small, and the plate making condition and the image quality of the printed material are the same as those after the 500 plate making and the initial condition. △: Deposits can be confirmed near the heating element, and the plate making condition and printed material The image quality of the 500 plate after plate making is deteriorated compared to the initial state. ×: A large amount of deposits can be confirmed in the vicinity of the heating element, or the heating capacity has been reduced due to the deterioration of the heating element. The plate making state and the image quality of the printed matter are significantly degraded in the state after the 500 plate making compared to the initial state.

【0096】(比較例1)主走査方向解像度=副走査方
向解像度=300dpiにおいて、貫通孔の直径の目標値を主
走査方向、副走査方向ともに60μmとして印刷条件を設
定し、感熱孔版原紙を製版し、印刷した。
(Comparative Example 1) When the resolution in the main scanning direction = the resolution in the sub-scanning direction = 300 dpi, the printing conditions were set such that the target value of the diameter of the through-hole was 60 μm in both the main scanning direction and the sub-scanning direction, and the heat-sensitive stencil sheet was made. And printed.

【0097】このとき、輪郭の高さは式[1]の値より大
きく、式[1]及び式[2]のいずれもみたさない。
At this time, the height of the contour is larger than the value of the expression [1], and neither expression [1] nor expression [2] is satisfied.

【0098】(実施例1)フィルムの厚さを比較例1の
4.5μmに対して3.5μmに薄くし、それにあわせて印加エ
ネルギーを小さくした以外、比較例1と同様に製版及び
印刷を行った。これにより貫通孔の場所にあった樹脂の
体積が減少し、輪郭の高さが減少した。
(Example 1) The film thickness of Comparative Example 1 was
Plate making and printing were performed in the same manner as in Comparative Example 1, except that the thickness was reduced to 3.5 μm from 4.5 μm, and the applied energy was reduced accordingly. As a result, the volume of the resin at the location of the through hole was reduced, and the height of the contour was reduced.

【0099】このとき、輪郭の高さは式[1]及び式[2]の
両者をみたした。
At this time, both the formula [1] and the formula [2] were checked for the height of the contour.

【0100】(実施例2)フィルムの厚さを比較例1の
4.5μmに対して1.7μmに薄くし、それにあわせて印加エ
ネルギーを小さくした以外、比較例1と同様に製版及び
印刷を行った。これにより貫通孔の場所にあった樹脂の
体積が減少し、輪郭の高さが減少した。
(Example 2) The thickness of the film was
Plate making and printing were performed in the same manner as in Comparative Example 1 except that the thickness was reduced to 1.7 μm with respect to 4.5 μm, and the applied energy was reduced accordingly. As a result, the volume of the resin at the location of the through hole was reduced, and the height of the contour was reduced.

【0101】このとき、輪郭の高さは式[1]及び式[2]の
両者をみたした。
At this time, both the formula [1] and the formula [2] were checked for the height of the contour.

【0102】(比較例2)主走査解像度=300dpi、副走
査解像度=400dpiにおいて、貫通孔の直径の目標値を主
走査方向は59μm、副走査方向は44μmとして印刷条件を
設定し、感熱孔版原紙を製版し、印刷した。
(Comparative Example 2) At a main scanning resolution of 300 dpi and a sub-scanning resolution of 400 dpi, printing conditions were set such that the target value of the diameter of the through-hole was 59 μm in the main scanning direction and 44 μm in the sub-scanning direction. Was made and printed.

【0103】このとき、主走査方向の輪郭の高さは式
[2]の値より大きく、式[2]をみたさない。
At this time, the height of the contour in the main scanning direction is given by the following equation.
It is larger than the value of [2] and does not satisfy Equation [2].

【0104】(実施例3)フィルムの厚さを比較例2の
4μmに対して1.7μmに薄くし、それにあわせて印加エネ
ルギーを小さくした以外、比較例2と同様に製版及び印
刷を行った。これにより貫通孔の場所にあった樹脂の体
積が減少し、輪郭の高さが減少した。
(Example 3) The film thickness of Comparative Example 2 was
Plate making and printing were performed in the same manner as in Comparative Example 2 except that the thickness was reduced to 1.7 μm with respect to 4 μm, and the applied energy was reduced accordingly. As a result, the volume of the resin at the location of the through hole was reduced, and the height of the contour was reduced.

【0105】このとき、輪郭の高さは式[1]及び式[2]の
両者をみたした。
At this time, both the formula [1] and the formula [2] were used for the contour height.

【0106】(比較例3)主走査方向解像度=副走査方
向解像度=400dpiにおいて、貫通孔の直径の目標値を主
走査方向、副走査方向ともに42.5μmとして印刷条件を
設定し、感熱孔版原紙を製版し、印刷した。
(Comparative Example 3) When the resolution in the main scanning direction = the resolution in the sub-scanning direction = 400 dpi, the printing conditions were set assuming that the target value of the diameter of the through hole was 42.5 μm in both the main scanning direction and the sub-scanning direction. Plate making and printing.

【0107】このとき、主走査方向の輪郭の高さは式
[2]の値より大きく、式[2]をみたさない。
At this time, the height of the contour in the main scanning direction is given by the following equation.
It is larger than the value of [2] and does not satisfy Equation [2].

【0108】(実施例4)フィルムの厚さを比較例3の
4μmに対して2.5μmに薄くし、それにあわせて印加エネ
ルギーを小さくした以外、比較例3と同様に製版及び印
刷を行った。これにより貫通孔の場所にあった樹脂の体
積が減少し、輪郭の高さが減少した。
(Example 4) The thickness of the film was
Plate making and printing were performed in the same manner as in Comparative Example 3 except that the thickness was reduced to 2.5 μm with respect to 4 μm, and the applied energy was reduced accordingly. As a result, the volume of the resin at the location of the through hole was reduced, and the height of the contour was reduced.

【0109】このとき、輪郭の高さは式[1]及び式[2]の
両者をみたした。
At this time, both the formula [1] and the formula [2] were used for the contour height.

【0110】(実施例5)フィルムの厚さを比較例3の
4μmに対して1.7μmに薄くし、それにあわせて印加エネ
ルギーを小さくした以外、比較例3と同様に製版及び印
刷を行った。これにより貫通孔の場所にあった樹脂の体
積が減少し、輪郭の高さが減少した。
(Example 5) The film thickness of Comparative Example 3 was
Plate making and printing were performed in the same manner as in Comparative Example 3, except that the thickness was reduced to 1.7 μm with respect to 4 μm, and the applied energy was reduced accordingly. As a result, the volume of the resin at the location of the through hole was reduced, and the height of the contour was reduced.

【0111】このとき、輪郭の高さは式[1]及び式[2]の
両者をみたした。
At this time, both the formula [1] and the formula [2] were checked for the height of the contour.

【0112】(比較例4)主走査方向解像度=副走査方
向解像度=600dpiにおいて、貫通孔の直径の目標値を主
走査方向、副走査方向ともに26μmとして印刷条件を設
定し、感熱孔版原紙を製版し、印刷した。
(Comparative Example 4) When the resolution in the main scanning direction = the resolution in the sub-scanning direction = 600 dpi, the printing conditions were set such that the target value of the diameter of the through-hole was 26 μm in both the main scanning direction and the sub-scanning direction, and the heat-sensitive stencil sheet was made. And printed.

【0113】このとき、主走査方向の輪郭の高さは式
[2]の値より大きく、式[2]をみたさない。
At this time, the height of the contour in the main scanning direction is given by the following equation.
It is larger than the value of [2] and does not satisfy Equation [2].

【0114】(実施例6)フィルムの厚さを比較例4の
3.5μmに対して1.7μmに薄くし、それにあわせて印加エ
ネルギーを小さくした以外、比較例4と同様に製版及び
印刷を行った。これにより貫通孔の場所にあった樹脂の
体積が減少し、輪郭の高さが減少した。
(Example 6) The film thickness of Comparative Example 4 was
Plate making and printing were performed in the same manner as in Comparative Example 4 except that the thickness was reduced to 1.7 μm from 3.5 μm, and the applied energy was reduced accordingly. As a result, the volume of the resin at the location of the through hole was reduced, and the height of the contour was reduced.

【0115】このとき、輪郭の高さは式[1]及び式[2]の
両者をみたした。
At this time, both the formula [1] and the formula [2] were checked for the height of the contour.

【0116】[0116]

【表1】 [Table 1]

【0117】[0117]

【発明の効果】この発明によれば、孔版印刷に用いられ
る感熱孔版原紙のフィルムにサーマルヘッド等の加熱デ
バイスを用いて穿孔を施して孔版印刷版を作製する際
に、熱伝達効率の低下をおさえて製版デバイスに大きい
印加エネルギーや高い温度条件を要求せず、したがって
製版条件を向上(消費電力の低減、製版時間の短縮、発
熱素子の劣化防止)させ、穿孔の大きさを適切に保ちな
がら形状のばらつきをおさえ、したがって印刷物の画像
品質を向上(ベタ部分の濃度ばらつきの低減、細字のか
すれやつぶれの低減、裏移りや裏抜けの低減)させ、ま
た、フィルムの樹脂が発熱素子に固着することをふせぐ
ための、穿孔形態を実現することができる。
According to the present invention, when a stencil printing plate is produced by perforating a film of a heat-sensitive stencil sheet used for stencil printing using a heating device such as a thermal head, the heat transfer efficiency is reduced. It does not require large applied energy and high temperature conditions for the plate making device, and therefore improves the plate making conditions (reducing power consumption, shortening the plate making time, preventing deterioration of the heating element), and keeping the size of the perforations appropriate. Reduces variations in shape, thus improving image quality of printed matter (reducing density variations in solid areas, reducing blurring and crushing of fine characters, reducing set-off and strike-through), and film resin adheres to heating elements It is possible to realize a perforation form for preventing the operation from being performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】熱収縮性の感熱孔版原紙のフィルムに施された
穿孔の模式的平面図及び断面図。
FIG. 1 is a schematic plan view and a cross-sectional view of perforations formed in a film of a heat-shrinkable heat-sensitive stencil sheet.

【図2】サーマルヘッドの発熱素子の温度分布を示すグ
ラフ。
FIG. 2 is a graph showing a temperature distribution of a heating element of the thermal head.

【図3】サーマルヘッドの発熱素子によって加熱された
フィルムの温度分布を示すグラフ。
FIG. 3 is a graph showing a temperature distribution of a film heated by a heating element of a thermal head.

【図4】熱収縮性の感熱孔版原紙のフィルムの温度と熱
収縮応力との関係を示すグラフ。
FIG. 4 is a graph showing the relationship between the temperature of the film of the heat-shrinkable heat-sensitive stencil sheet and the heat shrinkage stress.

【図5】熱収縮性の感熱孔版原紙のフィルムの加熱穿孔
時の樹脂の移動方向を示す模式的平面図。
FIG. 5 is a schematic plan view showing a moving direction of a resin when heat-perforating a film of a heat-shrinkable heat-sensitive stencil sheet.

【図6】熱収縮性の感熱孔版原紙のフィルムの熱収縮及
び熱溶融による穿孔挙動を説明する模式的平面図。
FIG. 6 is a schematic plan view for explaining the perforation behavior of a film of a heat-shrinkable heat-sensitive stencil sheet under heat shrinkage and heat melting.

【符号の説明】[Explanation of symbols]

1…穿孔 2…貫通孔 3…輪郭 4…楕円断面部分 5…薄膜部分 6…基準面 7…輪郭の高さ DESCRIPTION OF SYMBOLS 1 ... Perforation 2 ... Through-hole 3 ... Contour 4 ... Elliptical cross section 5 ... Thin film part 6 ... Reference plane 7 ... Contour height

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 熱収縮性フィルムを備えた感熱孔版原紙
の当該熱収縮性フィルムを加熱デバイスで選択的に加熱
して画像に対応する独立した点状の穿孔を形成させる製
版方法において、該穿孔は貫通孔を囲む輪郭をもち、熱
収縮性フィルム上の加熱される側の面に隆起する輪郭
の、穿孔前のフィルム面に対する高さhは、下記式[1]お
よび式[2]を満足することを特徴とする感熱孔版原紙の
製版方法。 h≦4[μm] [1] h≦0.05√(px py)[μm] [2] (式中、pxは主走査のピッチ[μm]、pyは副走査のピ
ッチ[μm]である。)
1. A stencil printing method in which a heat-shrinkable film of a heat-sensitive stencil sheet having a heat-shrinkable film is selectively heated by a heating device to form independent dot-like perforations corresponding to an image. Has a profile surrounding the through-hole, and the height h of the profile protruding on the heated side of the heat-shrinkable film relative to the film surface before perforation satisfies the following formulas [1] and [2] A method of making a heat-sensitive stencil sheet. h ≦ 4 [μm] [1 ] h ≦ 0.05√ (p x p y) [μm] [2] ( wherein, the pitch of the p x in the main scanning [μm], p y sub-scanning pitch [[mu] m] Is.)
【請求項2】 熱収縮性フィルムを備えた感熱孔版原紙
の当該熱収縮性フィルムを加熱デバイスで選択的に加熱
して画像に対応する独立した点状の穿孔を形成させる製
版装置において、該穿孔は貫通孔を囲む輪郭をもち、熱
収縮性フィルム上の加熱される側の面に隆起する輪郭
の、穿孔前のフィルム面に対する高さhは、下記式[1]お
よび式[2]を満足することを特徴とする感熱孔版原紙の
製版装置。 h≦4[μm] [1] h≦0.05√(px py)[μm] [2] (式中、pxは主走査のピッチ[μm]、pyは副走査のピ
ッチ[μm]である。)
2. A stencil making apparatus which selectively heats a heat-shrinkable film of a heat-sensitive stencil sheet having a heat-shrinkable film with a heating device to form independent dot-like perforations corresponding to an image. Has a profile surrounding the through-hole, and the height h of the profile protruding on the heated side of the heat-shrinkable film relative to the film surface before perforation satisfies the following formulas [1] and [2] A stencil making machine for heat-sensitive stencils. h ≦ 4 [μm] [1 ] h ≦ 0.05√ (p x p y) [μm] [2] ( wherein, the pitch of the p x in the main scanning [μm], p y sub-scanning pitch [[mu] m] Is.)
【請求項3】 加熱デバイスで選択的に加熱して画像に
対応する独立した点状の穿孔が形成された熱収縮性フィ
ルムを備えた孔版印刷版であって、該穿孔は貫通孔を囲
む輪郭をもち、熱収縮性フィルム上の加熱される側の面
に隆起する輪郭の、穿孔前のフィルム面に対する高さh
は、下記式[1]および式[2]を満足することを特徴とする
孔版印刷版。 h≦4[μm] [1] h≦0.05√(px py)[μm] [2] (式中、pxは主走査のピッチ[μm]、pyは副走査のピ
ッチ[μm]である。)
3. A stencil printing plate comprising a heat-shrinkable film in which independent dot-like perforations corresponding to an image are formed by being selectively heated by a heating device, wherein the perforations are contours surrounding the through-holes. The height h of the contour raised on the surface to be heated on the heat-shrinkable film with respect to the film surface before perforation.
Is a stencil printing plate characterized by satisfying the following expressions [1] and [2]. h ≦ 4 [μm] [1 ] h ≦ 0.05√ (p x p y) [μm] [2] ( wherein, the pitch of the p x in the main scanning [μm], p y sub-scanning pitch [[mu] m] Is.)
【請求項4】 加熱デバイスにより選択的に加熱されて
画像に対応する独立した点状の穿孔を形成する熱収縮性
フィルムを備える感熱孔版原紙であって、該穿孔は貫通
孔を囲む輪郭をもち、熱収縮性フィルム上の加熱される
側の面に隆起する輪郭の、穿孔前のフィルム面に対する
高さhは、下記式[1]および式[2]を満足することを特徴
とする感熱孔版原紙。 h≦4[μm] [1] h≦0.05√(px py)[μm] [2] (式中、pxは主走査のピッチ[μm]、pyは副走査のピ
ッチ[μm]である。)
4. A heat-sensitive stencil sheet comprising a heat-shrinkable film selectively heated by a heating device to form independent dot-like perforations corresponding to an image, wherein the perforations have a contour surrounding the through-holes. A height h of a contour raised on a surface to be heated on the heat-shrinkable film with respect to a film surface before perforation satisfies the following formulas [1] and [2]. Base paper. h ≦ 4 [μm] [1 ] h ≦ 0.05√ (p x p y) [μm] [2] ( wherein, the pitch of the p x in the main scanning [μm], p y sub-scanning pitch [[mu] m] Is.)
JP2001126015A 2000-04-24 2001-04-24 Method for making heat-sensitive stencil sheet, plate-making apparatus and stencil printing plate Expired - Lifetime JP4302332B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001126015A JP4302332B2 (en) 2000-05-19 2001-04-24 Method for making heat-sensitive stencil sheet, plate-making apparatus and stencil printing plate
US09/858,910 US6532867B2 (en) 2000-05-19 2001-05-17 Method for producing a stencil plate
CNB011192488A CN1162280C (en) 2000-04-24 2001-05-18 Master-plate and production method and apparatus thereof
US10/255,712 US6659003B2 (en) 2000-05-19 2002-09-27 Stencil plate
US10/255,754 US20030033945A1 (en) 2000-05-19 2002-09-27 Stencil plate and method and apparatus for producing a stencil plate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000148951 2000-05-19
JP2000-148951 2000-05-19
JP2001126015A JP4302332B2 (en) 2000-05-19 2001-04-24 Method for making heat-sensitive stencil sheet, plate-making apparatus and stencil printing plate

Publications (2)

Publication Number Publication Date
JP2002036487A true JP2002036487A (en) 2002-02-05
JP4302332B2 JP4302332B2 (en) 2009-07-22

Family

ID=26592267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001126015A Expired - Lifetime JP4302332B2 (en) 2000-04-24 2001-04-24 Method for making heat-sensitive stencil sheet, plate-making apparatus and stencil printing plate

Country Status (3)

Country Link
US (3) US6532867B2 (en)
JP (1) JP4302332B2 (en)
CN (1) CN1162280C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008265267A (en) * 2007-03-29 2008-11-06 Toray Ind Inc Polypropylene film for thermal stencil printing, and thermal stencil printing base sheet consisting of the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4359008B2 (en) * 2000-05-19 2009-11-04 理想科学工業株式会社 Method for making heat-sensitive stencil sheet, plate-making apparatus and stencil printing plate
US8557758B2 (en) 2005-06-07 2013-10-15 S.C. Johnson & Son, Inc. Devices for applying a colorant to a surface
US8061269B2 (en) 2008-05-14 2011-11-22 S.C. Johnson & Son, Inc. Multilayer stencils for applying a design to a surface
EP2372554B1 (en) 2007-03-29 2013-03-20 Fujitsu Limited Information processing device and error processing method
US20130164448A1 (en) * 2011-09-13 2013-06-27 Heath Moore Stenciling device and method
GB2497540B (en) * 2011-12-13 2016-06-22 Pexa Ltd Masking apparatus
CN114932738B (en) * 2022-05-31 2022-12-27 广东微容电子科技有限公司 Manufacturing method of high-precision silk screen

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3084076B2 (en) * 1991-02-21 2000-09-04 理想科学工業株式会社 Plate making method of heat-sensitive stencil paper and heat-sensitive stencil paper
JP2638390B2 (en) * 1992-05-27 1997-08-06 ブラザー工業株式会社 Thermal plate making equipment
JP3458237B2 (en) * 1993-05-13 2003-10-20 株式会社リコー Thermal stencil printing method
US5559546A (en) * 1993-12-17 1996-09-24 Tohoku Ricoh Co., Ltd. Stencil perforating method, stencil perforating system, and stencil printing machine
JP3441185B2 (en) * 1994-09-30 2003-08-25 理想科学工業株式会社 Perforation method of heat-sensitive stencil printing paper
JP4009026B2 (en) * 1998-06-30 2007-11-14 東北リコー株式会社 Thermal plate making equipment
JP2001322230A (en) 2000-05-17 2001-11-20 Riso Kagaku Corp Thermal screen plate making method, thermal screen plate making apparatus, and thermoplastic resin film of thermal screen stencil paper
JP2001322229A (en) 2000-05-17 2001-11-20 Riso Kagaku Corp Thermal screen plate making method, thermal screen plate making apparatus, and thermoplastic resin film of thermal screen stencil paper
JP2001322228A (en) 2000-05-17 2001-11-20 Riso Kagaku Corp Thermal screen plate making method, thermal screen plate making apparatus, and thermoplastic resin film of thermal screen stencil paper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008265267A (en) * 2007-03-29 2008-11-06 Toray Ind Inc Polypropylene film for thermal stencil printing, and thermal stencil printing base sheet consisting of the same

Also Published As

Publication number Publication date
US6659003B2 (en) 2003-12-09
US20030033944A1 (en) 2003-02-20
US6532867B2 (en) 2003-03-18
JP4302332B2 (en) 2009-07-22
US20030033945A1 (en) 2003-02-20
CN1162280C (en) 2004-08-18
US20020037392A1 (en) 2002-03-28
CN1324731A (en) 2001-12-05

Similar Documents

Publication Publication Date Title
US6571700B2 (en) Method for making a heat-sensitive stencil
JP3084076B2 (en) Plate making method of heat-sensitive stencil paper and heat-sensitive stencil paper
JP4302332B2 (en) Method for making heat-sensitive stencil sheet, plate-making apparatus and stencil printing plate
JPH05330111A (en) Thermal plate making apparatus
JPH0267133A (en) Thermal plate making apparatus and plate making method for thermal screen printing base paper using the apparatus
JP3043443B2 (en) Thermal plate making equipment
JP4359008B2 (en) Method for making heat-sensitive stencil sheet, plate-making apparatus and stencil printing plate
JP2001322228A (en) Thermal screen plate making method, thermal screen plate making apparatus, and thermoplastic resin film of thermal screen stencil paper
JP3656891B2 (en) Thermal head
US6571699B2 (en) Method of thermally perforating a heat sensitive stencil
EP1080941A2 (en) Apparatus for making stencils using heat
JP2019181708A (en) Screen printing method and screen printing device
JP2007136680A (en) Plate material for thermal stencil plate
JP3053642B2 (en) Method of making stencil printing paper
US6366305B1 (en) Thermal stencil making method
JP3159348B2 (en) Plate making method and plate making apparatus for heat-sensitive stencil master
KR20030051389A (en) Heat sensitive stencil sheet
JP3545817B2 (en) Heat-sensitive stencil making machine and its master

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090205

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090422

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4302332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term