JP2002029710A - Method and device for generating ozone and gaseous starting material for generating ozone - Google Patents

Method and device for generating ozone and gaseous starting material for generating ozone

Info

Publication number
JP2002029710A
JP2002029710A JP2000208386A JP2000208386A JP2002029710A JP 2002029710 A JP2002029710 A JP 2002029710A JP 2000208386 A JP2000208386 A JP 2000208386A JP 2000208386 A JP2000208386 A JP 2000208386A JP 2002029710 A JP2002029710 A JP 2002029710A
Authority
JP
Japan
Prior art keywords
gas
ozone
oxygen gas
ozonizer
moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000208386A
Other languages
Japanese (ja)
Other versions
JP4166928B2 (en
Inventor
Shigekazu Tokutake
滋和 徳竹
Yuji Terajima
裕二 寺島
Hiroshi Orishima
寛 折島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Original Assignee
Sumitomo Precision Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd filed Critical Sumitomo Precision Products Co Ltd
Priority to JP2000208386A priority Critical patent/JP4166928B2/en
Publication of JP2002029710A publication Critical patent/JP2002029710A/en
Application granted granted Critical
Publication of JP4166928B2 publication Critical patent/JP4166928B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the decreased in ozone concentration without adding gaseous nitrogen at the time of generating ozone by supplying high purity gaseous oxygen into a discharge type ozonizer. SOLUTION: At the time of supplying the high purity gaseous oxygen to the ozonizer 1 from an gaseous oxygen source 2, the high purity gaseous oxygen is passed through a humidifier 4 to add moisture. The moisture content of high purity gaseous oxygen supplied to the ozonizer 1 is controlled to 0.05-40 ppm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、放電によるオゾン
発生方法及び装置、並びにそのオゾン発生に使用される
原料ガスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for generating ozone by electric discharge, and a raw material gas used for generating the ozone.

【0002】[0002]

【従来の技術】半導体の製造においては、半導体ウエー
ハや液晶用ガラス基板といった各種基板上への酸化膜の
形成、基板上のレジストのアッシング、基板洗浄等にオ
ゾンガスが用いられ始めた。半導体製造用のオゾンガス
としては、不純物の少ないことが必要であることから、
高純度の酸素ガスを原料ガスとして放電式のオゾナイザ
に供給して生成したものが、通常使用されている。生成
された半導体製造用のオゾンガスは、その汚染を防ぐた
めに、SUS316L等のステンレス鋼やPFA等のフ
ッ素樹脂からなる配管を経由して使用箇所へ送られる。
2. Description of the Related Art In the manufacture of semiconductors, ozone gas has begun to be used for forming oxide films on various substrates such as semiconductor wafers and glass substrates for liquid crystals, ashing resist on the substrates, and cleaning the substrates. Since ozone gas for semiconductor production needs to be low in impurities,
A gas produced by supplying high-purity oxygen gas as a raw material gas to a discharge-type ozonizer is generally used. The generated ozone gas for semiconductor production is sent to a place of use via a pipe made of stainless steel such as SUS316L or a fluororesin such as PFA in order to prevent the contamination.

【0003】しかしなから、原料ガスとして高純度の酸
素ガスを使用した場合、オゾンガスのオゾン濃度がオゾ
ン発生開始から経時的に低下し、安定オゾン濃度が初期
オゾン濃度に比べて非常に低くなり、且つ、その安定オ
ゾン濃度も不安定になるという問題がある。この問題の
解決策の一つとして、高純度の酸素ガスに微量の触媒ガ
スを添加することが行われており、その触媒ガスとして
は、半導体製造工程において入手が容易で低コストな高
純度の窒素ガスが多用されている。
However, when high-purity oxygen gas is used as a raw material gas, the ozone concentration of the ozone gas decreases with time from the start of ozone generation, and the stable ozone concentration becomes much lower than the initial ozone concentration. In addition, there is a problem that the stable ozone concentration becomes unstable. One of the solutions to this problem is to add a small amount of catalyst gas to high-purity oxygen gas, and the catalyst gas is easily available in the semiconductor manufacturing process and has low cost and high purity. Nitrogen gas is frequently used.

【0004】[0004]

【発明が解決しようとする課題】原料ガスとしての高純
度酸素ガスに高純度窒素ガスを添加することにより、生
成されるオゾンガスのオゾン濃度低下が効果的に抑制さ
れ、また安定した濃度のオゾンガスの発生が可能になる
が、その一方で、オゾンガスの供給先においてそのガス
中から金属不純物が検出されることが問題になってい
る。その原因は、酸素ガスに窒素ガスが含まれることに
より、オゾンガス中に副生物として窒素酸化物が生じ、
これが金属製の配管内面やチャンバ内面を劣化或いは腐
食させ、その結果として配管内面やチャンバ内面から金
属不純物が生じることとされている。このような金属不
純物が半導体製造に悪影響を与えることは言うまでもな
い。
By adding high-purity nitrogen gas to high-purity oxygen gas as a raw material gas, a decrease in ozone concentration of the generated ozone gas can be effectively suppressed, and ozone gas having a stable concentration can be obtained. Although generation is possible, on the other hand, there is a problem in that metal impurities are detected in the ozone gas supply destination from the gas. The cause is that nitrogen gas is generated as a by-product in ozone gas because nitrogen gas is included in oxygen gas,
This deteriorates or corrodes the inner surface of the metal pipe or the inner surface of the chamber, and as a result, metal impurities are generated from the inner surface of the pipe or the inner surface of the chamber. It goes without saying that such metal impurities have an adverse effect on semiconductor manufacturing.

【0005】また最近では、金属製の配管内面やチャン
バ内面から二次的に発生する金属不純物だけでなく、オ
ゾンガス中の窒素酸化物が半導体製造に直接悪影響を及
ぼすことも指摘され始めている。
Recently, it has been pointed out that nitrogen oxides in ozone gas directly adversely affect semiconductor production as well as metal impurities secondary generated from the inner surface of a metal pipe or the inner surface of a chamber.

【0006】また、プロセスで使用された後のオゾンガ
スは酸素ガスに分解してから排出する必要があるが、そ
の分解の方法として触媒を使用する場合、窒素酸化物は
触媒毒であるため、触媒の寿命を短くする原因の一つに
なっている。
[0006] Further, the ozone gas used in the process must be decomposed into oxygen gas and then discharged. When a catalyst is used as a decomposition method, nitrogen oxide is a catalyst poison. This is one of the causes of shortening the life of the camera.

【0007】本発明の目的は、窒素酸化物のような有害
物質を生じることなく、オゾン濃度の低下を抑制でき、
また、その濃度を安定化できるオゾン発生方法及び装置
並びにオゾン発生用原料ガスを提供することにある。
An object of the present invention is to suppress the decrease in ozone concentration without generating harmful substances such as nitrogen oxides,
Another object of the present invention is to provide an ozone generation method and apparatus capable of stabilizing the concentration and a raw material gas for ozone generation.

【0008】[0008]

【課題を解決するための手段】本発明者らは以前よりオ
ゾンガスの高濃度化の研究を続けており、その一環とし
て、原料ガス温度のオゾン濃度への影響度を調査したと
ころ、偶然にも、オゾン濃度の経時的な低下が激減する
現象に遭遇した。そして、その原因を追求したところ、
原料ガス温度を調整するために温水中に浸漬した樹脂製
の原料ガス管の管壁を通して、管内を流通する高純度酸
素ガスに0.1〜10ppm程度の極めて微量の水分が
侵入し、この僅かの水分が、オゾン濃度の経時的な低下
を効果的に抑制し、酸素ガス中の水分が窒素ガスに代わ
る極めて有効な触媒物質になり得ることが判明した。
Means for Solving the Problems The present inventors have been conducting research on increasing the concentration of ozone gas for some time, and as a part of the research, have investigated the influence of the temperature of the raw material gas on the ozone concentration. , A phenomenon in which the decrease in the ozone concentration over time was drastically reduced was encountered. And after pursuing the cause,
A very small amount of water (about 0.1 to 10 ppm) penetrates into the high-purity oxygen gas flowing through the pipe through the pipe wall of the resin-made raw gas pipe immersed in warm water to adjust the raw gas temperature. It has been found that the water content effectively suppresses the decrease in the ozone concentration over time, and that the water content in the oxygen gas can be a very effective catalyst substance replacing the nitrogen gas.

【0009】即ち、水分によってオゾン濃度の低下が抑
制される効果は、0.1〜10ppm程度の極めて微量
の水分の存在によって得られ、酸素濃度の実質的な低下
を伴わない。例えば、1ppmの水分で得られる効果
は、1000〜10000ppmの窒素ガスで得られる
効果に匹敵する。しかも水分は、それ自体が無害である
上、窒素酸化物のような有害物質を副生せず、添加量が
僅かであることと相まって、半導体製造分野においても
何ら問題を生じない。
That is, the effect of suppressing the decrease in ozone concentration by moisture is obtained by the presence of a very small amount of moisture of about 0.1 to 10 ppm, and does not substantially decrease the oxygen concentration. For example, the effect obtained with 1 ppm of moisture is comparable to the effect obtained with 1000 to 10000 ppm of nitrogen gas. In addition, the water itself is harmless, does not produce harmful substances such as nitrogen oxides, and, combined with its small amount, does not cause any problem in the semiconductor manufacturing field.

【0010】本発明はかかる知見に基づいて完成された
ものであり、放電式のオゾナイザに、オゾン発生用の原
料ガスとして、水分を0.05〜40ppm含む酸素ガ
スを供給するオゾン発生方法である。また、放電式のオ
ゾナイザと、オゾナイザに原料ガスを供給するガス供給
系と、ガス供給系に介装されて原料ガス中の水分量を調
整する水分調整器とを具備するオゾン発生装置である。
また、水分を0.05〜40ppm含む酸素ガスからな
るオゾン発生用原料ガスである。
The present invention has been completed based on this finding, and is an ozone generation method for supplying an oxygen gas containing 0.05 to 40 ppm of water as a raw material gas for ozone generation to a discharge-type ozonizer. . Further, the present invention is an ozone generator including a discharge-type ozonizer, a gas supply system that supplies a source gas to the ozonizer, and a moisture regulator that is interposed in the gas supply system and adjusts the amount of moisture in the source gas.
It is a raw material gas for ozone generation composed of oxygen gas containing 0.05 to 40 ppm of water.

【0011】半導体製造分野においてオゾン発生用原料
ガスとして使用される酸素ガスは、通常は99.99%
以上の高純度酸素ガスで、ボンベに充填された液化酸素
又は酸素ガスを酸素ガス源としてオゾナイザに供給され
る。酸素ガス中の水分は不純物のなかでも比較的除去が
容易であり、不純物を除去するための精製に伴って殆ど
除去されている。加えて、その水分はオゾン収率に悪影
響を与えるとさえ考えられている。このため、その酸素
ガス中の水分量は、99.99%の場合で0.01pp
m以下であり、99.9999%の場合では0.001
ppm以下である。
The oxygen gas used as a source gas for ozone generation in the semiconductor manufacturing field is usually 99.99%
With the above high-purity oxygen gas, liquefied oxygen or oxygen gas filled in a cylinder is supplied to an ozonizer as an oxygen gas source. Moisture in oxygen gas is relatively easy to remove among impurities, and is almost completely removed with purification for removing impurities. In addition, the moisture is even believed to adversely affect ozone yield. For this reason, the amount of water in the oxygen gas is 0.01 pp at 99.99%.
m or less, and 0.001 in the case of 99.9999%.
ppm or less.

【0012】オゾナイザへ供給される酸素ガス中の水分
含有量を0.05〜40ppmとしたのは、0.05p
pm未満では、オゾン濃度の低下を抑制する効果が不足
し、40ppmを超えた場合はオゾンの発生効率が低下
し、オゾン濃度が再度低下し始める上に、オゾナイザの
放電部や下流側のプロセスへの悪影響が懸念されるから
である。好ましい下限は0.1ppmであり、特に好ま
しい下限は0.5ppmである。また、好ましい上限は
10ppmであり、特に好ましい上限は3ppmであ
る。
The reason why the water content in the oxygen gas supplied to the ozonizer is set to 0.05 to 40 ppm is only 0.05 p.
At less than pm, the effect of suppressing the decrease in ozone concentration is insufficient, and when it exceeds 40 ppm, the ozone generation efficiency decreases, and the ozone concentration starts to decrease again. This is because there is a concern about the adverse effects of the system. A preferred lower limit is 0.1 ppm, and a particularly preferred lower limit is 0.5 ppm. A preferred upper limit is 10 ppm, and a particularly preferred upper limit is 3 ppm.

【0013】オゾナイザへの酸素ガスの供給は、酸素ガ
ス源からガス供給系を通じて行われる。酸素ガス源にお
ける酸素ガス中の水分が不足する場合は、ガス供給系の
途中で加湿器により酸素ガスに所定量の水分を添加して
から、その酸素ガスをオゾナイザに供給するのがよい
が、予め所定量の水分を添加した酸素ガスを酸素ガス源
からオゾナイザに供給することも可能である。もし仮
に、酸素ガス源における酸素ガスが水分を過剰に含む場
合は、ガス供給系の途中で酸素ガス中の水分量が所定範
囲内に管理されるように除湿器で水分を除去してから、
その酸素ガスをオゾナイザに供給するのがよい。
The supply of oxygen gas to the ozonizer is performed from an oxygen gas source through a gas supply system. When the moisture in the oxygen gas in the oxygen gas source is insufficient, it is preferable to add a predetermined amount of moisture to the oxygen gas by a humidifier in the middle of the gas supply system, and then supply the oxygen gas to the ozonizer, Oxygen gas to which a predetermined amount of moisture has been added in advance can be supplied from the oxygen gas source to the ozonizer. If the oxygen gas in the oxygen gas source contains excessive moisture, remove moisture with a dehumidifier so that the moisture content in the oxygen gas is controlled within a predetermined range in the middle of the gas supply system.
The oxygen gas is preferably supplied to an ozonizer.

【0014】使用する酸素ガス、即ち水分調整を行う前
の酸素ガスは、純度99.9%以上、特に99.99%
以上の高純度酸素ガスが好ましく、そのなかでも99.
9999%以上の超高純度酸素ガスが特に好ましい。な
ぜなら、酸素ガスの高純度化によって不純物が排除され
るだでなく、微量の水分によってオゾン濃度の低下を抑
制する効果は、酸素ガスが高純度であるほど有効である
からである。即ち、酸素ガス中の水分は、そのガス中の
酸素及び不純物と反応し、不純物が多いと、水分が不純
物との反応に多く消費され、水分と酸素の反応(オゾン
生成反応)が妨害されるが、高純度化により不純物が低
減されると、この妨害が抑制されるからである。
The oxygen gas to be used, that is, the oxygen gas before the water content is adjusted, has a purity of 99.9% or more, particularly 99.99%.
The above high-purity oxygen gas is preferable.
Ultra-high purity oxygen gas of 9999% or more is particularly preferred. This is because not only the impurities are eliminated by increasing the purity of the oxygen gas, but also the effect of suppressing the decrease in the ozone concentration by a small amount of moisture is more effective as the oxygen gas has a higher purity. That is, the moisture in the oxygen gas reacts with the oxygen and impurities in the gas, and when the amount of impurities is large, the moisture is consumed much in the reaction with the impurities, and the reaction between moisture and oxygen (ozone generation reaction) is hindered. However, when impurities are reduced by high purification, this interference is suppressed.

【0015】オゾナイザで生成されるオゾンガスのオゾ
ン濃度は60g/Nm3 以上が好ましく、100g/N
3 以上、とりわけ150g/Nm3 以上が特に好まし
い。なぜなら、高濃度化によって反応性が向上するだけ
でなく、微量の水分によってオゾン濃度の低下を抑制す
る効果は、オゾンガスが高濃度であるほど有効であるか
らである。即ち、オゾン濃度が高くなると、分解反応も
同時に増大し、触媒ガスがない場合はこの現象が顕著に
現れ、オゾン濃度の低下が大きくなるが、水分は触媒ガ
スに代わって、この高濃度ほど顕著なオゾン濃度の低下
を阻止できるからである。
The ozone concentration of the ozone gas generated by the ozonizer is preferably 60 g / Nm 3 or more, and 100 g / Nm 3 or more.
m 3 or more, particularly preferably 150 g / Nm 3 or more. This is because the effect of not only improving the reactivity by increasing the concentration but also suppressing the decrease in the ozone concentration by a small amount of moisture is more effective as the concentration of ozone gas becomes higher. That is, when the ozone concentration increases, the decomposition reaction also increases at the same time, and in the absence of a catalyst gas, this phenomenon appears remarkably, and the ozone concentration decreases greatly. This is because it is possible to prevent an excessive decrease in ozone concentration.

【0016】なお本発明は、半導体製造分野で使用され
る99.99%以上の高純度酸素ガスに特に有効である
が、水処理等の一般分野で使用される95%程度の酸素
ガスにも適用可能である。純度が95%程度の比較的低
濃度の酸素ガスは、PSA等の酸素製造装置を用いて製
造されている。酸素製造装置で製造される酸素ガスの純
度は約90〜93%で、僅かに窒素ガスを含んでいる
が、吸着剤に通して窒素ガスを除去した95%程度の酸
素ガスは、窒素ガスと共に水分も除去されており、オゾ
ン濃度の低下を生じる。この酸素ガス中の水分量を調整
することにより、オゾン濃度の低下が防止される。
The present invention is particularly effective for high-purity oxygen gas of 99.99% or more used in the semiconductor manufacturing field, but is also effective for about 95% oxygen gas used in general fields such as water treatment. Applicable. Relatively low-concentration oxygen gas having a purity of about 95% is produced using an oxygen production apparatus such as PSA. Oxygen gas produced by the oxygen production apparatus has a purity of about 90 to 93% and contains a slight amount of nitrogen gas. However, about 95% of oxygen gas obtained by removing nitrogen gas through an adsorbent is added together with nitrogen gas. Moisture has also been removed, causing a drop in ozone concentration. By adjusting the amount of water in the oxygen gas, a decrease in the ozone concentration is prevented.

【0017】また、本発明では、酸素ガスは水分以外の
不純物を含むが、その不純物の種類は限定されない。水
分以外の不純物としては、アルゴンガス、炭酸ガス、窒
素ガス等がある。即ち、下流側のプロセスで窒素酸化物
が問題視されなければ、窒素ガスの含有も可能であり、
また、窒素酸化物が問題視される場合でも1000pp
m以下の含有であれば、特に問題は生じない。この窒素
ガスは、微量の水分によるオゾン濃度低下抑制効果を補
足でき、窒素ガスが共存するならば、酸素ガス中の水分
量が0.05ppm未満の場合でも、オゾン濃度低下抑
制効果が得られる。
In the present invention, the oxygen gas contains impurities other than moisture, but the type of the impurities is not limited. Examples of impurities other than water include argon gas, carbon dioxide gas, and nitrogen gas. That is, if nitrogen oxides are not regarded as a problem in the downstream process, nitrogen gas can be contained,
In addition, even when nitrogen oxides are regarded as a problem, 1000 pp
If the content is not more than m, no particular problem occurs. This nitrogen gas can supplement the effect of suppressing a decrease in the ozone concentration due to a small amount of moisture. If nitrogen gas is present, the effect of suppressing the decrease in ozone concentration can be obtained even when the amount of water in the oxygen gas is less than 0.05 ppm.

【0018】[0018]

【発明の実施の形態】以下に本発明の実施形態を図面に
基づいて説明する。図1は本発明の1実施形態を示すオ
ゾン発生装置の構成図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of an ozone generator showing one embodiment of the present invention.

【0019】図1に示されたオゾン発生装置は、装置本
体として放電式のオゾナイザ1を備えている。オゾナイ
ザ1には、酸素ガス源2から配管3を通して例えば高純
度酸素ガスが供給される。酸素ガス源2は、例えばボン
ベに充填された液体酸素である。配管3の途中には、水
分調整器としての加湿器4が設けられている。加湿器4
は、純水を収容する水槽5と、水分浸透性をもつテフロ
ン(登録商標)等の樹脂からなる螺旋状のチューブ6
と、水槽5内の純水を温度管理するヒータ7と、水槽5
内の純水を攪拌する攪拌機8とを有している。チューブ
6は配管3の途中に介装され、水槽5内の純水中に浸漬
されている。
The ozone generator shown in FIG. 1 has a discharge type ozonizer 1 as a main body of the apparatus. For example, high-purity oxygen gas is supplied to the ozonizer 1 from the oxygen gas source 2 through the pipe 3. The oxygen gas source 2 is, for example, liquid oxygen filled in a cylinder. A humidifier 4 as a moisture adjuster is provided in the middle of the pipe 3. Humidifier 4
Is a water tank 5 containing pure water, and a spiral tube 6 made of a resin such as Teflon (registered trademark) having water permeability.
A heater 7 for controlling the temperature of pure water in the water tank 5;
And a stirrer 8 for stirring the pure water therein. The tube 6 is interposed in the middle of the pipe 3 and is immersed in pure water in the water tank 5.

【0020】原料ガスとしての高純度酸素ガスは、酸素
ガス源2から加湿器4を経由してオゾナイザ1に供給さ
れる。加湿器4では、純水中に浸漬されたチューブ6を
通過する過程で、チューブ6の樹脂壁を通して水分を添
加される。その添加量は、ヒータ7で純水の温度を変更
することにより調整され、この調整により、オゾナイザ
1に供給される高純度酸素ガス中の水分含有量が0.0
5〜40ppm、好ましくは0.1〜10ppmに管理
される。この管理のため、高純度酸素ガス中の水分含有
量が、加湿器4とオゾナイザ1の間に設けられた露点計
9によりモニタされる。
A high-purity oxygen gas as a source gas is supplied from the oxygen gas source 2 to the ozonizer 1 via the humidifier 4. In the humidifier 4, water is added through the resin wall of the tube 6 while passing through the tube 6 immersed in pure water. The addition amount is adjusted by changing the temperature of the pure water by the heater 7, and by this adjustment, the water content in the high-purity oxygen gas supplied to the ozonizer 1 becomes 0.02.
It is controlled at 5 to 40 ppm, preferably 0.1 to 10 ppm. For this control, the moisture content in the high-purity oxygen gas is monitored by a dew point meter 9 provided between the humidifier 4 and the ozonizer 1.

【0021】このようなオゾン発生装置を用いて実際に
オゾンガスを生成した結果を次に説明する。
The result of actually generating ozone gas using such an ozone generator will be described below.

【0022】酸素ガスとして純度が99.9999%以
上の超高純度酸素ガスを用いた。このガスの水分含有量
は、露点計で測定したところ、その測定限界である−1
10℃以下であり、0.001ppmレベルである。こ
の超高純度酸素ガスをダイレクトにオゾナイザに供給し
た場合、オゾン発生開始時に150g/Nm3 以上を示
したオゾン濃度が70g/Nm3 以下に低下した。
As the oxygen gas, an ultra-high purity oxygen gas having a purity of 99.9999% or more was used. The moisture content of this gas was measured by a dew point meter, which was the measurement limit of -1.
10 ° C. or less, which is at the 0.001 ppm level. When this ultra-high-purity oxygen gas was directly supplied to the ozonizer, the ozone concentration at 150 g / Nm 3 or more at the start of ozone generation was reduced to 70 g / Nm 3 or less.

【0023】この超高濃度酸素ガスに高純度の窒素ガス
を添加した。窒素ガスの添加率と安定オゾン濃度の関係
を図2に示す。1%(10000ppm)以上の添加
で、安定オゾン濃度は約150g/Nm3 に向上する。
High-purity nitrogen gas was added to the ultra-high-concentration oxygen gas. FIG. 2 shows the relationship between the nitrogen gas addition rate and the stable ozone concentration. The addition of 1% (10000 ppm) or more increases the stable ozone concentration to about 150 g / Nm 3 .

【0024】この超高純度酸素ガスに窒素ガスを添加せ
ず、代わりに上記の加湿器を用いて微量の水分を添加し
て、酸素ガス中の水分含有量を増加させた。水分含有量
と安定オゾン濃度との関係を図3に示す。
Instead of adding nitrogen gas to this ultra-high-purity oxygen gas, a small amount of water was added using the above humidifier instead to increase the water content in the oxygen gas. FIG. 3 shows the relationship between the water content and the stable ozone concentration.

【0025】図3から分かるように、酸素ガス中の水分
含有量を僅かに増加させることにより、比較的多量の窒
素ガスを含有させた場合と同等に、オゾン濃度の低下が
抑制され、高濃度のオゾンガスが安定に発生する。
As can be seen from FIG. 3, by slightly increasing the water content in the oxygen gas, a decrease in the ozone concentration can be suppressed and the high ozone concentration can be suppressed as in the case where a relatively large amount of nitrogen gas is contained. Ozone gas is generated stably.

【0026】[0026]

【発明の効果】以上に説明したとおり、本発明のオゾン
発生方法及び装置並びにオゾン発生用原料ガスは、放電
式のオゾナイザに供給する酸素ガス中の水分含有量を調
整することにより、窒素ガスを使用せずとも、オゾン濃
度の低下を抑制でき、また、そのオゾン濃度を安定化で
きる。従って、オゾナイザの性能低下を抑制しつつ、窒
素酸化物の発生を防止できる。
As described above, the ozone generation method and apparatus of the present invention and the ozone generation raw material gas are prepared by adjusting the water content in the oxygen gas supplied to the discharge type ozonizer to thereby reduce the nitrogen gas. Even if not used, a decrease in ozone concentration can be suppressed and the ozone concentration can be stabilized. Therefore, generation of nitrogen oxides can be prevented while suppressing performance degradation of the ozonizer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1実施形態を示すオゾン発生装置の構
成図である。
FIG. 1 is a configuration diagram of an ozone generator showing one embodiment of the present invention.

【図2】酸素ガスへの窒素ガス添加率と安定オゾン濃度
の関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a nitrogen gas addition rate to oxygen gas and a stable ozone concentration.

【図3】酸素ガス中の水分含有量と安定オゾン濃度の関
係を示すグラフである。
FIG. 3 is a graph showing a relationship between a water content in oxygen gas and a stable ozone concentration.

【符号の説明】[Explanation of symbols]

1 オゾナイザ 2 酸素ガス源 3 配管 4 加湿器 5 水槽 6 チューブ 7 ヒータ 9 露点計 1 Ozonizer 2 Oxygen gas source 3 Piping 4 Humidifier 5 Water tank 6 Tube 7 Heater 9 Dew point meter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 折島 寛 兵庫県尼崎市扶桑町1番10号 住友精密工 業株式会社内 Fターム(参考) 4G042 CA01 CB01 CB09 CE04  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Hiroshi Orishima 1-10 Fuso-cho, Amagasaki-shi, Hyogo Sumitomo Precision Industries, Ltd. F-term (reference) 4G042 CA01 CB01 CB09 CE04

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 放電式のオゾナイザに、オゾン発生用の
原料ガスとして、水分を0.05〜40ppm含む酸素
ガスを供給することを特徴とするオゾン発生方法。
1. An ozone generation method, comprising supplying an oxygen gas containing 0.05 to 40 ppm of water as a raw material gas for ozone generation to a discharge-type ozonizer.
【請求項2】 オゾナイザに酸素ガスを供給する際に、
その酸素ガスに水分を添加する請求項1に記載のオゾン
発生方法。
2. When supplying oxygen gas to an ozonizer,
The ozone generation method according to claim 1, wherein moisture is added to the oxygen gas.
【請求項3】 使用する酸素ガスは、純度が99.9%
以上の高純度酸素ガスである請求項1に記載のオゾン発
生方法。
3. The oxygen gas used has a purity of 99.9%.
The method for generating ozone according to claim 1, wherein said high-purity oxygen gas is used.
【請求項4】 オゾナイザで生成されるオゾンガスは半
導体製造用である請求項1に記載のオゾン発生方法。
4. The ozone generating method according to claim 1, wherein the ozone gas generated by the ozonizer is used for manufacturing a semiconductor.
【請求項5】 オゾナイザで生成されるオゾンガスは、
オゾン濃度が60g/Nm3 以上の高濃度オゾンガスで
ある請求項1に記載のオゾン発生方法。
5. The ozone gas generated by the ozonizer is:
Ozone generation method according to claim 1, the ozone concentration is 60 g / Nm 3 or more high-concentration ozone gas.
【請求項6】 放電式のオゾナイザと、オゾナイザに原
料ガスを供給するガス供給系と、ガス供給系に介装され
て原料ガス中の水分量を調整する水分調整器とを具備す
ることを特徴とするオゾン発生装置。
6. A discharge type ozonizer, a gas supply system for supplying a source gas to the ozonizer, and a moisture regulator interposed in the gas supply system for adjusting the amount of moisture in the source gas. Ozone generator.
【請求項7】 水分調整器は、原料ガスに水分を添加す
る加湿器である請求項6に記載のオゾン発生装置。
7. The ozone generator according to claim 6, wherein the moisture regulator is a humidifier for adding moisture to the raw material gas.
【請求項8】 水分を0.05〜40ppm含む酸素ガ
スからなるオゾン発生用原料ガス。
8. A raw material gas for generating ozone, comprising an oxygen gas containing 0.05 to 40 ppm of water.
JP2000208386A 2000-07-10 2000-07-10 Ozone generation method Expired - Lifetime JP4166928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000208386A JP4166928B2 (en) 2000-07-10 2000-07-10 Ozone generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000208386A JP4166928B2 (en) 2000-07-10 2000-07-10 Ozone generation method

Publications (2)

Publication Number Publication Date
JP2002029710A true JP2002029710A (en) 2002-01-29
JP4166928B2 JP4166928B2 (en) 2008-10-15

Family

ID=18704975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000208386A Expired - Lifetime JP4166928B2 (en) 2000-07-10 2000-07-10 Ozone generation method

Country Status (1)

Country Link
JP (1) JP4166928B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003059809A1 (en) * 2001-12-27 2003-07-24 Sumitomo Precision Products Co., Ltd Method of generating ozone, ozone generator, feed gas for ozone generation, and humidifier
WO2004060795A1 (en) * 2002-12-27 2004-07-22 Sumitomo Precision Products Co., Ltd. Method for generating ozone
JP2008254965A (en) * 2007-04-04 2008-10-23 Kansai Electric Power Co Inc:The Method and device for accelerating ozone generation by moisture addition
JP2009096691A (en) * 2007-10-18 2009-05-07 Kansai Electric Power Co Inc:The Method and apparatus for generating ozone by intermittent moisture addition
JP2009298669A (en) * 2008-06-16 2009-12-24 Sumitomo Precision Prod Co Ltd Method of producing ozone and ozone generator
WO2020059238A1 (en) * 2018-09-20 2020-03-26 住友精密工業株式会社 Gas conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7008125B2 (en) * 2018-03-02 2022-01-25 住友精密工業株式会社 Ozone generator and ozone generation method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003059809A1 (en) * 2001-12-27 2003-07-24 Sumitomo Precision Products Co., Ltd Method of generating ozone, ozone generator, feed gas for ozone generation, and humidifier
WO2004060795A1 (en) * 2002-12-27 2004-07-22 Sumitomo Precision Products Co., Ltd. Method for generating ozone
JP2008254965A (en) * 2007-04-04 2008-10-23 Kansai Electric Power Co Inc:The Method and device for accelerating ozone generation by moisture addition
JP2009096691A (en) * 2007-10-18 2009-05-07 Kansai Electric Power Co Inc:The Method and apparatus for generating ozone by intermittent moisture addition
JP2009298669A (en) * 2008-06-16 2009-12-24 Sumitomo Precision Prod Co Ltd Method of producing ozone and ozone generator
WO2020059238A1 (en) * 2018-09-20 2020-03-26 住友精密工業株式会社 Gas conditioner
JP2020044514A (en) * 2018-09-20 2020-03-26 住友精密工業株式会社 Gas conditioner
CN112714845A (en) * 2018-09-20 2021-04-27 住友精密工业株式会社 Gas regulator
KR20210046726A (en) * 2018-09-20 2021-04-28 스미토모 세이미츠 고교 가부시키가이샤 Gas conditioner
US11649972B2 (en) 2018-09-20 2023-05-16 Sumitomo Precision Products Co., Ltd. Gas conditioner
KR102569436B1 (en) * 2018-09-20 2023-08-22 스미토모 세이미츠 고교 가부시키가이샤 ozone generator

Also Published As

Publication number Publication date
JP4166928B2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
JP6734621B2 (en) Ozone water supply method and ozone water supply device
JP5251184B2 (en) Gas dissolved water supply system
JP6184645B1 (en) Ozone supply device and ozone supply method
JPH1177023A (en) Preparation of hydrogen-containing ultrapure water
US20150303053A1 (en) Method for producing ozone gas-dissolved water and method for cleaning electronic material
TW200536624A (en) Circulated type gas-soluble water supplying device and the running method of said device
JP5020784B2 (en) Ozone water production apparatus and production method
JP2002029710A (en) Method and device for generating ozone and gaseous starting material for generating ozone
JP2016521236A (en) Supply of high concentration hydrogen peroxide gas stream
JPH11138181A (en) Ozone-containing ultrapure water feeder
WO2003059809A1 (en) Method of generating ozone, ozone generator, feed gas for ozone generation, and humidifier
JP2002085947A (en) Method and device for producing ozonized water
JPH11138182A (en) Ozonized ultrapure water feeder
JP2004217512A (en) Method for generating ozone
JP2016215150A (en) Ultrapure water production device
JP7052423B2 (en) Ozone-dissolved water production equipment and ozone-dissolved water production method using this
JP3566453B2 (en) Ozone generator
WO2004060795A1 (en) Method for generating ozone
JP2005126280A (en) Ozone generating apparatus and ozone generating method
JP2005034772A (en) Nitrogen oxide treatment apparatus
JP2002166279A (en) Method and device for generating gas by electrolysis
JP5332829B2 (en) Fluorine gas generator
JP2005145762A (en) Method for generating ozone gas by electric discharge
JP2001149947A (en) Device for producing high-purity ozonized water
JP2000262874A (en) Method and apparatus for producing ozone water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080519

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080731

R150 Certificate of patent or registration of utility model

Ref document number: 4166928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term