JP2002030993A - Intake structure of engine - Google Patents

Intake structure of engine

Info

Publication number
JP2002030993A
JP2002030993A JP2000213700A JP2000213700A JP2002030993A JP 2002030993 A JP2002030993 A JP 2002030993A JP 2000213700 A JP2000213700 A JP 2000213700A JP 2000213700 A JP2000213700 A JP 2000213700A JP 2002030993 A JP2002030993 A JP 2002030993A
Authority
JP
Japan
Prior art keywords
intake
egr
exhaust
branch
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000213700A
Other languages
Japanese (ja)
Other versions
JP3799973B2 (en
Inventor
Kazuo Hara
一生 原
Fumie Kimuro
文恵 紀室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2000213700A priority Critical patent/JP3799973B2/en
Publication of JP2002030993A publication Critical patent/JP2002030993A/en
Application granted granted Critical
Publication of JP3799973B2 publication Critical patent/JP3799973B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/22Multi-cylinder engines with cylinders in V, fan, or star arrangement

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce an EGR rate difference between cylinders and to inhibit a generation of NOx and soot in an engine having a pair of banks. SOLUTION: An EGR gas taken out from exhaust passages 144, 146 of both banks 120, 122 is once merged at an EGR chamber 160. Thereafter, it is recirculated at EGR openings 162, 164 formed on a pair of branched suction pipes 132, 134. A communication pipe 170 for communicating a pair of branched suction pipes 132, 134 with a downstream side than the EGR openings 162, 164 of the branched suction pipes 132, 134 is provided. Thereby, a dispersion of a period and an amplitude of an exhaust pressure and an intake pressure is suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、一対のバンクを有
するエンジンの吸気構造の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in an intake structure of an engine having a pair of banks.

【0002】[0002]

【従来の技術】図4に従来のV型8気筒エンジンに使用
されている吸気構造の例を示す。従来、図4に示すよう
に、V型エンジン等、一対のバンク20、21を有する
エンジン18の吸気通路23は、上流端が図示しないエ
アークリーナに接続されると共に、同エアークリーナよ
りも下流側に形成された分岐部25で一対の分岐吸気管
27、29に分かれて前記両バンク20、21の吸気側
31、33にそれぞれ接続されている。また、エンジン
18の両バンク20、21の排気側35、37には、エ
ンジン18の燃焼時に発生した排気ガスを排出すべく、
排気通路39、41がそれぞれ配設されている。さらに
該排気通路39、41と上述の吸気通路23との間に
は、排気ガス還流通路(以下、EGR通路)45、46
が形成され、排気通路39、41を介して大気中に排出
される排気ガスの一部を吸気通路23側に還流させてい
る。
2. Description of the Related Art FIG. 4 shows an example of an intake structure used in a conventional V-type eight-cylinder engine. Conventionally, as shown in FIG. 4, an intake passage 23 of an engine 18 having a pair of banks 20, 21 such as a V-type engine has an upstream end connected to an air cleaner (not shown) and a downstream side from the air cleaner. Are divided into a pair of branch intake pipes 27 and 29 and connected to the intake sides 31 and 33 of the banks 20 and 21 respectively. The exhaust sides 35 and 37 of both banks 20 and 21 of the engine 18 are provided to discharge exhaust gas generated during combustion of the engine 18.
Exhaust passages 39 and 41 are provided, respectively. Further, between the exhaust passages 39 and 41 and the above-described intake passage 23, exhaust gas recirculation passages (hereinafter, EGR passages) 45 and 46 are provided.
Are formed, and a part of the exhaust gas discharged into the atmosphere via the exhaust passages 39 and 41 is recirculated to the intake passage 23 side.

【0003】即ち、エンジン18の両バンク排気側3
5、37に配設された排気管39、41にはEGRガス
取出口47、49が開口され、EGR通路45、46の
一端が連通されていると共に、同EGR通路45、46
の他端の開口51、52は吸気通路23に連通されてい
る。
That is, both bank exhaust sides 3 of the engine 18
EGR gas outlets 47 and 49 are opened in exhaust pipes 39 and 41 provided in the exhaust pipes 5 and 37, and one ends of the EGR passages 45 and 46 are communicated with the exhaust pipes 39 and 41.
The openings 51 and 52 at the other end are connected to the intake passage 23.

【0004】このため、排気通路39、41からEGR
ガス取出口47、49を介して取出されたEGRガス
は、EGRガス開口部51、52付近で吸気通路23上
流側から吸入される新気と混流して、エンジン18吸気
時にエンジン18の燃焼室に取り入れられる。この結
果、エンジン18の燃焼を緩慢にして燃焼温度を低下さ
せ、燃焼温度の高温域で多量に生成される窒素酸化物
(NOx)の発生を抑制している。
[0004] For this reason, the EGR from the exhaust passages 39, 41
The EGR gas taken out through the gas outlets 47 and 49 mixes with fresh air sucked from the upstream side of the intake passage 23 near the EGR gas openings 51 and 52, and the combustion chamber of the engine 18 at the time of intake of the engine 18 Incorporated in. As a result, the combustion of the engine 18 is slowed down to lower the combustion temperature, and the generation of a large amount of nitrogen oxide (NOx) generated in a high combustion temperature range is suppressed.

【0005】しかし、上記従来例に記載された吸気構造
では、EGRガス開口部51、52が吸気通路23に形
成された分岐部25よりも上流側に設けられているた
め、吸気通路23中にEGRガスが流入して新気と混流
した後に、上記分岐部25で一対の分岐吸気管27、2
9に分かれることになる。従って、吸気通路23の形状
等の影響により、EGRガスと新気とが混流した吸気ガ
スの流れが乱れると、下流に形成された分岐部25では
一対のバンク20、21に接続する両分岐吸気管27、
29に吸気ガスが均等に分配されずに、両バンク20、
21の燃焼室に流入するEGRガスと新気との割合(以
下、EGR率)に偏りが生じる可能性がある。
However, in the intake structure described in the conventional example, since the EGR gas openings 51 and 52 are provided on the upstream side of the branch portion 25 formed in the intake passage 23, the EGR gas openings 51 and 52 are provided in the intake passage 23. After the EGR gas flows and mixes with the fresh air, a pair of branch intake pipes 27, 2
It will be divided into nine. Therefore, when the flow of the intake gas in which the EGR gas and the fresh air are mixed is disturbed due to the influence of the shape of the intake passage 23 and the like, the branch intake 25 connected to the pair of banks 20 and 21 in the branch portion 25 formed downstream. Tube 27,
29, the intake gas is not evenly distributed, and both banks 20,
There is a possibility that the ratio between the EGR gas and fresh air flowing into the combustion chamber 21 (hereinafter, EGR rate) may be biased.

【0006】その結果、気筒に流入する吸入ガスのEG
R率が最も高い気筒と、吸入ガスのEGR率が最も低い
気筒との差(以下、EGR率気筒間差)が大きくなり、
EGR率が高い気筒では十分な燃焼がなされず煤が発生
する一方で、EGR率が低い気筒では燃焼温度が高くな
り、NOxの発生が相対的に多くなる可能性があるとい
った問題があった。
As a result, the EG of the intake gas flowing into the cylinder
The difference between the cylinder with the highest R rate and the cylinder with the lowest EGR rate of the intake gas (hereinafter, the difference between the EGR rate cylinders) increases,
In a cylinder having a high EGR rate, sufficient combustion is not performed, and soot is generated. On the other hand, in a cylinder having a low EGR rate, there is a problem that a combustion temperature becomes high, and generation of NOx may be relatively increased.

【0007】このような問題点を解決するために、図5
に示すようにEGRガス開口部53、55を、吸気通路
23に形成された分岐部25よりも下流側とし、分岐に
伴うバンク20、21間でのEGR率の偏りを抑制する
ことが考えられるが、その場合でも、片バンク不等間隔
着火の影響から吸気圧力及び排気圧力の周期、振幅のば
らつきが大きくなり、EGR率の気筒間差を十分に低減
することは難しい。
To solve such a problem, FIG.
It is conceivable that the EGR gas openings 53 and 55 are located downstream of the branch portion 25 formed in the intake passage 23 as shown in FIG. However, even in this case, the variation in the cycle and amplitude of the intake pressure and the exhaust pressure becomes large due to the influence of the one-bank unequally spaced ignition, and it is difficult to sufficiently reduce the cylinder-to-cylinder difference in the EGR rate.

【0008】即ち、図6に示すように、例えばバンク角
が90゜のV8エンジンでは、第1バンク20の気筒を
1、3、5、7番気筒とし、第2バンク21の気筒を
2、4、6、8番気筒と番号を付与した場合、一般的に
は1→2→7→3→4→5→6→8番気筒の順番で着火
が行われる。このとき、第2バンク21のみで見れば、
2→4→6→8の順番で着火が行われるが、その着火間
隔は、クランク角度にして2番気筒と4番気筒との間で
270゜、4番気筒と6番気筒との間で180゜、6番
気筒と8番気筒との間で90゜、8番気筒と2番気筒と
の間で180゜となり、不等間隔着火となる。その結
果、第2バンク21に接続される吸気分岐管29の位置
Xに発生する吸気圧力及び、第2バンク21の排気通路
41に連通されるEGR通路46の位置Yにおける排気
圧力は、周期、振幅共にばらつくため、排気圧力が高く
且つ吸気圧力が低い時に吸入行程の気筒ではEGR率が
高く、排気圧力が低く且つ吸気圧力が高い時に吸入行程
の気筒ではEGR率が低い等、上記吸気及び排気の圧力
変動の影響によりEGR率気筒間差が大きくなる惧れが
ある。
That is, as shown in FIG. 6, for example, in a V8 engine having a bank angle of 90 °, the cylinders of the first bank 20 are the first, third, fifth and seventh cylinders, and the cylinders of the second bank 21 are the second cylinder. When the numbers are assigned to the fourth, sixth, and eighth cylinders, ignition is generally performed in the order of the first, second, seventh, third, fourth, fifth, sixth, and eighth cylinders. At this time, looking only at the second bank 21,
The ignition is performed in the order of 2 → 4 → 6 → 8, and the ignition interval is 270 ° between the second cylinder and the fourth cylinder in terms of the crank angle and between the fourth cylinder and the sixth cylinder. 180 °, 90 ° between the 6th and 8th cylinders, and 180 ° between the 8th and 2nd cylinders, resulting in unequally spaced ignition. As a result, the intake pressure generated at the position X of the intake branch pipe 29 connected to the second bank 21 and the exhaust pressure at the position Y of the EGR passage 46 communicated with the exhaust passage 41 of the second bank 21 have a cycle of: Since the amplitudes vary, the intake and exhaust gases such as the EGR rate are high in the cylinder in the intake stroke when the exhaust pressure is high and the intake pressure is low, and the EGR rate is low in the cylinder in the intake stroke when the exhaust pressure is low and the intake pressure is high. There is a concern that the difference between the EGR rate cylinders may increase due to the influence of the pressure fluctuation.

【0009】[0009]

【発明が解決しようとする課題】本発明は上記課題に鑑
みてなされたもので、一対のバンクを有するエンジンに
おいて、比較的簡単な構成でEGR率の気筒間差を低減
させることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above problems, and has as its object to reduce the difference in EGR rate between cylinders in an engine having a pair of banks with a relatively simple configuration. .

【0010】[0010]

【課題を解決するための手段】上述の課題を解決するた
めに本発明では、排気マニホルドに連通されると共に独
立して形成された一対の分岐排気通路と、上記各分岐排
気通路のEGR取出口に連通されて合流部で合流された
排気還流通路と、上記合流部と吸気マニホルドに連通さ
れた各分岐吸気通路のEGR開口部とを連通する排気還
流分岐通路と、上記分岐吸気通路のEGR開口部よりも
下流側に位置して両分岐吸気通路を互いに連通させる連
通管を備えたため、吸気通路の分岐に伴うEGR率のバ
ンク間での偏りは少ないし、上記合流部及び連通管によ
り片バンク不等間隔着火の影響による排気圧力及び吸気
圧力の周期、振幅のばらつきは抑制される。
In order to solve the above-mentioned problems, according to the present invention, there are provided a pair of independently formed branch exhaust passages connected to an exhaust manifold and an EGR outlet of each of the branch exhaust passages. An exhaust gas recirculation passage that is communicated with the exhaust gas recirculation passage at the junction, an exhaust recirculation branch passage that communicates the EGR opening of each of the branch intake passages that communicates with the junction and the intake manifold, and an EGR opening of the branch intake passage. A communication pipe which is located downstream of the section and connects the two branch intake passages to each other is provided, so that the deviation of the EGR rate between the banks due to the branch of the intake passage is small, and the one-bank structure is provided by the junction and the communication pipe. Variations in the cycle and amplitude of the exhaust pressure and the intake pressure due to the effects of unequally spaced ignition are suppressed.

【0011】[0011]

【発明の実施の形態】以下、図1〜図3に基づいて本発
明の実施の形態を詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to FIGS.

【0012】本実施形態例のエンジンは、図1に示すよ
うに、シリンダ列で構成された第1バンク120及び第
2バンク122を有するV型8気筒で、バンク角度は9
0゜に設定されている。エンジン118の吸気通路12
4は、上流端126がエアクリーナ128に接続される
と共に、エアクリーナ128より下流側の分岐部130
において一対の分岐吸気管132、134に分かれ、同
第1分岐吸気管132及び第2分岐吸気管134がそれ
ぞれ第1バンク120及び第2バンク122の吸気側に
配設された一対の吸気マニホルド136、137に接続
されている。エンジン118の一対のバンク120、1
22それぞれの排気側には一対の排気マニホルド14
0、142が配設され、それぞれ排気通路144、14
6に接続されている。そして、排気マニホルド140、
142と排気通路144、146は各バンク毎に独立し
た分岐排気通路を形成している。また、該排気通路14
4、146と上記吸気通路124との間には、排気管流
通路(以下、EGR通路)150、151が形成されて
いる。
As shown in FIG. 1, the engine of this embodiment is a V-type eight-cylinder having a first bank 120 and a second bank 122 constituted by cylinder rows, and has a bank angle of nine.
It is set to 0 °. Intake passage 12 of engine 118
4 has a branch portion 130 having an upstream end 126 connected to the air cleaner 128 and a downstream side of the air cleaner 128.
, A pair of branch intake pipes 132 and 134 are provided, and the first branch intake pipe 132 and the second branch intake pipe 134 are disposed on the intake side of the first bank 120 and the second bank 122, respectively. , 137. A pair of banks 120, 1 of the engine 118
A pair of exhaust manifolds 14 are provided on each exhaust side.
0 and 142 are disposed, and the exhaust passages 144 and 14 are respectively provided.
6 is connected. And the exhaust manifold 140,
The exhaust passage 142 and the exhaust passages 144 and 146 form an independent branch exhaust passage for each bank. The exhaust passage 14
Exhaust pipe flow passages (hereinafter, EGR passages) 150 and 151 are formed between the intake passages 4 and 146 and the intake passage 124.

【0013】詳しくは、第1バンク120の各気筒から
延びる排気管が集合して一体となった排気通路144
に、第1EGRガス取出口152が開口すると共に、第
2バンク122の各気筒から延びる排気管が集合して一
体となった排気通路146に、第2EGRガス取出口1
54が開口している。そして、第1EGRガス取出口1
52に連通されたEGR通路150には第1EGRバル
ブ156が設けられ、第1バンク120から取出するE
GRガスの量を調節していると共に、第2EGRガス取
出口154に延設されたEGR通路151下流には第2
EGRバルブ158が設けられ、第2バンク122から
取出するEGRガスの量を調節している。両EGR通路
150、151に配設された第1EGRバルブ156及
び第2EGRバルブ158の下流側は、所定の容積を有
するEGR室160に接続され、第1バンク120及び
第2バンク122から取出したEGRガスを一旦合流さ
せる合流部を形成している。
More specifically, an exhaust passage 144 in which exhaust pipes extending from the cylinders of the first bank 120 are gathered and integrated.
The first EGR gas outlet 152 is opened, and the second EGR gas outlet 1 is inserted into an exhaust passage 146 in which exhaust pipes extending from the cylinders of the second bank 122 are integrated.
54 is open. And the first EGR gas outlet 1
A first EGR valve 156 is provided in the EGR passage 150 connected to the second bank 52, and the EGR valve 156 is taken out from the first bank 120.
The amount of GR gas is adjusted, and the second EGR passage 151 extending to the second EGR gas outlet 154 is located downstream of the second EGR gas outlet 151.
An EGR valve 158 is provided to adjust the amount of EGR gas extracted from the second bank 122. Downstream sides of the first EGR valve 156 and the second EGR valve 158 disposed in the two EGR passages 150 and 151 are connected to an EGR chamber 160 having a predetermined volume, and EGR extracted from the first bank 120 and the second bank 122. A merging portion for once merging the gas is formed.

【0014】また、上記EGR室160は吸気通路12
4の直下に配置され、吸気通路124の分岐部130よ
りも下流側の第1分岐吸気管132及び第2分岐吸気管
134には、EGR開口部162、164がそれぞれ形
成されている。
The EGR chamber 160 is provided in the intake passage 12.
The EGR openings 162 and 164 are formed in the first branch intake pipe 132 and the second branch intake pipe 134 which are disposed immediately below the intake passage 4 and downstream of the branch part 130 of the intake passage 124, respectively.

【0015】そして、分岐吸気管132、134の該E
GR開口部162、164よりもさらに下流側で、両バ
ンク120、122の吸気マニホルド136、137と
の接続部付近には、一対の第1分岐吸気管132及び第
2分岐吸気管134を連通させる連通管170が開口し
ている。尚、本実施形態例では、上記連通管170は吸
気通路124と一体的に設けられ、連通管170の断面
積は第1分岐吸気管132及び第2分岐吸気管134と
略等しく設定されている。
The E of the branch intake pipes 132 and 134 is
A pair of the first branch intake pipe 132 and the second branch intake pipe 134 are communicated further downstream of the GR openings 162 and 164 and near the connection between the banks 120 and 122 with the intake manifolds 136 and 137. The communication pipe 170 is open. In this embodiment, the communication pipe 170 is provided integrally with the intake passage 124, and the cross-sectional area of the communication pipe 170 is set substantially equal to the first branch intake pipe 132 and the second branch intake pipe 134. .

【0016】かかる構成とした本発明の実施形態例で
は、エンジン118の燃焼に伴い両バンク120、12
2から排出された排気ガスは、各排気マニホルド14
0、142及び排気通路144、146を介して大気中
に放出されると共に、その一部は、排気通路144、1
46にそれぞれ形成された第1EGRガス取出口152
及び第2EGRガス取出口154を介してEGR通路1
50、151内に取り込まれる。そして、第1EGRガ
ス取出口152からEGR通路150内に取り込まれた
EGRガスは、上記第1EGRバルブ156を介してE
GR室160に流入すると共に、第2EGRガス取出口
154からEGR通路151内に取り込まれたEGRガ
スは、上記第2EGRバルブ158を介してEGR室1
60に流入する。これにより、第1バンク120の排気
通路144から取出したEGRガスと、第2バンク12
2の排気通路146から取出したEGRガスとが、EG
R室160で一旦合流する。
In the embodiment of the present invention having such a configuration, both the banks 120 and 12 are driven by the combustion of the engine 118.
Exhaust gas discharged from each exhaust manifold 14
0, 142 and the exhaust passages 144, 146, and are partially released into the atmosphere.
46, the first EGR gas outlet 152 formed respectively.
And the EGR passage 1 via the second EGR gas outlet 154
50, 151. The EGR gas taken into the EGR passage 150 from the first EGR gas outlet 152 is supplied to the EGR gas through the first EGR valve 156.
The EGR gas flowing into the GR chamber 160 and taken into the EGR passage 151 from the second EGR gas outlet 154 passes through the second EGR valve 158 to the EGR chamber 1.
Flow into 60. As a result, the EGR gas extracted from the exhaust passage 144 of the first bank 120 and the second bank 12
EGR gas extracted from the second exhaust passage 146
Merge once in the R room 160.

【0017】このように、第1バンク120及び第2バ
ンク122により生成された排気ガスをEGR室160
で一旦合流させた後、吸気通路124に還流させる構成
としたため、排気圧力の周期、振幅のばらつきが抑制さ
れる。即ち、前述したように、エンジン118の各気筒
に1から8までの番号を付与したとき、例えば第2バン
ク122では、クランク角にして2番気筒と4番気筒と
の間で270゜、4番気筒と6番気筒との間で180
゜、6番気筒と8番気筒との間で90゜、8番気筒と2
番気筒との間で180゜の間隔となり、不等間隔で着火
が進行する。このため、第2バンク122の着火間隔の
みの影響を受けるEGR通路151内の位置bでは、排
気圧力の周期、振幅のばらつきが大きくなる。
As described above, the exhaust gas generated by the first bank 120 and the second bank 122 is transferred to the EGR chamber 160.
And then recirculates to the intake passage 124, so that variations in the cycle and amplitude of the exhaust pressure are suppressed. That is, as described above, when the cylinders of the engine 118 are numbered 1 to 8, for example, in the second bank 122, the crank angle between the second cylinder and the fourth cylinder is 270 °, 4 °. 180 between cylinders # 6 and # 6
゜, 90 ° between 6th and 8th cylinder, 8th cylinder and 2
An interval of 180 ° is set between the cylinder and the cylinder, and ignition proceeds at irregular intervals. For this reason, at the position b in the EGR passage 151 which is affected only by the ignition interval of the second bank 122, the variation in the cycle and the amplitude of the exhaust pressure becomes large.

【0018】しかし、第1バンク120及び第2バンク
122から排出された排気ガスをEGR室160で合流
させると、EGR室160では両バンク120、122
の着火間隔が影響する。そこで、第1バンク120及び
第2バンク122を合わせたエンジン118全体で考え
ると、1→2→7→3→4→5→6→8→1の順番で、
クランク角にして90゜の等間隔で着火が進行してい
く。従って、図2に示すように、EGR室160内の位
置cでの排気圧力は、クランク角にして90゜の略等間
隔にピークが現れ、振幅も小さくなる。
However, when the exhaust gases discharged from the first bank 120 and the second bank 122 are combined in the EGR chamber 160, the two banks 120, 122
The ignition interval affects Therefore, considering the entire engine 118 including the first bank 120 and the second bank 122, the order of 1 → 2 → 7 → 3 → 4 → 5 → 6 → 8 → 1 is as follows.
Ignition proceeds at regular intervals of 90 ° in crank angle. Therefore, as shown in FIG. 2, the exhaust pressure at the position c in the EGR chamber 160 has peaks at approximately equal intervals of 90 ° in terms of the crank angle, and the amplitude also becomes small.

【0019】上記のようにして排気圧力の周期、振幅の
ばらつきが抑制されたEGRガスは、吸気通路124の
一対の分岐吸気管132、134にそれぞれ形成された
EGR開口部162、164から吸気側136、137
に還流される。このとき、吸気通路124内の分岐部1
30よりも下流側の分岐吸気管132、134にEGR
開口部162、164を設けたため、吸気通路124の
分岐に伴うEGR率のバンク間での偏りは少ない。
The EGR gas, in which the variation of the cycle and the amplitude of the exhaust pressure is suppressed as described above, flows from the EGR openings 162 and 164 formed in the pair of branch intake pipes 132 and 134 of the intake passage 124 to the intake side. 136, 137
Refluxed. At this time, the branch 1 in the intake passage 124
EGR is added to branch intake pipes 132 and 134 downstream of
Since the openings 162 and 164 are provided, there is little deviation in the EGR rate between banks due to the branch of the intake passage 124.

【0020】そして、上記EGR開口部162、164
から還流されたEGRガスは、吸気通路124の上流側
からの新気と混流して第1バンク120及び第2バンク
122の吸気側136、137に取り入れられる。この
とき、前述したように、一対の分岐吸気管132、13
4同士を連通する連通管170が、EGR開口部16
2、164よりも下流側に開口しているため、前述した
排気圧力の周期、振幅のばらつきを抑制する方法と同一
のメカニズムにより、吸気圧力の周期、振幅のばらつき
も抑制される。
The EGR openings 162, 164
The EGR gas recirculated from the EGR gas is mixed with fresh air from the upstream side of the intake passage 124 and is taken into the intake sides 136 and 137 of the first bank 120 and the second bank 122. At this time, as described above, the pair of branch intake pipes 132, 13
The communication pipe 170 that communicates the four with the EGR opening 16
Since the opening is located downstream of 2, 164, the variation in the cycle and amplitude of the intake pressure is also suppressed by the same mechanism as the method for suppressing the variation in the cycle and amplitude of the exhaust pressure described above.

【0021】即ち、第1バンク120又は第2バンク1
22のみの着火間隔の影響を受ける場合は、前述したよ
うに、片バンク不等間隔着火の影響から吸気圧力の周
期、振幅のばらつきは大きくなるが、上記連通管170
を設けると、例えば第2分岐吸気管134内の位置dで
は、両バンク120、122の着火間隔の影響を受ける
ことになる。従って、図2に示すように、位置dではク
ランク角にして90゜の略等間隔に吸気圧力のピークが
現れ、振幅も小さくなる。
That is, the first bank 120 or the second bank 1
In the case of being affected by the ignition interval of only 22, as described above, the variation of the cycle and the amplitude of the intake pressure becomes large due to the influence of the one-bank unequally spaced ignition.
Is provided, for example, at the position d in the second branch intake pipe 134, the ignition interval between the two banks 120 and 122 is affected. Therefore, as shown in FIG. 2, at the position d, the peak of the intake pressure appears at substantially equal intervals of 90 ° in terms of the crank angle, and the amplitude also decreases.

【0022】さらに、第1バンク120の気筒が吸気行
程であるときは、第1分岐吸気管132から、新気とE
GRガスとが混流した吸気ガスが第1バンク120に流
入すると共に、第2分岐吸気管134からも連通管17
0を介して吸気ガスが第1バンク120に流入する。ま
た、第2バンク122の気筒が吸気行程であるときは、
第2分岐吸気管134から新気とEGRガスとが混流し
た吸気ガスが第2バンク122に流入すると共に、第1
分岐吸気管132からも連通管170を介して吸気ガス
が第2バンク122に流入する。このため、吸気上流側
からの新気と、分岐吸気管132、134に形成された
EGR開口部162、164から還流するEGRガスと
の混流する領域が、該連通管170の容積の分だけ実質
的に拡張することになり、新気とEGRガスは良く混流
されて、EGR率の偏りは少なくなる。
Further, when the cylinders of the first bank 120 are in the intake stroke, fresh air and E
The intake gas mixed with the GR gas flows into the first bank 120, and the communication pipe 17 also flows from the second branch intake pipe 134.
The intake gas flows into the first bank 120 via the zero. When the cylinders of the second bank 122 are in the intake stroke,
The intake gas in which fresh air and EGR gas are mixed flows from the second branch intake pipe 134 into the second bank 122 and
Intake gas also flows into the second bank 122 from the branch intake pipe 132 via the communication pipe 170. For this reason, the region where the fresh air from the upstream of the intake air and the EGR gas recirculating from the EGR openings 162 and 164 formed in the branch intake pipes 132 and 134 are mixed is substantially equal to the volume of the communication pipe 170. The fresh air and the EGR gas are mixed well, and the deviation of the EGR rate is reduced.

【0023】上述したように、排気圧力及び吸気圧力の
周期、振幅のばらつきが抑制されたり、EGR率の偏り
が少なくなると、図3に示すように、従来構造に比べて
位置dでのEGR率の変動は小さくなり、各気筒の吸気
タイミングに係わらず、吸入される吸気ガスは略一定の
EGR率を有することになる。このため、吸気ガスのE
GR率が最も高い気筒と、吸気ガスのEGR率が最も低
い気筒との差であるEGR率気筒間差が小さくなる。従
って、吸気ガスのEGR率が最も高くなる気筒におい
て、EGR率の多過により煤が発生しない程度に、還流
させるEGRガスの量を増加させれば、気筒全体として
EGR率は高くなり燃焼温度の高温化は防止されるた
め、NOxの発生は抑制される。
As described above, when the variation in the cycle and amplitude of the exhaust pressure and the intake pressure is suppressed, or when the deviation of the EGR rate is reduced, as shown in FIG. Is small, and the intake gas to be taken in has a substantially constant EGR rate regardless of the intake timing of each cylinder. For this reason, the intake gas E
The difference between the cylinders having the highest GR rate and the cylinder having the lowest EGR rate of the intake gas, which is the difference between the EGR rate cylinders, is reduced. Therefore, in the cylinder where the EGR rate of the intake gas is the highest, if the amount of the recirculated EGR gas is increased to the extent that soot is not generated due to the excessive EGR rate, the EGR rate becomes higher as a whole cylinder and the combustion temperature becomes lower. Since the high temperature is prevented, the generation of NOx is suppressed.

【0024】尚、本実施形態例では、一対の分岐吸気管
132、134を連通させる連通管170は、吸気通路
124と一体化させる構成としたが、これに限定される
ものではなく、別体として分岐吸気管に溶接する構成と
したり、ボルトで固定する構成としても良い。
In this embodiment, the communication pipe 170 for connecting the pair of branch intake pipes 132 and 134 is configured to be integrated with the intake passage 124. However, the present invention is not limited to this. It may be configured to be welded to the branch intake pipe, or may be configured to be fixed with bolts.

【0025】また、該連通管170の断面積は、吸気通
路124と略同一としたが、これに限定されるものでは
なく、吸気圧力の周期、振幅のばらつきを抑制すること
ができる程度に設定すれば良いものである。
The cross-sectional area of the communication pipe 170 is substantially the same as that of the intake passage 124. However, the present invention is not limited to this. The cross-sectional area is set to such an extent that variations in the cycle and amplitude of the intake pressure can be suppressed. It is good to do.

【0026】[0026]

【発明の効果】以上、実施形態と共に詳細に説明したよ
うに、本発明のエンジンの吸気構造では、一対の分岐排
気通路のEGR取出口に連通されて合流部で合流された
排気管流通路と、上記合流部と各分岐吸気通路のEGR
開口部とを連通する排気還流分岐通路と、分岐吸気通路
のEGR開口部よりも下流側に位置して両分岐吸気通路
を互いに連通させる連通管を備えたため、吸気通路の分
岐に伴うEGR率のバンク間での偏りはないし、上記合
流部及び連通管により片バンク不等間隔着火の影響によ
る排気圧力及び吸気圧力の周期、振幅のばらつきは抑制
され、EGR率の気筒間差は低減される。
As described above in detail with the embodiments, in the intake structure of the engine according to the present invention, the exhaust pipe flow passage which is communicated with the EGR outlets of the pair of branch exhaust passages and joined at the junction is provided. , The EGR of the junction and each branch intake passage
An exhaust gas recirculation branch passage communicating with the opening and a communication pipe located downstream of the EGR opening of the branch intake passage and communicating the two branch intake passages with each other are provided. There is no deviation between the banks, and the merging portion and the communication pipe suppress variations in the cycle and amplitude of the exhaust pressure and the intake pressure due to the influence of the one-bank unequally-spaced ignition, and reduce the difference in the EGR rate between the cylinders.

【0027】[0027]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態例に係るエンジンの吸気構造
の全体図である。
FIG. 1 is an overall view of an intake structure of an engine according to an embodiment of the present invention.

【図2】本発明の実施形態例に係るクランク角度と排気
圧力及び吸気圧力との特性図である。
FIG. 2 is a characteristic diagram of a crank angle and an exhaust pressure and an intake pressure according to the embodiment of the present invention.

【図3】本発明の実施形態例に係るクランク角度とEG
R率との特性図である。
FIG. 3 shows a crank angle and EG according to the embodiment of the present invention.
It is a characteristic diagram with R rate.

【図4】従来のエンジンの吸気構造の全体図である。FIG. 4 is an overall view of an intake structure of a conventional engine.

【図5】従来のエンジンの吸気構造の全体図である。FIG. 5 is an overall view of an intake structure of a conventional engine.

【図6】V8エンジンにおける着火順序を示す図であ
る。
FIG. 6 is a diagram showing an ignition sequence in a V8 engine.

【符号の説明】[Explanation of symbols]

118 エンジン 120 第1バンク 122 第2バンク 124 吸気通路 130 分岐部 132 第1分岐吸気管 134 第2分岐吸気管 150 EGR通路 160 EGR室 162 第1EGR開口部 164 第2EGR開口部 170 連通管 118 engine 120 first bank 122 second bank 124 intake passage 130 branch 132 first branch intake pipe 134 second branch intake pipe 150 EGR passage 160 EGR chamber 162 first EGR opening 164 second EGR opening 170 communication pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一対のバンクを有するエンジンと上記各バ
ンクの吸気側に配設された一対の吸気マニホルドと、上
流端にエアクリーナが配設され集合部から下流端が分岐
されて上記一対の吸気マニホルドに連通された一対の分
岐吸気通路と、上記各バンクの排気側に配設された一対
の排気マニホルドと、同排気マニホルドに連通されると
共に独立して形成された一対の分岐排気通路と、上記各
分岐排気通路のEGR取出口に連通されて合流部で合流
された排気還流通路と、上記合流部と上記各分岐吸気通
路のEGR開口部とを連通する排気還流分岐通路と、上
記分岐吸気通路のEGR開口部よりも下流側に位置して
両分岐吸気通路を互いに連通させる連通管を備えたこと
を特徴とするエンジンの吸気装置
An engine having a pair of banks, a pair of intake manifolds disposed on the intake side of each bank, an air cleaner disposed at an upstream end, and a downstream end branched from a collecting portion to form a pair of intake manifolds A pair of branch intake passages communicated with the manifold, a pair of exhaust manifolds disposed on the exhaust side of each of the banks, and a pair of branch exhaust passages independently formed while communicating with the exhaust manifold; An exhaust gas recirculation passage communicating with an EGR outlet of each of the branch exhaust passages and merging at a merging portion; an exhaust gas recirculation branch passage communicating the merging portion with an EGR opening of each of the branch intake air passages; An intake device for an engine, comprising a communication pipe located downstream of an EGR opening of the passage and communicating the two branch intake passages with each other.
JP2000213700A 2000-07-14 2000-07-14 Engine intake structure Expired - Fee Related JP3799973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000213700A JP3799973B2 (en) 2000-07-14 2000-07-14 Engine intake structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000213700A JP3799973B2 (en) 2000-07-14 2000-07-14 Engine intake structure

Publications (2)

Publication Number Publication Date
JP2002030993A true JP2002030993A (en) 2002-01-31
JP3799973B2 JP3799973B2 (en) 2006-07-19

Family

ID=18709410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000213700A Expired - Fee Related JP3799973B2 (en) 2000-07-14 2000-07-14 Engine intake structure

Country Status (1)

Country Link
JP (1) JP3799973B2 (en)

Also Published As

Publication number Publication date
JP3799973B2 (en) 2006-07-19

Similar Documents

Publication Publication Date Title
US8935917B2 (en) Partially integrated exhaust manifold
WO2004038191A2 (en) Divided exhaust manifold system and method
US4510896A (en) Multi-cylinder combustion engine intake manifold
JP2007315345A (en) Intake structure for internal combustion chamber
JP2007315315A (en) Multi-cylinder engine
JP3599161B2 (en) Exhaust gas recirculation system for internal combustion engine
JP3937612B2 (en) Multi-cylinder engine EGR device
JP2002030993A (en) Intake structure of engine
JPH0523823Y2 (en)
JPS6155355A (en) Exhaust gas reflux device for multicylinder engine
JP4099868B2 (en) Engine exhaust gas recirculation system
JPH10252486A (en) Intake/exhaust device for internal combustion engine
US10815940B2 (en) Intake manifold with integrated mixer
JPH10252577A (en) Egr distributing device of internal combustion engine
JP2019065808A (en) Intake system structure for internal combustion engine
WO2021065723A1 (en) Exhaust gas recirculation device
JPH075249Y2 (en) Air intake system for internal combustion engine
JPH0742422U (en) Exhaust gas recirculation device
JPS61229925A (en) Intake device for multi-cylinder engine
JPH0942069A (en) Exhaust gas recirculating device
JPH04269322A (en) Exhaust manifold for internal combustion engine
JP2001123889A (en) Egr device
JP2015025394A (en) Intake device of engine
JPH0427764A (en) Intake device of engine
JPH0648111Y2 (en) Engine intake system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees