JP2002027663A - Distance relay - Google Patents
Distance relayInfo
- Publication number
- JP2002027663A JP2002027663A JP2000201490A JP2000201490A JP2002027663A JP 2002027663 A JP2002027663 A JP 2002027663A JP 2000201490 A JP2000201490 A JP 2000201490A JP 2000201490 A JP2000201490 A JP 2000201490A JP 2002027663 A JP2002027663 A JP 2002027663A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- distance relay
- relay element
- failure
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Emergency Protection Circuit Devices (AREA)
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Measurement Of Resistance Or Impedance (AREA)
- Locating Faults (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、電力系統におけ
る故障相を選別する機能を持つ距離継電装置に関するも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distance relay device having a function of selecting a failed phase in a power system.
【0002】[0002]
【従来の技術】図11は、例えば特開 昭63−526
21号公報の第5図で示された従来の距離継電装置の直
接接地系用保護の場合において、保護シーケンスを示す
ブロック図である。図において、1は短絡保護距離継電
要素であり、その出力は短絡故障時における継電出力を
示す。2は地絡保護距離継電要素であり、距離継電要素
1段と2段、3段とに出力が分離されている。3−1〜
3−3はそれぞれA相、B相、C相の不足電圧継電要素
である。4−1〜4−5はそれぞれAND回路、5−1
はOR回路、6−1はNOT回路である。2. Description of the Related Art FIG.
FIG. 5 is a block diagram showing a protection sequence in the case of protection for a direct grounding system of the conventional distance relay device shown in FIG. In the figure, reference numeral 1 denotes a short-circuit protection distance relay element, and its output indicates a relay output at the time of a short-circuit fault. Reference numeral 2 denotes a ground fault protection distance relay element, whose output is separated into one, two, and three distance relay elements. 3-1
Reference numeral 3-3 denotes an undervoltage relay element of A phase, B phase, and C phase, respectively. 4-1 to 4-5 are AND circuits and 5-1 respectively.
Is an OR circuit, and 6-1 is a NOT circuit.
【0003】次に動作について説明する。地絡距離継電
要素1段の第一の出力は、キャリア使用中の条件ととも
にAND回路4−1の入力となり、その出力は不足電圧
継電要素3−1〜3−3のそれぞれの相の出力とともに
AND回路4−2〜4−4に入力されて、これらの出力
が各々の相のトリップ出力となる。Next, the operation will be described. The first output of the ground fault distance relay element one stage is input to the AND circuit 4-1 together with the condition during use of the carrier, and the output is the output of each phase of the undervoltage relay elements 3-1 to 3-3. The outputs are input to AND circuits 4-2 to 4-4, and these outputs become trip outputs of the respective phases.
【0004】また地絡距離継電要素1段の第二の出力
は、キャリア使用中の条件を、NOT回路6−1で反転
させた条件とともにAND回路4−5に入力され、同A
ND回路4−5の出力が、短絡保護距離継電の出力と地
絡距離継電要素2段、3段の出力とともにOR回路5−
1に入力され、同OR回路5−1の出力により3相トリ
ップとなる。The second output of the ground fault distance relay element is input to an AND circuit 4-5 together with a condition in which a carrier is being used, which is inverted by a NOT circuit 6-1.
The output of the ND circuit 4-5 is an OR circuit 5-5 together with the output of the short-circuit protection distance relay, the output of the ground fault distance relay element in two stages, and the output of the three stages.
1 and a three-phase trip by the output of the OR circuit 5-1.
【0005】そして、事故が短絡事故または地絡事故で
あっても地絡距離継電要素2段、3段の要素が動作した
時や、地絡距離継電要素の瞬時要素の1段要素が動作し
た時であってもキャリア不使用で高速再閉路ができない
時には3相トリップとなり、キャリア使用中の条件で地
絡1段要素動作時に不足電圧継電の動作相に従って単独
再閉路を行っている。[0005] Even if the accident is a short-circuit accident or a ground fault, when two or three elements of the ground fault distance relay element operate, or when one of the instantaneous elements of the ground fault distance relay element is operated, Even if it operates, when the carrier is not used and high-speed reclosing is not possible, a three-phase trip occurs, and the single reclosing is performed according to the operating phase of the undervoltage relay at the time of the one-stage ground fault element operation under the condition of using the carrier. .
【0006】このように従来は、単相再閉路において各
相不足電圧継電要素3−1〜3−3により何相トリップ
かを判断していた。この例に示すように、2相以上の故
障時には3相トリップ、1相故障時のみ各相トリップで
よいというシーケンスでは、故障時に健全相電圧が低下
しない場合には相判別に各相不足電圧継電を使うことは
有効であるが、実際に生じた故障の種類が、たとえば、
AB相短絡故障の場合、CA相、BC相短絡要素が、正
確に故障距離を測れず、それらによるオーバリーチ、方
向誤判定の可能性や、A相地絡故障でも、地絡要素演算
に用いられる、零相補償演算のため、B相、C相の地絡
要素も動作することがあった。As described above, conventionally, in each single-phase reclosing circuit, the number of phase trips is determined by each phase undervoltage relay element 3-1 to 3-3. As shown in this example, in a sequence in which a three-phase trip can be performed when two or more phases fail, and a single-phase trip can be performed only when a one-phase failure occurs, if the healthy phase voltage does not decrease at the time of failure, each phase undervoltage relay is performed in the phase determination. It is effective to use electricity, but the type of failure that actually occurred
In the case of the AB-phase short-circuit fault, the CA-phase and BC-phase short-circuit elements cannot accurately measure the fault distance, and are used for the ground fault element calculation even in the possibility of overreach and erroneous determination due to the fault distance and the A-phase ground fault. , B-phase and C-phase ground fault elements may also operate due to the zero-phase compensation calculation.
【0007】[0007]
【発明が解決しようとする課題】従来の距離継電方式に
よる保護継電装置は以上のように構成されているので、
故障種類の判別までできず、また故障相以外の要素を誤
って故障相と判別してしまう場合があるという問題点が
あった。故障相以外の相を動作判定すると、正確にイン
ピーダンス計算が反映されないので、前方遠方故障での
オーバリーチ、背後故障での誤動作の原因になる。The protection relay device of the conventional distance relay system is configured as described above.
There has been a problem that it is not possible to determine the failure type, and that elements other than the failure phase may be erroneously determined to be the failure phase. If the operation of a phase other than the failed phase is determined, the impedance calculation is not accurately reflected, which may cause an overreach in a distant forward failure and a malfunction in a rear failure.
【0008】この発明は上記のような問題点を解決する
ためになされたもので、故障種類の判別すると共に、故
障相以外の要素を誤って故障相と判別してしまわない距
離継電装置を提供することを目的とする。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and a distance relay device which not only determines a failure type but also does not mistakenly determine an element other than the failure phase as a failure phase. The purpose is to provide.
【0009】[0009]
【課題を解決するための手段】(1)この発明の請求項
1は、三相交流電力系統の保護を行う距離継電装置にお
いて、各相の地絡距離継電要素と、各相の短絡距離継電
要素と、零相過電流継電要素と、上記地絡距離継電要素
または短絡距離継電要素の動作に応じて各相間電圧を導
出する導出手段と、上記地絡距離継電要素の1つまたは
2つの要素が動作し、且つ、上記零相過電流継電要素が
動作したとき、または、上記短絡距離継電要素の1つま
たは2つの要素が動作し、且つ、上記零相過電流継電要
素が動作しないときは、上記導出手段で導出した各相間
電圧の内、最も小さな電圧の相を2線故障についての故
障相と判別する判別手段とを備えたものである。According to a first aspect of the present invention, in a distance relay device for protecting a three-phase AC power system, a ground fault distance relay element of each phase and a short circuit of each phase are provided. Distance relay element, zero-phase overcurrent relay element, deriving means for deriving each inter-phase voltage according to the operation of the ground fault distance relay element or the short-circuit distance relay element, and the ground fault distance relay element When one or two elements of the above-mentioned elements operate and the zero-phase overcurrent relay element operates, or one or two elements of the short-circuit distance relay element operate and the zero-phase When the overcurrent relay element does not operate, there is provided a discriminating means for discriminating a phase having the smallest voltage among the inter-phase voltages derived by the deriving means as a failure phase for a two-wire failure.
【0010】(2)この発明の請求項2は、三相交流電
力系統の保護を行う距離継電装置において、各相の地絡
距離継電要素と、各相の短絡距離継電要素と、零相過電
流継電要素と、上記地絡距離継電要素または短絡距離継
電要素の動作に応じて各相電圧を導出する導出手段と、
上記地絡距離継電要素の1つまたは2つの要素が動作
し、且つ、上記零相過電流継電要素が動作したとき、ま
たは、上記短絡距離継電要素の1つまたは2つの要素が
動作し、且つ、上記零相過電流継電要素が動作しないと
きは、上記導出手段で導出した各相電圧の内、最も大き
い電圧の相を2線故障についての健全相と判別し、健全
相以外の相を故障相とする判別手段とを備えたものであ
る。(2) A distance relay device for protecting a three-phase AC power system according to claim 2 of the present invention, wherein a ground fault distance relay element of each phase, a short-circuit distance relay element of each phase, Zero-phase overcurrent relay element, deriving means for deriving each phase voltage according to the operation of the ground fault distance relay element or the short-circuit distance relay element,
When one or two of the ground fault distance relay elements operate and the zero-phase overcurrent relay element operates, or one or two elements of the short circuit distance relay element operate. When the zero-phase overcurrent relay element does not operate, the phase having the largest voltage among the phase voltages derived by the deriving means is determined to be the healthy phase for the two-wire failure, and the phase other than the healthy phase is determined. And a determining means for setting the phase as a failure phase.
【0011】(3)この発明の請求項3は、三相交流電
力系統の保護を行う距離継電装置において、各相の地絡
距離継電要素と、各相の短絡距離継電要素と、零相過電
流継電要素と、上記地絡距離継電要素または短絡距離継
電要素の動作に応じて各相電圧を導出する導出手段と、
上記地絡距離継電要素の1つまたは2つの要素が動作
し、且つ、上記零相過電流継電要素が動作したとき、ま
たは、上記短絡距離継電要素の1つまたは2つの要素が
動作し、且つ、上記零相過電流継電要素が動作しないと
きは、上記導出手段で導出した各相電圧の内、最も小さ
い電圧の相を1線故障についての故障相と判別する判別
手段とを備えたものである。(3) A distance relay device for protecting a three-phase AC power system according to a third aspect of the present invention, wherein a ground fault distance relay element of each phase, a short-circuit distance relay element of each phase, Zero-phase overcurrent relay element, deriving means for deriving each phase voltage according to the operation of the ground fault distance relay element or the short-circuit distance relay element,
When one or two of the ground fault distance relay elements operate and the zero-phase overcurrent relay element operates, or one or two elements of the short circuit distance relay element operate. And when the zero-phase overcurrent relay element does not operate, determining means for determining the phase of the smallest voltage among the phase voltages derived by the deriving means as a failure phase for one-line failure. It is provided.
【0012】(4)この発明の請求項3は、三相交流電
力系統の保護を行う距離継電装置において、各相の地絡
距離継電要素と、零相過電流継電要素と、上記地絡距離
継電要素の動作に応じて各相インピーダンス量を導出す
る導出手段と、上記地絡距離継電要素の1つまたは2つ
の要素が動作し、且つ、上記零相過電流継電要素が動作
したとき、上記導出手段で導出した各相インピーダンス
量の内、最も小さいインピーダンス量の相を1線故障で
の故障相と判別する判別手段とを備えたものである。(4) A distance relay device for protecting a three-phase AC power system according to a third aspect of the present invention, wherein the ground fault distance relay element of each phase, the zero-phase overcurrent relay element, Deriving means for deriving the amount of impedance of each phase according to the operation of the ground fault distance relay element, one or two of the ground fault distance relay elements operate, and the zero-phase overcurrent relay element Is operated, the discriminating means is provided for discriminating the phase having the smallest impedance amount among the phase impedance amounts derived by the deriving means as the failure phase due to the one-line failure.
【0013】(5)この発明の請求項5は、三相交流電
力系統の保護を行う距離継電装置において、各相の短絡
距離継電要素と、零相過電流継電要素と、上記短絡距離
継電要素の動作に応じて各相間の短絡インピーダンス量
を導出する導出手段と、上記短絡距離継電要素の1つま
たは2つの要素が動作し、且つ、上記零相過電流継電要
素が動作しないときは、上記導出手段で導出した各相短
絡インピーダンス量の内、最も小さい短絡インピーダン
ス量の相を2線故障についての故障相と判別する判別手
段とを備えたものである。(5) A distance relay device for protecting a three-phase AC power system, wherein the short-circuit distance relay element of each phase, the zero-phase overcurrent relay element, and the short circuit Deriving means for deriving the short-circuit impedance amount between the phases according to the operation of the distance relay element, one or two elements of the short-circuit distance relay element operate, and the zero-phase overcurrent relay element When it does not operate, it is provided with a discriminating means for discriminating a phase having the smallest short-circuit impedance amount among the phase short-circuit impedance amounts derived by the deriving means as a failure phase for a two-wire failure.
【0014】(6)この発明の請求項6は、三相交流電
力系統の保護を行う距離継電装置において、各相の地絡
距離継電要素と、各相の短絡距離継電要素と、零相過電
流継電要素と、上記地絡距離継電要素または短絡距離継
電要素の動作に応じて各相別の正相電圧と逆相電圧との
位相角を導出する導出手段と、上記地絡距離継電要素の
1つまたは2つの要素が動作し、且つ、上記零相過電流
継電要素が動作したとき、または、上記短絡距離継電要
素の1つまたは2つの要素が動作し、且つ、上記零相過
電流継電要素が動作しないときは、上記導出手段で導出
した各相別の位相角の差が180度近傍であればその相
を1線故障についての故障相と判別する判別手段とを備
えたものである。(6) A distance relay device for protecting a three-phase AC power system according to claim 6 of the present invention, wherein a ground fault distance relay element of each phase, a short-circuit distance relay element of each phase, Zero-phase overcurrent relay element, deriving means for deriving a phase angle between a positive-phase voltage and a negative-phase voltage for each phase according to the operation of the ground fault distance relay element or the short-circuit distance relay element, When one or two elements of the ground fault distance relay element operate and the zero-phase overcurrent relay element operates, or one or two elements of the short circuit distance relay element operate. When the zero-phase overcurrent relay element does not operate, if the phase angle difference for each phase derived by the deriving means is near 180 degrees, the phase is determined to be the failure phase for one-line failure. And determination means for performing the determination.
【0015】(7)この発明の請求項7は、請求項3,
4,6のいずれか1項の距離継電装置において、前方方
向要素を設け、この前方方向要素が動作したとき、判定
手段で故障相を判定するようにして、前方故障で1線故
障の故障相を判別するものである。(7) A seventh aspect of the present invention is the third aspect.
In the distance relay device according to any one of 4, 6 and 7, a forward direction element is provided, and when the forward direction element operates, a failure phase is determined by the determination means, so that a one-line failure occurs due to a forward failure. This is to determine the phase.
【0016】(8)この発明の請求項8は、請求項1〜
7のいずれか1項の距離継電装置において、判別手段で
故障相が判別されると、故障相以外の相の動作をロック
するようにしたものである。(8) Claim 8 of the present invention relates to claims 1 to
7. In the distance relay device according to any one of 7, the operation of the phases other than the failed phase is locked when the failed phase is determined by the determining means.
【0017】[0017]
【発明の実施の形態】実施の形態1.以下、この発明の
実施の形態1を図に基づいて説明する。図1は距離継電
装置の論理回路内で各要素のシーケンス処理を行う図で
ある。図1において、7−1〜7−3はそれぞれ短絡距
離継電要素、8−1〜8−3はそれぞれ地絡距離継電要
素、9−1〜9−6は短絡距離継電要素7−1〜7−
3、地絡距離継電要素8−1〜8−3が動作した時の動
作相を含む各相電圧を保存する相電圧保存処理、10は
地絡検出用零相過電流継電要素、11〜14,18は動
作相のチェック、15〜17は故障相の選別処理、19
〜21は故障相以外の健全相のロック処理を示す。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating the sequence processing of each element in the logic circuit of the distance relay device. In FIG. 1, 7-1 to 7-3 are short-distance relay elements, 8-1 to 8-3 are ground-fault relay elements, and 9-1 to 9-6 are short-distance relay elements 7-. 1-7-
3, a phase voltage storage process for storing each phase voltage including an operation phase when the ground fault distance relay elements 8-1 to 8-3 operate, 10 is a zero-phase overcurrent relay element for detecting a ground fault, 11 14 and 18 are operating phase checks, 15 to 17 are faulty phase selection processes, 19
21 to 21 indicate lock processing of a healthy phase other than the failed phase.
【0018】次に動作について説明する。 (1)図1で各継電要素7−1〜7−3、8−1〜8−
3、10の動作時はY方向へ不動作時はN方向へ分岐さ
れる。各継電器要素の演算は全ての演算が直列に実行さ
れる。 (2)地絡短絡距離継電要素7−1〜7−3、地絡距離
継電要素8−1〜8−3は短絡・地絡用継電要素の応答
をあらかじめ定義された演算式に応じて演算する。Next, the operation will be described. (1) In FIG. 1, each relay element 7-1 to 7-3, 8-1 to 8-
When the operation is performed in steps 3 and 10, the operation is branched in the Y direction. All operations of each relay element are executed in series. (2) The ground fault short-circuit distance relay elements 7-1 to 7-3 and the ground fault distance relay elements 8-1 to 8-3 convert the response of the short-circuit / ground short-circuit relay element into a predetermined arithmetic expression. Calculate accordingly.
【0019】(3)動作時の相電圧保存処理9−1〜9
−6は短絡距離継電要素7−1〜7−3、地絡距離継電
要素8−1〜8−3が動作してY方向に進んだ時に、動
作した相および健全相の相電圧の保存処理を行う。 (4)地絡検出用零相過電流継電要素10の51Gで、
零相電流を用い継電要素を演算し、動作している場合に
はY方向に進み、不動作の場合にはN方向に進む。(3) Phase voltage preservation processing 9-1 to 9 during operation
-6 is the phase voltage of the operated phase and the healthy phase when the short-circuit distance relay elements 7-1 to 7-3 and the ground-fault distance relay elements 8-1 to 8-3 operate and move in the Y direction. Perform save processing. (4) 51G of the zero-phase overcurrent relay element 10 for ground fault detection,
The relay element is calculated using the zero-sequence current, and proceeds in the Y direction when operating, and proceeds in the N direction when not operating.
【0020】(5)地絡検出用零相過電流継電要素10
が不動作時、電力系統は健全か、短絡事故であるから1
3に進み、相電圧保存処理9−1〜9−3の相電圧を元
に動作相をチェックする。 (6)3相とも動作しているならば3相短絡故障と判別
する。 (7)3相とも動作していなければ14に進み相電圧保
存処理9−1〜9−3で保存された相電圧を元に2相動
作か否か判別し、2相であれば2相短絡故障、成立しな
ければ健全と判別する。(5) Zero-phase overcurrent relay element 10 for ground fault detection
Is not operating, the power system is sound or short circuit has occurred.
Proceeding to 3, the operation phase is checked based on the phase voltages of the phase voltage storage processes 9-1 to 9-3. (6) If all three phases are operating, it is determined that a three-phase short-circuit fault has occurred. (7) If all three phases are not operating, the process proceeds to step 14, and it is determined whether or not a two-phase operation is performed based on the phase voltages stored in the phase voltage storage processes 9-1 to 9-3. If a short-circuit failure is not established, it is determined to be sound.
【0021】(8)地絡検出用零相過電流継電要素10
が動作時は地絡故障であるから、11で相電圧保存処理
9−4〜9−6の動作時相電圧保存情報を元に1相が動
作しているか否かをチェックする。 (9)1相だけであれば1相地絡故障と判別する。 (10)1相でない場合、2相地絡の可能性が高く、1
2に進み相電圧保存処理〜9−6の動作電圧保存情報を
元に2相であることを検出して2相地絡と判別する。 (11)2相でなければ、18に進み3相動作であれ
ば、3相短絡と判別する。 (12)このようにして故障種類を分類した後、11,
12,14がYであれば、15〜17で故障相の選別処
理を行う。(8) Zero-phase overcurrent relay element 10 for ground fault detection
Is a ground fault at the time of operation, it is checked at 11 whether or not one phase is operating based on the operating phase voltage storage information of the phase voltage storage processes 9-4 to 9-6. (9) If there is only one phase, it is determined that the fault is a one-phase ground fault. (10) If it is not one phase, the possibility of two-phase ground fault is high and 1
The process proceeds to step 2 to detect two phases based on the operating voltage storage information of the phase voltage storage processing to 9-6 and determine that the ground is a two-phase ground fault. (11) If it is not two-phase, proceed to 18 and if it is a three-phase operation, determine that it is a three-phase short circuit. (12) After classifying the fault types in this way,
If 12 and 14 are Y, a fault phase selection process is performed in 15 to 17.
【0022】15〜17の各故障相選別処理の内容は同
一であり、具体的な処理内容の一例として、故障選別処
理17の処理を図2に示す故障相選別フローチャートで
説明する。図2において、22は動作時の相電圧保存処
理9−4〜9−6で保存された電圧から相間電圧を算出
する演算処理、23はVABとVBCの電圧比較、24
はVABとVCAの電圧比較、25はVBCとVCAの
電圧比較である。The contents of the fault phase selection processes 15 to 17 are the same, and the process of the fault selection process 17 will be described as a specific example of the process with reference to the fault phase selection flowchart shown in FIG. In FIG. 2, reference numeral 22 denotes an arithmetic operation for calculating an inter-phase voltage from the voltages stored in the phase voltage storage processes 9-4 to 9-6 during operation; 23, a voltage comparison between VAB and VBC;
Is a voltage comparison between VAB and VCA, and 25 is a voltage comparison between VBC and VCA.
【0023】次に動作について説明する。 (1)図1の動作時の相電圧保存処理9−4〜9−6で
保存された相電圧VA、VB、VCが、22に入力さ
れ、各相の相間電圧VAB、VBC、VCAを算出し、
VABとVBCの電圧比較23に入力される。(この
場合、相間電圧VAB、VBC、VCAの内、少なくと
も1つの相電圧が低下して、地絡距離継電要素8−1〜
8―3の少なくとも1つの要素が動作し、相電圧保存処
理9−1〜9−6に要素動作時の各相電圧が保存されて
いる。但し、ここでは故障選別処理17なので12の2
相動作ありの判断では2つの要素が動作し、その相電圧
か保存されている。)Next, the operation will be described. (1) The phase voltages VA, VB, and VC stored in the phase voltage storage processes 9-4 to 9-6 during the operation in FIG. 1 are input to 22, and the inter-phase voltages VAB, VBC, and VCA of each phase are calculated. And
It is input to a voltage comparison 23 between VAB and VBC. (In this case, at least one of the inter-phase voltages VAB, VBC, and VCA decreases, and the ground fault distance relay elements 8-1 to 8-1
At least one element of 8-3 operates, and each phase voltage at the time of element operation is stored in the phase voltage storage processing 9-1 to 9-6. However, in this case, the failure selection processing 17 is performed, so that
In the determination of the presence of the phase operation, two elements operate and their phase voltages are stored. )
【0024】(2)23では電圧比較判定を行い、VA
B<VBCであれば、VABとVCAの電圧比較24で
電圧比較判定を行い、VAB<VCAであれば、VAB
が最も電圧の低下している電圧と判定し、地絡2線故障
(2φG)についての故障相(即ちAB相故障)と判別
する。(2) At 23, a voltage comparison judgment is made, and VA
If B <VBC, a voltage comparison determination is made in the voltage comparison 24 between VAB and VCA, and if VAB <VCA, VAB
Is determined to be the voltage with the lowest voltage, and is determined to be the failure phase (ie, AB phase failure) for the ground fault two-wire failure (2φG).
【0025】(3)VABとVBCの電圧比較判定23
でVAB>VBCであれば、VBCとVCAの電圧比較
25で電圧比較判定を行い、VBC<VCAであればV
BCが最も電圧の低下している電圧と判定し、地絡2線
故障(2φG)についての故障相(即ちBC相故障)と
判別する。(3) Voltage comparison between VAB and VBC 23
If VAB> VBC, a voltage comparison judgment is made in the voltage comparison 25 between VBC and VCA, and if VBC <VCA, V
It is determined that BC is the voltage with the lowest voltage, and is determined to be the failure phase (ie, BC phase failure) for the ground fault 2-wire failure (2φG).
【0026】(4)電圧比較判定25でVBC>VCA
であれば、VCAが最も電圧の低下している電圧と判定
し、地絡2線故障(2φG)についての故障相(即ちC
A相故障)と判別する。また、電圧比較判定24でVA
B>VCAであれば、VCAが最も電圧の低下している
電圧と判定し、同じく2線故障(2φG)についての故
障相(即ちCA相故障)と判別する。 (5)さらに、図1のロック処理21で故障相以外の相
の動作のロックを行う。(4) In the voltage comparison judgment 25, VBC> VCA
, VCA is determined to be the voltage with the lowest voltage, and the fault phase (ie, C
A failure). In addition, when the voltage comparison
If B> VCA, it is determined that VCA is the voltage with the lowest voltage, and similarly, it is determined that the failure phase is a two-wire failure (2φG) (that is, a CA phase failure). (5) Further, the operation of phases other than the failed phase is locked by the lock processing 21 of FIG.
【0027】なお、短絡2線故障(2φS)についても
同様に最も電圧の低下している電圧を判定し、短絡2線
故障についての故障相と判別し、故障相以外の相の動作
をロックさせることができる。これにより、2線故障で
の故障相以外の他の2相短絡要素の動作によるオーバリ
ーチや背後故障での誤動作を防ぐことができる。Similarly, for the short-circuit two-wire fault (2φS), the voltage at which the voltage is the lowest is determined, the fault phase is determined for the short-circuit two-wire fault, and the operation of the phases other than the fault phase is locked. be able to. As a result, it is possible to prevent an overreach due to the operation of the two-phase short-circuit element other than the failure phase in the two-wire failure and a malfunction due to the failure behind the two-phase failure element.
【0028】実施の形態2.実施の形態1では、各相の
相間電圧VAB、VBC、VCAを比較して故障相を判
定する手段について述べたが、この実施の形態では、「
相間電圧」 の代わりに「 相電圧」 を使用し、相電圧の比
較に基づいて最大電圧相を健全相と判定し、残りの相を
故障相(2線故障)とするものである。Embodiment 2 In the first embodiment, the means for comparing the inter-phase voltages VAB, VBC, and VCA of each phase to determine a failed phase has been described.
"Phase voltage" is used in place of "inter-phase voltage", the maximum voltage phase is determined to be a healthy phase based on the comparison of phase voltages, and the remaining phases are determined to be failure phases (two-wire failure).
【0029】以下、この発明の実施の形態2を図3に基
づいて説明する。なお、距離継電装置の論理回路内で各
要素のシーケンス処理を行う図は実施の形態1の図1の
シーケンス図と同様であるので省略する。Hereinafter, a second embodiment of the present invention will be described with reference to FIG. A diagram for performing the sequence processing of each element in the logic circuit of the distance relay device is the same as the sequence diagram of FIG.
【0030】次に動作について説明する。故障種類を分
類した後、図1の15〜17で故障相の選別を行う。1
5〜17の故障相選別の具体的な処理内容の一例とし
て、故障選別処理17の処理(2線故障)を図3に示す
故障相選別フローチャートで説明する。図において、2
6はVAとVBの電圧比較、27はVBとVCの電圧比
較、28はVAとVCの電圧比較である。Next, the operation will be described. After classifying the fault types, the fault phases are selected at 15 to 17 in FIG. 1
As an example of the specific processing contents of the failure phase selection of 5 to 17, the processing of the failure selection processing 17 (two-line failure) will be described with reference to the failure phase selection flowchart shown in FIG. In the figure, 2
6 is a voltage comparison between VA and VB, 27 is a voltage comparison between VB and VC, and 28 is a voltage comparison between VA and VC.
【0031】(1)図1の動作時相電圧保存処理9−4
〜9−6で保存された相電圧VA、VB、VCが、 V
AとVBの電圧比較26に入力される。(この場合、相
電圧VA、VB、VCの内、少なくとも1つの相電圧が
低下して、地絡距離継電要素8−1〜8―3の少なくと
も1つの要素が動作し、相電圧保存処理9−1〜9−6
に要素動作時の各相電圧が保存されている。但し、ここ
では故障選別処理17なので12の2相動作ありの判断
では2つの要素が動作し、その相電圧か保存されてい
る。)(1) Operation phase voltage preservation processing 9-4 in FIG.
The phase voltages VA, VB, and VC stored in 99-6 are
A and VB are input to a voltage comparison 26. (In this case, at least one of the phase voltages VA, VB, and VC decreases, and at least one of the ground fault distance relay elements 8-1 to 8-3 operates, and the phase voltage saving process is performed. 9-1 to 9-6
Each phase voltage at the time of element operation is stored. However, in this case, since the failure selection processing 17 is performed, two elements operate in the determination of the presence of the two-phase operation, and the phase voltage is stored. )
【0032】(2)VAとVBの電圧比較26で電圧比
較判定を行い、VA<VBであれば、VBとVCの電圧
比較27で電圧比較判定を行い、VB>VCであれば、
VBが最も大きい電圧と判定し、2線(2φG)につい
ての健全相と判別し、健全相を含まない2相A、Cの動
作を故障相(即ちCA相故障)と判定する。(2) A voltage comparison judgment is made by a voltage comparison 26 between VA and VB. If VA <VB, a voltage comparison judgment is made by a voltage comparison 27 between VB and VC. If VB> VC, a voltage comparison judgment is made.
VB is determined to be the largest voltage, the two phases (2φG) are determined to be healthy phases, and the operations of the two phases A and C that do not include the healthy phase are determined to be failure phases (that is, CA phase failures).
【0033】(3)VAとVBの電圧比較26でVA<
VBであれば、VAとVCの電圧比較28で電圧比較判
定を行い、VA>VCであればVCが最も増加している
電圧と判定し、2線(2φG)についての健全相と判別
し、健全相を含まない2相A、Bの動作を故障相と判定
する。(3) VA <VA <V
If it is VB, a voltage comparison judgment is made by the voltage comparison 28 between VA and VC. If VA> VC, it is judged that VC is the voltage that has increased most, and it is judged that the two phases (2φG) are in a healthy phase. The operations of the two phases A and B that do not include the healthy phase are determined as the failed phases.
【0034】(4)VBとVCの電圧比較判定27でV
B<VCであれば、 VAが最も増加している電圧と判
定し、2線(2φG)についての健全相と判別し、健全
相を含まない2相B、Cの動作を故障相と判定する。ま
た、VAとVCの電圧比較28でVA>VCであれば、
VAが最も増加している電圧と判定し、2線(2φG)
についての健全相と判別し、健全相を含まない2相B、
Cの動作を故障相と判定する。 (5)さらに、図1のロック処理21で故障相を含まな
い相の動作のロックを行う。(4) In the voltage comparison judgment 27 between VB and VC, V
If B <VC, it is determined that VA is the voltage that has increased the most, the two phases (2φG) are determined to be healthy phases, and the operations of the two phases B and C that do not include the healthy phase are determined to be failure phases. . If VA> VC in the voltage comparison 28 between VA and VC,
It is determined that VA is the voltage that has increased most, and two wires (2φG)
2 phase B that does not include the healthy phase
The operation of C is determined to be the failure phase. (5) Further, the operation of the phase not including the failed phase is locked by the lock processing 21 of FIG.
【0035】この方法では、実施形態1では、たとえ
ば、2線地絡故障で、故障点にアーク抵抗がある場合で
は、そのアーク抵抗の不平衡時に電圧ベクトル位相がず
れるため、必ずしも最小線間電圧相が2相地絡故障の時
に故障相とは限らない為、より信頼性の高い判定結果が
得られる。According to this method, in the first embodiment, for example, when a two-wire ground fault has an arc resistance at the fault point, the voltage vector phase is shifted when the arc resistance is unbalanced. When the phase is a two-phase ground fault, it is not always the failed phase, so that a more reliable determination result can be obtained.
【0036】実施の形態3.実施の形態1では、相間電
圧を比較して故障相を判定する手段について述べたが、
この実施の形態3では、「 相間電圧」 の代わりに「 相電
圧」 を使用し、相電圧の比較に基づいて最小電圧相を故
障相(1線故障)と判定するようにしたものである。Embodiment 3 In the first embodiment, the means for comparing the inter-phase voltages to determine the failed phase has been described.
In the third embodiment, “phase voltage” is used instead of “interphase voltage”, and the minimum voltage phase is determined to be the failure phase (one-line failure) based on the comparison of the phase voltages.
【0037】以下、この発明の実施の形態3を図4に基
づいて説明する。なお、距離継電装置の論理回路内で各
要素のシーケンス処理を行う図は実施の形態1の図1の
シーケンス図と同様であるので省略する。Hereinafter, a third embodiment of the present invention will be described with reference to FIG. A diagram for performing the sequence processing of each element in the logic circuit of the distance relay device is the same as the sequence diagram of FIG.
【0038】次に動作について説明する。故障種類を分
類した後、図1の15〜17で故障相の選別を行う。1
5〜17の故障相選別の具体的な処理内容の一例とし
て、故障選別処理16の処理を図4に示す故障相選別フ
ローチャートで説明する。図において、29はVAとV
Bの電圧比較、30はVAとVCの電圧比較、31はV
BとVCの電圧比較である。Next, the operation will be described. After classifying the fault types, the fault phases are selected at 15 to 17 in FIG. 1
As an example of specific processing contents of the failure phase selection of 5 to 17, the processing of the failure selection processing 16 will be described with reference to a failure phase selection flowchart shown in FIG. In the figure, 29 is VA and V
B is a voltage comparison, 30 is a voltage comparison between VA and VC, 31 is V
It is a voltage comparison between B and VC.
【0039】(1)図1の動作電圧保存処理9−4〜9
−6で保存された相電圧VA、VB、VCが、 VAと
VBの電圧比較29に入力される。(この場合、相電圧
VA、VB、VCの内、少なくとも1つの相電圧が低下
して、地絡距離継電要素8−1〜8―3の少なくとも1
つの要素が動作し、相電圧保存処理9−1〜9−6に要
素動作時の各相電圧保存されている。但し、ここでは故
障選別処理17なので12の2相動作ありの判断では2
つの要素が動作し、その相電圧か保存されている。)(1) Operating Voltage Storage Process 9-4 to 9 in FIG.
The phase voltages VA, VB, and VC stored at -6 are input to the voltage comparison 29 between VA and VB. (In this case, at least one of the phase voltages VA, VB, and VC decreases, and at least one of the ground fault distance relay elements 8-1 to 8-3 becomes lower.
One element operates, and each phase voltage at the time of element operation is stored in the phase voltage storage processing 9-1 to 9-6. However, in this case, since the failure selection processing 17 is performed, the determination that there are two two-phase operations is 2
Two elements are active and their phase voltages are preserved. )
【0040】(2)VAとVBの電圧比較29で電圧比
較判定を行い、VA<VBであれば、VAとVCの電圧
比較30で電圧比較判定を行い、VA<VCであれば、
VAが最も低下している電圧と判定し、1線(1φG)
についてのA相故障と判定する。(2) A voltage comparison judgment is performed by a voltage comparison 29 between VA and VB. If VA <VB, a voltage comparison judgment is performed by a voltage comparison 30 between VA and VC. If VA <VC, a voltage comparison judgment is made.
It is determined that VA is the lowest voltage, and one line (1φG)
Is determined to be an A-phase failure.
【0041】(3)VAとVBの電圧比較29でVA>
VBであれば、VBとVCの電圧比較31で電圧比較判
定を行い、VB<VCであればVBが最も低下している
電圧と判定し、1線(1φG)についてのB相故障と判
定する。(3) VA> 29.
If it is VB, a voltage comparison determination is made in the voltage comparison 31 between VB and VC. If VB <VC, it is determined that VB is the lowest voltage, and it is determined that one line (1φG) is a B-phase failure. .
【0042】(4)VAとVBの電圧比較29でVA>
VBであれば、VBとVCの電圧比較31で電圧比較判
定を行い、VB>VCであればVCが最も低下している
電圧と判定し、1線(1φG)についてのC相故障と判
定する。また、VAとVCの電圧比較30でVA>VC
であれば、VCが最も低下している電圧と判定し、1線
(1φG)についてのC相故障と判定する。 (5)さらに、図1のロック処理20で故障相を含まな
い相の動作のロックを行う。(4) VA> 29.
If it is VB, a voltage comparison judgment is made in the voltage comparison 31 between VB and VC. If VB> VC, it is judged that VC is the lowest voltage, and it is judged that one line (1φG) is a C-phase failure. . In addition, in the voltage comparison 30 between VA and VC, VA> VC
If so, it is determined that the voltage at which VC is the lowest is determined, and it is determined that a C-phase failure is detected for one line (1φG). (5) Further, in the lock processing 20 of FIG. 1, the operation of the phase not including the failed phase is locked.
【0043】この実施形態3では、1線故障での故障相
判定ができ、他の2相の地絡故障要素の誤判定による不
具合を防ぐことができる。In the third embodiment, it is possible to determine a failure phase due to a one-line failure, and to prevent a failure due to erroneous determination of another two-phase ground fault element.
【0044】実施の形態4.実施の形態3では、相電圧
を比較して故障相を判定する手段について述べたが、こ
の実施の形態では、「 相電圧」 の代わりに「 相インピー
ダンス」 ZA、ZB、ZCを使用し、インピーダンスの
比較に基づいて最小インピーダンス相を故障相と判定す
るようにしたものである。Embodiment 4 FIG. In the third embodiment, the means for comparing the phase voltages to determine the failed phase has been described. In this embodiment, instead of the “phase voltage”, “phase impedance” ZA, ZB, ZC is used, and the impedance is determined. Is determined based on the comparison of the minimum impedance phase as the failure phase.
【0045】以下、この発明の実施の形態4を図5に基
づいて説明する。図5は距離継電装置の故障種類判別回
路を示すブロック図である。なお、この実施の形態4で
は図5の1線故障(1φG)について説明し、図5の2
線故障(2φS,2φG)については実施の形態5で説
明する。Hereinafter, a fourth embodiment of the present invention will be described with reference to FIG. FIG. 5 is a block diagram illustrating a failure type determination circuit of the distance relay device. In the fourth embodiment, a one-line failure (1φG) in FIG. 5 will be described.
The line fault (2φS, 2φG) will be described in a fifth embodiment.
【0046】次に動作について説明する。 (1)32は1φG故障相判定要素で、実施の形態3の
1線故障の故障相の判定結果が出力される。37は2φ
S,2φG故障判定要素で、実施の形態1の2線故障の
故障相の判定結果が出力される。Next, the operation will be described. (1) Reference numeral 32 denotes a 1φG failure phase determination element, which outputs a failure phase determination result of a one-line failure according to the third embodiment. 37 is 2φ
The S, 2φG failure determination element outputs the failure phase determination result of the two-wire failure of the first embodiment.
【0047】(2)A相インピーダンスZA34はZA
=VA/IA、B相インピーダンスZB35はZB=V
B/IB 、C相インピーダンスZC36はZC=VC
/ICの計算式で演算し、 (3)各相のインピーダンス信号はAND回路38−
1、38−2、38−3に入力され、出力として信号A
・B、B・C、C・Aを得る。 (4)これらの信号はOR回路40に入力され、出力信
号と零相電流I033がAND回路38−4に入力され
る。(2) The A-phase impedance ZA34 is ZA
= VA / IA, B-phase impedance ZB35 is ZB = V
B / IB, C phase impedance ZC36 is ZC = VC
(3) The impedance signal of each phase is calculated by the AND circuit 38−
1, 38-2, and 38-3, and outputs the signal A
Obtain B, BC, CA. (4) These signals are input to the OR circuit 40, and the output signal and the zero-phase current I033 are input to the AND circuit 38-4.
【0048】(5)その出力信号と1線(1φG)故障
相判定要素32からの出力信号、 A相インピーダンス
ZA34、B相インピーダンスZB35、C相インピー
ダンスZC36の各信号が、各々AND回路38−5、
38−6、38−7に入力され、AND回路38−5か
らの出力41がA相故障であることを示す信号a、AN
D回路38−6からの出力42がB相故障であることを
示す信号b 、38−7からの出力43がC相故障であ
ることを示す信号cとなる。(5) The output signal and the output signal from the one-wire (1φG) fault phase determination element 32, the signals of the A-phase impedance ZA34, the B-phase impedance ZB35, and the C-phase impedance ZC36 are respectively AND circuits 38-5. ,
Signals a, AN which are input to 38-6, 38-7 and indicate that the output 41 from the AND circuit 38-5 is an A-phase fault
An output 42 from the D circuit 38-6 becomes a signal b indicating a B-phase fault, and an output 43 from 38-7 becomes a signal c indicating a C-phase fault.
【0049】図5の故障種類判別の論理回路について考
えた場合、各種故障に対して故障ケースにより1φG故
障相判定32ですべての信号が故障と判定される場合も
あり、何相故障かを判定するのは難しい。そこで、図6
に示すように故障相選別フローチャートに従う。図にお
いて、50はZAとZBのインピーダンス比較、51は
ZAとZCのインピーダンス比較、52はZBとZCの
インピーダンス比較である。When considering the logic circuit for determining the type of fault shown in FIG. 5, all the signals may be determined to be faulty in the 1φG fault phase determination 32 depending on the fault case for various faults. Hard to do. Therefore, FIG.
As shown in FIG. In the figure, reference numeral 50 denotes a comparison between ZA and ZB, 51 denotes a comparison between ZA and ZC, and 52 denotes a comparison between ZB and ZC.
【0050】(1)ZAとZBのインピーダンス比較5
1でインピーダンス比較判定を行い。ZA<ZBであれ
ば、ZAとZCのインピーダンス比較51でインピーダ
ンス比較判定を行い、ZA<ZCであれば、ZAが最も
低下しているインピーダンスと判定し、1線(1φG)
についてのA相故障と判定する。(1) Comparison of impedance between ZA and ZB 5
Perform impedance comparison judgment with 1. If ZA <ZB, an impedance comparison judgment is made in the impedance comparison 51 of ZA and ZC, and if ZA <ZC, it is determined that the impedance of ZA is the lowest and one line (1φG)
Is determined to be an A-phase failure.
【0051】(2)ZAとZBのインピーダンス比較5
0でZA>ZBであれば、ZBとZCのインピーダンス
比較52でインピーダンス比較判定を行い、ZB<ZC
であればZBが最も低下しているインピーダンスと判定
し、1線(1φG)についてのB相故障と判定する。(2) Comparison of impedance between ZA and ZB 5
If ZA> ZB at 0, an impedance comparison determination is made by ZB and ZC impedance comparison 52, and ZB <ZC
If so, it is determined that the impedance of ZB is the lowest, and it is determined that a B-phase failure has occurred for one line (1φG).
【0052】(3)ZBとZCのインピーダンス比較5
2でインピーダンス比較判定を行い、ZB>ZCであれ
ばZCが最も低下しているインピーダンスと判定し、1
線(1φG)についてのC相故障と判定する。また、Z
AとZCのインピーダンス比較51で、ZA>ZCであ
ればZCが最も低下しているインピーダンスと判定し、
1線(1φG)についてのC相故障と判定する。(3) Comparison of impedance between ZB and ZC 5
2, the impedance is compared and determined. If ZB> ZC, it is determined that the impedance of ZC is the lowest, and
It is determined that the failure is the phase C of the line (1φG). Also, Z
In the impedance comparison 51 between A and ZC, if ZA> ZC, it is determined that the impedance of ZC is the lowest,
It is determined that a C-phase fault has occurred for one line (1φG).
【0053】(4) またこの結果により故障相を含ま
ない相の動作のロックを行うことも可能である。(4) It is also possible to lock the operation of the phase that does not include the failed phase based on the result.
【0054】インピーダンスを使うことで、電圧低下が
小さい場合でも電流の違いで、故障判定がより正確にで
きる利点がある。The use of impedance has the advantage that the failure can be determined more accurately due to the difference in current even when the voltage drop is small.
【0055】実施の形態5.実施の形態4では、各相の
インピーダンスを組み合わせて故障相を判定する手段に
ついて述べたが、この実施の形態では、「 インピーダン
ス」 の代わりに「 短絡(線間)インピーダンス」 ZA
B、ZBC、ZCAを使用し、最小短絡インピーダンス
相を故障相と判定するようにしたものである。以下、こ
の発明の実施の形態5を図5に基づいて説明する。図5
は実施の形態4で使用する距離継電装置の故障判別回路
を示すブロック図と同一である。Embodiment 5 In the fourth embodiment, the means for determining the failed phase by combining the impedances of the respective phases has been described. In this embodiment, instead of “impedance”, “short-circuit (line-to-line) impedance” ZA
B, ZBC, and ZCA are used, and the minimum short-circuit impedance phase is determined to be a failure phase. Hereinafter, a fifth embodiment of the present invention will be described with reference to FIG. FIG.
Is the same as the block diagram showing the failure determination circuit of the distance relay device used in the fourth embodiment.
【0056】次に動作について説明する。 (1)34は短絡インピーダンスZABとして、ZAB
=VAB/IAB の計算式で演算し、35は短絡イン
ピーダンスZBCとして、ZBC=VBC/IBC の
計算式で演算し、36は短絡インピーダンスZCAとし
て、ZCA=VCA/ICA の計算式で演算し、
(2)AND回路38−1、38−2、38−3に入力
され、出力として信号AB・BC、BC・CA、CA・
ABを得る。Next, the operation will be described. (1) 34 is the short-circuit impedance ZAB, ZAB
= VAB / IAB, 35 is calculated as a short-circuit impedance ZBC, ZBC = VBC / IBC, 36 is calculated as a short-circuit impedance ZCA, ZCA = VCA / ICA,
(2) Input to the AND circuits 38-1, 38-2, 38-3, and output as signals AB / BC, BC / CA, CA /
Get AB.
【0057】(3)これらの信号と2φS、2φG故障
相判定要素37からの出力信号が、AND回路38−1
1、38−12、38−13に入力され、(4)AND
回路38−11からの出力47が2線(2φG)につい
てのAB相故障であることを示す信号ab 、AND回
路38−12からの出力48が2線(2φG)について
のBC相故障であることを示す信号bc、AND回路3
8−13からの出力49が2線(2φG)についてのC
A相故障であることを示す信号caとなる。(3) These signals and the output signals from the 2φS and 2φG fault phase determining elements 37 are output to the AND circuit 38-1.
1, 38-12, 38-13, and (4) AND
The signal ab indicating that the output 47 from the circuit 38-11 is an AB-phase fault for two lines (2φG), and the output 48 from the AND circuit 38-12 is a BC-phase fault for two lines (2φG). Bc indicating AND circuit 3
The output 49 from 8-13 is the C for two wires (2φG).
The signal ca indicates the A-phase failure.
【0058】図5の故障種類判別の論理回路について考
えた場合、各種故障に対して故障ケースにより2φS、
2φG故障相判定37ですべての信号が故障と判定され
る場合もあり、何相故障かを判定するのは難しい。そこ
で、図7に示すように故障相選別フローチャートに従
う。図において、53はZABとZBCの短絡インピー
ダンス比較、54はZABとZCAの短絡インピーダン
ス比較、55はZBCとZCAの短絡インピーダンス比
較である。When considering the logic circuit for determining the type of a fault shown in FIG. 5, 2φS,
In some cases, all the signals are determined to be failures in the 2φG failure phase determination 37, and it is difficult to determine the number of phase failures. Therefore, as shown in FIG. 7, a failure phase selection flowchart is followed. In the figure, 53 indicates a short-circuit impedance comparison between ZAB and ZBC, 54 indicates a short-circuit impedance comparison between ZAB and ZCA, and 55 indicates a short-circuit impedance comparison between ZBC and ZCA.
【0059】(1)ZABとZBCの短絡インピーダン
ス比較53で短絡インピーダンス比較判定を行い、ZA
B<ZBCであれば、 ZABとZCAの短絡インピー
ダンス比較54で短絡インピーダンス比較判定を行い、
ZAB<ZCAであれば、ZABが最も低下している短
絡インピーダンスと判定し、2線(2φG)についての
AB相故障と判定する。(1) A short-circuit impedance comparison judgment is made in a short-circuit impedance comparison 53 between ZAB and ZBC, and ZA and ZBC are compared.
If B <ZBC, a short-circuit impedance comparison judgment is made in the short-circuit impedance comparison 54 of ZAB and ZCA,
If ZAB <ZCA, it is determined that ZAB is the shortest impedance in which ZAB is the lowest, and it is determined that the AB phase is faulty for two wires (2φG).
【0060】(2)ZABとZBCの短絡インピーダン
ス比較53での比較判定が、ZAB>ZBCであれば、
ZBCとZCAの短絡インピーダンス比較55で短絡イ
ンピーダンス比較判定を行い、ZBC<ZCAであれば
ZBCが最も低下しているインピーダンスと判定し、2
線(2φG)についてのBC相故障と判定する。(2) If the comparison judgment in the short-circuit impedance comparison 53 between ZAB and ZBC is ZAB> ZBC,
A short-circuit impedance comparison determination is made in the short-circuit impedance comparison 55 between ZBC and ZCA. If ZBC <ZCA, it is determined that the impedance of ZBC is the lowest, and 2
It is determined that a BC phase failure has occurred for the line (2φG).
【0061】(3)ZBCとZCAの短絡インピーダン
ス比較55での比較判定が、ZBC>ZCAであれば、
ZCAが最も低下している短絡インピーダンスと判定
し、2線(2φG)についてのCA相故障と判定する。
また、ZABとZCAの短絡インピーダンス比較54で
の比較判定がZAB>ZCAであればZCAが最も低下
している短絡インピーダンスと判定し、2線(2φG)
についてのCA相故障と判定する。(3) If the comparison judgment in the short-circuit impedance comparison 55 between ZBC and ZCA indicates that ZBC> ZCA,
The ZCA is determined to be the shortest impedance with the lowest drop, and the CA phase failure is determined for two wires (2φG).
If the comparison determination in the short-circuit impedance comparison 54 between ZAB and ZCA is ZAB> ZCA, the short-circuit impedance is determined to be the lowest ZCA, and the two-wire (2φG)
Is determined to be a CA phase failure.
【0062】(4)またこの結果により故障相を含まな
い相の動作のロックを行うことが可能である。(4) It is possible to lock the operation of the phase that does not include the failed phase based on the result.
【0063】さらに、零相電流I033がNOT回路3
9に入力され、この出力信号と2線(2φS、2φG)
故障相判定要素37からの出力信号が、AND回路38
−8、38−9、38−10に入力され、AND回路3
8−8、38−9、38−10それぞれの出力44、4
5、46が2線( 2φS) における故障相を示す信号と
なる場合の故障相の判定も同様に、上記短絡インピーダ
ンスの比較によって故障相を判別することができる。Further, the zero-phase current I033 is supplied to the NOT circuit 3
9, this output signal and two wires (2φS, 2φG)
An output signal from the failure phase determination element 37 is output to an AND circuit 38.
-8, 38-9, and 38-10, and the AND circuit 3
Outputs 44, 4 of 8-8, 38-9, 38-10 respectively
When the signals 5 and 46 become signals indicating the fault phase in the two lines (2φS), the fault phase can be similarly determined by comparing the short-circuit impedance.
【0064】電圧だけで判定する実施形態1に対して、
電流情報も使うインピーダンスであるので、より正確な
故障相判定が可能である。In contrast to the first embodiment in which only voltage is used,
Since the impedance also uses the current information, more accurate failure phase determination is possible.
【0065】実施の形態6.実施の形態1では、相間電
圧を比較して故障相を判定する手段について述べたが、
この実施の形態では、「 相間電圧」 の代わりに相電圧の
「 1φ・2φ位相角」 を使用し、各相電圧の位相角の比
較に基づいて1φと2φの位相角の差がある範囲内にな
ることで故障相と判定するようにしたものである。以
下、この発明の実施の形態6を図8及び図9に基づいて
説明する。図8は各相電圧の位相角のベクトル図で、図
9は故障選別の具体的処理を示す。Embodiment 6 FIG. In the first embodiment, the means for comparing the inter-phase voltages to determine the failed phase has been described.
In this embodiment, the phase voltage “1φ · 2φ phase angle” is used in place of the “interphase voltage”, and the difference between the phase angles of 1φ and 2φ is within a range based on the comparison of the phase angle of each phase voltage. , The failure phase is determined. Hereinafter, a sixth embodiment of the present invention will be described with reference to FIGS. FIG. 8 is a vector diagram of the phase angle of each phase voltage, and FIG. 9 shows a specific process of fault selection.
【0066】次に動作について説明する。距離継電装置
のシーケンス処理により各継電要素の動作とともに3相
電圧VA、VB、VC、を入力として、逆相電圧V2
A、V2B、V2Cおよび夫々の位相角が演算され、上
記位相角に基づき図8に示すようなベクトル図が求めら
れる。Next, the operation will be described. By the sequence processing of the distance relay device, the three-phase voltages VA, VB, and VC are input together with the operation of each relay element, and the negative-phase voltage V2
A, V2B, V2C and respective phase angles are calculated, and a vector diagram as shown in FIG. 8 is obtained based on the phase angles.
【0067】故障相判別の具体的な処理内容は図9に示
す故障相選別フローチャートに示す。 (1)図において、56はVAとV2Aの位相角の差、
VBとV2Bの位相角の差、VCとV2Cの位相角の差
を算出する演算処理である。図8のベクトル図の特性に
よれば、故障相が発生している場合には、その故障相の
みVφとV2φの位相角の差が180°に近くなる特性
がある。図8のVAとV2Aの位相角の差は180゜で
故障相を表し、VBとV2Bの位相角の差、および、V
CとV2Cの位相角の差は180゜より十分小さいので
健全相を表している。The specific processing content of the failure phase determination is shown in the failure phase selection flowchart shown in FIG. (1) In the figure, 56 is the difference between the phase angles of VA and V2A,
This is a calculation process for calculating the difference between the phase angles of VB and V2B and the difference between the phase angles of VC and V2C. According to the characteristics of the vector diagram of FIG. 8, when a failure phase occurs, only the failure phase has a characteristic in which the difference between the phase angles of Vφ and V2φ approaches 180 °. The difference between the phase angle between VA and V2A in FIG. 8 is 180 °, which indicates a failure phase, the difference between the phase angle between VB and V2B, and V
The difference between the phase angles of C and V2C is sufficiently smaller than 180 °, indicating a healthy phase.
【0068】(2)この特性を用いて、57でA相電圧
の位相角の差が180°に近い(たとえば、180°±
60°)かどうか判定し、近ければ1線(1φG)につ
いてのA相故障と判定する。(2) Using this characteristic, the difference in the phase angle of the A-phase voltage at 57 is close to 180 ° (for example, 180 ° ±
60 °), and if they are close, it is determined to be an A-phase failure for one line (1φG).
【0069】(3)57で位相角の差が180°に近く
なければ、58でB相電圧の位相角の差が180°に近
いかどうか判定し、近ければ1線(1φG)についての
B相故障と判定する。(3) If the phase angle difference is not close to 180 ° in 57, it is determined in 58 whether the phase angle difference of the B-phase voltage is close to 180 °, and if close, B for one line (1φG) is determined. Judge as phase failure.
【0070】(4)58で位相角の差が180°に近く
なければ、59でC相電圧の位相角の差が180°に近
いかどうか判定し、近ければ1線(1φG)についての
C相故障と判定する。(4) If the difference between the phase angles is not close to 180 ° at 58, it is determined at 59 whether the difference between the phase angles of the C-phase voltage is close to 180 °, and if close, the C value for one line (1φG) is determined. Judge as phase failure.
【0071】(5)この結果により故障相を含まない相
の動作のロックを行うことも可能である。(5) According to the result, it is possible to lock the operation of the phase not including the failed phase.
【0072】このように、逆相電圧を使うことで、同様
の故障相判定ができる。さらに、上記では、ある相の電
圧とその相を基準とする逆相電圧との位相関係から判定
したが、ある相電圧に替わって、−V0(V0は零相電
圧)を使っても良い。1 線故障の場合には、−V0は相
電圧と同相になり、しかも、V0回路,V2回路(逆相
電圧回路)は、負荷電流、系統の脱調現象に対して影響
を受けない為より正確な判定ができる利点がある。As described above, the same failure phase can be determined by using the opposite phase voltage. Furthermore, in the above description, the determination is made based on the phase relationship between the voltage of a certain phase and the negative phase voltage based on that phase. However, instead of the certain phase voltage, -V0 (V0 is a zero-phase voltage) may be used. In the case of a one-line fault, -V0 is in phase with the phase voltage, and the V0 circuit and V2 circuit (negative-phase voltage circuit) are not affected by load current and system step-out phenomenon. There is an advantage that accurate judgment can be made.
【0073】実施の形態7.実施の形態3では、相電圧
を比較して故障相を判定する手段について述べたが、こ
の実施の形態では、実施の形態3の1線(1φG)につ
いての故障相の判定に「 前方方向要素」 を組み合わせ、
前方故障についてのみ故障相を判定するようにしたもの
である。Embodiment 7 In the third embodiment, the means for determining the failed phase by comparing the phase voltages has been described. In this embodiment, however, the “forward element” is used for determining the failed phase for one line (1φG) in the third embodiment. "
The failure phase is determined only for the forward failure.
【0074】以下、この発明の実施の形態7を図10に
基づいて説明する。図10は距離継電装置の故障相判別
回路を示すブロック図である。Hereinafter, a seventh embodiment of the present invention will be described with reference to FIG. FIG. 10 is a block diagram showing a failure phase determination circuit of the distance relay device.
【0075】次に動作について説明する。この実施の形
態では前方方向要素として例えば逆相電圧、逆相電流を
入力とした逆相方向要素である67Nを使用した。 (1)A相67N要素62−1、B相67N要素62−
2、C相67N要素62−3の信号は、AND回路63
−1、63−2、63−3に入力され、出力として信号
A・B、B・C、C・Aを得る。 (2)これらの信号はOR回路64に入力され、出力信
号と零相電流I061がAND回路63−4に入力され
る。Next, the operation will be described. In this embodiment, for example, 67N which is a reverse-phase direction element to which a negative-phase voltage and a negative-phase current are input is used as the forward direction element. (1) A-phase 67N element 62-1, B-phase 67N element 62-
2. The signal of the C-phase 67N element 62-3 is
-1, 63-2, 63-3, and obtains signals AB, BC, CA as outputs. (2) These signals are input to the OR circuit 64, and the output signal and the zero-phase current I061 are input to the AND circuit 63-4.
【0076】(3)その出力信号と1線(1φG)故障
相判定要素60からの出力信号、またA相67N要素6
2−1、B相67N要素62−2、C相67N要素62
−3が、AND回路63−5、63−6、63−7に入
力され、 (4)出力65、66、67のいずれかが1線(1φ
G)における前方故障についての故障相を示す信号と判
定する。 (5)またこの信号を受けて故障相を含まない相の動作
のロックを行うことが可能となる。(3) The output signal, the output signal from the 1-wire (1φG) failure phase determination element 60, and the A-phase 67N element 6
2-1, B phase 67N element 62-2, C phase 67N element 62
-3 is input to the AND circuits 63-5, 63-6, 63-7. (4) One of the outputs 65, 66, 67 is one line (1φ
It is determined to be a signal indicating a failure phase for the forward failure in G). (5) In response to this signal, it becomes possible to lock the operation of the phase not including the failed phase.
【0077】逆相方向要素判定を加えることで、故障相
だけでなく前方故障に限定できるので、より信頼性の高
い判定が可能である。By adding the negative phase element determination, not only the failure phase but also the forward failure can be limited, so that a more reliable determination can be made.
【0078】[0078]
【発明の効果】以上のようにこの発明によれば、故障相
を確実に選別することができる。As described above, according to the present invention, a faulty phase can be reliably selected.
【図1】 この発明の実施の形態1による距離継電装置
のフローチャートである。FIG. 1 is a flowchart of a distance relay device according to Embodiment 1 of the present invention.
【図2】 この発明の実施の形態1による距離継電装置
の故障相選別の具体的処理を示すフローチャートであ
る。FIG. 2 is a flowchart showing specific processing of fault phase selection of the distance relay device according to Embodiment 1 of the present invention.
【図3】 この発明の実施の形態2による距離継電装置
の故障相選別の具体的処理を示すフローチャートであ
る。FIG. 3 is a flowchart showing specific processing of fault phase selection of a distance relay device according to Embodiment 2 of the present invention.
【図4】 この発明の実施の形態3による距離継電装置
の故障相選別の具体的処理を示すフローチャートであ
る。FIG. 4 is a flowchart showing a specific process of fault phase selection of a distance relay device according to Embodiment 3 of the present invention.
【図5】 この発明の実施の形態4による距離継電装置
の故障相選別の処理を示すシーケンス図である。FIG. 5 is a sequence diagram showing a process of selecting a failure phase of the distance relay device according to Embodiment 4 of the present invention.
【図6】 この発明の実施の形態4による距離継電装置
の故障相選別の具体的処理を示すフローチャートであ
る。FIG. 6 is a flowchart showing specific processing of fault phase selection of a distance relay device according to Embodiment 4 of the present invention.
【図7】 この発明の実施の形態5による距離継電装置
の故障相選別の具体的処理を示すフローチャートであ
る。FIG. 7 is a flowchart showing specific processing of fault phase selection of a distance relay device according to Embodiment 5 of the present invention.
【図8】 この発明の実施の形態6による距離継電装置
のVφとV2φの特性を説明するベクトル図である。FIG. 8 is a vector diagram illustrating characteristics of Vφ and V2φ of a distance relay device according to Embodiment 6 of the present invention.
【図9】 この発明の実施の形態6による距離継電装置
の故障相選別の具体的処理を示すフローチャートであ
る。FIG. 9 is a flowchart showing specific processing of fault phase selection of a distance relay device according to Embodiment 6 of the present invention.
【図10】 この発明の実施の形態7による距離継電装
置の故障相選別の処理を示すシーケンス図である。FIG. 10 is a sequence diagram showing a fault phase selection process of the distance relay device according to the seventh embodiment of the present invention.
【図11】 従来の距離継電装置のブロック図である。FIG. 11 is a block diagram of a conventional distance relay device.
7−1 A相の短絡不足電圧継電要素、7−2 B相の
短絡不足電圧継電要素、7−3 C相の短絡不足電圧継
電要素、8−1 A相の地絡不足電圧継電要素、8−2
B相の地絡不足電圧継電要素、8−3 C相の地絡不
足電圧継電要素、9−1〜9−6 動作相電圧保存処
理、 10 地絡零相過電流継電要素、11〜1
4,18 動作相のチェック処理、 15−17 故障
相の選別処理、19−21 故障相以外の健全相のロッ
ク処理、22 相間電圧演算処理、 23
VABとVBCの比較判別、24 VABとVCAの比
較判別、 25 VBCとVCAの比較判別、2
6 VAとVBの比較判別、 27 VBとV
Cの比較判別、28 VAとVCの比較判別、
29 VAとVBの比較判別、30 VAとVCの比
較判別、 31 VBとVCの比較判別、32
1φG故障相判定処理、 33 零相電流、3
4 A相インピーダンス、 35 B相インピ
ーダンス、36 C相インピーダンス、 37
2φG、2φS故障相判定処理38−1〜38−13
AND回路、 39 NOT回路、40 OR回路、
41 1φGのA相故障相信号、
42 1φGのB相故障相信号、 43 1φGに
ついてのC相故障相信号、44 2φSのAB相故障相
信号、 45 2φSのBC相故障相信号、46 2
φSのCA相故障相信号、 47 2φGのAB相故
障相信号、48 2φGのBC相故障相信号、 49
2φGのCA相故障相信号、50 ZAとZBの比較
判定、 51 ZAとZCの比較判定、52
ZBとZBの比較判定、 53 ZABとZB
Cの比較判定、54 ZABとZCAの比較判定、
55 ZBCとZCAの比較判定、56 VφとV
2φの位相角の差の演算処理、57 A相位相角の差の
比較判定、58 B相位相角の差の比較判定、59 C
相位相角の差の比較判定、60 1φG故障相判定処
理、 61零相電流、62−1 A相前方方向要
素信号、 62−2 B相前方方向要素信号、62−
3 C相前方方向要素信号、 63−1〜63−7A
ND回路、64 OR回路、 65
A相故障相信号、66 B相故障相信号、
67 C相故障相信号7-1 Phase A short-circuit undervoltage relay element, 7-2 Phase B short-circuit undervoltage relay element, 7-3 Phase C short-circuit undervoltage relay element, 8-1 A-phase ground fault undervoltage relay element Electric element, 8-2
B-phase ground-fault undervoltage relay element, 8-3 C-phase ground-fault undervoltage relay element, 9-1 to 9-6 operating phase voltage preservation processing, 10 ground-fault zero-phase overcurrent relay element, 11 ~ 1
4, 18 Checking process of operating phase, 15-17 Selecting process of faulty phase, 19-21 Locking process of healthy phases other than faulty phase, 22 Interphase voltage calculation process, 23
Comparison judgment of VAB and VBC, comparison judgment of 24 VAB and VCA, 25 comparison judgment of VBC and VCA, 2
6 Comparison judgment between VA and VB, 27 VB and V
C comparison judgment, 28 VA and VC comparison judgment,
29 Comparison judgment between VA and VB, 30 Comparison judgment between VA and VC, 31 Comparison judgment between VB and VC, 32
1φG failure phase judgment processing, 33 zero-phase current, 3
4 A phase impedance, 35 B phase impedance, 36 C phase impedance, 37
2φG, 2φS failure phase determination processing 38-1 to 38-13
AND circuit, 39 NOT circuit, 40 OR circuit,
41 1φG phase A fault phase signal,
42 1φG B-phase fault phase signal, 43 1φG C-phase fault phase signal, 44 2φS AB-phase fault phase signal, 45 2φS BC-phase fault phase signal, 46 2
φS CA phase failure phase signal, 47 2φG AB phase failure phase signal, 482 φG BC phase failure phase signal, 49
2φG CA phase failure phase signal, 50 ZA and ZB comparison decision, 51 ZA and ZC comparison decision, 52
ZB and ZB comparison judgment, 53 ZAB and ZB
C comparison judgment, 54 ZAB and ZCA comparison judgment,
55 Comparison between ZBC and ZCA, 56 Vφ and V
2φ phase angle difference calculation processing, 57 A phase angle difference comparison, 58 B phase angle difference comparison, 59 C
Phase phase angle difference comparison determination, 601 φG failure phase determination processing, 61 zero-phase current, 62-1 A-phase forward element signal, 62-2 B-phase forward element signal, 62-
3 C-phase forward direction element signal, 63-1 to 63-7A
ND circuit, 64 OR circuit, 65
A phase failure phase signal, 66 B phase failure phase signal,
67 C phase failure phase signal
───────────────────────────────────────────────────── フロントページの続き (72)発明者 服部 孝 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 2G014 AA03 AA04 AA19 AB33 AC18 2G028 AA05 BF03 CG08 DH01 GL04 MS01 2G033 AA02 AB05 AC02 AC04 AC06 AD11 AD18 AE06 AF01 AF05 AG12 AG14 5G058 EE01 EF02 EF03 EG15 EH01 EH02 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Takashi Hattori 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation F-term (reference) 2G014 AA03 AA04 AA19 AB33 AC18 2G028 AA05 BF03 CG08 DH01 GL04 MS01 2G033 AA02 AB05 AC02 AC04 AC06 AD11 AD18 AE06 AF01 AF05 AG12 AG14 5G058 EE01 EF02 EF03 EG15 EH01 EH02
Claims (8)
装置において、各相の地絡距離継電要素と、各相の短絡
距離継電要素と、零相過電流継電要素と、上記地絡距離
継電要素または短絡距離継電要素の動作に応じて各相間
電圧を導出する導出手段と、上記地絡距離継電要素の1
つまたは2つの要素が動作し、且つ、上記零相過電流継
電要素が動作したとき、または、上記短絡距離継電要素
の1つまたは2つの要素が動作し、且つ、上記零相過電
流継電要素が動作しないときは、上記導出手段で導出し
た各相間電圧の内、最も小さな電圧の相を2線故障につ
いての故障相と判別する判別手段とを備えたことを特徴
とする距離継電装置。In a distance relay device for protecting a three-phase AC power system, a ground fault distance relay element of each phase, a short-circuit distance relay element of each phase, a zero-phase overcurrent relay element, Deriving means for deriving each phase voltage according to the operation of the ground fault distance relay element or the short-circuit distance relay element;
One or two elements operate and the zero-phase overcurrent relay element operates, or one or two of the short-circuit distance relay elements operate and the zero-phase overcurrent When the relay element does not operate, a determining means for determining a phase having the smallest voltage among the inter-phase voltages derived by the deriving means as a failure phase for a two-wire fault is provided. Electrical equipment.
装置において、各相の地絡距離継電要素と、各相の短絡
距離継電要素と、零相過電流継電要素と、上記地絡距離
継電要素または短絡距離継電要素の動作に応じて各相電
圧を導出する導出手段と、上記地絡距離継電要素の1つ
または2つの要素が動作し、且つ、上記零相過電流継電
要素が動作したとき、または、上記短絡距離継電要素の
1つまたは2つの要素が動作し、且つ、上記零相過電流
継電要素が動作しないときは、上記導出手段で導出した
各相電圧の内、最も大きい電圧の相を2線故障について
の健全相と判別し、健全相以外の相を故障相とする判別
手段とを備えたことを特徴とする距離継電装置。2. A distance relay device for protecting a three-phase AC power system, wherein a ground fault distance relay element of each phase, a short-circuit distance relay element of each phase, a zero-phase overcurrent relay element, Deriving means for deriving each phase voltage according to the operation of the ground fault distance relay element or the short circuit distance relay element; one or two elements of the ground fault distance relay element operate; When the phase overcurrent relay element operates, or when one or two of the short-circuit distance relay elements operate and the zero-phase overcurrent relay element does not operate, the derivation means A distance relay device comprising: a determining unit that determines a phase of the largest voltage among the derived phase voltages as a healthy phase for a two-wire failure and determines a phase other than the healthy phase as a failed phase. .
装置において、各相の地絡距離継電要素と、各相の短絡
距離継電要素と、零相過電流継電要素と、上記地絡距離
継電要素または短絡距離継電要素の動作に応じて各相電
圧を導出する導出手段と、上記地絡距離継電要素の1つ
または2つの要素が動作し、且つ、上記零相過電流継電
要素が動作したとき、または、上記短絡距離継電要素の
1つまたは2つの要素が動作し、且つ、上記零相過電流
継電要素が動作しないときは、上記導出手段で導出した
各相電圧の内、最も小さい電圧の相を1線故障について
の故障相と判別する判別手段とを備えたことを特徴とす
る距離継電装置。3. A distance relay device for protecting a three-phase AC power system, wherein a ground fault distance relay element of each phase, a short-circuit distance relay element of each phase, a zero-phase overcurrent relay element, Deriving means for deriving each phase voltage according to the operation of the ground fault distance relay element or the short circuit distance relay element; one or two elements of the ground fault distance relay element operate; When the phase overcurrent relay element operates, or when one or two of the short-circuit distance relay elements operate and the zero-phase overcurrent relay element does not operate, the derivation means A distance relay device comprising: a determination unit configured to determine a phase having the smallest voltage among the derived phase voltages as a failure phase for a one-line failure.
装置において、各相の地絡距離継電要素と、零相過電流
継電要素と、上記地絡距離継電要素の動作に応じて各相
インピーダンス量を導出する導出手段と、上記地絡距離
継電要素の1つまたは2つの要素が動作し、且つ、上記
零相過電流継電要素が動作したとき、上記導出手段で導
出した各相インピーダンス量の内、最も小さいインピー
ダンス量の相を1線故障での故障相と判別する判別手段
とを備えたことを特徴とする距離継電装置。4. A distance relay device for protecting a three-phase AC power system, wherein a ground fault distance relay element of each phase, a zero-phase overcurrent relay element, and an operation of the ground fault distance relay element. Deriving means for deriving the amount of impedance of each phase accordingly, and when one or two elements of the ground fault distance relay element operate and the zero-phase overcurrent relay element operates, A distance relay device comprising: a determination unit configured to determine a phase having the smallest impedance amount among the derived phase impedance amounts as a failure phase due to a one-line failure.
装置において、各相の短絡距離継電要素と、零相過電流
継電要素と、上記短絡距離継電要素の動作に応じて各相
間の短絡インピーダンス量を導出する導出手段と、上記
短絡距離継電要素の1つまたは2つの要素が動作し、且
つ、上記零相過電流継電要素が動作しないときは、上記
導出手段で導出した各相短絡インピーダンス量の内、最
も小さい短絡インピーダンス量の相を2線故障について
の故障相と判別する判別手段とを備えたことを特徴とす
る距離継電装置。5. A distance relay device for protecting a three-phase AC power system, wherein a short-circuit distance relay element of each phase, a zero-phase overcurrent relay element, and an operation of the short-circuit distance relay element are performed. Deriving means for deriving the amount of short-circuit impedance between the phases, and when one or two of the short-circuit distance relay elements operate and the zero-phase overcurrent relay element does not operate, A distance relay device comprising: a determination unit configured to determine a phase having a smallest short-circuit impedance amount among the derived phase short-circuit impedance amounts as a failure phase for a two-wire failure.
装置において、各相の地絡距離継電要素と、各相の短絡
距離継電要素と、零相過電流継電要素と、上記地絡距離
継電要素または短絡距離継電要素の動作に応じて各相別
の正相電圧と逆相電圧との位相角の差を導出する導出手
段と、上記地絡距離継電要素の1つまたは2つの要素が
動作し、且つ、上記零相過電流継電要素が動作したと
き、または、上記短絡距離継電要素の1つまたは2つの
要素が動作し、且つ、上記零相過電流継電要素が動作し
ないときは、上記導出手段で導出した各相別の位相角の
差が180度近傍であればその相を1線故障についての
故障相と判別する判別手段とを備えたことを特徴とする
距離継電装置。6. A distance relay device for protecting a three-phase AC power system, wherein a ground fault distance relay element of each phase, a short-circuit distance relay element of each phase, a zero-phase overcurrent relay element, Deriving means for deriving the phase angle difference between the positive-phase voltage and the negative-phase voltage for each phase according to the operation of the ground fault distance relay element or the short-circuit distance relay element, and When one or two elements operate and the zero-phase overcurrent relay element operates, or one or two elements of the short-circuit distance relay element operate and the zero-phase overcurrent relay element operates; When the current relay element does not operate, a discriminating means is provided for discriminating the phase as a failure phase for a one-line fault if the phase angle difference for each phase derived by the deriving means is near 180 degrees. A distance relay device, characterized in that:
継電装置において、前方方向要素を設け、この前方方向
要素が動作したとき、判定手段で故障相を判定するよう
にして、前方故障で1線故障の故障相を判別することを
特徴とする距離継電装置。7. The distance relay device according to claim 3, wherein a forward direction element is provided, and when the forward direction element operates, a failure phase is determined by a determination unit. A distance relay device for determining a failure phase of a one-line failure based on a forward failure.
装置において、判別手段で故障相が判別されると、故障
相以外の相の動作をロックするようにしたことを特徴と
する距離継電装置。8. The distance relay device according to claim 1, wherein when a failure phase is determined by the determination means, an operation of a phase other than the failure phase is locked. Distance relay device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000201490A JP2002027663A (en) | 2000-07-03 | 2000-07-03 | Distance relay |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000201490A JP2002027663A (en) | 2000-07-03 | 2000-07-03 | Distance relay |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002027663A true JP2002027663A (en) | 2002-01-25 |
Family
ID=18699176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000201490A Pending JP2002027663A (en) | 2000-07-03 | 2000-07-03 | Distance relay |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002027663A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010023956A1 (en) * | 2008-08-29 | 2010-03-04 | 株式会社 東芝 | Short-circuit distance relay |
JP2012189392A (en) * | 2011-03-09 | 2012-10-04 | Hokkaido Electric Power Co Inc:The | Waveform recorder and fault point locating system |
CN103368151A (en) * | 2013-06-18 | 2013-10-23 | 国家电网公司 | Method of realizing line-to-ground fault phase selection by using sequence voltage phase characteristic |
-
2000
- 2000-07-03 JP JP2000201490A patent/JP2002027663A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010023956A1 (en) * | 2008-08-29 | 2010-03-04 | 株式会社 東芝 | Short-circuit distance relay |
JP2010057341A (en) * | 2008-08-29 | 2010-03-11 | Toshiba Corp | Short-circuit distance relay |
CN102138263A (en) * | 2008-08-29 | 2011-07-27 | 株式会社东芝 | Short-circuit distance relay |
KR101233266B1 (en) * | 2008-08-29 | 2013-02-14 | 가부시끼가이샤 도시바 | Short-circuit distance relay |
JP2012189392A (en) * | 2011-03-09 | 2012-10-04 | Hokkaido Electric Power Co Inc:The | Waveform recorder and fault point locating system |
CN103368151A (en) * | 2013-06-18 | 2013-10-23 | 国家电网公司 | Method of realizing line-to-ground fault phase selection by using sequence voltage phase characteristic |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6442010B1 (en) | Differential protective relay for electrical buses with improved immunity to saturation of current transformers | |
US5783946A (en) | Fault type classification algorithm | |
CN111480275B (en) | Zero sequence current based differential protection for power transmission lines | |
CA2735726C (en) | Short-circuit distance relay | |
Kasztenny et al. | Sequence component applications in protective relays–advantages, limitations, and solutions | |
JP4199065B2 (en) | Protective relay device | |
KR102057201B1 (en) | Out of order discrimination apparatus and protective relay apparatus | |
CN110244167B (en) | Method for detecting short-circuit fault of three-phase inverter | |
JP2002027663A (en) | Distance relay | |
JP3628143B2 (en) | Ground fault distance relay | |
JPH01190215A (en) | Phase selector | |
JP3829614B2 (en) | Digital type protective relay device | |
JP2957187B2 (en) | Secondary circuit disconnection detector for instrument transformer | |
JP2017005868A (en) | Distance relay device and transmission line protection method | |
US8861153B2 (en) | Current differential replay apparatus | |
WO2024161494A1 (en) | Zero-phase current differential relay and method for protecting three-phase transformer | |
JPH07322476A (en) | Multiple failure detection method and failure phase discrimination method | |
JP3745596B2 (en) | Ground fault distance relay | |
JP2607483B2 (en) | Ground fault directional relay | |
JP2577364B2 (en) | 1-line ground fault detection relay system | |
JPH0235539B2 (en) | ITSUSENCHIRAKUKENSHUTSUKEIDENKI | |
JP2001298852A (en) | Circuit selecting relay | |
JP3075607U (en) | Ground fault protection device | |
Holbach et al. | Loop selective direction measurement for distance protection | |
JPH10174271A (en) | Current differential protective relay device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20040126 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20050624 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060825 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070808 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070821 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071001 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071030 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080408 |