JP2002031135A - Magnetic bearing structure and manufacturing method thereof - Google Patents

Magnetic bearing structure and manufacturing method thereof

Info

Publication number
JP2002031135A
JP2002031135A JP2000210255A JP2000210255A JP2002031135A JP 2002031135 A JP2002031135 A JP 2002031135A JP 2000210255 A JP2000210255 A JP 2000210255A JP 2000210255 A JP2000210255 A JP 2000210255A JP 2002031135 A JP2002031135 A JP 2002031135A
Authority
JP
Japan
Prior art keywords
stator core
steel sheet
magnetic bearing
laminated
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000210255A
Other languages
Japanese (ja)
Other versions
JP4449184B2 (en
Inventor
Kazumi Hasegawa
和三 長谷川
Shinichi Ozaki
伸一 尾崎
Toshio Takahashi
俊雄 高橋
Itsuki Kuwata
厳 桑田
Muneyasu Sugitani
宗寧 杉谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2000210255A priority Critical patent/JP4449184B2/en
Publication of JP2002031135A publication Critical patent/JP2002031135A/en
Application granted granted Critical
Publication of JP4449184B2 publication Critical patent/JP4449184B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/048Active magnetic bearings for rotary movement with active support of two degrees of freedom, e.g. radial magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • F16C32/0461Details of the magnetic circuit of stationary parts of the magnetic circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic bearing structure and a manufacturing method thereof capable of facilitating the production of laminated steel plate, enhancing the yield of the steel plate, facilitating the machining of the laminated steel plate, preventing the peeling off of an insulation material and reducing a production/processing cost and an eddy current generated at a stator part. SOLUTION: In the homo-polar type magnetic bearing structure, tooth end parts, at which a coil 31 is disposed, of a stator core 29 mounted in a casing 22 surrounding a rotation rotor 23 in the floating state and forming a cross section to u-shape are axially disposed in adjacent to each other to constitute N pole and S pole. A laminated direction of a cross grain 32 of a steel plate 25 in the laminated state of the tooth end part of the stator core 29 formed by the laminated steel plate 28 is directed in a direction perpendicular to the axis direction of the rotor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、回転軸を無接触で
支持する磁気軸受構造、特にホモポーラ形の磁気軸受構
造とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic bearing structure for supporting a rotating shaft without contact, and more particularly to a homopolar magnetic bearing structure and a method of manufacturing the same.

【0002】[0002]

【従来の技術】ターボ圧縮機は、レシプロ圧縮機やスク
リュウ圧縮機に比べて大容量化、小型化に適し、かつオ
イルフリー化が容易である。このため、工場の空気源、
空気分離の原料空気やプロセス関係の空気源等の汎用圧
縮機として多用されている。
2. Description of the Related Art Turbo compressors are more suitable for larger capacity and smaller size than reciprocating compressors and screw compressors, and are easy to be oil-free. Because of this, the factory air source,
It is widely used as a general-purpose compressor such as a source air for air separation or an air source related to a process.

【0003】一方、ターボ圧縮機には、ターボ圧縮機と
直結駆動する高速モータ用の高速回転軸を支持するため
にガス軸受やスベリ軸受、磁気軸受が従来から用いられ
ている。特に、高速回転(例えば10万min-1以上)
する高速回転軸用のラジアル磁気軸受の1つに、高速モ
ータ用の高速回転軸を形成する回転中のロータに磁束を
通して、その電磁吸引力で浮上させて無接触で支持する
ホモポーラ形磁気軸受がある。
On the other hand, gas bearings, sliding bearings, and magnetic bearings have conventionally been used for turbo compressors in order to support a high-speed rotating shaft for a high-speed motor that is directly connected to the turbo compressor. In particular, high-speed rotation (for example, 100,000 min -1 or more)
One of the radial magnetic bearings for high-speed rotating shafts is a homopolar magnetic bearing that supports a rotating rotor that forms a high-speed rotating shaft for high-speed motors by passing magnetic flux through the magnetic attraction force and supporting it without contact. is there.

【0004】図5は、従来のホモポーラ形磁気軸受の構
成を示す模式図であり、図6は、図5のC−C矢視図で
ある。図5において、ホモポーラ形磁気軸受用の磁気軸
受構造1は、ケーシング2の軸心でかつ軸線方向に平行
に配置され高速回転自在で外径D1を有する所定の長さ
のロータ3と、ロータ3の外周面4と所定の隙間Gを有
しケーシング2の内周面6の凹部7内に取付けられるコ
字形状で板幅W1を有するステータコア8と、ステータ
コア8のロータ3の外周面4と対向する内周側に配置さ
れる2個所の歯端部9、9と、この歯端部9、9を取り
囲むコイル10、10と、から構成されている。
FIG. 5 is a schematic view showing the structure of a conventional homopolar magnetic bearing, and FIG. 6 is a view taken along the line CC of FIG. In FIG. 5, a magnetic bearing structure 1 for a homopolar magnetic bearing includes a rotor 3 having a predetermined length, which is arranged at the axis of a casing 2 and parallel to the axial direction, is rotatable at high speed, and has an outer diameter D1. A stator core 8 having a U-shaped plate width W1 and having a predetermined gap G with an outer peripheral surface 4 of the rotor 2 and being mounted in a concave portion 7 of an inner peripheral surface 6 of the casing 2, facing the outer peripheral surface 4 of the rotor 3 of the stator core 8; It is composed of two tooth ends 9, 9 arranged on the inner peripheral side and coils 10, 10 surrounding the tooth ends 9, 9.

【0005】更に、図6に示すようにステータコア8
は、ロータ3の外周部4と所定の隙間Gを有して複数個
(本図では4個)で等分(4等分)に配置されている。
また、ステータコア8は図示しないが、通常ロータ3の
軸線方向に所定の間隔で少なくとも2ケ所に配置されて
いる。このため安定した状態で高速回転することができ
る。更に、ステータコア8は、板厚Tの薄い鋼板11
と、隣り合う鋼板11の間に接着を兼ねる絶縁材12を
塗布し、順次1枚づつ貼り合せて所定の長さL1の積層
状態で複数の板目13からなる積層鋼板14である。ま
た、図6で示すように積層鋼板14の積層状態の板目1
3の貼り合せ(積層)方向は、ロータ3の軸線方向に対
して水平方向となるように配置されている。
[0005] Further, as shown in FIG.
Are arranged in a plurality (four in this figure) equally (4 equally) with a predetermined gap G from the outer peripheral portion 4 of the rotor 3.
Although not shown, the stator cores 8 are usually arranged at at least two places at predetermined intervals in the axial direction of the rotor 3. Therefore, high-speed rotation can be performed in a stable state. Further, the stator core 8 is made of a thin steel plate 11 having a thickness T.
Then, an insulating material 12 also serving as an adhesive is applied between adjacent steel plates 11, and the laminated steel plates 14 are composed of a plurality of platelets 13 in a laminated state having a predetermined length L1 by sequentially bonding one by one. In addition, as shown in FIG.
The lamination (lamination) direction of 3 is arranged so as to be horizontal to the axial direction of the rotor 3.

【0006】このように、ホモポーラ形磁気軸受用の磁
気軸受構造1は、ロータ3を囲むステータコア8の歯端
部9、9が軸線方向に隣接してコイル10、10により
電磁石のN極とS極を構成するので、対向位置にある歯
端部9、9の吸引力を制御してロータ3を無接触で浮上
させて支持できる。従って、このホモポーラ形の磁界
は、図5の点線矢印で示すようにロータ3の外周面4に
おいてロータ軸線に沿った向きとなる。
As described above, in the magnetic bearing structure 1 for a homopolar magnetic bearing, the tooth ends 9, 9 of the stator core 8 surrounding the rotor 3 are axially adjacent to each other, and the coils 10, 10 are used to connect the N pole and the S pole of the electromagnet. Since the poles are formed, the rotor 3 can be levitated and supported in a non-contact manner by controlling the suction force of the tooth ends 9 and 9 at the opposing positions. Therefore, the homopolar magnetic field is oriented along the rotor axis on the outer peripheral surface 4 of the rotor 3 as shown by the dotted arrow in FIG.

【0007】[0007]

【発明が解決しようとする課題】図7は、従来のステー
タコアの積層鋼板の積層形状を成形する工程を示す模式
図である。一般的にホモポーラ形磁気軸受用の磁気軸受
1のステータコア8は、図7(a)に示すような板厚T
で板幅W1の高さH1の矩形の薄い鋼板11を、図示し
ない打ち抜き金型を使用して1枚つづコ字形状の打ち抜
き加工で製作していた。しかし、打ち抜き金型は耐摩耗
性の合金工具鋼等の高価な金型で成形するので手間が掛
かり、また製作コストがアップするという問題点があっ
た。更に、コ字形状の打ち抜き加工を行うため、中央部
近傍の板幅W2で高さH2の部分がスクラップとなるの
で、材料の歩留りが低下するという問題点があった。ま
た、図7(b)に示すようコ字形状に打ち抜いた鋼板1
1を1枚つづ絶縁材12を塗布しながら順次積み重ね
て、最終的に図7(c)に示すよう所定長さL1の積層
状態の積層鋼板14を成形させるため、一層製作コスト
がアップするという問題点もあった。
FIG. 7 is a schematic view showing a step of forming a laminated shape of a laminated steel sheet of a conventional stator core. Generally, the stator core 8 of the magnetic bearing 1 for a homopolar magnetic bearing has a plate thickness T as shown in FIG.
In this method, a rectangular thin steel plate 11 having a width H1 and a height H1 is manufactured one by one by using a punching die (not shown). However, since the punching die is formed by using an expensive die such as a wear-resistant alloy tool steel, there is a problem in that it takes time and increases the manufacturing cost. Further, since the U-shaped punching process is performed, a portion having a width H2 near the center and a height H2 becomes scrap, thereby causing a problem that the material yield is reduced. In addition, as shown in FIG.
7 are sequentially stacked while applying the insulating material 12 one by one to finally form a laminated steel plate 14 having a predetermined length L1 in a laminated state as shown in FIG. 7C, which further increases the manufacturing cost. There were also problems.

【0008】一方、図8は、上述の図7で製作されたス
テータコアの積層鋼板の歯端部側への機械加工状態を示
す模式図である。図8(a)において、4個のステータ
コア8を、図示しない取付け治具台上に夫々の積層状態
の鋼板11の板目13の板目方向が、ロータ3の軸線方
向に対して水平(本図で天井)方向で、かつステータコ
ア8の歯端部9側を内側となるように固定する。次に、
図示しない回転切削用工作機械、例えば普通旋盤や立旋
盤等を操作して歯端部9の内周面15を、内径D2(=
D1+2G)で真円度を確保するまで斜線で示す面積K
分を回転切削加工で切削する。しかし、図8(b)に示
すように、回転切削時に連続して大きな回転切削荷重が
積層状態の鋼板11の板目13の側面から常時掛かるた
めに、積層鋼板14の先端部に曲りが発生し、この曲り
荷重で絶縁材12が回転方向に潰されたり、切削刃物で
引き千切りられる等の剥離が生じる。このため図8
(c)に示すように、鋼板11同士が接触して、ステー
タ部での渦電流が増大して、ロータ3への浮上力と回転
特性等を劣化させるという問題点があった。また、これ
らの旋盤に替えて立削り盤等を使用して、積層状態の鋼
板11の板目13と平行方向に歯端部9の内周面15を
内径D2となるように切削加工しても、隣り合う鋼板1
1の板目13間に段差が生じるため、円滑かつ真円度を
確保することが難しいという問題点もあった。
FIG. 8 is a schematic view showing a state in which the stator core manufactured in FIG. 7 is machined on the tooth end side of the laminated steel plate. In FIG. 8A, the four stator cores 8 are arranged on a mounting jig table (not shown) so that the grain direction of the grain 13 of the steel sheet 11 in a stacked state is horizontal (final) with respect to the axial direction of the rotor 3. The stator core 8 is fixed in the direction of the ceiling (in the figure, the ceiling) so that the tooth end 9 side of the stator core 8 is inside. next,
By operating a rotary cutting machine tool (not shown), for example, a normal lathe or a vertical lathe, the inner peripheral surface 15 of the tooth end 9 is made to have an inner diameter D2 (=
D1 + 2G) The area K indicated by oblique lines until roundness is secured.
Minutes are cut by rotary cutting. However, as shown in FIG. 8B, since a large rotary cutting load is continuously applied from the side surface of the grain 13 of the laminated steel sheet 11 during the rotary cutting, the tip of the laminated steel sheet 14 is bent. However, the bending load causes peeling such as crushing of the insulating material 12 in the rotation direction, or tearing by the cutting blade. Therefore, FIG.
As shown in (c), there is a problem that the steel plates 11 come into contact with each other and the eddy current in the stator portion increases, thereby deteriorating the levitation force on the rotor 3 and the rotation characteristics. Further, using an upright cutting machine or the like in place of these lathes, the inner peripheral surface 15 of the tooth end 9 is cut in the direction parallel to the grain 13 of the laminated steel sheet 11 so as to have an inner diameter D2. Also adjacent steel plate 1
There is also a problem that it is difficult to ensure smoothness and roundness because a step occurs between the first plate 13.

【0009】本発明は、かかる問題点を解決するために
創案されたものである。すなわち、本発明の目的は、積
層鋼板の製作を容易かつ鋼板の歩留りを向上し、積層鋼
板への切削加工を容易かつ絶縁材の剥離を防止でき、製
作・加工コストの低減でき、かつステータ部に発生する
渦電流を低減できる磁気軸受構造とその製造方法を提供
することにある。
The present invention has been made to solve such a problem. That is, an object of the present invention is to facilitate the production of laminated steel sheets and improve the yield of the steel sheets, to facilitate the cutting of the laminated steel sheets and to prevent the peeling of the insulating material, to reduce the production and processing costs, and to improve the stator portion. An object of the present invention is to provide a magnetic bearing structure capable of reducing an eddy current generated in a magnetic field and a method for manufacturing the same.

【0010】[0010]

【課題を解決するための手段】本発明によれば、回転す
るロータを浮上状態で囲むケーシング内に取付けられ、
断面形状をコ字形状に形成するステータコアのコイルを
配置する歯端部が軸方向に隣接してN極とS極を構成す
るホモポーラ形磁気軸受構造であって、積層鋼板で成形
されたステータコアの歯端部の積層状態の鋼板の板目の
積層方向がロータの軸線方向に対して直交方向に配置さ
れている、ことを特徴とする磁気軸受構造が提供され
る。
According to the present invention, the rotor is mounted in a casing that surrounds the rotating rotor in a floating state,
A homopolar magnetic bearing structure in which the teeth of the stator core, in which the coils of the stator core are formed to have a U-shaped cross section, are arranged adjacent to each other in the axial direction to form N poles and S poles, is a stator core formed of laminated steel sheets. A magnetic bearing structure is provided, wherein the lamination direction of the steel plates in the lamination state of the tooth ends is arranged in a direction orthogonal to the axial direction of the rotor.

【0011】上記本発明の構成によれば、断面形状をコ
字形状に形成する積層鋼板のステータコアのコイルを配
置する夫々の歯端部の積層状態の鋼板の板目の積層方向
をロータの軸線方向に対して直交方向に配置し、軸方向
に隣接してN極とS極を構成するホモポーラ形磁気軸受
構造としたので、ロータを囲むステータコアの夫々2ケ
所の歯端部が、軸線方向に隣接して夫々2本のコイルを
配置して電磁石のN極とS極とを構成できる。これによ
り、対向位置にある歯端部の吸引力を制御してロータを
無接触で浮上させて、安定して高速回転で支持させるこ
とができる。
According to the configuration of the present invention, the lamination direction of the laminated steel plates at the respective tooth ends where the coils of the stator core of the laminated steel plates having a U-shaped cross section are arranged is set to the axis of the rotor. Are arranged in a direction orthogonal to the direction, and a homopolar magnetic bearing structure is formed adjacent to each other in the axial direction to form an N pole and an S pole. Therefore, each of two tooth ends of the stator core surrounding the rotor extends in the axial direction. By arranging two coils adjacent to each other, an N pole and an S pole of the electromagnet can be formed. Thus, the rotor can be floated without contact by controlling the suction force of the tooth end located at the opposing position, and can be stably supported at high speed.

【0012】本発明の好ましい実施形態によれば、前記
ステータコアは、コ字形状の積層鋼板が連続する鋼板に
絶縁材を塗布しながら巻取られて成形した後に等分に切
断して製造される。この構成によれば、断面形状をコ字
形状に形成する積層鋼板のステータコアを、後述する実
施形態に示すような所定の大きさの矩形断面形状を有す
る巻付け金型の外周面に沿って、鋼板の表面に接着を兼
ねる絶縁材を塗布し連続する帯板形状の薄い鋼板に所定
の付与させて巻取りで所定の厚さの空間部を有する巻取
り矩形形状を迅速、かつ容易に成形できる。更に、この
巻取り矩形形状を切断機で等分に分割すれば、絶縁材で
隔離されたコ字形状の積層鋼板が容易に製作できる。一
方、高価な打ち抜き金型を使用せずに、単純で簡便な巻
付け金型で製作できるので製作コストの低減化と、1枚
づつ行っていた鋼板への絶縁材の塗布や積層作業を省略
できるので生産性を向上できる。また、打ち抜き金型の
打ち抜き作業の際に発生する鋼板の中央部近傍のスクラ
ップ化を防止できるので、鋼板の歩留り率を大幅に向上
できる。
[0012] According to a preferred embodiment of the present invention, the stator core is manufactured by winding and shaping a continuous steel sheet having a U-shape while applying an insulating material to a continuous steel sheet, and then cutting it into equal parts. . According to this configuration, the stator core of the laminated steel sheet having a U-shaped cross section is formed along the outer peripheral surface of a winding mold having a rectangular cross section of a predetermined size as shown in an embodiment described later. An insulating material that also serves as an adhesive is applied to the surface of a steel sheet, and a predetermined thickness is applied to a continuous strip-shaped thin steel sheet, and a winding rectangular shape having a space portion of a predetermined thickness can be quickly and easily formed by winding. . Furthermore, if this winding rectangular shape is equally divided by a cutting machine, a U-shaped laminated steel plate separated by an insulating material can be easily manufactured. On the other hand, it is possible to manufacture with a simple and simple winding die without using expensive punching dies, thereby reducing manufacturing costs and omitting the application of insulating material to steel sheets and lamination work, which had been done one by one. Productivity can be improved. In addition, since the scraping near the center of the steel sheet generated during the punching operation of the punching die can be prevented, the yield rate of the steel sheet can be significantly improved.

【0013】また、本発明の好ましい別の実施形態によ
れば、前記ステータコアは、ロータの外周面と直交方向
に配置される歯端部の内周面側に積層状態の鋼板の板目
の積層方向と水平方向に回転切削加工を行う。この構成
によれば、ロータの外周面との所定の隙間を保持させる
ために旋盤や立旋盤等を操作して歯端部の内周面への回
転切削加工を、歯端部の内周面側で積層状態の板目の積
層方向と水平方向から加工できる。これにより、回転切
削荷重は歯端部の積層状態の鋼板の板目に対して常に水
平方向に付与できるので、偏荷重や曲りを発生させない
ので鋼板の板目を確保し、かつ絶縁材を潰したり又は引
き千切り等の剥離を防いで、円滑で真円度を確保でき
る。従って、機械加工による絶縁材の剥離等により生じ
る積層鋼板同士の接触を防ぎ、ステータ部での渦電流を
防止して、ロータの浮上力と回転特性等を劣化させるこ
とがない。
According to another preferred embodiment of the present invention, the stator core is formed by laminating steel plates in a laminated state on an inner peripheral surface side of a tooth end portion arranged in a direction orthogonal to an outer peripheral surface of the rotor. Perform rotary cutting in the horizontal and vertical directions. According to this configuration, the lathe or the vertical lathe is operated to maintain a predetermined gap with the outer peripheral surface of the rotor, thereby performing the rotary cutting process on the inner peripheral surface of the tooth end portion, and the inner peripheral surface of the tooth end portion. It can be processed from the lamination direction and the horizontal direction of the laminated plate on the side. As a result, the rotational cutting load can always be applied in the horizontal direction to the grain of the laminated steel sheet at the tooth end, so that uneven load and bending do not occur, so secure the grain of the steel sheet and crush the insulating material. The smoothness and roundness can be ensured by preventing peeling such as slipping or shredding. Therefore, contact between the laminated steel sheets caused by peeling of the insulating material due to machining or the like is prevented, eddy current in the stator portion is prevented, and the levitation force and rotational characteristics of the rotor are not deteriorated.

【0014】また、本発明によれば、回転するロータを
浮上状態で囲むケーシング内に取付けられ、断面形状を
コ字形状に形成するステータコアのコイルを配置する歯
端部が軸方向に隣接してN極とS極を構成するホモポー
ラ形磁気軸受構造であって、(A)巻付け金型に連続す
る鋼板に張力を付与しながら所定厚さまで巻取ると共
に、巻取り中に鋼板に絶縁材を塗布し接着させて積層鋼
板の巻取コアを形成し、(B)次に、巻付け金型から解
放した巻取コアを等分に切断して積層状態の板目がコ字
形状のステータコアを成形し、(C)次に、ステータコ
アの歯端部の内周面側でロータの外周面と直交配置され
る積層状態の板目の積層方向と平行方向に所定の回転切
削加工を行い、(D)次に、ステータコアの夫々の歯端
部にコイルを配置する、ことを特徴とする磁気軸受の製
造方法が提供される。
Further, according to the present invention, a tooth end portion on which a coil of a stator core, which is mounted in a casing surrounding a rotating rotor in a floating state and has a U-shaped cross section, is arranged adjacent to the axial direction. A homopolar magnetic bearing structure comprising an N pole and an S pole, wherein (A) a steel sheet continuous to a winding die is wound to a predetermined thickness while applying tension to the steel sheet, and an insulating material is applied to the steel sheet during winding. (B) Next, the wound core released from the winding die is cut into equal parts to form a stator core having a U-shaped laminated plate. (C) Next, a predetermined rotary cutting process is performed in the direction parallel to the laminating direction of the lamination state of the laminated state of the plate, which is arranged orthogonally to the outer peripheral surface of the rotor on the inner peripheral surface side of the tooth end portion of the stator core, D) Next, the coils are arranged at the respective tooth ends of the stator core. The method of manufacturing a magnetic bearing, characterized in that there is provided.

【0015】上記本発明の方法によれば、所定の大きさ
の矩形断面形状を有する巻付け金型の外周面に沿って、
鋼板の表面に接着を兼ねる絶縁材を塗布し連続する帯板
形状の薄い鋼板に所定の付与させて巻取りで所定の厚さ
の空間部を有する巻取り矩形形状を迅速、かつ容易に成
形できる。更に、積層鋼板の巻取コアを単純で簡便な巻
付け金型で製作できるので製作コストの低減化ができ
る。また、巻取り中に鋼板に絶縁材を塗布し接着できる
ので、生産性を向上できる。更に、鋼板を巻取りで積層
鋼板の巻取コアを形成するので、スクラップの発生を防
ぎ、鋼板の歩留り率を大幅に向上できる。更に、巻付け
金型から解放した巻取コアを、切断機で等分に切断して
積層状態の板目がコ字形状のステータコアを成形ができ
る。このため、絶縁材で隔離されたコ字形状の積層鋼板
が容易、かつ効率的に製作できる。
According to the method of the present invention, along the outer peripheral surface of the winding mold having a rectangular cross section of a predetermined size,
An insulating material that also serves as an adhesive is applied to the surface of a steel sheet, and a predetermined thickness is applied to a continuous strip-shaped thin steel sheet, and a winding rectangular shape having a space portion of a predetermined thickness can be quickly and easily formed by winding. . Further, since the winding core of the laminated steel sheet can be manufactured by a simple and simple winding die, the manufacturing cost can be reduced. In addition, since an insulating material can be applied to the steel plate during winding and bonded, the productivity can be improved. Furthermore, since the winding core of the laminated steel sheet is formed by winding the steel sheet, the generation of scrap can be prevented, and the yield rate of the steel sheet can be greatly improved. Further, the winding core released from the winding die is cut into equal parts by a cutting machine to form a stator core having a U-shaped laminated plate. For this reason, a U-shaped laminated steel plate separated by an insulating material can be easily and efficiently manufactured.

【0016】次に、上述によりコ字形状に製作されたス
テータコアの歯端部の内周面側で、積層状態の鋼板の板
目の積層方向と平行方向に所定の回転切削加工を行う。
これにより偏荷重や曲りの発生を防ぐので回転切削荷重
は、歯端部の積層状態の鋼板の板目に対して常に水平方
向に付与できる。従って、鋼板の板目を確保し、かつ絶
縁材を潰したり又は引き千切や剥離を防いで、所定の内
径切削加工ができ、円滑な内周面と真円度を確保するこ
とができる。更に、機械加工による絶縁材の剥離等によ
り生じる積層鋼板同士の接触が発生しないので、ステー
タ部での渦電流を防止して、ロータの浮上力と回転特性
等を劣化させることがない。また、このような機械加工
が完了した後に切粉等を除去して清掃されたステータコ
アの夫々の歯端部の外周に電磁石(コイル)を配置し、
このコイルを配置したステータコアをケーシング内の内
周面の凹部内に取付ける。従って、回転切削加工後に手
間の掛かる切削加工不良による手当てが不要なため、生
産性を向上できる。
Next, on the inner peripheral surface side of the tooth end of the stator core manufactured in the U-shape as described above, a predetermined rotary cutting process is performed in a direction parallel to the laminating direction of the laminated steel sheets.
This prevents uneven load and bending, so that the rotational cutting load can always be applied in the horizontal direction to the laminated steel sheet at the tooth end. Therefore, a predetermined inner diameter cutting process can be performed while securing the grain of the steel plate and preventing the insulating material from being crushed, shredded, or peeled, and a smooth inner peripheral surface and roundness can be secured. Furthermore, since the contact between the laminated steel plates caused by the peeling of the insulating material due to the machining does not occur, the eddy current in the stator portion is prevented, and the levitation force and the rotation characteristics of the rotor are not deteriorated. Also, after such machining is completed, an electromagnet (coil) is arranged on the outer periphery of each tooth end of the stator core that has been cleaned by removing chips and the like,
The stator core on which the coils are arranged is mounted in a recess on the inner peripheral surface in the casing. Therefore, since it is not necessary to take care of troublesome cutting work after the rotary cutting, productivity can be improved.

【0017】[0017]

【発明の実施の形態】以下、本発明の好ましい実施形態
を図面を参照して説明する。なお、各図において、共通
する部分は同一の符号を付し、重複した説明を省略す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. In each of the drawings, common portions are denoted by the same reference numerals, and redundant description will be omitted.

【0018】図1は、本発明によるホモポーラ形磁気軸
受の構成を示す全体構成図であり、図2は、図1のA−
A矢視図である。図1において、本発明のホモポーラ形
磁気軸受用の磁気軸受構造21は、ケーシング22の軸
心で,かつ軸線方向に平行に配置され高速回転自在で外
径D1を有する所定の長さのロータ23と、ロータ23
の外周面24と所定の隙間Gを有してケーシング22の
内周面26の凹部27内に取付けられ板厚Tで所定枚数
の薄い鋼板25で積層される積層鋼板28からなるコ字
形状の断面形状で長さL2を有するステータコア29
と、ステータコア29のロータ23の外周面24と対向
する内周側に配置される2個所の歯端部30、30と、
この歯端部30、30を取囲み配置される電磁石(コイ
ル)31、31とから構成されている。なお、断面形状
がコ字形状に形成されるステータコア29の夫々の歯端
部30、30の積層鋼板28の積層状態の鋼板25の板
目32、32の積層方向は、ロータ23の軸線方向に対
して夫々が直交方向となるように配置されている。
FIG. 1 is an overall configuration diagram showing the configuration of a homopolar magnetic bearing according to the present invention, and FIG.
FIG. In FIG. 1, a magnetic bearing structure 21 for a homopolar magnetic bearing according to the present invention includes a rotor 23 having a predetermined length, which is arranged at the axis of a casing 22 and parallel to the axial direction and is rotatable at high speed and has an outer diameter D1. And the rotor 23
A U-shaped laminated steel sheet 28 having a predetermined gap G and an inner peripheral surface 26 of the casing 22, which is mounted in a recess 27 of the inner peripheral surface 26 of the casing 22 and is laminated by a predetermined number of thin steel plates 25 having a thickness T. Stator core 29 having a cross-sectional shape and length L2
And two tooth ends 30, 30 disposed on the inner peripheral side of the stator core 29 facing the outer peripheral surface 24 of the rotor 23;
Electromagnets (coils) 31, 31 are arranged so as to surround the tooth ends 30, 30. The lamination direction of the meshes 32, 32 of the steel plates 25 in the laminated state of the laminated steel plates 28 of the respective tooth ends 30, 30 of the stator core 29 having a U-shaped cross section is in the axial direction of the rotor 23. On the other hand, they are arranged so as to be orthogonal to each other.

【0019】また、図2に示すように、板幅W2を有す
るステータコア29は、ロータ23の外周部24と所定
の隙間Gを有して複数個(本図では4個)で等分(4等
分)にケーシング22の内周面26の凹部27内に配置
されている。また、ステータコア29は図示しないが、
通常ロータ23の軸線方向に所定の間隔で少なくとも2
ケ所に配置されている。このため安定した状態で高速回
転することができる。
As shown in FIG. 2, the stator core 29 having the plate width W2 is divided into a plurality (four in the present figure) of the stator core 29 having a predetermined gap G with the outer peripheral portion 24 of the rotor 23. It is arranged in the recess 27 of the inner peripheral surface 26 of the casing 22 equally. Although the stator core 29 is not shown,
Usually, at least two at predetermined intervals in the axial direction of the rotor 23.
It is located in two places. Therefore, high-speed rotation can be performed in a stable state.

【0020】上述したように従来と比べ積層鋼板の積層
状態の板目方向が、本発明ではロータの外周面に対して
90度回転して配置されている。このように積層状態の
鋼板の板目方向を90度回転して配置されるホモポーラ
形磁気軸受用の磁気軸受構造は、従来と同様にロータを
囲むステータコアの夫々の歯端部が、軸線方向に隣接し
て夫々のコイルにより電磁石のN極とS極を構成するの
で、対向位置にある2ケ所の歯端部の吸引力を制御して
ロータを無接触で浮上させて支持できる。従って、この
ホモポーラ形の磁界は、図1の点線矢印で示すように、
ロータの外周面においてロータ軸線に沿った向きとな
る。
As described above, according to the present invention, the grain direction of the laminated steel sheets in the laminated state is rotated by 90 degrees with respect to the outer peripheral surface of the rotor as compared with the conventional art. As described above, the magnetic bearing structure for the homopolar type magnetic bearing arranged by rotating the grain direction of the laminated steel sheets by 90 degrees as described above has a structure in which the respective tooth ends of the stator core surrounding the rotor are arranged in the axial direction as in the related art. Since the N and S poles of the electromagnet are formed by the adjacent coils, the attraction force of the two tooth ends at the opposing positions can be controlled so that the rotor can be levitated and supported without contact. Therefore, this homopolar magnetic field is represented by a dotted arrow in FIG.
It is oriented along the rotor axis on the outer peripheral surface of the rotor.

【0021】図3は、本発明のステータスコアの積層鋼
板の積層形状を成形する工程を示す製作図である。図3
(a)に示すように、ステータコア29は、巻付け金型
41に連続する板厚Tで板幅W2の帯板の鋼板25の表
面上に供給スプレ33から絶縁材34を塗布しながら巻
取られて成形した後に、図3(b)に示すように、切断
機43で巻取コア42を等分に切断してコ字形状の積層
鋼板28として製造される。このように、断面形状がコ
字形状に形成する積層鋼板のステータコアを迅速、かつ
容易に成形できる。更に、高価な打ち抜き金型を使用せ
ずに製作できるので製作コストの低減化と、1枚づつ行
っていた鋼板への絶縁材の塗布や積層作業を省略できる
ので生産性を向上できる。また、連続する帯板で積層鋼
板を製造できるので鋼板のスクラップ化を防いで、鋼板
の歩留り率を大幅に向上できる。
FIG. 3 is a production view showing a step of forming the laminated shape of the laminated steel sheet of the status core of the present invention. FIG.
As shown in (a), the stator core 29 is wound while applying the insulating material 34 from the supply spray 33 onto the surface of the steel plate 25 of the strip having the thickness T and the width W2 continuous with the winding die 41. After being formed and formed, as shown in FIG. 3 (b), the winding core 42 is cut into equal parts by a cutting machine 43 to produce the U-shaped laminated steel sheet 28. As described above, the stator core of the laminated steel sheet having the U-shaped cross section can be formed quickly and easily. Furthermore, since it can be manufactured without using an expensive punching die, the manufacturing cost can be reduced, and the application of the insulating material to the steel sheet and the lamination work, which have been performed one by one, can be omitted, so that the productivity can be improved. In addition, since a laminated steel sheet can be manufactured from continuous strips, scrapping of the steel sheet can be prevented, and the yield rate of the steel sheet can be significantly improved.

【0022】図4は、上述の図3で製作されたステータ
コアの積層鋼板の歯端部側への機械(回転切削)加工状
態を示す加工図である。図4(a)に示すように、図示
しない取付け治具台上に固定されたステータコア29
は、ロータ23の外周面24と直交方向に配置される夫
々の歯端部30、30の内周面35側に積層状態の鋼板
25の板目32の積層方向と水平方向に、内径D2(=
D1+2G)で円滑な真円度を確保するまで斜線で示す
面積K分を、旋盤や立旋盤等を操作して回転切削加工で
切削する。これにより、回転切削荷重は歯端部の積層状
態の板目に対して常に水平方向に付与する。従って、偏
荷重や曲りを発生せず、図4(a)のB−B矢視図であ
る図4(b)に示すように、鋼板25の板目を適正に確
保し、かつ太い実線で示す絶縁材34を潰したり又は引
き千切りや剥離を防ぎ、所定の内径切削加工を円滑に行
うことができる。これにより、機械加工による鋼板の破
損や絶縁材の剥離等により生じる積層鋼板同士の接触を
防いで、ステータ部での渦電流を防止して、ロータの浮
上力と回転特性等を劣化させることがない。
FIG. 4 is a machining diagram showing a machine (rotational cutting) machining state on the tooth end side of the laminated steel sheet of the stator core manufactured in FIG. 3 described above. As shown in FIG. 4A, the stator core 29 fixed on a mounting jig table (not shown)
The inner diameter D2 (in the horizontal direction and the laminating direction of the plate 32 of the steel plate 25 in a laminated state on the inner peripheral surface 35 side of the respective tooth ends 30, 30 arranged in a direction orthogonal to the outer peripheral surface 24 of the rotor 23). =
D1 + 2G), an area K indicated by oblique lines is cut by rotary cutting by operating a lathe, a vertical lathe, or the like until a smooth roundness is secured. Thus, the rotational cutting load is always applied in the horizontal direction to the laminated grain at the tooth end. Therefore, no uneven load or bending occurs, and as shown in FIG. 4B, which is a view taken along the line BB in FIG. 4A, the grain of the steel plate 25 is properly secured, and a thick solid line is used. The insulating material 34 shown can be prevented from being crushed, shredded, or peeled, and the predetermined inner diameter cutting can be smoothly performed. As a result, it is possible to prevent the laminated steel plates from coming into contact with each other due to breakage of the steel plate due to machining, peeling of the insulating material, etc., to prevent eddy currents in the stator portion, and to deteriorate the levitation force and rotational characteristics of the rotor. Absent.

【0023】次に、図1、図3及び図4を使用して本発
明のホモポーラ形磁気軸受の磁気軸受構造の製造方法を
説明する。回転するロータ23を浮上状態で囲むケーシ
ング22内に取付けられ、断面形状をコ字形状に形成す
るステータコア29のコイル31を配置する歯端部30
が、軸方向に隣接してN極とS極を構成するホモポーラ
形磁気軸受構造であって、(A)先ず、所定の大きさの
矩形断面形状を有する巻付け金型41に連続する板厚T
で板幅W2の鋼板25に張力を付与しながら所定長さL
2が形成するまで巻取ると共に、巻取り中に鋼板25の
表面上に供給スプレ33から均一に絶縁材34を塗布し
接着させて積層鋼板28の巻取コア42を形成し、
(B)次に、巻付け金型41から解放した巻取コア42
を切断機43で等分に切断して積層状態の鋼板25の板
目32がコ字形状となすステータコア29を成形し、
(C)次に、ステータコア29の歯端部30の内周面3
5側で、ロータ23の外周面24と直交配置される積層
状態の鋼板25の板目32の積層方向と平行方向に所定
(内径D2)の回転切削加工を行い、(D)次に、切粉
等の清掃した後にステータコア29の夫々の歯端部30
にコイル31を取付けて配置する。最後に通常、ケース
にステータコアを入れた後に、ステータコア内側を切削
する。
Next, a method of manufacturing the magnetic bearing structure of the homopolar magnetic bearing according to the present invention will be described with reference to FIGS. 1, 3 and 4. A tooth end 30 on which a coil 31 of a stator core 29 having a U-shaped cross section is disposed, which is mounted in a casing 22 surrounding the rotating rotor 23 in a floating state.
Is a homopolar type magnetic bearing structure in which an N pole and an S pole are formed adjacent to each other in the axial direction. (A) First, a plate thickness continuous with a winding mold 41 having a rectangular cross section of a predetermined size. T
While applying a tension to the steel plate 25 having the plate width W2 with the predetermined length L.
2 is formed, and an insulating material 34 is uniformly applied from the supply spray 33 onto the surface of the steel plate 25 during the winding and adhered to form a winding core 42 of the laminated steel plate 28.
(B) Next, the winding core 42 released from the winding die 41
Is cut into equal parts by a cutting machine 43 to form a stator core 29 in which the meshes 32 of the laminated steel plates 25 have a U-shape,
(C) Next, the inner peripheral surface 3 of the tooth end 30 of the stator core 29
On the fifth side, a predetermined (inner diameter D2) rotary cutting process is performed in a direction parallel to the laminating direction of the plate 32 of the steel plate 25 in a laminated state orthogonal to the outer peripheral surface 24 of the rotor 23. After cleaning the powder or the like, each tooth end 30 of the stator core 29
The coil 31 is attached and arranged. Finally, usually, after the stator core is put in the case, the inside of the stator core is cut.

【0024】このように、ステータコアを巻付け金型の
外周面に沿って、鋼板の表面に接着を兼ねる絶縁材を塗
布し連続する帯板形状の薄い鋼板に所定の張力を付与さ
せながら、空間部を有する巻取り矩形形状を迅速、かつ
容易に成形できる。更に、積層鋼板の巻取コアを単純で
簡便な巻付け金型で製作できるので製作コストの低減化
ができる。また、巻取り中に鋼板に絶縁材を塗布し接着
できるので、生産性を向上できる。更に、鋼板を巻取り
で積層鋼板の巻取コアを形成するので、スクラップの発
生を防止して、鋼板の歩留り率を大幅に向上できる。更
に、巻付け金型から解放した巻取コアを等分に切断し
て、積層状態の板目をコ字形状とするステータコアを容
易に成形することができる。これにより、絶縁材で隔離
されたコ字形状の積層鋼板が容易、かつ効率的に製作で
きる。
As described above, the stator core is wound along the outer peripheral surface of the die, the insulating material also serving as an adhesive is applied to the surface of the steel plate, and a predetermined tension is applied to the continuous strip-shaped thin steel plate while applying a predetermined tension. The winding rectangular shape having the portion can be formed quickly and easily. Further, since the winding core of the laminated steel sheet can be manufactured by a simple and simple winding die, the manufacturing cost can be reduced. In addition, since an insulating material can be applied to the steel plate during winding and bonded, the productivity can be improved. Furthermore, since the winding core of the laminated steel sheet is formed by winding the steel sheet, the occurrence of scrap can be prevented, and the yield rate of the steel sheet can be greatly improved. Furthermore, the winding core released from the winding die can be cut into equal parts to easily form a stator core having a U-shaped laminated mesh. Thus, a U-shaped laminated steel sheet separated by an insulating material can be easily and efficiently manufactured.

【0025】一方、コ字形状に製作されたステータコア
の歯端部の内周面側に、積層状態の鋼板の板目の積層方
向と平行方向に旋盤や立旋盤等で所定の回転切削加工が
できる。このため偏荷重や曲りを発生させずに、回転切
削荷重は歯端部の積層状態の板目に対し常に水平方向に
付与できる。従って、鋼板の板目を適正に確保でき、か
つ絶縁材を潰したり又は引き千切りや剥離を防ぎ、正確
な内径切削加工により円滑な内周面と真円度を確保する
歯端部に切削加工することができる。更に、機械加工に
よる絶縁材の剥離等により生じる積層鋼板同士の接触が
発生しないので、ステータ部での渦電流を防止して、ロ
ータの浮上力と回転特性等を劣化させることがない。ま
た、このような機械加工が完了した後に切粉等を除去し
て清掃されたステータコアの夫々の歯端部の外周に電磁
石(コイル)を配置する。最後に通常、ケースにステー
タコアを入れた後に、ステータコア内側を切削する。
On the other hand, on the inner peripheral surface side of the tooth end portion of the stator core manufactured in a U-shape, a predetermined rotary cutting process is performed by a lathe, a vertical lathe, or the like in a direction parallel to the lamination direction of the laminated steel plates. it can. For this reason, the rotational cutting load can always be applied in the horizontal direction to the lamination state of the tooth end portion without generating an uneven load or bending. Therefore, it is possible to properly secure the grain of the steel sheet, and also to prevent the insulation material from being crushed or shredded or peeled off, and to cut the tooth end to ensure a smooth inner peripheral surface and roundness by accurate inner diameter cutting. can do. Furthermore, since the contact between the laminated steel plates caused by the peeling of the insulating material due to the machining does not occur, the eddy current in the stator portion is prevented, and the levitation force and the rotation characteristics of the rotor are not deteriorated. Further, after such machining is completed, an electromagnet (coil) is arranged on the outer periphery of each tooth end of the stator core that has been cleaned by removing chips and the like. Finally, usually, after the stator core is put in the case, the inside of the stator core is cut.

【0026】なお、本発明は上述した実施形態に限定さ
れず、本発明の要旨を逸脱しない範囲で種々変更できる
ことは勿論である。
It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that various changes can be made without departing from the gist of the present invention.

【0027】[0027]

【本発明の効果】上述したように本発明の磁気軸受構造
とその製造方法によれば、積層鋼板の製作を容易かつ鋼
板の歩留りを向上し、積層鋼板への切削加工を容易かつ
絶縁材の剥離を防止でき、製作・加工コストの低減で
き、かつステータ部に発生する渦電流の発生を低減でき
る、等の優れた効果を有する。
As described above, according to the magnetic bearing structure and the method of manufacturing the same of the present invention, it is easy to manufacture a laminated steel sheet, to improve the yield of the steel sheet, to cut the laminated steel sheet easily, and to use an insulating material. It has excellent effects such as prevention of peeling, reduction of manufacturing and processing costs, and reduction of eddy current generated in the stator portion.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるホモポーラ形磁気軸受の構成を示
す全体構成図である。
FIG. 1 is an overall configuration diagram showing a configuration of a homopolar magnetic bearing according to the present invention.

【図2】図1のA−A矢視図である。FIG. 2 is a view taken along the line AA of FIG. 1;

【図3】本発明のステータスコアの積層鋼板の積層形状
を成形する工程を示す製作図である。
FIG. 3 is a production view showing a step of forming a laminated shape of the laminated steel sheet of the status core of the present invention.

【図4】製作されたステータコアの積層鋼板の歯端部側
への機械(回転切削)加工状態を示す加工図である。
FIG. 4 is a machining diagram showing a machine (rotational cutting) machining state of a manufactured stator core on a tooth end side of a laminated steel plate.

【図5】従来のホモポーラ形磁気軸受の構成を示す模式
図である。
FIG. 5 is a schematic diagram showing a configuration of a conventional homopolar magnetic bearing.

【図6】図5のC−C矢視図である。6 is a view taken in the direction of the arrows CC in FIG. 5;

【図7】従来のステータコアの積層鋼板の積層形状を成
形する工程を示す模式図である。
FIG. 7 is a schematic view showing a step of forming a laminated shape of a laminated steel sheet of a conventional stator core.

【図8】従来のステータコアの積層鋼板の歯端部側への
機械加工状態を示す模式図である。
FIG. 8 is a schematic view showing a conventional stator core machined on a tooth end side of a laminated steel plate.

【符号の説明】[Explanation of symbols]

1、21 磁気軸受構造 2、22 ケーシング 3、23 ロータ 4、24 外周面 6、15、26、35 内周面 7、27 凹部 8、29 ステータコア 9、30 歯端部 10、31 コイル(電磁石) 11、25 鋼板 12、34 絶縁材 13、32 板目 14、28 積層鋼板 33 供給スプレ 41 巻付け金型 42 巻取コア 43 切断機 T 板厚 W1、W2 板幅 G 隙間 D1 外径 D2 内径 K 面積 L1、L2 所定長さ H1 H2 高さ 1,21 Magnetic bearing structure 2,22 Casing 3,23 Rotor 4,24 Outer surface 6,15,26,35 Inner surface 7,27 Recess 8,29 Stator core 9,30 Tooth end 10,31 Coil (electromagnet) 11, 25 Steel plate 12, 34 Insulation material 13, 32 Plate 14, 28 Laminated steel plate 33 Supply spray 41 Winding die 42 Winding core 43 Cutting machine T Plate thickness W1, W2 Plate width G Gap D1 Outer diameter D2 Inner diameter K Area L1, L2 Predetermined length H1 H2 Height

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 俊雄 東京都江東区豊洲3丁目2番16番地 石川 島播磨重工業株式会社東京エンジニアリン グセンター内 (72)発明者 桑田 厳 東京都江東区豊洲3丁目2番16番地 石川 島播磨重工業株式会社東京エンジニアリン グセンター内 (72)発明者 杉谷 宗寧 東京都江東区豊洲3丁目2番16番地 石川 島播磨重工業株式会社東京エンジニアリン グセンター内 Fターム(参考) 3J102 AA01 BA03 BA17 CA16 CA29 DA03 DA09 DA16 DA30 GA08 5H607 AA00 BB01 CC01 GG21  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshio Takahashi 3-16-16 Toyosu, Koto-ku, Tokyo Ishikawa-Shimaharima Heavy Industries, Ltd. Tokyo Engineering Center (72) Inventor Takeshi Kuwata 3-chome Toyosu, Koto-ku, Tokyo No. 2-16 Ishikawa Shima-Harima Heavy Industries, Ltd. Tokyo Engineering Center (72) Inventor Suneya 3-2-1 Toyosu Koto-ku, Tokyo Ishikawa Shima-Harima Heavy Industries Co., Ltd. Tokyo Engineering Center F-term (reference) 3J102 AA01 BA03 BA17 CA16 CA29 DA03 DA09 DA16 DA30 GA08 5H607 AA00 BB01 CC01 GG21

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 回転するロータを浮上状態で囲むケーシ
ング内に取付けられ、断面形状をコ字形状に形成するス
テータコアのコイルを配置する歯端部が軸方向に隣接し
てN極とS極を構成するホモポーラ形磁気軸受構造であ
って、 積層鋼板で成形されたステータコアの歯端部の積層状態
の鋼板の板目の積層方向がロータの軸線方向に対して直
交方向に配置されている、ことを特徴とする磁気軸受構
造。
1. A stator, which is mounted in a casing that surrounds a rotating rotor in a floating state and has a U-shaped cross-sectional shape, is provided with a stator core coil disposed adjacent to each other in the axial direction. A homopolar magnetic bearing structure to be configured, wherein the lamination direction of the steel plates in the laminated state at the tooth ends of the stator core formed of laminated steel plates is arranged in a direction orthogonal to the axial direction of the rotor. A magnetic bearing structure.
【請求項2】 前記ステータコアは、コ字形状の積層鋼
板が連続する鋼板に絶縁材を塗布しながら巻取られて成
形した後に等分に切断して製造される、ことを特徴とす
る請求項1に記載の磁気軸受構造。
2. The stator core according to claim 1, wherein the U-shaped laminated steel sheet is formed by winding and shaping a continuous steel sheet while applying an insulating material to the continuous steel sheet, and then cutting the steel sheet into equal parts. 2. The magnetic bearing structure according to 1.
【請求項3】 前記ステータコアは、ロータの外周面と
直交方向に配置される歯端部の内周面側に積層状態の鋼
板の板目の積層方向と水平方向に回転切削加工を行う、
ことを特徴とする請求項1乃至2に記載の磁気軸受構
造。
3. The rotary machine according to claim 1, wherein the stator core performs rotary cutting in a lamination direction and a horizontal direction on a lamination state of steel plates on an inner peripheral surface side of a tooth end arranged in a direction orthogonal to an outer peripheral surface of the rotor.
The magnetic bearing structure according to claim 1, wherein:
【請求項4】 回転するロータを浮上状態で囲むケーシ
ング内に取付けられ、断面形状をコ字形状に形成するス
テータコアのコイルを配置する歯端部が軸方向に隣接し
てN極とS極を構成するホモポーラ形磁気軸受構造であ
って、(A)巻付け金型に連続する鋼板に張力を付与し
ながら所定厚さまで巻取ると共に、巻取り中に鋼板に絶
縁材を塗布し接着させて積層鋼板の巻取コアを形成し、
(B)次に、巻付け金型から解放した巻取コアを等分に
切断して積層状態の板目がコ字形状のステータコアを成
形し、(C)次に、ステータコアの歯端部の内周面側で
ロータの外周面と直交配置される積層状態の板目の積層
方向と平行方向に所定の回転切削加工を行い、(D)次
に、ステータコアの夫々の歯端部にコイルを配置する、
ことを特徴とする磁気軸受の製造方法。
4. A stator end mounted on a casing surrounding a rotating rotor in a floating state and having a coil shape of a stator core having a U-shaped cross section, has N and S poles adjacent to each other in the axial direction. A homopolar magnetic bearing structure comprising: (A) winding to a predetermined thickness while applying tension to a steel sheet continuous to a winding die, and applying and bonding an insulating material to the steel sheet during winding and laminating the steel sheet Forming a winding core of steel sheet,
(B) Next, the winding core released from the winding mold is cut into equal parts to form a stator core having a U-shaped laminated plate, and (C) a tooth end of the stator core is formed. A predetermined rotary cutting process is performed in a direction parallel to the laminating direction of the laminated plate on the inner peripheral surface that is orthogonal to the outer peripheral surface of the rotor. (D) Next, a coil is attached to each tooth end of the stator core. Deploy,
A method for manufacturing a magnetic bearing, comprising:
JP2000210255A 2000-07-11 2000-07-11 Magnetic bearing structure and manufacturing method thereof Expired - Fee Related JP4449184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000210255A JP4449184B2 (en) 2000-07-11 2000-07-11 Magnetic bearing structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000210255A JP4449184B2 (en) 2000-07-11 2000-07-11 Magnetic bearing structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002031135A true JP2002031135A (en) 2002-01-31
JP4449184B2 JP4449184B2 (en) 2010-04-14

Family

ID=18706543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000210255A Expired - Fee Related JP4449184B2 (en) 2000-07-11 2000-07-11 Magnetic bearing structure and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4449184B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1273813A2 (en) * 2001-07-02 2003-01-08 Ishikawajima-Harima Heavy Industries Co., Ltd. Stator core for a magnetic bearing and method of manufacturing the same
WO2008096805A1 (en) * 2007-02-09 2008-08-14 Ihi Corporation Magnetic bearing device
CN105257699A (en) * 2015-10-16 2016-01-20 浙江工业大学 Mixed three-phase magnetic bearing
CN112260422A (en) * 2020-10-14 2021-01-22 中车株洲电机有限公司 Motor and axial magnetic suspension bearing stator thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106438699A (en) * 2016-11-24 2017-02-22 武汉理工大学 Laminated core type single-collar two-coil redundant axial direction magnetic bearing
CN109707735B (en) * 2019-02-15 2020-05-29 广东美的暖通设备有限公司 Magnetic bearing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1273813A2 (en) * 2001-07-02 2003-01-08 Ishikawajima-Harima Heavy Industries Co., Ltd. Stator core for a magnetic bearing and method of manufacturing the same
EP1273813A3 (en) * 2001-07-02 2003-05-28 Ishikawajima-Harima Heavy Industries Co., Ltd. Stator core for a magnetic bearing and method of manufacturing the same
KR100489674B1 (en) * 2001-07-02 2005-05-17 이시카와지마-하리마 주고교 가부시키가이샤 Stator core for a magnetic bearing and the method of manufacturing it
WO2008096805A1 (en) * 2007-02-09 2008-08-14 Ihi Corporation Magnetic bearing device
CN105257699A (en) * 2015-10-16 2016-01-20 浙江工业大学 Mixed three-phase magnetic bearing
CN112260422A (en) * 2020-10-14 2021-01-22 中车株洲电机有限公司 Motor and axial magnetic suspension bearing stator thereof

Also Published As

Publication number Publication date
JP4449184B2 (en) 2010-04-14

Similar Documents

Publication Publication Date Title
EP1273813B1 (en) Stator core for a magnetic bearing and method of manufacturing the same
JP2011083183A (en) Laminated generator rotor structure and related method
JP3971692B2 (en) Slotless permanent magnet type rotating electrical machine and method for manufacturing windings thereof
JP6917853B2 (en) Radial gap type rotary electric machine, its manufacturing equipment and its manufacturing method
JP2008141853A (en) Biaxial concentric motor
JP6852799B2 (en) Radial gap type rotary electric machine and its manufacturing method, manufacturing device for tooth piece for rotary electric machine, manufacturing method for tooth member for rotary electric machine
JP2008245346A (en) Commutator motor and vacuum cleaner using the same
JP2002031135A (en) Magnetic bearing structure and manufacturing method thereof
JP2001346345A (en) Rotor of synchronous machine
JP2004140966A (en) Lamination structure of core for rotating electric machine
US5924186A (en) Manufacturing method for magnetic bearing system
CN102044939A (en) Method for manufacturing plane type stator and rotor and motor
JP3499983B2 (en) Spiral core for rotating equipment
JP2002174237A (en) Core structure for magnetic bearing and manufacturing method therefor
JP2001323899A (en) High speed motor driven compressor and assembling method thereof
JP6988633B2 (en) Stator core and motor
JP2004162834A (en) Magnetic bearing
JP2003134764A (en) Brushless electric rotating machine
CA2509331C (en) Stator core for a magnetic bearing and the method of manufacturing it
WO2019011235A1 (en) High-speed asynchronous motor rotor structure and motor comprising same
JPH11266564A (en) Magnetic bearing spindle
JP2003189529A (en) Canned motor
JP2005278322A (en) Manufacturing method of core
JPH05300675A (en) Rotor for motor or generator
JP2009011067A (en) Rotary electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees