JP2002035538A - Method and equipment for cleaning waste gas - Google Patents

Method and equipment for cleaning waste gas

Info

Publication number
JP2002035538A
JP2002035538A JP2000226830A JP2000226830A JP2002035538A JP 2002035538 A JP2002035538 A JP 2002035538A JP 2000226830 A JP2000226830 A JP 2000226830A JP 2000226830 A JP2000226830 A JP 2000226830A JP 2002035538 A JP2002035538 A JP 2002035538A
Authority
JP
Japan
Prior art keywords
exhaust gas
carbonized
collector
dry
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000226830A
Other languages
Japanese (ja)
Inventor
Tomohiro Akiyama
友宏 秋山
Hiroyuki Uesugi
浩之 上杉
Yutaka Yamauchi
豊 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2000226830A priority Critical patent/JP2002035538A/en
Publication of JP2002035538A publication Critical patent/JP2002035538A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Treating Waste Gases (AREA)
  • Coke Industry (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for cleaning a waste gas by which harmful substances such as matter that remains not combusted can be effectively removed from a waste gas such as a combustion exhaust gas by means of simple equipment and to provide equipment for cleaning. SOLUTION: There are provided a method for cleaning a waste gas comprising passing a waste gas through a layer, desirably a fixed, moving, or a fluidized one, of a carbonized carbide of a refuse solid fuel and equipment for cleaning a waste gas having a moving layer type adsorptive collector 20 packed with a carbonized carbide of a refuse solid fuel; a waste gas feed pipe 8 and a cleaned gas discharge pipe 9 connected to the bottom and the top of the collector 20; a feeder 11 and a discharger 13 for the carbonized carbide provided at the top and the bottom of the collector 20; a device 21 for measuring the gas pressure loss across the collector 20; a level meter 23 for the carbonized carbide; a control unit 22A that controls the discharge rate of the discharger 13 according to the measurements sent from the device 21; and a controller 22B that controls the rate of feed from the feeder 11 according to the measurements sent from the meter 23.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃焼排ガスなど各
種プロセスにおいて発生する排ガスの清浄化方法および
清浄化設備に関し、特に、燃焼排ガス中の未燃分など排
ガス中の有害物質を効果的に除去すると共に、産業廃棄
物を有効に活用することが可能な排ガスの清浄化方法お
よび清浄化設備に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and a device for purifying exhaust gas generated in various processes such as flue gas, and more particularly to a method for effectively removing harmful substances in flue gas such as unburned components in flue gas. In addition, the present invention relates to an exhaust gas cleaning method and a cleaning facility capable of effectively utilizing industrial waste.

【0002】[0002]

【従来の技術】廃棄物(ごみ)焼却炉、ボイラー、鉄屑
溶解炉、キルンなど各種燃焼炉、金属溶融・製錬炉、焼
成炉からは、未燃分、サブミクロンオーダーの粒子状物
質、塩素系炭化水素化合物を含有する排ガスが発生す
る。このため、環境保全の面から、これら排ガス中に含
まれる有害物質の発生防止方法、有害物質の除去方法が
検討され、実用化されている。
2. Description of the Related Art Various combustion furnaces such as waste (garbage) incinerators, boilers, iron scrap melting furnaces, kilns, metal melting and smelting furnaces, and firing furnaces provide unburned substances, submicron-order particulate matter, An exhaust gas containing a chlorinated hydrocarbon compound is generated. For this reason, from the viewpoint of environmental protection, methods for preventing generation of harmful substances contained in these exhaust gases and methods for removing harmful substances have been studied and put to practical use.

【0003】しかしながら、例えば、未燃分の発生を抑
制する場合は、燃焼用空気の空気比を高めた高温燃焼が
必要であり、NOx などの二次公害が発生し、これらの除
去装置の設置が必要となる。また、鉄屑溶解炉において
は、塩素系炭化水素化合物の発生防止、金属微粒子の捕
集のために、排ガスの急冷装置、集塵機など複雑な設備
の設置が必要となる。
However, for example, in case of suppressing the generation of unburned requires hot combustion with improved air ratio of the combustion air, secondary pollution is generated, such as NO x, these removal device Installation is required. In addition, in an iron scrap melting furnace, complicated equipment such as an exhaust gas quenching device and a dust collector is required to prevent the generation of chlorine-based hydrocarbon compounds and to collect metal fine particles.

【0004】このため、上記した有害物質を、簡易な設
備で効果的に除去することが可能な排ガスの清浄化方法
および清浄化設備の開発が望まれている。
[0004] For this reason, there is a demand for the development of a method and a facility for purifying exhaust gas which can effectively remove the above-mentioned harmful substances with a simple facility.

【0005】[0005]

【発明が解決しようとする課題】本発明は、前記した従
来技術の問題点を解決し、燃焼排ガス中の未燃分など排
ガス中の有害物質を、簡易な設備で、効果的に除去する
ことが可能な排ガスの清浄化方法および清浄化設備を提
供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art and effectively removes harmful substances in exhaust gas such as unburned components in combustion exhaust gas with simple equipment. It is an object of the present invention to provide an exhaust gas purifying method and a purifying equipment capable of performing the method.

【0006】[0006]

【課題を解決するための手段】本発明者らは前記した課
題を解決するために鋭意検討した結果、ごみ固形燃料の
乾留炭化物を有害物質の吸着・捕集剤として活用する本
発明に至った。すなわち、第1の発明は、排ガスを、ご
み固形燃料の乾留炭化物層に流通せしめることを特徴と
する排ガスの清浄化方法である。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, have arrived at the present invention in which carbonized carbonization of refuse solid fuel is used as an agent for adsorbing and collecting harmful substances. . That is, the first invention is a method for purifying exhaust gas, which comprises causing exhaust gas to flow through a dry-distilled carbide layer of refuse solid fuel.

【0007】前記した第1の発明においては、前記ごみ
固形燃料の乾留炭化物層が、固定層、移動層または流動
層であることが好ましい(第1の発明の好適態様)。第
2の発明は、ごみ固形燃料の乾留炭化物を充填した移動
層方式の吸着・捕集器20と、該吸着・捕集器20の下部に
接続された排ガス供給配管8と、前記吸着・捕集器20の
上部に接続された清浄ガス排出配管9と、前記吸着・捕
集器20の上部に配設されたごみ固形燃料の乾留炭化物の
供給装置11と、前記吸着・捕集器20の下部に配設された
ごみ固形燃料の乾留炭化物の排出装置13と、前記吸着・
捕集器20のガス入口側およびガス出口側のガス圧力損失
測定装置21と、前記吸着・捕集器20内のごみ固形燃料の
乾留炭化物のレベル計23と、前記ガス圧力損失測定装置
21の測定結果に基づき前記排出装置13の排出速度を制御
する制御装置22A と、前記レベル計23の測定結果に基づ
き前記供給装置11の供給速度を制御する制御装置22B を
有することを特徴とする排ガスの清浄化設備である。
In the first aspect of the present invention, it is preferable that the dry-distilled carbide layer of the solid waste fuel is a fixed bed, a moving bed or a fluidized bed (a preferred embodiment of the first invention). The second invention includes a moving bed type adsorption / collector 20 filled with dry distillation carbide of refuse solid fuel, an exhaust gas supply pipe 8 connected to a lower part of the adsorption / collector 20, A clean gas discharge pipe 9 connected to an upper portion of the collector 20; a supply device 11 for dry-distilled carbide of refuse solid fuel disposed at an upper portion of the adsorber / collector 20; A discharge device 13 for dry-distilled carbides of refuse solid fuel disposed at the bottom,
A gas pressure loss measuring device 21 on the gas inlet side and gas outlet side of the collector 20, a level meter 23 of dry-distilled carbide of refuse solid fuel in the adsorption / collector 20, and a gas pressure loss measuring device
A control device 22A for controlling the discharge speed of the discharge device 13 based on the measurement result of 21 and a control device 22B for controlling the supply speed of the supply device 11 based on the measurement result of the level meter 23. This is an exhaust gas purification facility.

【0008】なお、前記した第1の発明、第1の発明の
好適態様、第2の発明におけるごみ固形燃料の乾留炭化
物としては、ごみの成形物を乾留炭化して製造された乾
留炭化物であれば特に制限を受けるものではないが、
ごみの中から選別した可燃物を、破砕、乾燥、成形して
得られたごみ固形燃料を乾留炭化して製造された乾留炭
化物、またはごみの中から選別した可燃物を、破砕、
成形、乾燥して得られたごみ固形燃料を乾留炭化して製
造された乾留炭化物、または前記、で製造された
乾留炭化物の混合物を用いることがより好ましい。
In the first invention, the preferred embodiment of the first invention and the second invention, the dry-distilled carbide of the solid refuse fuel is a dry-distilled carbide produced by dry-distilling a molded product of waste. Is not particularly limited,
Combustible materials selected from refuse, crushed, dried, dry-carbonized carbonized fuel produced by refrigerated solid fuel obtained by molding, or combustible materials selected from refuse, crushed,
It is more preferable to use a dry-distilled carbide produced by dry-distilling and carbonizing the refuse solid fuel obtained by molding and drying, or a mixture of the dry-distilled carbides produced in the above.

【0009】また、前記した第1の発明の好適態様、第
2の発明における移動層としては、前記乾留炭化物が経
時的に連続して移動する連続式移動層に限定されること
はなく、前記乾留炭化物が経時的に断続的に移動する間
歇式移動層であってもよい。
Further, the moving bed in the preferred embodiment of the first invention and the moving invention in the second invention is not limited to a continuous moving bed in which the dry-distilled carbide continuously moves with time. It may be an intermittent moving bed in which the carbonized carbide moves intermittently with time.

【0010】[0010]

【発明の実施の形態】以下、本発明をさらに詳細に説明
する。本発明者らは、前記した従来技術の問題点を解決
するために鋭意検討した結果、下記知見(1) 〜(3) を
得、本発明に至った。 (1) ごみ固形燃料の乾留炭化物の吸着剤および燃料、還
元剤としての活用:ごみ固形燃料の乾留炭化物は、比表
面積、気孔率が大きく、燃焼排ガス中の未燃分などの吸
着性能を有しており、ごみ固形燃料の乾留炭化物を吸着
剤として用い、使用後の該乾留炭化物を燃料、還元剤と
して用いることによって、産業廃棄物を排ガスの清浄化
剤および各種燃料、還元剤の両者として有効に活用する
ことができる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The present inventors have conducted intensive studies in order to solve the above-mentioned problems of the prior art, and as a result, have obtained the following findings (1) to (3), and have reached the present invention. (1) Utilization of refuse solid fuel as carbon adsorbent, fuel, and reducing agent: Refuse carbon from refuse solid fuel has a large specific surface area and porosity, and has the ability to adsorb unburned components in combustion exhaust gas. Industrial waste is used as both a cleansing agent for exhaust gas and various fuels and a reducing agent by using the carbonized carbonized material of the refuse solid fuel as an adsorbent and using the carbonized carbonized material after use as a fuel and a reducing agent. It can be used effectively.

【0011】(2) ごみ固形燃料の乾留炭化物の充填層を
用いた排ガスの清浄化方法:ごみ固形燃料の乾留炭化物
を充填した固定層、移動層、流動層を用いることによっ
て、下記の優れた効果が得られる。 (2-1) ごみ固形燃料の乾留炭化物を充填した固定層を用
いた排ガスの清浄化方法:ごみ固形燃料の乾留炭化物を
充填した固定層を用いることによって、ごみ固形燃料の
乾留炭化物層が吸着剤およびフィルタの両者の機能を発
揮し、燃焼排ガス中の未燃分など排ガス中の有害物質
を、簡易な設備で効果的に除去することができる。
(2) A method for purifying exhaust gas using a packed bed of dry-distilled carbide of refuse solid fuel: The use of a fixed bed, a moving bed and a fluidized bed filled with dry-distilled carbide of refuse solid fuel has the following advantages. The effect is obtained. (2-1) Purification method of exhaust gas using fixed bed filled with dry-distilled carbide of refuse solid fuel: By using fixed bed filled with dry-distilled carbide of refuse solid fuel, dry-distilled carbide layer of refuse solid fuel is adsorbed By exhibiting the functions of both the agent and the filter, harmful substances in the exhaust gas such as unburned components in the combustion exhaust gas can be effectively removed with simple equipment.

【0012】(2-2) ごみ固形燃料の乾留炭化物を充填し
た移動層を用いた排ガスの清浄化方法および清浄化設
備:ごみ固形燃料の乾留炭化物を充填した移動層を用い
ることによって、ごみ固形燃料の乾留炭化物層が吸着剤
およびフィルタの両者の機能を発揮し、燃焼排ガス中の
未燃分など排ガス中の有害物質を、効果的に除去できる
ばかりでなく、逐次新たな乾留炭化物が供給されるた
め、排ガス中の有害物質をさらに効果的に除去できる。
(2-2) Method and apparatus for purifying exhaust gas using a moving bed filled with dry-distilled carbide of refuse solid fuel: By using a moving bed filled with dry-distilled carbide of refuse solid fuel, solid waste can be solidified. The dry carbonized carbon layer of the fuel functions as both an adsorbent and a filter, not only effectively removing harmful substances in the exhaust gas such as unburned components in the combustion exhaust gas, but also supplying new dry carbonized carbon sequentially. Therefore, harmful substances in the exhaust gas can be more effectively removed.

【0013】さらに、移動層方式の場合、上記した優れ
た効果が得られると共に、設備が複雑化せず、簡易かつ
小型の設備で連続操業が可能となる。 (2-3) ごみ固形燃料の乾留炭化物を充填した流動層を用
いた排ガスの清浄化方法:ごみ固形燃料の乾留炭化物を
充填した流動層を用いることによって、ごみ固形燃料の
乾留炭化物層が吸着剤の機能を発揮し、燃焼排ガス中の
未燃分など排ガス中の有害物質を効果的に除去できるば
かりでなく、後記するように、有害物質を吸着し、性能
が低下した乾留炭化物が選択的に系外に排出され、ごみ
固形燃料の乾留炭化物が吸着剤として効率的に利用さ
れ、また、連続操業が可能となる。
Further, in the case of the moving bed system, the above-mentioned excellent effects can be obtained, and the equipment can be continuously operated with simple and small equipment without complicating the equipment. (2-3) Purification method of exhaust gas using fluidized bed filled with dry-distilled carbide of refuse solid fuel: By using fluidized bed filled with dry-distilled carbide of refuse solid fuel, dry-distilled carbide layer of refuse solid fuel is adsorbed Not only can it function effectively to remove harmful substances in exhaust gas such as unburned components in combustion exhaust gas, but also, as will be described later, it is possible to selectively remove carbonized charcoal that has reduced its performance by adsorbing harmful substances. The carbonized waste of the solid fuel is efficiently used as an adsorbent, and continuous operation is possible.

【0014】以下、本発明を、I.ごみ固形燃料の乾留炭
化物、II. ごみ固形燃料の乾留炭化物を充填した固定層
を用いた排ガスの清浄化方法、III.ごみ固形燃料の乾留
炭化物を充填した移動層を用いた排ガスの清浄化方法お
よび清浄化設備、IV. ごみ固形燃料の乾留炭化物を充填
した流動層を用いた排ガスの清浄化方法の順に述べる。
Hereinafter, the present invention relates to I. Dry carbonization of refuse solid fuel, II. A method of purifying exhaust gas using a fixed bed filled with dry carburetion of refuse solid fuel, and III. Of exhaust gas using a moving bed and its purification equipment, and IV. Purification method of exhaust gas using a fluidized bed filled with dry-distilled carbide of refuse solid fuel.

【0015】I.ごみ固形燃料の乾留炭化物:近年、ごみ
の処理が社会的な関心を集めている。すなわち、ごみの
焼却処理施設の建設に際しての立地の問題から、可燃ご
みのみを選別し、破砕、乾燥、成形し、ごみを積極的に
燃料として利用する環境保全型のごみの固形燃料化技術
の開発が進められている。
I. Carbonized carbonized refuse solid fuel: In recent years, refuse disposal has attracted public interest. In other words, due to the location problem when constructing a waste incineration facility, only combustible waste is sorted, crushed, dried, molded, and solid waste recycling technology for environmentally friendly waste is actively used as fuel. Development is underway.

【0016】ごみ固形燃料(RDF:Refuse Derived Fuel
またはWDF:Waste Derived Fuel)は、都市ごみ、家庭ご
み、産業廃棄物、一般廃棄物などのごみの中から選別し
た可燃物を破砕、乾燥、成形して製造した固体燃料、ま
たは上記可燃物を破砕、成形、乾燥して製造した固体燃
料である。上記で得られたごみ固形燃料は、従来ストー
カー式焼却炉や流動床式焼却炉で燃焼し、廃熱ボイラで
熱回収し、得られる温水を給湯や冷暖房に利用するごみ
処理システムが実現化しつつある。
Refuse-derived fuel (RDF)
Or WDF: Waste Derived Fuel) is a solid fuel produced by crushing, drying, and molding combustible materials selected from municipal waste, household waste, industrial waste, general waste, etc., or the above combustible materials. It is a solid fuel produced by crushing, forming and drying. The refuse solid fuel obtained above is burned in conventional stoker incinerators or fluidized bed incinerators, heat is recovered by a waste heat boiler, and a refuse treatment system that uses the obtained hot water for hot water supply and cooling / heating is being realized. is there.

【0017】しかしながら、上記したごみ固形燃料は燃
焼性が劣り、上記した特殊な焼却炉で燃焼する必要があ
り、その利用方法が制限される問題があった。一方、ご
みの成形物(ごみ固形燃料)を乾留すると、炭素を主成
分とする炭化物と乾留ガスが発生する。ごみ固形燃料の
炭化物の発熱量(低位発熱量)は、約14700kJ/kgと高発
熱量であると共に、燃焼性に優れ、各種燃料として利用
でき、さらに副生する乾留ガスは、ごみの成形物を乾留
する際の熱源などとして有効に活用できる。
However, the refuse solid fuel described above has poor flammability, and must be burned in the above-mentioned special incinerator, and there is a problem that its use is limited. On the other hand, when carbonized waste (refuse solid fuel) is formed, carbonized carbon dioxide and carbonized gas are generated. The calorific value (lower calorific value) of the solid waste fuel is about 14700kJ / kg, and it has excellent combustibility and can be used as various fuels. Can be effectively used as a heat source for carbonization.

【0018】本発明においては、上記したごみ固形燃料
の乾留炭化物(:以下、 RDF乾留炭化物とも記す)が、
比表面積、気孔率が大きく、燃焼排ガス中の未燃分など
排ガス中の有害物質の吸着性能を有している特性を活用
して、排ガスの清浄化剤として用いる。本発明における
ごみ固形燃料の乾留炭化物(: RDF乾留炭化物)として
は、ごみの成形物を乾留炭化して製造した乾留炭化物で
あれば特に制限を受けるものではないが、下記〜の
乾留炭化物がより好適に用いられる。
In the present invention, the carbonized carbonized waste (hereinafter, also referred to as RDF carbonized carbide) of the refuse solid fuel is:
It is used as a purifying agent for exhaust gas by making use of its property of having a large specific surface area and a high porosity and having a performance of adsorbing harmful substances in exhaust gas such as unburned components in combustion exhaust gas. The dry-distilled carbide of the refuse solid fuel in the present invention (: RDF dry-distilled carbide) is not particularly limited as long as it is a dry-distilled carbide produced by dry-distilling and carbonizing a molded article of garbage. It is preferably used.

【0019】都市ごみ、家庭ごみなどの一般ごみ、産
業廃棄物、一般廃棄物、および家電製品、自動車部品な
どを破砕して得られたシュレッダーダストまたはこれら
の混合物であるごみの中から選別した可燃物を、破砕、
乾燥、成形して得られたごみ固形燃料を乾留炭化して製
造した乾留炭化物(:ごみ固形燃料の乾留炭化物)。 上記における可燃物を、破砕、成形、乾燥して得ら
れたごみ固形燃料を乾留炭化して製造した乾留炭化
物(:ごみ固形燃料の乾留炭化物)。
Combustible materials selected from general waste such as municipal waste, household waste, industrial waste, general waste, and shredder dust obtained by crushing home electric appliances, automobile parts, and the like, or garbage that is a mixture thereof. Crush things,
A dry-distilled carbide produced by dry-distilling and carbonizing the refuse solid fuel obtained by drying and molding (: dry-distilled carbon of refuse solid fuel). A dry-distilled carbide produced by crushing, shaping, and drying the combustible material described above to obtain a refuse solid fuel, which is obtained by dry-distillation and carbonization (: dry-distilled carbide of refuse solid fuel).

【0020】上記、で製造した乾留炭化物の混合
物(:ごみ固形燃料の乾留炭化物)。なお、ごみ固形燃
料の乾留炭化温度としては、好ましくは300 〜1200℃、
さらには400 〜900 ℃がより好ましい。ごみ固形燃料の
乾留炭化温度が、300 ℃未満、1200℃を超える場合は、
いずれの場合も、ごみ固形燃料の乾留炭化物の吸着容量
が低下する。
A mixture of the carbonized carbonized materials produced in the above ((Carbonized carbonized solid waste fuel)). The carbonization temperature of the refuse solid fuel is preferably 300 to 1200 ° C.
More preferably, the temperature is from 400 to 900 ° C. If the carbonization temperature of the refuse solid fuel is less than 300 ℃ and more than 1200 ℃,
In any case, the adsorption capacity of the dry-distilled carbide of the refuse solid fuel decreases.

【0021】II. ごみ固形燃料の乾留炭化物(: RDF乾
留炭化物)を充填した固定層を用いた排ガスの清浄化方
法:図1に、本発明の排ガスの清浄化方法に好適に用い
られる固定層方式の排ガスの清浄化設備(以下、排ガス
清浄化設備とも記す)の一例を、縦断面図によって示
す。
II. Method for Purifying Exhaust Gas Using Fixed Bed Filled with Dry Distilled Carbide (: RDF Dry Distilled Carbide) of Garbage Solid Fuel: FIG. 1 shows a fixed bed suitably used in the exhaust gas cleaning method of the present invention. An example of a system for purifying exhaust gas (hereinafter also referred to as an exhaust gas cleaning device) is shown in a longitudinal sectional view.

【0022】なお、図1において、1A、1Bは固定層方式
の吸着・捕集器、2はごみ固形燃料の乾留炭化物(: R
DF乾留炭化物)、3は排ガス、4は清浄ガス、5A、5Bは
RDF乾留炭化物供給用のホッパ、6A、6B、6Cはベルトコ
ンベア、7は使用後の RDF乾留炭化物の貯溜用のホッ
パ、8は排ガス供給配管、9は清浄ガス排出配管、10は
排風機、11はロータリーバルブ(ロータリーフィーダ)
である RDF乾留炭化物の供給装置、12A 、12B は弁、1
3、14はロータリーバルブ(ロータリーフィーダ)であ
る RDF乾留炭化物の排出装置、f1は RDF乾留炭化物の移
動方向を示す。
In FIG. 1, reference numerals 1A and 1B denote adsorption / collectors of a fixed-bed type, and 2 denotes a dry-distilled carbide (: R) of refuse solid fuel.
DF carbonized carbonized), 3 is exhaust gas, 4 is clean gas, 5A and 5B are
A hopper for supplying RDF carbonized carbide, 6A, 6B and 6C are belt conveyors, 7 is a hopper for storing RDF carbonized carbide after use, 8 is an exhaust gas supply pipe, 9 is a clean gas discharge pipe, 10 is a blower, 11 Is a rotary valve (rotary feeder)
RDF carbonized carbide feeder, 12A and 12B are valves, 1
3,14 Emission device, f 1 of RDF carbonization carbide which is a rotary valve (rotary feeder) indicates the direction of movement of the RDF carbonization carbide.

【0023】なお、図1において、ベルトコンベア6B
は、図1の紙面垂直方向に移動可能なベルトコンベアで
あり、図1においては、紙面垂直方向において紙面と反
対側に退避した状態を示す。すなわち、図1に示す排ガ
ス清浄化設備は、吸着・捕集器1A、1Bに RDF乾留炭化物
を充填した2塔切換え方式の固定層方式の処理設備であ
り、下記の手順で排ガスが清浄化される。
In FIG. 1, the belt conveyor 6B
Is a belt conveyor that can move in the direction perpendicular to the paper surface of FIG. 1, and FIG. 1 illustrates a state where the belt conveyor is retracted to the opposite side to the paper surface in the direction perpendicular to the paper surface. In other words, the exhaust gas cleaning equipment shown in Fig. 1 is a fixed-bed processing equipment with a two-tower switching system in which the adsorption / collector 1A and 1B are filled with RDF dry-distilled carbide, and the exhaust gas is purified by the following procedure. You.

【0024】排ガス3は、排ガス供給配管8から吸着・
捕集器1Bに供給され、吸着・捕集器1Bの RDF乾留炭化物
2の充填層(固定層)を通過する過程で排ガス中の未燃
分などの有害物質が、吸着・捕集され、清浄ガス4が清
浄ガス排出配管9、排風機10を介して系外へ排出され
る。一方、吸着・捕集が終了した吸着・捕集器1Aにおい
ては、使用後の RDF乾留炭化物を抜き出した後、図1に
示すように、ベルトコンベア6A、ホッパ5A、ロータリー
バルブ11を介して吸着・捕集器1Aに新たな RDF乾留炭化
物を充填する。
The exhaust gas 3 is adsorbed and discharged from an exhaust gas supply pipe 8.
Hazardous substances such as unburned substances in the exhaust gas are adsorbed and collected in the process of being supplied to the collector 1B and passing through the packed bed (fixed bed) of the RDF dry-carbonized carbide 2 in the adsorber / collector 1B, and purified. The gas 4 is discharged out of the system via the clean gas discharge pipe 9 and the blower 10. On the other hand, in the adsorber / collector 1A where the adsorber / collector has been completed, the used RDF dry-distilled carbide is extracted and then adsorbed via the belt conveyor 6A, the hopper 5A, and the rotary valve 11, as shown in FIG. -Fill the collector 1A with new RDF carbonized char.

【0025】なお、吸着・捕集器1Bに新たな RDF乾留炭
化物を充填する場合は、ベルトコンベア6Bを、図1の紙
面垂直方向においてベルトコンベア6Aと同じ位置に移動
し、ベルトコンベア6A、ベルトコンベア6B、ホッパ5B、
ロータリーバルブ11を介して吸着・捕集器1Bに新たなRD
F 乾留炭化物を充填する。以上述べた図1に例示した固
定層方式の排ガス清浄化設備によれば、ごみ固形燃 料
の乾留炭化物層が吸着剤およびフィルタの両者の機能を
発揮し、排ガス中のガス状未燃分、微粒子状未燃分、金
属微粒子および金属酸化物微粒子が、吸着・捕集され、
排ガスを清浄化することができる。
When the adsorption / collector 1B is filled with new RDF dry carbonized carbide, the belt conveyor 6B is moved to the same position as the belt conveyor 6A in the direction perpendicular to the plane of FIG. Conveyor 6B, hopper 5B,
New RD for adsorption / collector 1B via rotary valve 11
F Fill with carbonized char. According to the fixed bed type exhaust gas cleaning equipment illustrated in FIG. 1 described above, the dry-distilled carbide layer of the refuse solid fuel functions as both an adsorbent and a filter, and the gaseous unburned matter in the exhaust gas, The particulate unburned matter, metal fine particles and metal oxide fine particles are adsorbed and collected,
Exhaust gas can be purified.

【0026】また、図1に例示した固定層方式の排ガス
清浄化設備によれば、排ガス中のガス状未燃分、微粒子
状未燃分、金属微粒子および金属酸化物微粒子を、同一
の処理設備で吸着・捕集することが可能なため、簡易な
排ガス処理設備で排ガスを清浄化することができる。 III.ごみ固形燃料の乾留炭化物(: RDF乾留炭化物)を
充填した移動層を用いた排ガスの清浄化方法および清浄
化設備:図2に、本発明の排ガスの清浄化方法に好適に
用いられる移動層方式の排ガスの清浄化設備(:排ガス
清浄化設備)の一例を、縦断面図によって示す。
Further, according to the fixed bed type exhaust gas cleaning equipment illustrated in FIG. 1, gaseous unburned components, particulate unburned components, metal fine particles and metal oxide fine particles in the exhaust gas are treated in the same processing equipment. Since it is possible to adsorb and collect the exhaust gas, the exhaust gas can be purified by a simple exhaust gas treatment facility. III. Exhaust gas purification method and equipment using a moving bed filled with dry-distilled carbide (: RDF dry-distilled carbide) of refuse solid fuel: Fig. 2 shows a transfer method preferably used in the exhaust gas purification method of the present invention. An example of a bed-type exhaust gas cleaning facility (: exhaust gas cleaning facility) is shown in a longitudinal sectional view.

【0027】なお、図2において、5は RDF乾留炭化物
供給用のホッパ、12は弁、20は移動層方式の吸着・捕集
器、21は吸着・捕集器20のガス入口側およびガス出口側
のガス圧力損失測定装置(以下、ガス圧力損失測定装置
と記す)、22A はロータリーバルブ回転数制御装置であ
る排出装置13の排出量を制御する制御装置(以下、排出
量制御装置と記す)、22B はロータリーバルブ回転数制
御装置である供給装置11の供給量を制御する制御装置
(以下、供給量制御装置と記す)、23は RDF乾留炭化物
のレベル計、24A は吸着・捕集器20入口側の排ガスの分
析装置、24B は吸着・捕集器20出口側の清浄ガスの分析
装置、25は排ガス浄化率演算装置、261 、262 、263
264 は測定、分析、演算結果の信号、265 は制御信号を
示し、その他の符号は図1と同様の内容を示す。
In FIG. 2, 5 is a hopper for supplying RDF dry-distilled carbide, 12 is a valve, 20 is an adsorber / collector of a moving bed type, 21 is a gas inlet side and a gas outlet of the adsorber / collector 20. Side gas pressure loss measuring device (hereinafter referred to as gas pressure loss measuring device), 22A is a control device for controlling the discharge amount of discharge device 13 which is a rotary valve rotation speed control device (hereinafter referred to as discharge amount control device). , 22B is a control device for controlling the supply amount of the supply device 11, which is a rotary valve rotation speed control device (hereinafter referred to as a supply amount control device), 23 is an RDF dry distillation carbide level meter, and 24A is an adsorption / collection device 20. An exhaust gas analyzer at the inlet, 24B is a clean gas analyzer at the outlet of the adsorption / collector 20, 25 is an exhaust gas purification rate calculator, 26 1 , 26 2 , 26 3 ,
26 4 measurement, analysis, calculation results of the signal, 26 5 denotes a control signal, other reference numerals indicate the same contents as FIG.

【0028】また、 RDF乾留炭化物のレベル計23は、 R
DF乾留炭化物充填層上部表面のレベル計であり、レーザ
式距離計、超音波式距離計などを用いることができる。
すなわち、図2に示す排ガス清浄化設備は、吸着・捕集
器20が移動層方式の処理設備であり、ごみ固形燃料の乾
留炭化物を充填した移動層方式の吸着・捕集器20と、吸
着・捕集器20の下部に接続された排ガス供給配管8と、
吸着・捕集器20の上部に接続された清浄ガス排出配管9
と、吸着・捕集器20の上部に配設されたごみ固形燃料の
乾留炭化物の供給装置11と、吸着・捕集器20の下部に配
設されたごみ固形燃料の乾留炭化物の排出装置13と、吸
着・捕集器20のガス入口側およびガス出口側のガス圧力
損失測定装置21と、吸着・捕集器20内のごみ固形燃料の
乾留炭化物のレベル計23と、ガス圧力損失測定装置21の
測定結果に基づき排出装置13の排出速度を制御する制御
装置22A と、レベル計23の測定結果に基づき供給装置11
の供給速度を制御する制御装置22B を有する排ガスの清
浄化設備である。
Further, the level meter 23 of RDF carbonized carbonized
This is a level meter on the upper surface of the DF carbonized carbide packed layer, and a laser distance meter, an ultrasonic distance meter, or the like can be used.
That is, in the exhaust gas cleaning equipment shown in FIG. 2, the adsorption / collector 20 is a moving bed type treatment equipment, and the moving bed type adsorption / collector 20 filled with dry distillation carbide of refuse solid fuel and the adsorption / collector 20 An exhaust gas supply pipe 8 connected to the lower part of the collector 20,
Clean gas discharge pipe 9 connected to the upper part of adsorption / collector 20
And a supply device 11 for dry-distilled carbide of refuse solid fuel disposed at the upper part of the adsorber / collector 20 and a discharge device 13 for dry-distilled carbide of refuse solid fuel disposed at the lower part of the adsorber / collector 20 A gas pressure loss measuring device 21 on the gas inlet side and the gas outlet side of the adsorbing / collecting device 20, a level meter 23 for dry distillation char of solid fuel in the adsorbing / collecting device 20, and a gas pressure loss measuring device A control device 22A that controls the discharge speed of the discharge device 13 based on the measurement result of the
This is an exhaust gas cleaning facility having a control device 22B for controlling the supply speed of the exhaust gas.

【0029】図2に示す排ガス清浄化設備においては、
下記の手順で排ガスが清浄化される。すなわち、排ガス
3は、排ガス供給配管8から吸着・捕集器20に供給さ
れ、吸着・捕集器20の RDF乾留炭化物2の移動層を通過
する過程で排ガス中の未燃分などの有害物質が、吸着・
捕集され、清浄ガス4が清浄ガス排出配管9、排風機10
を介して系外へ排出される。
In the exhaust gas cleaning equipment shown in FIG.
Exhaust gas is purified by the following procedure. That is, the exhaust gas 3 is supplied from the exhaust gas supply pipe 8 to the adsorber / collector 20, and passes through the moving bed of the RDF dry carbonized carbide 2 in the adsorber / collector 20, and emits harmful substances such as unburned components in the exhaust gas. But adsorption
The clean gas 4 is collected and the clean gas exhaust pipe 9 and the exhaust fan 10
It is discharged out of the system via.

【0030】一方、排ガス中の未燃分などの有害物質を
吸着・捕集した RDF乾留炭化物2は、吸着・捕集器20内
を下降し、排出装置(ロータリーバルブ)13、ベルトコ
ンベア6Cを介して排出され、貯溜用のホッパ7に貯溜さ
れると共に、新たな RDF乾留炭化物が、ベルトコンベア
6A、ホッパ5、供給装置(ロータリーバルブ)11を介し
て吸着・捕集器20内に順次装入される。
On the other hand, the RDF dry-distilled carbide 2 that has adsorbed and trapped harmful substances such as unburned components in the exhaust gas descends in the adsorber / collector 20 and discharges the exhaust device (rotary valve) 13 and the belt conveyor 6C. And is stored in the storage hopper 7, and new RDF carbonized charcoal is transferred to the belt conveyor.
6A, the hopper 5, and the supply device (rotary valve) 11 are sequentially charged into the suction / collector 20.

【0031】また、図2に示す排ガス清浄化設備におい
ては、下記の方法で吸着・捕集器20内における RDF乾留
炭化物2の移動(下降)速度が制御される。すなわち、
吸着・捕集器20入口側の排ガスの分析装置24A 、吸着・
捕集器20出口側の清浄ガスの分析装置24B によって、排
ガスの種類に応じた成分を分析し、分析結果の信号2
62 、263 が排ガス浄化率演算装置25に伝送される。
In the exhaust gas cleaning equipment shown in FIG. 2, the moving (falling) speed of the RDF dry distillation carbide 2 in the adsorber / collector 20 is controlled by the following method. That is,
Exhaust gas analyzer 24A on the inlet side of adsorption / collector 20
A component corresponding to the type of exhaust gas is analyzed by the clean gas analyzer 24B at the outlet side of the collector 20, and a signal 2 of the analysis result is obtained.
6 2, 26 3 is transmitted to the exhaust gas purification ratio calculating unit 25.

【0032】次に、排ガス浄化率演算装置25から、排ガ
ス浄化率の信号264 が制御装置(ロータリーバルブ回転
数制御装置)22A に伝送され、排ガス浄化率が予め定め
た排ガス浄化率より低下した場合は、制御装置(ロータ
リーバルブ回転数制御装置)22A から制御信号265 が排
出装置13に伝送され、ロータリーバルブのモータの回転
数の増加などによって、排出速度を増加する。
Next, the exhaust emission reduction rate calculation unit 25, the signal 26 4 of the exhaust gas purification ratio is transmitted to the control device (rotary valve speed control system) 22A, and lower than the exhaust gas purification rate exhaust gas purification rate is predetermined case, the control device control signal 26 5 (rotary valve speed control system) 22A is transmitted to the discharge device 13, such as by an increase in the rotational speed of the rotary valve motor, to increase the discharge rate.

【0033】上記した制御によって、排ガス中の未燃分
などを吸着・捕集した吸着・捕集器20内下部の RDF乾留
炭化物が順次排出される。一方、レベル計23からの信号
が、制御装置(ロータリーバルブ回転数制御装置)22B
に伝送され、ホッパ5からの RDF乾留炭化物2の供給に
よって、吸着・捕集器20内の RDF乾留炭化物充填層上部
表面のレベルを一定水準に保つ。
By the above-described control, the RDF dry-distilled carbide in the lower portion of the adsorber / collector 20 that adsorbs and collects unburned components in the exhaust gas is sequentially discharged. On the other hand, a signal from the level meter 23 is transmitted to a control device (rotary valve rotation speed control device) 22B.
And the level of the upper surface of the packed bed of the RDF carbonized carbide in the adsorber 20 is maintained at a constant level by the supply of the carbonized carbonized RDF 2 from the hopper 5.

【0034】なお、図2に示す排ガス清浄化設備におい
ては、上記した制御と併せて、吸着・捕集器20内の RDF
乾留炭化物充填層による排ガス中の粒子状未燃分の濾
過、排ガス中未燃分の RDF乾留炭化物への付着に伴う吸
着・捕集器20内におけるガスの圧力損失の増加に対応し
て下記の制御を行う。すなわち、ガス圧力損失測定装置
21からの信号261 が、制御装置22A に伝送され、吸着・
捕集器20内のガスの圧力損失が経時的に一定値以下とな
るように、排出装置13の排出速度(ロータリーバルブの
回転数)が制御される。
In the exhaust gas cleaning equipment shown in FIG. 2, the RDF in the adsorber / collector 20 is combined with the control described above.
Filtration of particulate unburned components in the exhaust gas by the carbonized carbonized bed, and the increase in gas pressure loss in the adsorption / collector 20 due to the adhesion of unburned gaseous components in the exhaust gas to the RDF carbonized carbide as follows: Perform control. That is, a gas pressure loss measuring device
Signal 26 1 from 21, is transmitted to the control device 22A, the adsorbent-
The discharge speed of the discharge device 13 (the number of rotations of the rotary valve) is controlled so that the pressure loss of the gas in the collector 20 becomes equal to or less than a certain value over time.

【0035】なお、上記した制御方法においては、上記
した制御と併せて、吸着・捕集器20出口側の清浄ガスの
分析装置24B による出口側の清浄ガスの分析結果の信号
263を、直接、制御装置22A にも伝送し、排ガス浄化率
と併せて、出口側の清浄ガスの分析値の絶対値を制御す
ることもできる。また、図2に示す排ガス清浄化設備に
おいては、例えばダイオキシン類など連続機器分析が適
用できない成分を含有する排ガスを処理する場合、予
め、吸着・捕集器20内におけるガスの圧力損失と排ガス
浄化率との関係式である検量線を作成し、得られた検量
線に基づき、上記したガスの圧力損失に基づく制御を行
うと共に、前記したレベル計23による RDF乾留炭化物充
填層上部表面のレベル制御を行う。
In the above control method, in addition to the above control, a signal of the result of the analysis of the clean gas at the outlet side by the clean gas analyzer 24B at the outlet side of the adsorption / collector 20 is used.
26 3 directly, also transmitted to the control unit 22A, in conjunction with the exhaust gas purification rate can also be controlled absolute value of the analytical values of the outlet side of the clean gas. In the exhaust gas cleaning equipment shown in FIG. 2, when processing exhaust gas containing components that cannot be applied to continuous instrument analysis such as dioxins, the pressure loss of the gas in the adsorption / collector 20 and the exhaust gas purification A calibration curve, which is a relational equation with the rate, is created.Based on the obtained calibration curve, the control based on the gas pressure loss described above is performed, and the level control of the upper surface of the RDF carbonized carbonized packed bed using the level meter 23 described above is performed. I do.

【0036】この場合は、逐次、上記した検量線を更新
して制御を行うことが好ましい。上記した制御方法によ
れば、レベル計23による制御によって、吸着・捕集器20
内の RDF乾留炭化物の充填量を所定量に保持すると共
に、吸着・捕集器20内の RDF乾留炭化物の吸着能力を確
保することができる。以上述べた図2に例示した移動層
方式の排ガス清浄化設備によれば、ごみ固形燃料の乾留
炭化物層が吸着剤およびフィルタの両者の機能を発揮
し、排ガス中のガス状未燃分、微粒子状未燃分、金属微
粒子および金属酸化物微粒子を効果的に除去できるばか
りでなく、逐次新たな乾留炭化物が供給されるため、排
ガス中の有害物質をさらに効果的に吸着・除去すること
ができ、また連続操業が可能となる。
In this case, it is preferable that control is performed by sequentially updating the above-mentioned calibration curve. According to the control method described above, the adsorption / collector 20 is controlled by the level meter 23.
The amount of the RDF carbonized carbonized in the RDF can be maintained at a predetermined amount, and the adsorption capability of the RDF carbonized carbonized in the adsorber / collector 20 can be ensured. According to the moving bed type exhaust gas cleaning equipment illustrated in FIG. 2 described above, the dry-distilled carbide layer of the refuse solid fuel functions as both an adsorbent and a filter, and the gaseous unburned matter and fine particles in the exhaust gas Not only can effectively remove particulate unburned matter, metal fine particles and metal oxide fine particles, but also because new dry-distilled carbides are successively supplied, harmful substances in exhaust gas can be more effectively adsorbed and removed. , And continuous operation becomes possible.

【0037】また、図2に例示した移動層方式の排ガス
清浄化設備によれば、排ガス中のガス状未燃分、微粒子
状未燃分、金属微粒子および金属酸化物微粒子を、同一
の処理設備で吸着・捕集することが可能なため、簡易な
排ガス処理設備で排ガスを清浄化することができ、さら
には、吸着・捕集器が1基でよいため、排ガス処理設備
を小型化できる。
Further, according to the moving bed type exhaust gas cleaning equipment illustrated in FIG. 2, the gaseous unburned portion, the particulate unburned portion, the metal fine particles and the metal oxide fine particles in the exhaust gas are treated in the same processing equipment. , The exhaust gas can be purified with a simple exhaust gas treatment facility, and the exhaust gas treatment facility can be downsized because only one adsorption / collection device is required.

【0038】なお、図2に示す排ガス清浄化設備におい
ては、採用する制御方式によって、移動層の移動形態と
しては、 RDF乾留炭化物が経時的に連続して移動する連
続式移動層、乾留炭化物が経時的に断続的に移動する間
歇式移動層のいずれか、もしくは上記した両者が組み合
わされた形態の移動層となる。 IV. ごみ固形燃料の乾留炭化物(: RDF乾留炭化物)を
充填した流動層を用いた排ガスの清浄化方法:図3に、
本発明の排ガスの清浄化方法に好適に用いられる流動層
方式の排ガスの清浄化設備の一例を、縦断面図によって
示す。
In the exhaust gas cleaning equipment shown in FIG. 2, depending on the control method employed, the moving form of the moving bed is a continuous moving bed in which RDF carbonized carbide continuously moves with time, and a carbonized carbonized bed. The intermittent moving layer which moves intermittently with time becomes a moving layer or a combination of the two. IV. Purification method of exhaust gas using fluidized bed filled with carbonized carbonized waste fuel (RDF carbonized carbonized: RDF):
An example of a fluidized bed type exhaust gas cleaning apparatus suitably used in the exhaust gas cleaning method of the present invention is shown by a longitudinal sectional view.

【0039】なお、図3において、30は流動層方式の吸
着・捕集器、31は分散板(:多孔板)、32は微粒の RDF
乾留炭化物、33はサイクロン、34は RDF乾留炭化物循環
配管、35は RDF乾留炭化物補給配管37の弁、36は弁35の
開度制御装置、37は RDF乾留炭化物補給配管、381 、38
2 、383 、384 は測定、分析、演算結果の信号、385
制御信号を示し、その他の符号は図1、図2と同様の内
容を示す。
In FIG. 3, reference numeral 30 denotes a fluidized bed type adsorber / collector, 31 denotes a dispersion plate (a perforated plate), and 32 denotes a fine RDF.
Carbonized carbonized, 33 is cyclone, 34 is RDF carbonized carbonized circulation pipe, 35 is valve of RDF carbonized carbonized supply pipe 37, 36 is opening control device of valve 35, 37 is RDF carbonized carbonized supply pipe, 38 1 , 38
2, 38 3, 38 4 measurement, analysis, calculation results of the signal, 38 5 denotes a control signal, other reference numerals indicate the same contents as FIG. 1, FIG.

【0040】すなわち、図3に示す排ガス清浄化設備
は、吸着・捕集器30が流動層方式の処理装置であり、下
記の手順で排ガスが清浄化される。排ガス3は、排ガス
供給配管8から吸着・捕集器30に供給され、吸着・捕集
器30の RDF乾留炭化物2の流動層を通過する過程で排ガ
ス中の未燃分などの有害物質が、 RDF乾留炭化物に吸着
・捕集され清浄化される。
That is, in the exhaust gas purifying equipment shown in FIG. 3, the adsorbing / collecting unit 30 is a fluidized bed processing apparatus, and the exhaust gas is purified in the following procedure. The exhaust gas 3 is supplied from the exhaust gas supply pipe 8 to the adsorber / collector 30, and in the process of passing through the fluidized bed of the RDF carbonized carbonized carbon dioxide 2 of the adsorber / collector 30, harmful substances such as unburned components in the exhaust gas are removed. Adsorbed and collected by RDF carbonized carbonized and purified.

【0041】清浄ガスは、サイクロン33でガス中に一部
随伴される微粒の RDF乾留炭化物が除去、回収された
後、清浄ガス排出配管9、排風機10を介して系外へ排出
される。一方、排ガス中の未燃分などの有害物質を吸着
・捕集し、密度が増加した RDF乾留炭化物の粒子は、分
散板(:多孔板)31、排出装置(ロータリーバルブ)13
を介して吸着・捕集器30から排出され、ベルトコンベア
6Cを経由して貯溜用のホッパ7に貯溜される。
The clean gas is discharged to the outside of the system via the clean gas discharge pipe 9 and the exhaust fan 10 after the fine RDF dry carbonized carbon partially entrained in the gas is removed and recovered by the cyclone 33. On the other hand, particles of RDF carbonized carbonized carbon, which have increased in density by adsorbing and collecting unburned substances such as unburned matter in the exhaust gas, are dispersed into a dispersion plate (: perforated plate) 31 and a discharge device (rotary valve) 13
Is discharged from the adsorber / collector 30 through the belt conveyor
It is stored in the storage hopper 7 via 6C.

【0042】また、新たな微粒の RDF乾留炭化物32が、
空気輸送によって、 RDF乾留炭化物補給配管37から吸着
・捕集器30内に補給される。図3に示す排ガス清浄化設
備においては、下記の制御方法にしたがって、新たな R
DF乾留炭化物が吸着・捕集器30内に補給される。すなわ
ち、吸着・捕集器30入口側の排ガスの分析装置24A 、吸
着・捕集器30出口側の清浄ガスの分析装置24B によっ
て、排ガスの種類に応じた成分を分析し、分析結果の信
号382 、383 が排ガス浄化率演算装置25に伝送される。
Further, a new fine RDF carbonized carbonized substance 32 is
The air is supplied to the adsorber / collector 30 from the RDF dry distillation carbide supply pipe 37 by pneumatic transportation. In the exhaust gas cleaning equipment shown in FIG. 3, a new R
The DF carbonized carbide is supplied into the adsorber / collector 30. That is, a component according to the type of exhaust gas is analyzed by the exhaust gas analyzer 24A on the inlet side of the adsorption / collector 30 and the clean gas analyzer 24B on the outlet side of the adsorption / collector 30, and a signal 38 of the analysis result is obtained. 2, 38 3 is transmitted to the exhaust gas purification ratio calculating unit 25.

【0043】次に、排ガス浄化率演算装置25から、排ガ
ス浄化率の信号384 が弁35の開度制御装置36に伝送さ
れ、排ガス浄化率が予め定めた排ガス浄化率より低下し
た場合は、弁35の開度制御装置36からの制御信号385
弁35に伝送され、弁35の開度を増加する。一方、排ガス
中の未燃分などを吸着・捕集して密度の増加により吸着
・捕集器30内の底部に沈降した RDF乾留炭化物が、排出
装置(ロータリーバルブ)13によって逐次排出される。
Next, the exhaust emission reduction rate calculation unit 25, the signal 38 4 of the exhaust gas purification ratio is transmitted to the opening control unit 36 of the valve 35, if it falls below the exhaust gas purification rate exhaust gas purification rate is predetermined, control signal 38 5 from the opening control unit 36 of the valve 35 is transmitted to the valve 35 increases the opening degree of the valve 35. On the other hand, the RDF dry-distilled carbide that has settled to the bottom in the adsorber / collector 30 due to the increase in density by adsorbing and collecting unburned components in the exhaust gas is sequentially discharged by the discharge device (rotary valve) 13.

【0044】なお、図3に示す排ガス清浄化設備におい
ては、上記した制御と併せて、吸着・捕集器30内の RDF
乾留炭化物の充填量を一定に保つために、下記の制御を
行う。すなわち、吸着・捕集器30内の RDF乾留炭化物の
充填量が所定量より減少し、吸着・捕集器30内のガスの
圧力損失が減少した場合、ガス圧力損失測定装置21から
の信号381 が、弁35の開度制御装置36に伝送され、吸着
・捕集器30内のガスの圧力損失が経時的に一定値以上と
なるように弁35の開度が制御される。
In the exhaust gas cleaning equipment shown in FIG. 3, the RDF inside the adsorber / collector 30 is combined with the above control.
The following control is performed to keep the filling amount of the carbonized carbide constant. That is, when the filling amount of the RDF dry-distilled carbide in the adsorber / collector 30 is smaller than a predetermined amount and the pressure loss of the gas in the adsorber / collector 30 is reduced, the signal 38 from the gas pressure loss measuring device 21 1 is transmitted to the opening control device 36 of the valve 35, and the opening of the valve 35 is controlled so that the pressure loss of the gas in the adsorption / collection device 30 becomes equal to or more than a certain value with time.

【0045】上記した両者の制御によって、吸着・捕集
器30内の RDF乾留炭化物の充填量が所定量に保持され
る。これは、流動層の場合、排ガス中の微粒子の捕捉に
よる充填層のガスの圧力損失の増加がないため、吸着・
捕集器30内のガスの圧力損失の変動を測定することによ
って、吸着・捕集器30内の RDF乾留炭化物の充填量の変
動が検知できるためである。
By the above-described control, the filling amount of the RDF dry-distilled carbide in the adsorption / collection unit 30 is maintained at a predetermined amount. This is because, in the case of a fluidized bed, there is no increase in pressure loss of the gas in the packed bed due to the capture of fine particles in the exhaust gas.
This is because by measuring the change in the pressure loss of the gas in the collector 30, it is possible to detect the change in the filling amount of the RDF dry-distilled carbide in the adsorption / collector 30.

【0046】なお、上記した制御方法においては、上記
した制御と併せて、吸着・捕集器30出口側の清浄ガスの
分析装置24B による出口側の清浄ガスの分析結果の信号
383を、直接、弁35の開度制御装置36にも伝送し、排ガ
ス浄化率と併せて、出口側の清浄ガスの分析値の絶対値
を制御することもできる。以上述べた図3に例示した流
動層方式の排ガス清浄化設備によれば、ごみ固形燃料の
乾留炭化物層が吸着剤の機能を発揮し、排ガス中の未燃
分などの有害物質を効果的に除去することができる。
In the control method described above, in addition to the control described above, the signal of the result of the analysis of the clean gas on the outlet side by the clean gas analyzer 24B on the outlet side of the adsorption / collector 30 is used.
38 3 directly, also transmitted to the opening control unit 36 of the valve 35, in conjunction with the exhaust gas purification rate can also be controlled absolute value of the analytical values of the outlet side of the clean gas. According to the fluidized-bed type exhaust gas cleaning equipment illustrated in FIG. 3 described above, the dry-distilled carbide layer of the refuse solid fuel functions as an adsorbent, and effectively removes harmful substances such as unburned components in the exhaust gas. Can be removed.

【0047】さらに、図3に例示した流動層方式の排ガ
ス清浄化設備によれば、有害物質を吸着し、性能の低下
した乾留炭化物の粒子が、その密度増加によって、選択
的に吸着・捕集器30内の底部に移動し、選択的に吸着・
捕集器30から排出されるため、 RDF乾留炭化物が吸着剤
として極めて効率的に利用され、また、連続操業が可能
となる。
Further, according to the fluidized-bed type exhaust gas purifying equipment shown in FIG. 3, the particles of the carbonized carbonized matter, which adsorb harmful substances and deteriorate in performance, are selectively adsorbed and collected by the increase in their density. It moves to the bottom inside the vessel 30 and
Since it is discharged from the collector 30, the RDF carbonized carbonized carbon can be used very efficiently as an adsorbent, and continuous operation is possible.

【0048】以上、本発明について述べたが、本発明に
用いる吸着・捕集剤は、活性炭のような水蒸気賦活など
の特別な処理を伴わないごみ固形燃料の乾留炭化物であ
るため、製造が容易であり、本発明は工業的な排ガスの
清浄化方法、清浄化設備として適用が容易である。ま
た、本発明において使用したごみ固形燃料の乾留炭化物
は、各種燃料、鉄鋼石など各種金属酸化物含有物の還元
剤などとして有効に利用でき、本発明によれば、産業廃
棄物を、環境保全および省エネルギー・省資源の両者に
有効に利用することができる。
Although the present invention has been described above, the adsorbent / collecting agent used in the present invention is a dry-distilled carbide of refuse solid fuel, such as activated carbon, which does not involve any special treatment such as steam activation, and is therefore easy to manufacture. Therefore, the present invention can be easily applied as an industrial exhaust gas cleaning method and cleaning equipment. In addition, the carbonized carbonized waste solid fuel used in the present invention can be effectively used as various fuels, reducing agents for various metal oxide-containing substances such as iron ore, etc., and according to the present invention, industrial waste can be used for environmental protection. It can be effectively used for both energy saving and resource saving.

【0049】なお、使用後の乾留炭化物は、その吸着・
捕集物質の成分に応じて、燃料もしくは還元剤のいずれ
かに使い分けることによって、吸着・捕集物質を無害化
する。
It is to be noted that the dry-distilled carbide after use has its adsorption and
The use of either a fuel or a reducing agent depending on the components of the trapping substance makes the adsorption / trapping substance harmless.

【0050】[0050]

【実施例】以下、本発明を実施例に基づいてさらに具体
的に説明する。 (実施例1)模擬燃焼排ガスを用いて、燃焼排ガス中の
未燃分の各種炭化物、黒鉛化物による吸着・捕集実験を
行った。
EXAMPLES The present invention will be described below more specifically based on examples. (Example 1) Using a simulated flue gas, an experiment of adsorption and collection of various unburned carbides and graphitized substances in the flue gas was conducted.

【0051】図4に、本実施例で用いた吸着・捕集実験
装置を、縦断面図によって示す。なお、図4において、
40は試料、41は試料保持用の金網製の籠、42は模擬燃料
である線香、43は電熱ヒータ、44は支持台、44a は支持
台の脚柱、45は釣り線、46a 、46b は高感度天秤、47は
ゴム製のシール部材、48はアクリル製の吸着・捕集室、
49は燃焼室、50は吸引ポンプ、51は燃焼用空気供給配
管、52は燃焼排ガス送給配管、53は防振台、54はケーシ
ング、f2は燃焼排ガスの流れ方向、f3は燃焼用空気の流
れ方向を示す。
FIG. 4 is a longitudinal sectional view of the adsorption / collection experiment apparatus used in this embodiment. In FIG. 4,
40 is a sample, 41 is a cage made of wire mesh for holding the sample, 42 is an incense stick which is a simulated fuel, 43 is an electric heater, 44 is a support, 44a is a pillar of the support, 45 is a fishing line, 46a and 46b are High sensitivity balance, 47 is a rubber seal member, 48 is an acrylic adsorption / collection chamber,
49 a combustion chamber, 50 is the suction pump, 51 is an air supply pipe for combustion, 52 combustion exhaust gas feed pipe, 53 anti-vibration table, the 54 casing, f 2 is the flue gas flow direction, f 3 is for combustion Indicates the direction of air flow.

【0052】すなわち、本実施例においては、図4に示
す吸着・捕集実験装置を用い、線香(:模擬燃料)を燃
焼せしめ、燃焼排ガス中の未燃分などを、籠41中に保持
した試料40によって吸着・捕集する実験を行った。籠41
は、釣り線45によって高感度天秤(繰り返し性:0.1mg
)46a に接続されており、未燃分などを吸着・捕集し
た試料40の重量増加を連続的に測定し、得られた測定結
果から、試料40の吸着・捕集性能を評価した。
That is, in the present embodiment, the incense stick (: simulated fuel) was burned using the adsorption / collection experiment apparatus shown in FIG. An experiment of adsorbing and collecting with sample 40 was performed. Basket 41
Is a highly sensitive balance with a fishing line 45 (repeatability: 0.1mg
), The weight increase of the sample 40 that adsorbed and collected unburned components and the like was continuously measured, and the adsorption and collection performance of the sample 40 was evaluated from the obtained measurement results.

【0053】なお、本実験においては、高感度天秤46b
によって、線香(:模擬燃料)の燃焼速度を併せて測定
した。また、実験条件は下記条件とした。 (実験条件:) 試料充填量:5g 試料の種類:下記に示す試料A〜試料Fの6種類とし
た。
In this experiment, the high-sensitivity balance 46b was used.
The combustion speed of the incense stick (: simulated fuel) was also measured. The experimental conditions were as follows. (Experimental conditions :) Sample filling amount: 5 g Sample type: Six types of samples A to F shown below.

【0054】試料A:ごみ固形燃料の乾留炭化物(: R
DF乾留炭化物) 都市ごみの中から選別した可燃物を破砕、乾燥、成形し
て得られたごみ固形燃料を700 ℃で乾留炭化して製造し
た乾留炭化物 試料B:ピッチコークス 試料C:高炉用コークス 試料D:電炉用コークス 試料E:木炭 試料F:黒鉛 線香(:模擬燃料)の燃焼速度:2.7g/h 燃焼用空気の供給量:60l/h 吸着・捕集時間:7時間 なお、上記実験と併せて、実験前の各試料の比表面積お
よび気孔率を、それぞれBET 法(窒素吸着)および水銀
ポロシメータによって測定した。
Sample A: Carbonized carbonized solid waste fuel (: R
DF dry-distilled carbide) Dry-distilled carbide produced by crushing, drying, and shaping combustible materials selected from municipal solid waste at 700 ° C. Sample B: pitch coke Sample C: blast furnace coke Sample D: coke for electric furnace Sample E: charcoal Sample F: graphite Burning rate of incense stick (: simulated fuel): 2.7 g / h Supply amount of combustion air: 60 l / h Adsorption / collection time: 7 hours The above experiment In addition, the specific surface area and the porosity of each sample before the experiment were measured by the BET method (nitrogen adsorption) and the mercury porosimeter, respectively.

【0055】図5、図6に、得られた実験結果を、各試
料の比表面積および気孔率と対比して示す。図5、図6
に示されるように、試料の気孔率と吸着・捕集量との間
には相関関係は認められなかったが、試料の比表面積と
吸着・捕集量との間に相関関係が認められた。
FIGS. 5 and 6 show the obtained experimental results in comparison with the specific surface area and porosity of each sample. 5 and 6
As shown in the figure, there was no correlation between the porosity of the sample and the amount of adsorption and collection, but there was a correlation between the specific surface area of the sample and the amount of adsorption and collection. .

【0056】この結果から、燃焼排ガス中の未燃分の吸
着・捕集に関して、下記(1) 〜(2)の知見が得られた。 (1) ごみ固形燃料の乾留炭化物(: RDF乾留炭化物)
は、他の炭化物、黒鉛化物に対してはるかに優れた吸着
・捕集性能を有している。 (2) 比表面積の大きなごみ固形燃料の乾留炭化物(: R
DF乾留炭化物)が優れた吸着・捕集性能を有し、また各
種炭化物、黒鉛化物の比表面積と吸着・捕集量との間に
相関関係が認められた。
From these results, the following findings (1) and (2) were obtained regarding the adsorption and collection of unburned components in the combustion exhaust gas. (1) Carbonized carbonized waste solid fuel (RDF carbonized carbonized)
Has much better adsorption and collection performance for other carbides and graphitized materials. (2) Carbonized char of solid fuel with large specific surface area (: R
DF dry-distilled carbide) had excellent adsorption and collection performance, and a correlation was found between the specific surface area of various carbides and graphitized materials and the amount of adsorption and collection.

【0057】以上の結果から、 RDF乾留炭化物を含め、
これらの炭化物、黒鉛化物による燃焼排ガス中の未燃分
の吸着・捕集は、主として、炭化物、黒鉛化物の表面へ
の未燃分の吸着によるものと考えられる。ただし、比表
面積が小さい他の炭化物、黒鉛化物も吸着・捕集性能を
有していることから、 RDF乾留炭化物を含め、これらの
炭化物、黒鉛化物による燃焼排ガス中の未燃分の吸着・
捕集は、吸着以外に、炭化物、黒鉛化物の表面への未燃
分の付着および/または微粒子状未燃分のこれらの充填
層による濾過にも依存していると考えられる。
From the above results, including RDF carbonized carbonized,
It is considered that the adsorption and collection of unburned components in the combustion exhaust gas by these carbides and graphitized materials is mainly due to the adsorption of unburned components on the surfaces of the carbides and graphitized products. However, since other carbides and graphitized materials with a small specific surface area also have adsorption / collection performance, these carbides and graphitized materials, including RDF carbonized charcoal, can absorb and combust unburned components in the combustion exhaust gas.
It is considered that the collection depends not only on the adsorption but also on the adhesion of unburned matter to the surface of the carbide and the graphitized material and / or the filtration of the particulate unburned matter by these packed beds.

【0058】(実施例2)ごみ焼却炉の燃焼排ガスを用
いて、ごみ固形燃料の乾留炭化物(: RDF乾留炭化物)
による燃焼排ガス中の塩素系炭化水素化合物の吸着・捕
集実験を行った。なお、ごみ固形燃料の乾留炭化物(:
RDF乾留炭化物)としては、都市ごみの中から選別した
可燃物を破砕、成形、乾燥して得られたごみ固形燃料を
700 ℃で乾留炭化して製造した乾留炭化物を用いた。
(Example 2) Using the combustion exhaust gas from a refuse incinerator, dry-distilled carbide of refuse solid fuel (RDF dry-distilled carbide)
The adsorption and collection experiments of chlorine-based hydrocarbon compounds in the combustion exhaust gas were carried out. In addition, dry distillation charcoal (::
(RDF carbonized carbonized) is the refuse solid fuel obtained by crushing, shaping, and drying combustible materials selected from municipal waste.
A dry-distilled carbide produced by dry-distilling at 700 ° C. was used.

【0059】図7に、本実施例で用いた吸着・捕集実験
装置を、縦断面図によって示す。なお、図7において、
2はごみ固形燃料の乾留炭化物(:RDF 乾留炭化物)、
4は清浄ガス、12は弁、60は移動層方式の吸着・捕集
器、61はごみ焼却炉の煙道、62は吸引ポンプ、63は水柱
マノメータ、64A 、64B はガスサンプリングノズル、65
は RDF乾留炭化物供給用のホッパ、66はガスメータ(ガ
ス流量計)、67は RDF乾留炭化物抜出し用のホッパ、68
A 、68B は仕切弁(スルースバルブ)、f4は燃焼排ガス
の流れ方向を示す。
FIG. 7 is a longitudinal sectional view of the adsorption / collection experiment apparatus used in this embodiment. In FIG. 7,
2. Carbonized carbonized waste solid fuel (RDF carbonized carbonized),
4 is a clean gas, 12 is a valve, 60 is a moving bed type adsorption / collector, 61 is a flue of a refuse incinerator, 62 is a suction pump, 63 is a water column manometer, 64A and 64B are gas sampling nozzles, 65
Is a hopper for supplying RDF dry-distilled carbide, 66 is a gas meter (gas flow meter), 67 is a hopper for extracting RDF dry-distilled carbide, 68
A, 68B are sluice valve (sluice valve), f 4 indicate the flow direction of the combustion exhaust gas.

【0060】また、吸着・捕集器60は透明アクリル樹脂
製とし、内部に充填した RDF乾留炭化物2の上端面の位
置が目視で確認できるようにした。本実施例において
は、吸引ポンプ62によって、煙道61から燃焼排ガスを抜
き出し、吸着・捕集器60に流通した。また、燃焼排ガス
を吸着・捕集器60に流通後、水柱マノメータ63によって
読み取った吸着・捕集器60のガス入口側とガス出口側の
ガスの差圧が10mm増加した時点で、吸引ポンプ62を停止
した。
The adsorber / collector 60 was made of a transparent acrylic resin so that the position of the upper end surface of the RDF dry-distilled carbide 2 filled therein could be visually confirmed. In the present embodiment, the combustion exhaust gas was extracted from the flue 61 by the suction pump 62 and circulated to the adsorption / collector 60. Further, after the combustion exhaust gas flows through the adsorption / collection unit 60, when the gas pressure difference between the gas inlet side and the gas outlet side of the adsorption / collection unit 60 read by the water column manometer 63 increases by 10 mm, the suction pump 62 Stopped.

【0061】次に、仕切弁68B を開とし、吸着・捕集器
60の RDF乾留炭化物2を半量抜き出した後、仕切弁68B
を閉、仕切弁68A を開とし、吸着・捕集器60の RDF乾留
炭化物2の上端面の位置が抜き出し前の位置と同一とな
るように、ホッパ65から新たな RDF乾留炭化物を補給し
た。一方、吸着・捕集器60に燃焼排ガスを流通時に、下
記方法で、吸着・捕集器60の入口側、出口側のガスサン
プリングノズル64A 、64B から連続的にガスをサンプリ
ングし、下記方法でガス中のダイオキシン類含有量を測
定した。
Next, the gate valve 68B is opened, and the adsorber / collector is opened.
After extracting half of 60 RDF carbonized carbonized carbides, gate valve 68B
Was closed, the gate valve 68A was opened, and new RDF carbonized carbide was supplied from the hopper 65 so that the position of the upper end surface of the RDF carbonized carbonized material 2 of the adsorption / collector 60 was the same as the position before extraction. On the other hand, when the combustion exhaust gas flows through the adsorption / collection unit 60, the gas is continuously sampled from the gas sampling nozzles 64A and 64B on the inlet side and the exit side of the adsorption / collection unit 60 by the following method. The dioxin content in the gas was measured.

【0062】〔ガスサンプリング法、ダイオキシン類含
有量の測定法:〕 (ガスサンプリング法:)ガス中のダスト部分はJIS Z
8808に準じた「ろ過捕集法」、ガス部分はダスト捕集後
に吸着カラムを連結した「吸着捕集法」で捕集した。 (ダイオキシン類含有量の測定法:)上記で得られた試
料(ろ過材、吸着剤、捕集装置内洗浄液)を、酸処理お
よび溶媒抽出後、クリーンアップ処理して得た液体試料
をガスクロマトグラフ質量分析(GC-MS )法により分析
した。
[Gas sampling method, measuring method of dioxins content:] (Gas sampling method :)
The gas fraction was collected by the "filtration collection method" according to 8808, and the gas part was collected by the "adsorption collection method" after connecting the adsorption column after collecting dust. (Measurement method of dioxin content :) A gas sample is obtained by subjecting the sample (filtering material, adsorbent, washing solution in the collecting device) obtained above to an acid treatment and a solvent extraction, and then performing a cleanup treatment to obtain a liquid sample. Analysis was performed by mass spectrometry (GC-MS).

【0063】なお、分析対象のダイオキシン類として
は、PCDD(ポリクロロジベンゾパラダイオキシン)、PC
DF(ポリクロロジベンゾフラン)およびco-PCB(コプラ
ナーPCB )の全ての定量対象異性体とした。この結果、
吸着・捕集器60入口側のガス中のダイオキシン類(定量
対象異性体)含有量を100 としたとき、吸着・捕集器60
出口側のガス中のダイオキシン類(定量対象異性体)含
有量は5であった。
The dioxins to be analyzed include PCDD (polychlorodibenzoparadioxin) and PCDD.
All isomers for quantification of DF (polychlorodibenzofuran) and co-PCB (coplanar PCB) were used. As a result,
When the content of dioxins (isomers to be quantified) in the gas at the inlet side of the adsorption / collection unit 60 is 100, the adsorption / collection unit 60
The content of dioxins (isomers to be quantified) in the gas at the outlet side was 5.

【0064】すなわち、本発明によれば、排ガス中のダ
イオキシン類を高効率で除去できることが分かった。以
上、実施例について述べたが、本発明によれば、ボイラ
ー、キルン、ごみ焼却炉、電気炉などの鉄屑溶解炉など
において発生する排ガス中の未燃分、ダイオキシン類な
どの有害物質を、効果的に除去すると共に、使用後のご
み固形燃料の乾留炭化物を各種燃料もしくは鉄鉱石など
金属酸化物含有物の還元剤として用いることによって、
産業廃棄物を環境保全および省エネルギー・省資源の両
者に有効に活用できる。
That is, according to the present invention, it was found that dioxins in exhaust gas can be removed with high efficiency. As described above, the examples have been described.According to the present invention, boilers, kilns, refuse incinerators, harmful substances such as dioxins in unburned gas in exhaust gas generated in iron scrap melting furnaces such as electric furnaces, By effectively removing and using the carbonized carbonized solid fuel after use as a reducing agent for various fuels or metal oxide-containing substances such as iron ore,
Industrial waste can be effectively used for both environmental conservation and energy and resource conservation.

【0065】また、本発明によれば、ごみ固形燃料の乾
留炭化物層を、固定層、移動層、流動層とすることによ
って、さらに下記の優れた効果が得られる。 (1) 固定層の場合: ごみ固形燃料の乾留炭化物層が吸着剤およびフィルタ
の両者の機能を有し、ガス状未燃分、微粒子状未燃分、
金属微粒子および金属酸化物微粒子を、同一の処理設備
で除去できるため、排ガス清浄化設備が簡易化できる。
Further, according to the present invention, the following excellent effects can be further obtained by forming the dry-distilled carbide layer of the solid waste fuel into a fixed bed, a moving bed and a fluidized bed. (1) In the case of the fixed bed: The dry-distilled carbide layer of the refuse solid fuel has the function of both an adsorbent and a filter, and has a gaseous unburned portion, a particulate unburned portion,
Since the metal fine particles and the metal oxide fine particles can be removed by the same processing equipment, the exhaust gas cleaning equipment can be simplified.

【0066】フィルタ機能によって排ガス中の非吸着
性の微粒子状未燃分も捕集できるため、微粒子状未燃分
を含んだ使用後のごみ固形燃料の乾留炭化物を燃料もし
くは還元剤として用いることによって、さらなる省エネ
ルギー・省資源を達成することができる。 (2) 移動層の場合: 上記した固定層の場合と同様の作用・効果で、排ガス
清浄化設備が簡易化できる。
Since the filter function can also collect non-adsorptive particulate unburned components in the exhaust gas, by using the dry-distilled carbide of the used refuse solid fuel containing the particulate unburned components as a fuel or a reducing agent. And further energy and resource savings can be achieved. (2) In the case of a moving bed: The same operation and effect as in the case of the fixed bed described above can simplify the exhaust gas cleaning equipment.

【0067】逐次新たな乾留炭化物が供給されるた
め、排ガス中の有害物質を、さらに効果的に吸着・除去
でき、また連続操業が可能となる。 吸着・捕集器が1基でよいため、排ガス清浄化設備を
小型化できる。 フィルタ機能によって排ガス中の非吸着性の微粒子状
未燃分も捕集できるため、微粒子状未燃分を含んだ使用
後のごみ固形燃料の乾留炭化物を燃料もしくは還元剤と
して用いることによって、さらなる省エネルギー・省資
源を達成することができる。
Since new dry-distilled carbides are successively supplied, harmful substances in the exhaust gas can be more effectively adsorbed and removed, and continuous operation becomes possible. Since only one adsorption / collection device is required, the exhaust gas cleaning equipment can be downsized. Non-adsorbable particulate unburned components in exhaust gas can also be collected by the filter function, so further energy savings can be achieved by using dry-distilled carbonized solid waste fuel containing particulate unburned components as fuel or reducing agent.・ Resource saving can be achieved.

【0068】(3) 流動層の場合:有害物質を吸着し、性
能が低下した乾留炭化物の粒子が、その密度増加によっ
て、選択的に吸着・捕集器内の底部に移動し、選択的に
吸着・捕集器から排出されるため、 RDF乾留炭化物が吸
着剤として極めて効率的に利用され、また、連続操業が
可能となる。
(3) In the case of a fluidized bed: the particles of the carbonized carbonized carbon that have adsorbed harmful substances and have deteriorated performance are selectively moved to the bottom in the adsorber / collector due to the increase in their density, and are selectively carried out. Since it is discharged from the adsorber / collector, the RDF carbonized carbonized carbon can be used very efficiently as an adsorbent, and continuous operation is possible.

【0069】さらに、本発明に用いる吸着・捕集剤は、
活性炭のような水蒸気賦活などの特別な処理を伴わない
ごみ固形燃料の乾留炭化物であるため、製造が容易であ
り、本発明は工業的な排ガスの清浄化方法、清浄化設備
として適用が容易である。
Further, the adsorbing / collecting agent used in the present invention is:
Because it is a dry-distilled carbide of refuse solid fuel that does not involve special treatment such as activated carbon such as steam activation, it is easy to manufacture, and the present invention is easy to apply as an industrial exhaust gas purification method and purification equipment. is there.

【0070】[0070]

【発明の効果】本発明によれば、燃焼排ガス中の未燃分
など排ガス中の有害物質を、効果的に除去すると共に、
産業廃棄物を環境保全および省エネルギー・省資源の両
者に有効に活用することが可能となった。また、本発明
によれば、ごみ固形燃料の乾留炭化物層を、固定層、移
動層、流動層とすることによって、さらに下記の優れた
効果が得られる。
According to the present invention, harmful substances in exhaust gas such as unburned components in combustion exhaust gas are effectively removed,
Industrial waste can be effectively used for both environmental conservation and energy and resource conservation. Further, according to the present invention, the following excellent effects can be further obtained by forming the dry-distilled carbide layer of the refuse solid fuel into a fixed bed, a moving bed, and a fluidized bed.

【0071】(1) 固定層の場合: 排ガス清浄化設備が簡易化できる。 フィルタ機能によって排ガス中の非吸着性の微粒子状
未燃分も捕集できるため、微粒子状未燃分を含んだ使用
後のごみ固形燃料の乾留炭化物を燃料もしくは還元剤と
して用いることによって、さらなる省エネルギー・省資
源を達成することができる。
(1) In the case of a fixed bed: Exhaust gas cleaning equipment can be simplified. Non-adsorbable particulate unburned components in exhaust gas can also be collected by the filter function, so further energy savings can be achieved by using dry-distilled carbonized solid waste fuel containing particulate unburned components as fuel or reducing agent.・ Resource saving can be achieved.

【0072】(2) 移動層の場合: 排ガス清浄化設備が簡易化できる。 排ガス中の有害物質を、さらに効果的に吸着・除去す
ることができ、また連続操業が可能となる。 排ガス清浄化設備を小型化できる。
(2) In the case of a moving bed: The exhaust gas cleaning equipment can be simplified. The harmful substances in the exhaust gas can be more effectively adsorbed and removed, and continuous operation is possible. Exhaust gas cleaning equipment can be downsized.

【0073】フィルタ機能によって排ガス中の非吸着
性の微粒子状未燃分も捕集できるため、微粒子状未燃分
を含んだ使用後のごみ固形燃料の乾留炭化物を燃料もし
くは還元剤として用いることによって、さらなる省エネ
ルギー・省資源を達成することができる。 (3) 流動層の場合:ごみ固形燃料の乾留炭化物が吸着剤
として極めて効率的に利用され、また、連続操業が可能
となる。
The filter function can also collect non-adsorbable particulate unburned components in the exhaust gas. Therefore, by using the dry-distilled carbide of the used solid fuel containing the particulate unburned components as a fuel or a reducing agent. And further energy and resource savings can be achieved. (3) In the case of a fluidized bed: the carbonized carbonized solid fuel is efficiently used as an adsorbent, and continuous operation is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる固定層方式の排ガス清浄化設備
の一例を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing an example of a fixed bed type exhaust gas cleaning equipment according to the present invention.

【図2】本発明の移動層方式の排ガス清浄化設備の一例
を示す縦断面図である。
FIG. 2 is a longitudinal sectional view showing an example of a moving bed type exhaust gas cleaning equipment of the present invention.

【図3】本発明に係わる流動層方式の排ガス清浄化設備
の一例を示す縦断面図である。
FIG. 3 is a longitudinal sectional view showing an example of a fluidized bed type exhaust gas cleaning equipment according to the present invention.

【図4】吸着・捕集実験装置を示す縦断面図である。FIG. 4 is a longitudinal sectional view showing an adsorption / collection experiment apparatus.

【図5】各種炭化物、黒鉛化物の比表面積と吸着・捕集
量との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the specific surface area of various carbides and graphitized materials and the amounts of adsorption and collection.

【図6】各種炭化物、黒鉛化物の気孔率と吸着・捕集量
との関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the porosity of various carbides and graphitized materials and the amount of adsorption and collection.

【図7】吸着・捕集実験装置(移動層方式)を示す縦断
面図である。
FIG. 7 is a longitudinal sectional view showing an adsorption / collection experiment apparatus (moving bed type).

【符号の説明】[Explanation of symbols]

1A、1B 固定層方式の吸着・捕集器 2 ごみ固形燃料の乾留炭化物(: RDF乾留炭化物) 3 排ガス 4 清浄ガス 5、5A、5B RDF乾留炭化物供給用のホッパ 6A、6B、6C ベルトコンベア 7 使用後の RDF乾留炭化物の貯溜用のホッパ 8 排ガス供給配管 9 清浄ガス排出配管 10 排風機 11 ごみ固形燃料の乾留炭化物(: RDF乾留炭化物)の
供給装置(ロータリーバルブ) 12、12A 、12B 弁 13、14 ごみ固形燃料の乾留炭化物(: RDF乾留炭化
物)の排出装置(ロータリーバルブ) 20 移動層方式の吸着・捕集器 21 ガス圧力損失測定装置 22A 制御装置(排出量制御装置) 22B 制御装置(供給量制御装置) 23 RDF乾留炭化物のレベル計 24A 吸着・捕集器入口側の排ガスの分析装置 24B 吸着・捕集器出口側の清浄ガスの分析装置 25 排ガス浄化率演算装置 261 、262 、263 、264 、381 、382 、383 、384
定、分析、演算結果の信号 265 、385 制御信号 30 流動層方式の吸着・捕集器 31 分散板(:多孔板) 32 微粒の RDF乾留炭化物 33 サイクロン 34 RDF乾留炭化物循環配管 35 RDF乾留炭化物補給配管の弁 36 弁の開度制御装置 37 RDF乾留炭化物補給配管 40 試料 41 試料保持用の金網製の籠 42 線香(:模擬燃料) 43 電熱ヒータ 44 支持台 44a 支持台の脚柱 45 釣り線 46a 、46b 高感度天秤 47 ゴム製のシール部材 48 吸着・捕集室 49 燃焼室 50、62 吸引ポンプ 51 燃焼用空気供給配管 52 燃焼排ガス送給配管 53 防振台 54 ケーシング 60 吸着・捕集器(移動層方式) 61 ごみ焼却炉の煙道 63 水柱マノメータ 64A 、64B ガスサンプリングノズル 65 RDF乾留炭化物供給用のホッパ 66 ガスメータ 67 RDF乾留炭化物抜出し用のホッパ 68A 、68B 仕切弁(スルースバルブ) f1 RDF乾留炭化物の移動方向 f2、f4 燃焼排ガスの流れ方向 f3 燃焼用空気の流れ方向
1A, 1B Fixed bed type adsorption / collector 2 Dry carbonized char of refuse solid fuel (: RDF dry carbonized) 3 Exhaust gas 4 Clean gas 5, 5A, 5B Hopper 6A, 6B, 6C belt conveyor 7 for supplying RDF dry carbonized char Hopper for storing RDF dry-distilled carbide after use 8 Exhaust gas supply pipe 9 Clean gas discharge pipe 10 Exhaust air 11 Supply device (rotary valve) for dry-distilled carbide (RDF dry-distilled carbide) of garbage solid fuel 12, 12, 12A, 12B valve 13 , 14 Dry distillation char (RDF dry distillation carbide) of solid fuel from refuse (Rotary valve) 20 Adsorber / collector of moving bed type 21 Gas pressure loss measuring device 22A Control device (Emission control device) 22B Control device ( Supply amount control device) 23 RDF dry carbonized carbon level meter 24A Analyzer for exhaust gas on the inlet side of adsorption / collector 24B Analyzer for clean gas on the outlet side of adsorption / collector 25 Exhaust gas purification rate calculator 26 1 , 26 2 , 26 3 , 26 4 , 3 8 1, 38 2, 38 3, 38 4 measurement, analysis, calculation result of the signal 26 5, 38 5 control signal 30 adsorbent-collector 31 the dispersion plate in the fluidized bed method (: perforated plate) 32 fine of RDF carbonization carbide 33 Cyclone 34 RDF carbonized carbide circulation pipe 35 RDF carbonized carbide supply pipe valve 36 Valve opening control device 37 RDF carbonized carbide supply pipe 40 Sample 41 Wire mesh basket for holding sample 42 Incense stick (: simulated fuel) 43 Electric heater 44 Support 44a Support pedestal 45 Fishing line 46a, 46b High-sensitivity balance 47 Rubber seal member 48 Suction / collection chamber 49 Combustion chamber 50, 62 Suction pump 51 Combustion air supply pipe 52 Combustion exhaust gas supply pipe 53 Vibration isolator 54 Casing 60 Adsorber / collector (moving bed type) 61 Flue of refuse incinerator 63 Water column manometer 64A, 64B Gas sampling nozzle 65 Hopper for supply of RDF carbonized charcoal 66 Gas meter 67 For extraction of RDF carbonized charcoal Hopper 68A, 68B Gate valve (Sluice valve F 1 Direction of movement of RDF dry distillation carbide f 2 , f 4 Flow direction of flue gas f 3 Flow direction of combustion air

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上杉 浩之 東京都千代田区内幸町2丁目2番3号 川 崎製鉄株式会社内 (72)発明者 山内 豊 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 Fターム(参考) 4D002 AA21 AC01 AC04 BA04 BA14 CA07 CA08 CA09 DA41 HA01 4H012 HA00 4H015 AA01 AA02 BA13 CB01  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Hiroyuki Uesugi 2-3-2 Uchisaiwai-cho, Chiyoda-ku, Tokyo Kawasaki Steel Corporation (72) Inventor Yutaka Yamauchi 1-chome Mizushima Kawasaki-dori, Kurashiki-shi, Okayama Prefecture F) Term in Mizushima Works of Kawasaki Steel Corporation (reference) 4D002 AA21 AC01 AC04 BA04 BA14 CA07 CA08 CA09 DA41 HA01 4H012 HA00 4H015 AA01 AA02 BA13 CB01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 排ガスを、ごみ固形燃料の乾留炭化物層
に流通せしめることを特徴とする排ガスの清浄化方法。
1. A method for purifying exhaust gas, comprising flowing the exhaust gas to a dry distillation carbide layer of refuse solid fuel.
【請求項2】 前記ごみ固形燃料の乾留炭化物層が、固
定層、移動層または流動層であることを特徴とする請求
項1記載の排ガスの清浄化方法。
2. The method according to claim 1, wherein the dry-distilled carbide layer of the solid waste fuel is a fixed bed, a moving bed or a fluidized bed.
【請求項3】 ごみ固形燃料の乾留炭化物を充填した移
動層方式の吸着・捕集器(20)と、該吸着・捕集器(20)の
下部に接続された排ガス供給配管(8) と、前記吸着・捕
集器(20)の上部に接続された清浄ガス排出配管(9) と、
前記吸着・捕集器(20)の上部に配設されたごみ固形燃料
の乾留炭化物の供給装置(11)と、前記吸着・捕集器(20)
の下部に配設されたごみ固形燃料の乾留炭化物の排出装
置(13)と、前記吸着・捕集器(20)のガス入口側およびガ
ス出口側のガス圧力損失測定装置(21)と、前記吸着・捕
集器(20)内のごみ固形燃料の乾留炭化物のレベル計(23)
と、前記ガス圧力損失測定装置(21)の測定結果に基づき
前記排出装置(13)の排出速度を制御する制御装置(22A)
と、前記レベル計(23)の測定結果に基づき前記供給装置
(11)の供給速度を制御する制御装置(22B) を有すること
を特徴とする排ガスの清浄化設備。
3. A moving bed type adsorber / collector (20) filled with dry distillation char of refuse solid fuel, and an exhaust gas supply pipe (8) connected to a lower part of the adsorber / collector (20). A clean gas discharge pipe (9) connected to the upper part of the adsorption / collector (20);
A device (11) for supplying a dry-distilled carbide of refuse solid fuel disposed above the adsorption / collection device (20), and the adsorption / collection device (20)
An exhaust device (13) for dry-distilled carbides of refuse solid fuel disposed at the lower part of the device, a gas pressure loss measuring device (21) on the gas inlet side and gas outlet side of the adsorption / collector (20), Level meter (23) for carbonized carbonized solid fuel in garbage in the adsorber / collector (20)
And a control device (22A) that controls the discharge speed of the discharge device (13) based on the measurement result of the gas pressure loss measurement device (21).
And the supply device based on the measurement result of the level meter (23)
An exhaust gas purifying facility comprising a control device (22B) for controlling the supply speed of (11).
JP2000226830A 2000-07-27 2000-07-27 Method and equipment for cleaning waste gas Pending JP2002035538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000226830A JP2002035538A (en) 2000-07-27 2000-07-27 Method and equipment for cleaning waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000226830A JP2002035538A (en) 2000-07-27 2000-07-27 Method and equipment for cleaning waste gas

Publications (1)

Publication Number Publication Date
JP2002035538A true JP2002035538A (en) 2002-02-05

Family

ID=18720376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000226830A Pending JP2002035538A (en) 2000-07-27 2000-07-27 Method and equipment for cleaning waste gas

Country Status (1)

Country Link
JP (1) JP2002035538A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144326A (en) * 2005-11-29 2007-06-14 National Institute Of Advanced Industrial & Technology Gas treatment apparatus
JP2014091116A (en) * 2012-11-07 2014-05-19 Iwatani Internatl Corp Apparatus and method for decomposition treatment of halogen-containing compound
JP2017525550A (en) * 2014-06-02 2017-09-07 ピーエイチジー エネルギー エルエルシー Microwave induction plasma cleaning apparatus and generator gas related application method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007144326A (en) * 2005-11-29 2007-06-14 National Institute Of Advanced Industrial & Technology Gas treatment apparatus
JP2014091116A (en) * 2012-11-07 2014-05-19 Iwatani Internatl Corp Apparatus and method for decomposition treatment of halogen-containing compound
JP2017525550A (en) * 2014-06-02 2017-09-07 ピーエイチジー エネルギー エルエルシー Microwave induction plasma cleaning apparatus and generator gas related application method

Similar Documents

Publication Publication Date Title
US6521021B1 (en) Thief process for the removal of mercury from flue gas
US6451094B1 (en) Apparatus and method for removal of vapor phase contaminants from a gas stream by in-situ activation of carbon-based sorbents
US6863005B2 (en) Process to reduce mercury emission
US7393381B2 (en) Removing siloxanes from a gas stream using a mineral based adsorption media
US20030206843A1 (en) Methods and compositions to sequester combustion-gas mercury in fly ash and concrete
RU2010146219A (en) METHOD AND SORBENTS FOR USING AN ELECTROSTATIC DEPOSITOR INSTALLED ON A HOT SIDE, FOR CLEANING GAS-COMBUSED PRODUCTS OF COMBUSTION
CN101112669A (en) Multilevel purifier for disacidifying using dry and wet method and for removing dust by using cloth bag
US7214254B2 (en) Method of removing mercury from mercury contaminated materials
An et al. Regeneration performance of activated coke for elemental mercury removal by microwave and thermal methods
CN105605587A (en) Waste incineration treatment system
KR101347877B1 (en) Energy recycling type dust removing processing system for removing contaminated material in high temperature contaminated gas and inertial inpact type energy recycling and dust removing apparatus
JP2000157832A (en) Treatment of waste activated carbon and treatment of activated coke
JP4723922B2 (en) Manufacturing method of carbonaceous adsorbent, removal method of environmental pollutant using the same, and removal apparatus
JP2002035538A (en) Method and equipment for cleaning waste gas
JP2012245448A (en) Waste treatment apparatus and waste treatment method
Fell et al. Removal of dioxins and furans from flue gases by non-flammable adsorbents in a fixed bed
CN107812771A (en) Offal treatment reutilization system
CN1077395A (en) A kind of method of asphalt flue gas purifying
CN102861758B (en) Pyrogenic decomposition smoke low-temperature plasma purification equipment and method of household garbage
CN2744944Y (en) Heat accumulation type incineration apparatus for processing Dioxins compounds
CN211847816U (en) Environment-friendly coal tar residue treatment device
Patange et al. Investigation of air emission control system in Indian foundry
KR100383799B1 (en) Device of reducing dust and dioxide from an incinerator
Hofmaier QUO1 586 Apparatus for removal of volatile contaminants from solid or liquids
CA2504159A1 (en) Method of removing mercury from mercury contaminated materials

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070604