JP2002028487A - Catalyst for generating atomic oxygen, producing method thereof and method for generating atomic oxygen - Google Patents

Catalyst for generating atomic oxygen, producing method thereof and method for generating atomic oxygen

Info

Publication number
JP2002028487A
JP2002028487A JP2000217025A JP2000217025A JP2002028487A JP 2002028487 A JP2002028487 A JP 2002028487A JP 2000217025 A JP2000217025 A JP 2000217025A JP 2000217025 A JP2000217025 A JP 2000217025A JP 2002028487 A JP2002028487 A JP 2002028487A
Authority
JP
Japan
Prior art keywords
gold
carbon
catalyst
atomic oxygen
containing compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000217025A
Other languages
Japanese (ja)
Inventor
Kazuo Sugiyama
和夫 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Corrosion Engineering Co Ltd
Original Assignee
Nippon Corrosion Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Corrosion Engineering Co Ltd filed Critical Nippon Corrosion Engineering Co Ltd
Priority to JP2000217025A priority Critical patent/JP2002028487A/en
Publication of JP2002028487A publication Critical patent/JP2002028487A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a complex which is useful as a new catalyst which enables generating atomic oxygen by facilitating the decomposition for hypochlorite such as sodium hypochlorite, a producing method thereof and a method for generating atomic oxygen under the presence of the said complex. SOLUTION: This catalyst for generating atomic oxygen comprises the complex which carries gold fine particles on a carbon type carrier. The complex can be produced by the method containing that an Au-containing compound is adsorbed by the carbon type carrier, subsequently, the carbon type carrier which adsorbs the Au-containing compound is subjected to plasma treatment and, thereby, the Au-containing compound is converted to Au fine particles. As a result, the method for generating atomic oxygen which contains the decomposition of hypochlorite under the presence of the complex is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭素系担体に金微
粒子を担持した複合体からなる高い活性の原子状酸素発
生用触媒、この触媒の製造方法及びこの触媒を用いる原
子状酸素を発生させる方法、さらに、原子状酸素を発生
させる方法を利用する、有機物や微生物等の酸化分解方
法及び殺菌方法に関する。本発明の触媒及び方法は、環
境浄化や食品の殺菌等に有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly active atomic oxygen generating catalyst comprising a composite in which gold particles are supported on a carbon-based carrier, a method for producing the catalyst, and atomic oxygen using the catalyst. The present invention relates to a method for oxidatively decomposing organic substances and microorganisms and a method for sterilizing the same using a method for generating atomic oxygen. INDUSTRIAL APPLICABILITY The catalyst and method of the present invention are useful for environmental purification, food sterilization, and the like.

【0002】[0002]

【従来の技術及び発明が解決すべき課題】次亜塩素酸ナ
トリウムのような次亜塩素酸塩は、酸化剤であり、殺菌
や漂白等の用途に広く用いられている。しかし、その酸
化力は、それ程高くなく、また、水溶液中での濃度が低
下すれば、酸化力は低下する。一方、排水中の有機物の
分解や食品の殺菌等の分野で、次亜塩素酸ナトリウムが
用いられているが、低濃度の次亜塩素酸ナトリウムであ
っても、これを分解して、原子状酸素を生成させて高い
酸化力(分解力、殺菌力)が得られれば、その有用性は
高まる。しかるに、次亜塩素酸ナトリウムのような次亜
塩素酸塩用の分解促進して原子状酸素を生成させるため
の触媒はあまり知られていない。
BACKGROUND OF THE INVENTION Hypochlorites, such as sodium hypochlorite, are oxidizing agents and are widely used for applications such as sterilization and bleaching. However, the oxidizing power is not so high, and when the concentration in the aqueous solution decreases, the oxidizing power decreases. On the other hand, sodium hypochlorite is used in fields such as the decomposition of organic matter in wastewater and the sterilization of food, but even low-concentration sodium hypochlorite is decomposed into atomic If oxygen is generated and high oxidizing power (decomposing power, bactericidal power) is obtained, its usefulness is enhanced. However, few catalysts for accelerating the decomposition and producing atomic oxygen for hypochlorite such as sodium hypochlorite are known.

【0003】ところで、活性炭のような炭素系担体を担
体とする触媒が知られている。そのような触媒の主なも
のは、ニッケル炭及びコバルト炭として知られる、ニッ
ケルを活性炭に担持した触媒及びコバルトを活性炭に担
持した触媒である。これらの触媒は、活性炭の高い表面
積を利用して、その表面に触媒として働くニッケル及び
コバルトを担持させることで、反応の場を多くし、単位
量当たりの金属触媒の活性を高めたものである。しか
し、高濃度の次亜塩素酸ナトリウムを用いた場合には、
これらの金属を担持させた炭素系担体を触媒として使用
すると、金属が酸化されたり塩化物となることにより触
媒が劣化し、触媒活性が低下するという問題があった。
[0003] Incidentally, a catalyst using a carbon-based carrier such as activated carbon as a carrier is known. The main such catalysts are nickel on cobalt and cobalt on activated carbon, known as nickel and cobalt. These catalysts make use of the high surface area of activated carbon and carry nickel and cobalt acting as catalysts on the surface, thereby increasing the reaction field and increasing the activity of the metal catalyst per unit amount. . However, when high concentrations of sodium hypochlorite are used,
When a carbon-based carrier carrying these metals is used as a catalyst, the catalyst is deteriorated due to oxidation of the metal or changes to chlorides, resulting in a problem that the catalyst activity is reduced.

【0004】活性炭の高い表面積を利用した高活性の金
担持触媒が得られれば、その利用範囲は広いと考えら
れ、上述の次亜塩素酸ナトリウムのような次亜塩素酸塩
用の分解促進用の触媒としても有用であろうと予想され
るが、そのような触媒は実用化さていない。金は、従
来、それ自体では触媒作用を示さないと考えられてい
た。しかし、微粒子とすると、金も触媒作用を示すこと
が最近、徐々に明らかになっている。しかるに、触媒作
用を有する金微粒子の粒子径は、数十nm以下であると
考えられ、そのような金微粒子を作製することは容易で
はない。
[0004] If a highly active gold-supported catalyst utilizing the high surface area of activated carbon can be obtained, its use is considered to be wide, and it is considered that the catalyst for promoting the decomposition of hypochlorite such as sodium hypochlorite described above is used. Is expected to be useful as a catalyst, but such a catalyst has not been put to practical use. Gold has traditionally been considered not to exhibit catalysis by itself. However, it has recently been gradually revealed that gold also exhibits a catalytic action when used as fine particles. However, the particle size of the fine gold particles having a catalytic action is considered to be several tens nm or less, and it is not easy to produce such fine gold particles.

【0005】通常金属を適当な担体に担持した触媒は、
担体に金属化合物を担持し、次いで金属化合物を酸化物
とし、更に酸化物を水素等で還元することで作成され
る。しかるに、水素還元は比較的高温で行われる。その
ため、還元された金属は、還元直後は微粒子であって
も、還元操作の間に粒子成長し、微粒子とすることは困
難である。金属が金の場合も同様である。また、担体が
活性炭等の炭素系の物質である場合、高温での還元処理
時に、条件によっては、炭素系の物質が燃焼等してしま
うことがあり、活性炭等の炭素系の物質を担体として、
その上に金属微粒子を担持することは非常に困難であっ
た。
[0005] Usually, a catalyst in which a metal is supported on a suitable carrier is
It is prepared by supporting a metal compound on a carrier, converting the metal compound into an oxide, and further reducing the oxide with hydrogen or the like. However, hydrogen reduction is performed at relatively high temperatures. Therefore, even if the reduced metal is fine particles immediately after the reduction, the particles grow during the reduction operation, and it is difficult to produce the fine particles. The same applies when the metal is gold. In addition, when the carrier is a carbon-based material such as activated carbon, the carbon-based material may burn, etc., depending on conditions during the reduction treatment at a high temperature, and a carbon-based material such as activated carbon is used as a carrier. ,
It was very difficult to support the metal fine particles thereon.

【0006】そこで本発明の目的は、次亜塩素酸ナトリ
ウムのような次亜塩素酸塩用の分解促進して原子状酸素
を生成させることができる新たな触媒として有用な、金
微粒子を活性炭等の炭素系の物質に担持した複合体を提
供することにある。さらに本発明の目的は、上記触媒を
用いた原子状酸素の発生方法、及びこの方法を利用し
た、分解、殺菌等の方法を提供することにある。
Accordingly, an object of the present invention is to convert gold fine particles, such as activated carbon, useful as a new catalyst capable of accelerating the decomposition of hypochlorite such as sodium hypochlorite to generate atomic oxygen. To provide a composite supported on a carbon-based substance. It is a further object of the present invention to provide a method for generating atomic oxygen using the above catalyst, and a method for decomposing, sterilizing, etc. using this method.

【0007】[0007]

【課題を解決するための手段】本発明者は、金含有化合
物を吸着させた炭素系担体をプラズマ処理することで、
炭素系担体に金微粒子を担持した複合体が得られ、かつ
この複合体が次亜塩素酸塩の分解を促進する触媒作用を
有することを見いだして本発明を完成した。
Means for Solving the Problems The present inventors plasma-treat a carbon-based carrier on which a gold-containing compound has been adsorbed,
The present invention was completed by finding that a composite in which gold fine particles were supported on a carbon-based carrier was obtained, and that this composite had a catalytic action to promote the decomposition of hypochlorite.

【0008】即ち、本発明は、炭素系担体に金を担持し
た複合体からなる原子状酸素発生用触媒に関する。さら
に、本発明は、上記本発明の触媒の製法、及び上記本発
明の触媒の存在下、次亜塩素酸塩を分解することを含む
原子状酸素を発生させる方法に関する。加えて、本発明
は、上記本発明の方法により発生させた原子状酸素と被
処理物とを接触させることにより、被処理物に含まれる
か、または付着する被分解物を酸化させることを含む酸
化分解方法に関する。
[0008] That is, the present invention relates to a catalyst for generating atomic oxygen comprising a composite in which gold is supported on a carbon-based carrier. Furthermore, the present invention relates to a method for producing the above-mentioned catalyst of the present invention, and a method for generating atomic oxygen including decomposing hypochlorite in the presence of the above-mentioned catalyst of the present invention. In addition, the present invention includes oxidizing decomposed substances contained in or adhered to the object by bringing the atomic oxygen generated by the method of the present invention into contact with the object. It relates to an oxidative decomposition method.

【0009】[0009]

【発明の実施の形態】触媒 本発明の複合体は、炭素系担体に金微粒子を担持した複
合体である。炭素系担体は、例えば、活性炭であり、そ
れ以外の炭素系担体として繊維状炭素等を例示できる。
活性炭としては、従来の活性炭をそのまま用いることが
できる。活性炭の原料となる炭素材料は、通常は椰子殻
であるが、椰子殻以外に、木炭、のこくず、亜炭、石
炭、ピッチ、もみ殻、古タイヤ等であっても良い。さら
に、活性炭製造時の賦活方法にも特に制限はなく、ガス
賦活及び薬品賦活のいずれの方法により賦活された活性
炭も用いることができる。さらに、活性炭には、通常、
形状によって造粒炭、破砕炭、顆粒炭、球形炭等がある
が、本発明では、いずれの形状の活性炭も処理すること
ができる。
BEST MODE FOR CARRYING OUT THE INVENTION Catalyst The composite of the present invention is a composite in which gold fine particles are supported on a carbon-based carrier. The carbon-based carrier is, for example, activated carbon, and examples of other carbon-based carriers include fibrous carbon.
As the activated carbon, conventional activated carbon can be used as it is. The carbon material used as the raw material of the activated carbon is usually coconut shell, but other than coconut shell, charcoal, sawdust, lignite, coal, pitch, rice hull, old tires and the like may be used. Furthermore, there is no particular limitation on the activation method at the time of producing activated carbon, and activated carbon activated by either gas activation or chemical activation can be used. In addition, activated carbon usually contains
Depending on the shape, there are granulated coal, crushed charcoal, granular charcoal, spherical charcoal, and the like. In the present invention, any shape of activated carbon can be treated.

【0010】本発明の複合体に担持される金は、微粒子
であり、例えば、シェーラーの式(式1)に基づいて求
められた一次粒子の平均粒子径が、5〜30nmの範
囲、好ましくは10〜25nmの範囲であることが、分
散性が良好であり、かつ生成された複合体が高い触媒活
性を発揮するために好ましい。
The gold carried on the composite of the present invention is a fine particle. For example, the average particle diameter of the primary particles determined based on Scherrer's formula (Formula 1) is in the range of 5 to 30 nm, preferably The range of 10 to 25 nm is preferable because the dispersibility is good and the formed composite exhibits high catalytic activity.

【0011】[0011]

【式1】 (D;結晶子の粒子径、λ;測定に用いるX線の波長、
θ;ブラッグ角、β;半値幅の広がり(rad))
(Equation 1) (D: particle diameter of crystallite, λ: wavelength of X-ray used for measurement,
θ: Bragg angle, β: spread of half width (rad))

【0012】炭素系担体への金微粒子の担持量は、特に
制限はなく、所望の触媒活性能等に応じて、適宜調整す
ることができる。例えば、炭素系担体100重量部当た
り、0.1〜5重量部の範囲とすることができる。但
し、この範囲に限定されるものではない。
The amount of the fine gold particles carried on the carbon-based carrier is not particularly limited, and can be appropriately adjusted according to the desired catalytic activity. For example, it can be in the range of 0.1 to 5 parts by weight per 100 parts by weight of the carbon-based carrier. However, it is not limited to this range.

【0013】触媒の製造方法 本発明の触媒は、以下の方法により製造することができ
る。即ち、炭素系担体に金含有化合物を吸着させ、次い
で前記炭素系担体にプラズマ処理を施すことにより、吸
着された金含有化合物を金微粒子に変換させることがで
きる。
Method for Producing Catalyst The catalyst of the present invention can be produced by the following method. That is, by adsorbing the gold-containing compound on the carbon-based carrier and then subjecting the carbon-based carrier to plasma treatment, the adsorbed gold-containing compound can be converted into fine gold particles.

【0014】炭素系担体への金含有化合物の吸着は、例
えば、炭素系担体を金含有化合物を含む水溶液に浸漬
し、乾燥することで行うことができる。金含有化合物
は、炭素系担体への吸着を容易に行うという観点から、
水溶液への溶解性が高い化合物であることが適当であ
る。但し、溶解性が低い化合物であっても、水溶液への
浸漬及び乾燥を繰り返し行うことで、所望量の金含有化
合物を吸着させることができる。また、金含有化合物の
種類は、炭素系担体への吸着性、金微粒子への変換の容
易さ等を考慮して選択することができる。金含有化合物
としては、例えば、塩化金酸、金水酸化物、金炭酸塩、
金硝酸塩、有機酸塩、金アルコキサイド、有機金錯体等
を挙げることができる。
The adsorption of the gold-containing compound onto the carbon-based carrier can be carried out, for example, by immersing the carbon-based carrier in an aqueous solution containing the gold-containing compound and drying. Gold-containing compound, from the viewpoint of easily adsorbing to the carbon-based carrier,
Suitably, the compound has high solubility in an aqueous solution. However, even if the compound has low solubility, a desired amount of the gold-containing compound can be adsorbed by repeatedly immersing in an aqueous solution and drying. Further, the type of the gold-containing compound can be selected in consideration of the adsorptivity to the carbon-based carrier, the ease of conversion to the fine gold particles, and the like. As the gold-containing compound, for example, chloroauric acid, gold hydroxide, gold carbonate,
Examples thereof include gold nitrate, organic acid salt, gold alkoxide, and organic gold complex.

【0015】金含有化合物を含む水溶液中の金含有化合
物の濃度や浸漬条件(時間及び温度等)は、金含有化合物
の種類や所望の金の吸着量等を勘案して適宜決定でき
る。また、金含有化合物の活性炭への吸着を促進する目
的で、活性炭を金含有化合物を含む水溶液に浸漬した
後、攪拌し、更に一定時間静置させることが好ましい。
吸着処理を行った炭素系担体は、水分を除去した後、プ
ラズマ処理を施す。
The concentration of the gold-containing compound in the aqueous solution containing the gold-containing compound and the immersion conditions (time, temperature, etc.) can be appropriately determined in consideration of the type of the gold-containing compound, the desired amount of adsorbed gold, and the like. Further, in order to promote the adsorption of the gold-containing compound to the activated carbon, it is preferable that the activated carbon is immersed in an aqueous solution containing the gold-containing compound, stirred, and further allowed to stand for a certain period of time.
The carbon-based support that has been subjected to the adsorption treatment is subjected to a plasma treatment after removing water.

【0016】尚、金含有化合物の吸着前に、処理対象で
ある活性炭を、例えば、真空下で加熱して脱水すること
で、金含有化合物の吸着を促進することができる。この
真空加熱処理は、例えば温度50〜600℃、真空度1
torr以下、処理時間1〜5時間の条件で行うことが
できる。
Before the adsorption of the gold-containing compound, the activated carbon to be treated is dehydrated by, for example, heating it under vacuum to promote the adsorption of the gold-containing compound. This vacuum heat treatment is performed, for example, at a temperature of 50 to 600 ° C. and a vacuum
The processing can be performed under the condition of a processing time of 1 to 5 hours or less.

【0017】金含有化合物を吸着させた炭素系担体にプ
ラズマ処理を施すことにより、金微粒子を担持した複合
体(触媒)を得ることができる。このプラズマ処理によ
り、炭素系担体に吸着させた金含有化合物を金微粒子に
変換することが可能となる。プラズマ処理の方法自体
は、従来から知られた方法であることができ、例えば、
特開平5−220530号や特開平9−52042号等
に記載されたマイクロ波等の電磁波を用いるプラズマ処
理方法やRFプラズマ処理方法等であることができる。ま
た、このようなプラズマ処理は、減圧下及び常圧下のい
ずれでも行うことができる。さらに、金含有化合物を金
微粒子に変換するという観点からは、プラズマ処理は、
減圧下で行うか、あるいは減圧下又は常圧下であって不
活性ガスまたは水素等の還元性ガスの流通下で行われる
ことが適当である。
By subjecting the carbon-based carrier to which the gold-containing compound has been adsorbed to a plasma treatment, a composite (catalyst) carrying fine gold particles can be obtained. By this plasma treatment, the gold-containing compound adsorbed on the carbon-based carrier can be converted into gold fine particles. The plasma processing method itself can be a conventionally known method, for example,
A plasma processing method using an electromagnetic wave such as a microwave and an RF plasma processing method described in JP-A-5-220530 and JP-A-9-52042 can be used. Such a plasma treatment can be performed either under reduced pressure or normal pressure. Further, from the viewpoint of converting the gold-containing compound into fine gold particles, the plasma treatment is
It is appropriate to carry out the reaction under reduced pressure, or under reduced pressure or normal pressure and under the flow of an inert gas or a reducing gas such as hydrogen.

【0018】電磁波を用いるプラズマ処理は、例えば図
1に示すような装置を用いて行うことができる。図中、
1はマイクロ波発生器、2は導波管、3は石英ガラス製
の処理室、4はアイソレーター、5はスリー・スタブ同
調器(Three−stubtuner)、6はマイク
ロ波出力計、7はマイクロ波反射用プランジャである。
マイクロ波反射用プランジャ7はマイクロ波を反射して
処理室3にマイクロ波を集中させるために使用される。
処理室3に金属含有化合物を吸着させた炭素系担体を置
き、これにマイクロ波を照射することでプラズマが発生
し、上記炭素系担体がプラズマ処理される。
The plasma processing using an electromagnetic wave can be performed using, for example, an apparatus as shown in FIG. In the figure,
1 is a microwave generator, 2 is a waveguide, 3 is a processing chamber made of quartz glass, 4 is an isolator, 5 is a three-stub tuner, 6 is a microwave power meter, 7 is a microwave power meter. It is a reflection plunger.
The microwave reflecting plunger 7 is used to reflect the microwave and concentrate the microwave in the processing chamber 3.
A carbon-based carrier on which a metal-containing compound is adsorbed is placed in the processing chamber 3, and a microwave is applied to the carbon-based carrier to generate plasma, whereby the carbon-based carrier is subjected to plasma processing.

【0019】プラズマは、励起した分子、原子、イオ
ン、電子など荷電粒子を含み、全体として電気的にほぼ
中性を保つ粒子の集団である。プラズマは、通常は、1
Pa〜1atm程度の範囲にある気体を極めて高い高温
状態にするか、あるいは強い磁場又は電磁波のもとにお
くと発生する。本発明においてプラズマ処理とは、この
ような環境中に、対象とする材料を一定時間置くことを
いう。
The plasma is a group of particles including charged particles such as excited molecules, atoms, ions, and electrons, and as a whole, almost electrically neutral. The plasma is usually 1
It is generated when a gas in the range of about Pa to 1 atm is brought to an extremely high temperature state or is placed under a strong magnetic field or an electromagnetic wave. In the present invention, plasma processing refers to placing a target material in such an environment for a certain period of time.

【0020】図1に示す上記装置では、プラズマは、処
理室3を例えば、減圧にし、マイクロ波のような電磁波
を照射することにより、発生させることができる。処理
室3の真空度は、約1トル(Torr)以下にすること
が、プラズマの発生を維持するという観点から適当であ
る。また電磁波は、ラジオ波からマイクロ波の範囲が適
当であり、振動数は、おおよそ1GHz〜1000GH
zの範囲、通常は1〜10GHzが適当である。 この
プラズマは、減圧下でラジオ波やマイクロ波などの電磁
波を利用するいわゆる低温プラズマである。
In the apparatus shown in FIG. 1, plasma can be generated by, for example, reducing the pressure in the processing chamber 3 and irradiating it with electromagnetic waves such as microwaves. It is appropriate to set the degree of vacuum of the processing chamber 3 to about 1 Torr or less from the viewpoint of maintaining the generation of plasma. The electromagnetic wave is preferably in a range from a radio wave to a microwave, and the frequency is approximately 1 GHz to 1000 GHz.
The range of z, usually 1 to 10 GHz, is appropriate. This plasma is a so-called low-temperature plasma utilizing electromagnetic waves such as radio waves and microwaves under reduced pressure.

【0021】以上のように調製された本発明の触媒は、
金が微粒子状の金属状態で担持されており、原子状酸素
発生用触媒として使用することができる。金は、通常の
粒子径を有する場合は不活性であるが、本発明の方法に
よって得られるように、微粒子として使用される場合に
は優れた触媒活性を発揮する。
The catalyst of the present invention prepared as described above is
Gold is supported in the form of fine metal particles and can be used as a catalyst for generating atomic oxygen. Gold is inactive when it has a normal particle size, but exhibits excellent catalytic activity when used as fine particles, as obtained by the method of the present invention.

【0022】原子状酸素発生方法 上記本発明の触媒と次亜塩素酸塩とを接触させて、次亜
塩素酸塩を分解することで原子状酸素を発生させること
ができる。触媒と次亜塩素酸塩との接触は、例えば、次
亜塩素酸塩の水溶液に触媒を添加するか、触媒を充填し
たカラムに次亜塩素酸塩の水溶液を流通させることによ
り行うことが出来る。次亜塩素酸塩としては、例えば、
次亜塩素酸ナトリウムまたは次亜塩素酸カルシウムであ
ることができる。また、次亜塩素酸ナトリウム及び次亜
塩素酸カルシウムは、化学品として市販されている。ま
た、次亜塩素酸ナトリウムの場合、食塩水を電気分解す
ることにより生成させたものであってもよい。次亜塩素
酸塩の水溶液としての濃度や触媒の使用量等は、用途に
応じて適宜決定することができる。
Atomic Oxygen Generation Method Atomic oxygen can be generated by contacting the above-described catalyst of the present invention with hypochlorite to decompose hypochlorite. The contact between the catalyst and hypochlorite can be performed, for example, by adding the catalyst to an aqueous solution of hypochlorite or by flowing the aqueous solution of hypochlorite through a column filled with the catalyst. . As hypochlorite, for example,
It can be sodium hypochlorite or calcium hypochlorite. In addition, sodium hypochlorite and calcium hypochlorite are commercially available as chemicals. In the case of sodium hypochlorite, it may be generated by electrolyzing a saline solution. The concentration of the hypochlorite as an aqueous solution, the amount of the catalyst used, and the like can be appropriately determined depending on the use.

【0023】上記本発明の方法により発生させた原子状
酸素は、酸化力が強く、これと被処理物とを接触させる
ことで、被処理物に含まれるか、または付着する被分解
物を酸化、分解することができる。被処理物としては、
例えば、排水、食品、食器、厨房用品、台所用品、また
は給食施設等を挙げることができる。また、被分解物服
としては、有機物、微生物(例えば、大腸菌)等を挙げ
ることができる。本発明の酸化分解方法により、次亜塩
素酸塩を用いて、より有効に、殺菌や消臭等を行うこと
が出来る。即ち、上記本発明の方法により発生させた原
子状酸素を用いて、種々の物品の殺菌を行うことができ
る。
Atomic oxygen generated by the above method of the present invention has a strong oxidizing power, and by bringing this into contact with the object to be processed, the oxygen contained in or adhered to the object to be decomposed is oxidized. Can be disassembled. As the object to be treated,
For example, drainage, food, tableware, kitchenware, kitchenware, a catering facility, and the like can be given. Examples of the clothes to be decomposed include organic substances, microorganisms (for example, Escherichia coli), and the like. According to the oxidative decomposition method of the present invention, sterilization, deodorization, and the like can be more effectively performed using hypochlorite. That is, various articles can be sterilized using the atomic oxygen generated by the method of the present invention.

【0024】[0024]

【発明の効果】本発明により、活性炭等の炭素系担体に
金微粒子を担持した触媒を得ることができる。本発明に
より得られた触媒によって、次亜塩素酸塩から高い効率
で原子状酸素を発生させることができ、殺菌や消臭等に
有用である。更に、本発明により、長期に渡り良好な触
媒活性を維持する触媒を得ることができる。
According to the present invention, it is possible to obtain a catalyst in which gold fine particles are supported on a carbon-based carrier such as activated carbon. The catalyst obtained according to the present invention can generate atomic oxygen from hypochlorite with high efficiency, and is useful for sterilization, deodorization, and the like. Further, according to the present invention, it is possible to obtain a catalyst that maintains good catalytic activity for a long period of time.

【0025】[0025]

【実施例】以下本発明を実施例によりさらに説明する。 実施例1金微粒子担持活性炭の調製 図1に概略説明図を示す装置を用いて金を吸着させた炭
素系担体のプラズマ処理を行った。即ち、市販の活性炭
15gを秤量し、イオン交換水と共沸して活性炭の洗浄
を行った。洗浄後の活性炭を110℃で3時間乾燥、脱
気処理した。得られた活性炭にテトラクロロ金(III)
酸四水和物HAuCl4/4H2O水溶液(0.24M)
を添加し、3時間攪拌した後、室温で110時間放置し
た。更に溶液を蒸発乾固し、110℃で10時間乾燥さ
せ、1wt%の金を担持した活性炭を得た。
The present invention will be further described with reference to the following examples. Example 1 Preparation of Activated Carbon Supporting Gold Fine Particles Using a device schematically shown in FIG. 1, a carbon-based carrier on which gold was adsorbed was subjected to plasma treatment. That is, 15 g of commercially available activated carbon was weighed and azeotroped with ion-exchanged water to wash the activated carbon. The washed activated carbon was dried and degassed at 110 ° C. for 3 hours. Tetrachlorogold (III) on the obtained activated carbon
Acid tetrahydrate HAuCl 4 / 4H 2 O aqueous solution (0.24 M)
Was added and stirred for 3 hours, and then left at room temperature for 110 hours. Further, the solution was evaporated to dryness and dried at 110 ° C. for 10 hours to obtain activated carbon carrying 1 wt% of gold.

【0026】得られた活性炭を処理室3に充填し、次い
で真空ポンプにより処理室3内を0.1torrに減圧
した。所定の圧力にまで減圧した後、300Wのマイク
ロ波(2.45GHz)を処理室に1分間照射して処理
室内をプラズマ状態にした。マイクロ波2分間照射によ
り得られたサンプルをX線回折装置RAD−B(理学電
気製)で分析した結果を図2に示す。図2により、金属
状態の金の存在が確認された。
The obtained activated carbon was charged into the processing chamber 3, and the pressure in the processing chamber 3 was reduced to 0.1 torr by a vacuum pump. After the pressure was reduced to a predetermined pressure, the processing chamber was irradiated with a microwave (2.45 GHz) of 300 W for 1 minute to bring the processing chamber into a plasma state. FIG. 2 shows the results of analyzing a sample obtained by irradiation with microwaves for 2 minutes with an X-ray diffractometer RAD-B (manufactured by Rigaku Denki). FIG. 2 confirmed the presence of gold in the metallic state.

【0027】実施例2担持された金の粒子径測定 プラズマ処理時間を1分、2分、3分又は5分とした以
外は実施例1と同様の方法で複合体を調製し、それぞれ
金を1wt%担持した複合体(触媒)を得た。得られた
複合体(触媒)に担持された金の粒子径を、X線粉末回
折法により測定した。X線回折装置 RAD−B(理学
電気製)を用いて結晶子の粒子径を求めた。結果を表1
に示す。表1より、本発明の方法によって活性炭上に粒
子径が20nm程度の微粒子の金が担持されたことが確
認された。
Example 2 Measurement of Particle Diameter of Supported Gold A composite was prepared in the same manner as in Example 1 except that the plasma treatment time was changed to 1, 2, 3, or 5 minutes, and gold was added. A composite (catalyst) supporting 1 wt% was obtained. The particle size of the gold supported on the obtained composite (catalyst) was measured by an X-ray powder diffraction method. The crystallite particle size was determined using an X-ray diffractometer RAD-B (manufactured by Rigaku Denki). Table 1 shows the results
Shown in From Table 1, it was confirmed that fine gold particles having a particle size of about 20 nm were supported on activated carbon by the method of the present invention.

【式2】 (D;結晶子の粒子径、λ;測定に用いるX線の波長、
θ;ブラッグ角、β;半値幅の広がり(rad))
(Equation 2) (D: particle diameter of crystallite, λ: wavelength of X-ray used for measurement,
θ: Bragg angle, β: spread of half width (rad))

【0028】[0028]

【表1】 [Table 1]

【0029】実施例3原子状酸素発生用触媒能 テトラクロロ金(III)四水和物の濃度や浸漬時間や
乾燥回数を適宜変化させた以外は実施例1と同様の方法
で、金の担持量が、0.1wt%、1wt%、3wt
%、又は5wt%である複合体をそれぞれ調製した。調
製した各複合体(触媒)について、次亜塩素酸ナトリウ
ムからの原子状酸素の発生能について検討した。 (1)金の担持量と触媒能の検討 恒温水槽中に丸底フラスコと冷却管をセットする。3%
NaCl含有NaClO水溶液(1ppm)0.5Lを上記
フラスコに入れ、27℃の水槽に30分間浸す。次い
で、上記の方法で調製した複合体(触媒)をそれぞれ
0.1gフラスコ中の水溶液に入れ、直ちに攪拌を開始
する。ヨウ素滴定法により反応溶液中のNaClOの濃度を
定量した。1時間経過毎に計5回測定を行い、その平均
値を求め、転化率を算出した。結果を図3に示す。尚、
転化率が高い程、触媒が良好な触媒活性を有することを
意味する。参照として、金を担持させずに実施例1と同
様の条件でプラズマ処理を施して測定した活性炭の転化
率は、約50%であった。 (2)触媒活性の経時変化 更に、上記の方法で調製した1wt%又は3wt%の金
をそれぞれ担持した複合体(触媒)について、触媒活性
の経時変化を観察した。恒温水槽中に溶液タンクと反応
管をセットする。反応管中に上記複合体(触媒)をそれ
ぞれ0.5g詰め、50ml/minの流速で3%Na
Cl含有NaClO水溶液(1ppm)を流した。一定時間
毎に流した溶液を回収し、ヨウ素滴定法によりNaClOの
濃度を定量し、時間経過に伴う転化率の変化を観測し
た。結果を図4に示す。図3より、金の担持量が0.1
wt%〜3wt%の複合体(触媒)は、いずれもプラズ
マ処理を施した活性炭(金未担持)の転化率(約50
%)よりも高い転化率を示し、良好な触媒活性を有する
ことが確認された。更に、図4より、金の担持量が1w
t%又は3wt%の複合体(触媒)は、長時間反応溶液
を通した後も高い転化率を示すこと、即ち、高い触媒活
性を維持することが確認された。
Example 3 Catalytic activity of atomic oxygen generation The gold loading was carried out in the same manner as in Example 1 except that the concentration of tetrachlorogold (III) tetrahydrate, the immersion time and the number of times of drying were appropriately changed. The amount is 0.1 wt%, 1 wt%, 3 wt%
% Or 5 wt% of the composite was prepared. For each of the prepared composites (catalysts), the ability to generate atomic oxygen from sodium hypochlorite was examined. (1) Examination of supported amount of gold and catalytic ability A round bottom flask and a cooling tube are set in a constant temperature water bath. 3%
0.5 L of a NaCl-containing aqueous NaClO solution (1 ppm) is placed in the flask, and immersed in a 27 ° C. water bath for 30 minutes. Next, each of the composites (catalysts) prepared by the above method is put into an aqueous solution in a 0.1 g flask, and stirring is immediately started. The concentration of NaClO in the reaction solution was quantified by iodine titration. The measurement was performed 5 times in total every hour, the average value was obtained, and the conversion was calculated. The results are shown in FIG. still,
Higher conversion means that the catalyst has better catalytic activity. For reference, the conversion of activated carbon measured by performing a plasma treatment under the same conditions as in Example 1 without carrying gold was about 50%. (2) Time-dependent change in catalytic activity Further, the time-dependent change in catalytic activity of the composite (catalyst) supporting 1 wt% or 3 wt% of gold prepared by the above method was observed. Set the solution tank and the reaction tube in the constant temperature water bath. 0.5 g of each of the above complexes (catalysts) was packed in a reaction tube, and 3% Na was added at a flow rate of 50 ml / min.
A Cl-containing NaClO aqueous solution (1 ppm) was flowed. The solution flowing at regular intervals was collected, the concentration of NaClO was quantified by iodometric titration, and the change in conversion with time was observed. FIG. 4 shows the results. As shown in FIG.
Each of the composites (catalysts) of 3 wt% to 3 wt% converts the plasma-treated activated carbon (not carrying gold) to a conversion rate (about 50%).
%), And was confirmed to have good catalytic activity. Further, as shown in FIG.
It was confirmed that the composite (catalyst) of t% or 3 wt% shows high conversion even after passing through the reaction solution for a long time, that is, maintains high catalytic activity.

【0030】実施例4触媒耐久性の検討 実施例3において調製した1wt%の金を担持した複合
体(触媒)の触媒活性耐久性について検討した。実施例
3(1)と同様の条件で、1時間経過毎に反応溶液中の
NaClOの濃度を測定し、この操作を30時間繰り返
し、転化率をそれぞれ求めた。結果を図5に示す。図5
より、本発明によって得られた複合体(触媒)は、長期
に渡り良好な触媒活性を示すことが確認された。比較の
ため、ニッケル及びコバルトをそれぞれ1wt%活性炭
に担持し、プラズマ処理した複合体(触媒)の活性耐久
性についても同様の方法で測定した。結果を表2に示
す。
Example 4 Examination of Catalyst Durability The catalyst activity durability of the composite (catalyst) supporting 1 wt% of gold prepared in Example 3 was examined. Under the same conditions as in Example 3 (1), the concentration of NaClO in the reaction solution was measured every hour, and this operation was repeated for 30 hours to determine the conversion. FIG. 5 shows the results. FIG.
Thus, it was confirmed that the composite (catalyst) obtained according to the present invention exhibited good catalytic activity over a long period of time. For comparison, the active durability of a composite (catalyst) plasma-treated with nickel and cobalt loaded on activated carbon at 1 wt% each was measured in the same manner. Table 2 shows the results.

【0031】[0031]

【表2】 [Table 2]

【0032】実施例5プラズマ処理の有無による触媒活性の違い 実施例3において調製した1wt%の金を担持した複合
体(プラズマ処理済み)及び、プラズマ処理を施さない
以外は実施例3と同様の方法で調製した1wt%の金を
担持した複合体の、それぞれの触媒活性を測定した。触
媒活性の評価は、実施例3(1)と同様の方法で行っ
た。結果を図5に示す。図6より、プラズマ処理を施す
ことにより触媒活性が大幅に向上することが確認され
た。
Example 5 Difference in catalytic activity depending on the presence or absence of plasma treatment The same as in Example 3 except that the composite carrying 1 wt% of gold prepared in Example 3 (plasma treated) and no plasma treatment were applied. The catalytic activity of each of the composites supporting 1 wt% of gold prepared by the method was measured. Evaluation of the catalyst activity was performed in the same manner as in Example 3 (1). FIG. 5 shows the results. From FIG. 6, it was confirmed that the catalytic activity was significantly improved by performing the plasma treatment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の触媒の製造に使用したプラズマ処理
装置の概略説明図。
FIG. 1 is a schematic explanatory view of a plasma processing apparatus used for producing a catalyst of the present invention.

【図2】 実施例1で得られたサンプルのRAD−Bに
よる回折パターン。
FIG. 2 is a diffraction pattern by RAD-B of the sample obtained in Example 1.

【図3】 金微粒子担持量と触媒活性との相関を示すグ
ラフ。
FIG. 3 is a graph showing the correlation between the supported amount of gold fine particles and the catalytic activity.

【図4】 本発明の触媒の触媒活性の経時変化を示すグ
ラフ。
FIG. 4 is a graph showing the change over time in the catalytic activity of the catalyst of the present invention.

【図5】 本発明の触媒の触媒耐久性を示すグラフ。FIG. 5 is a graph showing the catalyst durability of the catalyst of the present invention.

【図6】 プラズマ処理前後の触媒活性の違いを示すグ
ラフ。
FIG. 6 is a graph showing a difference in catalytic activity before and after plasma treatment.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/72 C02F 1/72 Z Fターム(参考) 4B021 MC01 MK01 MK08 MP05 4C080 AA07 BB05 MM09 MM40 NN05 QQ11 4D050 AA12 AA15 AB06 AB11 BB07 BC05 BC06 4G042 BA08 BB07 BC06 4G069 AA03 AA08 BA08A BA08B BC33A BC33B CD10 DA05 EA02X EA02Y EA03X EB18X EB18Y FA01 FA02 FB14 FB58 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 1/72 C02F 1/72 Z F term (Reference) 4B021 MC01 MK01 MK08 MP05 4C080 AA07 BB05 MM09 MM40 NN05 QQ11 4D050 AA12 AA15 AB06 AB11 BB07 BC05 BC06 4G042 BA08 BB07 BC06 4G069 AA03 AA08 BA08A BA08B BC33A BC33B CD10 DA05 EA02X EA02Y EA03X EB18X EB18Y FA01 FA02 FB14 FB58

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 炭素系担体に金微粒子を担持した複合体
からなる原子状酸素発生用触媒。
1. An atomic oxygen generating catalyst comprising a composite in which gold particles are supported on a carbon-based carrier.
【請求項2】 シェーラーの式に基づいて求められた金
微粒子の一次粒子の平均粒子径が5〜30nmの範囲で
ある請求項1に記載の触媒。
2. The catalyst according to claim 1, wherein the average primary particle size of the gold fine particles determined based on the Scherrer's formula is in the range of 5 to 30 nm.
【請求項3】炭素系担体が、活性炭または繊維状炭素で
ある請求項1又は2に記載の触媒。
3. The catalyst according to claim 1, wherein the carbon-based support is activated carbon or fibrous carbon.
【請求項4】 炭素系担体に金含有化合物を吸着させ、
次いで前記金含有化合物を吸着させた炭素系担体をプラ
ズマ処理することにより、前記金含有化合物を金微粒子
に変換させることを含む、炭素系担体に金微粒子を担持
した複合体の製造方法。
4. A method for adsorbing a gold-containing compound on a carbon-based carrier,
Next, a method for producing a composite in which gold particles are supported on a carbon-based carrier, comprising converting the gold-containing compound into fine gold particles by subjecting the carbon-containing carrier to which the gold-containing compound is adsorbed to plasma treatment.
【請求項5】 炭素系担体が、活性炭または繊維状炭素
である請求項4に記載の製造方法。
5. The method according to claim 4, wherein the carbon-based carrier is activated carbon or fibrous carbon.
【請求項6】 炭素系担体を金含有化合物を含む水溶液
に浸漬し、乾燥することで炭素系担体に金含有化合物を
吸着させる請求項4又は5に記載の製造方法。
6. The production method according to claim 4, wherein the carbon-based carrier is immersed in an aqueous solution containing a gold-containing compound and dried to adsorb the gold-containing compound on the carbon-based carrier.
【請求項7】 プラズマ処理が減圧下、または常圧下で
行われる請求項4〜6のいずれか1項に記載の製造方
法。
7. The method according to claim 4, wherein the plasma treatment is performed under reduced pressure or normal pressure.
【請求項8】 プラズマ処理が不活性ガス雰囲気中で行
われる請求項4〜7のいずれか1項に記載の製造方法。
8. The method according to claim 4, wherein the plasma treatment is performed in an inert gas atmosphere.
【請求項9】プラズマ処理がマイクロ波プラズマ、また
はRFプラズマである請求項4〜8のいずれか1項に記載
の製造方法。
9. The manufacturing method according to claim 4, wherein the plasma processing is microwave plasma or RF plasma.
【請求項10】 請求項1〜3のいずれか一項に記載の
触媒の存在下、次亜塩素酸塩を分解することを含む原子
状酸素を発生させる方法。
10. A method for generating atomic oxygen, comprising decomposing hypochlorite in the presence of the catalyst according to claim 1. Description:
【請求項11】 次亜塩素酸塩が次亜塩素酸ナトリウム
または次亜塩素酸カルシウムである請求項10記載の方
法。
11. The method according to claim 10, wherein the hypochlorite is sodium hypochlorite or calcium hypochlorite.
【請求項12】 請求項10または11の方法により発
生させた原子状酸素と被処理物とを接触させることによ
り、被処理物に含まれるか、または付着する被分解物を
酸化させることを含む酸化分解方法。
12. A method comprising contacting atomic oxygen generated by the method according to claim 10 with an object to oxidize a substance contained in or adhered to the object. Oxidative decomposition method.
【請求項13】 被処理物が排水、食品、食器、厨房用
品、台所用品、または給食施設である請求項12記載の
方法。
13. The method according to claim 12, wherein the object to be treated is drainage, food, tableware, kitchenware, kitchenware, or a catering facility.
【請求項14】 被分解物が有機物、微生物である請求
項12または13記載の方法。
14. The method according to claim 12, wherein the substance to be decomposed is an organic substance or a microorganism.
【請求項15】 請求項10または11の方法により発
生させた原子状酸素を用いる殺菌方法。
15. A sterilization method using atomic oxygen generated by the method according to claim 10.
JP2000217025A 2000-07-18 2000-07-18 Catalyst for generating atomic oxygen, producing method thereof and method for generating atomic oxygen Pending JP2002028487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000217025A JP2002028487A (en) 2000-07-18 2000-07-18 Catalyst for generating atomic oxygen, producing method thereof and method for generating atomic oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000217025A JP2002028487A (en) 2000-07-18 2000-07-18 Catalyst for generating atomic oxygen, producing method thereof and method for generating atomic oxygen

Publications (1)

Publication Number Publication Date
JP2002028487A true JP2002028487A (en) 2002-01-29

Family

ID=18712197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000217025A Pending JP2002028487A (en) 2000-07-18 2000-07-18 Catalyst for generating atomic oxygen, producing method thereof and method for generating atomic oxygen

Country Status (1)

Country Link
JP (1) JP2002028487A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011056428A (en) * 2009-09-11 2011-03-24 Hokkaido Univ Apparatus for manufacturing metal-supported material and method of manufacturing metal-supported material
CN106803595A (en) * 2016-12-28 2017-06-06 深圳大学 A kind of carbon-based oxygen reduction catalyst and preparation method and application
CN115487534A (en) * 2022-10-10 2022-12-20 北京金山生态动力素制造有限公司 Process for the preparation of mineral solutions

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011056428A (en) * 2009-09-11 2011-03-24 Hokkaido Univ Apparatus for manufacturing metal-supported material and method of manufacturing metal-supported material
CN106803595A (en) * 2016-12-28 2017-06-06 深圳大学 A kind of carbon-based oxygen reduction catalyst and preparation method and application
CN106803595B (en) * 2016-12-28 2020-04-28 深圳大学 Carbon-based oxygen reduction catalyst and preparation method and application thereof
CN115487534A (en) * 2022-10-10 2022-12-20 北京金山生态动力素制造有限公司 Process for the preparation of mineral solutions
CN115487534B (en) * 2022-10-10 2023-07-21 北京金山生态动力素制造有限公司 Process for preparing mineral solutions

Similar Documents

Publication Publication Date Title
Li et al. Enhanced generation of reactive oxygen species under visible light irradiation by adjusting the exposed facet of FeWO4 nanosheets to activate oxalic acid for organic pollutant removal and Cr (VI) reduction
Wang et al. Facile construction of novel organic–inorganic tetra (4-carboxyphenyl) porphyrin/Bi2MoO6 heterojunction for tetracycline degradation: Performance, degradation pathways, intermediate toxicity analysis and mechanism insight
Hu et al. Application of nickel foam-supported Co3O4-Bi2O3 as a heterogeneous catalyst for BPA removal by peroxymonosulfate activation
Jin et al. Peroxymonosulfate activation by Fe3O4-MnO2/CNT nanohybrid electroactive filter towards ultrafast micropollutants decontamination: Performance and mechanism
Zhou et al. Cobalt (0/II) incorporated N-doped porous carbon as effective heterogeneous peroxymonosulfate catalyst for quinclorac degradation
Chen et al. Preparation and sono-Fenton performance of 4A-zeolite supported α-Fe2O3
Li et al. Efficient peroxymonosulfate activation by CoFe2O4-CeO2 composite: Performance and catalytic mechanism
Rad et al. N-doped graphitic carbon as a nanoporous MOF-derived nanoarchitecture for the efficient sonocatalytic degradation process
Horikoshi et al. Photochemistry with microwaves: Catalysts and environmental applications
Liu et al. Highly dispersed copper single-atom catalysts activated peroxymonosulfate for oxytetracycline removal from water: Mechanism and degradation pathway
Palomares et al. The use of Pd catalysts on carbon-based structured materials for the catalytic hydrogenation of bromates in different types of water
Zhao et al. MOFs-derived MnOx@ C nanosheets for peroxymonosulfate activation: Synergistic effect and mechanism
Kim et al. Titanium dioxide surface modified with both palladium and fluoride as an efficient photocatalyst for the degradation of urea
Asgari et al. The catalytic ozonation of diazinon using nano-MgO@ CNT@ Gr as a new heterogenous catalyst: the optimization of effective factors by response surface methodology
CN108940376A (en) A kind of surface organic complex copper sulfide fenton catalyst and its synthetic method and application
Guo et al. Co3O4/CoO ceramic catalyst: Bisulfite assisted catalytic degradation of methylene blue
Ribbens et al. Unraveling the photocatalytic activity of multiwalled hydrogen trititanate and mixed-phase anatase/trititanate nanotubes: a combined catalytic and EPR study
He et al. Degradation intermediates of Amitriptyline and fundamental importance of transition metal elements in LDH-based catalysts in Heterogeneous Electro-Fenton system
KR20180051250A (en) Hydrogen peroxide decomposition catalysts and preparation method thereof, apparatus and method for decomposing hydrogen peroxide
Khiem et al. Boosting elimination of sunscreen, Tetrahydroxybenzophenone (BP-2), from water using monopersulfate activated by thorny NanoBox of Co@ C prepared via the engineered etching strategy: A comparative and mechanistic investigation
JP2002028487A (en) Catalyst for generating atomic oxygen, producing method thereof and method for generating atomic oxygen
JP2008280184A (en) Composite of ultrafine particle of cerium-containing mesoporous silica and noble metal, production method of the composite, oxidative exclusion method of minute amount of carbon monoxide by using the complex as catalyst, and synthetic method of ketone by oxidative dehydrogenation of alcohol
Zhang et al. Kinetic study of the visible light-induced sonophotocatalytic degradation of MB solution in the presence of Fe/TiO 2-MWCNT catalyst
JP4247780B2 (en) Novel photocatalyst and method for detoxifying harmful organic substances using the same
JPH1128360A (en) Atomic oxygen-generating catalyst and method for generating atomic oxygen