JP2002027487A - System for reproducing image from color image information of bayer type color arrangement - Google Patents

System for reproducing image from color image information of bayer type color arrangement

Info

Publication number
JP2002027487A
JP2002027487A JP2000243448A JP2000243448A JP2002027487A JP 2002027487 A JP2002027487 A JP 2002027487A JP 2000243448 A JP2000243448 A JP 2000243448A JP 2000243448 A JP2000243448 A JP 2000243448A JP 2002027487 A JP2002027487 A JP 2002027487A
Authority
JP
Japan
Prior art keywords
signal
horizontal
color
interpolation
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000243448A
Other languages
Japanese (ja)
Inventor
Norihiko Fukinuki
敬彦 吹抜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000243448A priority Critical patent/JP2002027487A/en
Publication of JP2002027487A publication Critical patent/JP2002027487A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent a horizontal or vertical high frequency region image component from being missed or having a false color by regarding it as aliasing occurring when a sampling theorem is not satisfied and setting some assumption on the image in a so-called digital camera, a TV camera for imaging through a Bayer type CCD sensor or an apparatus for reproducing image information of such a color arrangement. SOLUTION: For a low chroma image region, the horizontal or vertical high frequency region image component of a green g signal beyond the sampling theorem (or close to the limit) is restored adaptively. Based on that signal, a red r signal and a blue b signal are interpolated uniquely from horizontally adjacent pixels, vertically adjacent pixels and four corner pixels depending on its pixel arranging position. Horizontal or vertical high frequency region component is restored and false color is reduced simultaneously. Although it has no effect on an oblique direction high frequency region component, that component is scarce in the natural field and the aperture effect of a sensor pixel is expected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】TVカメラやディジタルスティル
カメラ等(以下,カメラと総称する)では,いわゆるC
CDセンサ,特にベイヤ型CCDセンサが広く用いられ
ている.図2に,このセンサにおける画素配置を示す.
ここで,x,yはセンサ上の水平,垂直位置を示す.す
なわち,視覚上重要な成分(通常は緑信号,以下,緑信
号gと記す)の画素はオフセット状に配置される.さら
に,それに続く成分(通常は赤信号と青信号,以下,赤
信号r,青信号bと記す)は1/2に間引いて配置され
る.
BACKGROUND OF THE INVENTION In a TV camera, a digital still camera, and the like (hereinafter collectively referred to as a camera), a so-called C
CD sensors, especially Bayer-type CCD sensors, are widely used. Figure 2 shows the pixel arrangement in this sensor.
Here, x and y indicate the horizontal and vertical positions on the sensor. That is, pixels of visually important components (usually a green signal, hereinafter referred to as a green signal g) are arranged in an offset manner. Further, the subsequent components (usually a red signal and a blue signal, hereinafter referred to as a red signal r and a blue signal b) are arranged to be thinned out to 1/2.

【0002】このセンサを用いてカメラを構成する場
合,ある色に対応する色セルがない画素(以下,その色
についての内挿画素と称す)では,これが存在する周り
の画素(以下,その色についてのセンサ画素と称す)か
ら内挿する.
When a camera is constructed using this sensor, pixels surrounding a pixel where there is no color cell corresponding to a certain color (hereinafter referred to as an interpolation pixel for that color) (hereinafter referred to as the color pixel) are used. Is referred to as the sensor pixel for).

【0003】これらの過程は,2次元信号処理技術の立
場からは,前置フィルタのないサブサンプル値からの復
調である.そして,原画像(厳密にはセンサ面上に結像
した画像)に高域成分を含む場合には,標本化定理を満
足しない.このため,エイリアシングが発生して,精細
なパタンが他の周波数成分になり,その結果,偽の色が
発生する.
[0003] From the standpoint of two-dimensional signal processing techniques, these processes are demodulations from subsampled values without a prefilter. If the original image (strictly speaking, an image formed on the sensor surface) contains high-frequency components, the sampling theorem is not satisfied. For this reason, aliasing occurs, and the fine pattern becomes another frequency component, resulting in a false color.

【0004】本発明は,これらの改善に関するものであ
る.なお,ここでは,CCDを利用するカメラの場合を
説明するが,一般的にはこれと同様な色情報配置されて
表現された画像情報からカラー画像を再生する場合に適
用することが出来る.
The present invention relates to these improvements. Here, the case of a camera using a CCD will be described. However, in general, the present invention can be applied to a case where a color image is reproduced from image information represented by the same color information arrangement.

【0005】ここで,今後の説明に必要な事項を概説し
ておく.いま,赤r,緑g,青bの全画素をまとめて考
えたときの繰返し[水平,垂直]周波数を(μ
ν)とする。赤信号rや青信号bでは,セルは1/2
の間引(サブサンプル)であるから,標本化周波数は
(μ/2,ν/2)である.緑信号gに関しては,
周知のいわゆるオフセット標本化となる.これらの標本
化周波数を図3に○印で示す.◎印は基底成分の中心で
ある.
[0005] Here, matters necessary for future explanation will be outlined. Now, the repetition [horizontal, vertical] frequency when all the pixels of red r, green g, and blue b are considered together is (μ 0 ,
ν 0 ). For red signal r and blue signal b, the cell is 1/2.
Because it is the decimation (sub-sample), the sampling frequency is (μ 0/2, ν 0 /2). As for the green signal g,
This is known as offset sampling. These sampling frequencies are indicated by circles in Fig. 3. ◎ mark is the center of the basis component.

【0006】図3に,赤信号r(x,y),緑信号g
(x,y),青信号b(x,y)の各信号の周波数スペ
クトル R(μ,ν),G(μ,ν),B(μ,ν)を
示す.ここで,μ,νはこれに対応する水平,垂直周波
数を表す.なお,空間的な値(画素値)を小文字のr,
g,bで表し,周波数成分を大文字のR,G,Bで表
す.
FIG. 3 shows a red signal r (x, y) and a green signal g.
(X, y) and the frequency spectrum R (μ, ν), G (μ, ν), B (μ, ν) of each signal of the blue signal b (x, y) are shown. Here, μ and ν represent the corresponding horizontal and vertical frequencies. Note that the spatial value (pixel value) is represented by a lowercase r,
The frequency components are represented by capital letters R, G, and B.

【0007】次に,3種類の高域成分を図9のように定
義する.標本化の結果,直流に変換される高域成分の周
波数スペクトルは,図3の○印にある.緑信号成分の水
平および垂直高域成分(図9および図3の×印)は,直
流成分にはならず,後述のように縮退する。
Next, three types of high frequency components are defined as shown in FIG. As a result of the sampling, the frequency spectrum of the high-frequency component that is converted to direct current is indicated by a circle in FIG. The horizontal and vertical high frequency components of the green signal component (marked by X in FIGS. 9 and 3) do not become DC components but degenerate as described later.

【0008】CCDセンサでは,各色信号成分を各色の
センサで離散的な値として読取る,即ち,前述のように
標本化する.ここで,上記の高域成分は標本化定理を満
足しないため,エイリアシングとなる.
In the CCD sensor, each color signal component is read as a discrete value by each color sensor, that is, sampled as described above. Here, the above high-frequency components do not satisfy the sampling theorem, so they are aliased.

【0009】[0009]

【従来の技術】このような高域成分の消滅や偽色を改善
し,CCDセンサ出力から出来るだけ本来も色信号を得
るべく,多くの発明や学会発表が過去にあった.
2. Description of the Related Art Many inventions and conference presentations have been made in the past in order to improve the disappearance and false color of such high-frequency components and to obtain a color signal as much as possible from the output of a CCD sensor.

【0010】上記の高精細成分消滅や偽色の解決を目指
すという点で,本発明の目的に技術的に最も近いのは,
特許第2931520号「単板式カラービデオカメラの
色分離回路」(特許権者:三洋電機株式会社.以下,引
用特許と称す)であると推察される.
In terms of aiming at eliminating the above high-definition components and solving false colors, the technically closest to the object of the present invention is as follows.
It is presumed to be Patent No. 2931520 "Color separation circuit of single-plate color video camera" (patent holder: Sanyo Electric Co., Ltd .; hereinafter referred to as a cited patent).

【0011】この方法では,赤信号r,緑信号gおよび
青信号bの3つの信号に対して,水平相関が強い場合に
適した第1の補間回路と,垂直相関が強い場合に適した
第2の補間回路を有し,これを後述する相関値の判定結
果により切替える.なお,以後,この「切替」は,オン
オフ的な切替え(ハードスイッチング)の他,切替えを
制御する値(この場合,相関の値)によって連続的,あ
るいはこれに近い滑らかな切替え(ソフトスイッチン
グ)の場合を含むものとする.
According to this method, a first interpolation circuit suitable for a case where the horizontal correlation is strong, and a second interpolation circuit suitable for a case where the vertical correlation is strong, for three signals of a red signal r, a green signal g and a blue signal b. The interpolation circuit is switched according to the result of determination of the correlation value described later. Hereafter, this “switching” means not only on / off switching (hard switching), but also continuous switching or smooth switching (soft switching) depending on the value for controlling switching (correlation value in this case). The case is included.

【0012】上記の引用特許では,下記2点の問題があ
ると思われる.
The above cited patent seems to have the following two problems.

【0013】まず,緑g成分のみによる方向性判定の方
法(引用特許の図7)では,前記の高域成分(水平,垂
直,斜めとも)検出できない.エイリアシングにより,
水平高域成分と垂直高域成分は同一周波数成分に縮退し
て,判別が付かない.斜め高域成分は直流成分や低域成
分に変換されているからである.
First, in the method of determining the direction using only the green g component (FIG. 7 of the cited patent), the above-mentioned high-frequency component (horizontal, vertical, and oblique) cannot be detected. By aliasing,
The horizontal high-frequency component and the vertical high-frequency component degenerate to the same frequency component and cannot be distinguished. This is because the oblique high-frequency components are converted to DC components and low-frequency components.

【0014】次に,引用特許では,赤r,緑g,青bの
三つの成分を利用し,色の飽和度の高いところでは,検
出された相関値を抑制する(引用特許の図15).ただ
し,この考え方には矛盾がある.たとえ無彩色の領域で
も,偽色によって一見有彩色となるからである.
Next, the cited patent uses three components of red r, green g, and blue b, and suppresses the detected correlation value where the degree of color saturation is high (FIG. 15 of the cited patent). . However, there is a contradiction in this concept. Even in achromatic regions, false colors make them seem chromatic at first glance.

【0015】さらに,上記の場合のうち,半分の場合に
ついては,内挿補間が困難である.即ち,判定の結果,
例えば緑gセル画素の赤信号rを水平内挿しようとして
も,水平両隣りの画素が青bセル画素であれば,単純に
水平内挿できず,垂直内挿を加味する必要がある.
Further, in the case of half of the above cases, interpolation is difficult. That is, as a result of the judgment,
For example, even if it is attempted to horizontally interpolate the red signal r of the green g cell pixel, if the pixels on both sides in the horizontal direction are blue b cell pixels, it is not possible to simply horizontal interpolate, and it is necessary to add vertical interpolation.

【0016】このように,水平/垂直判定についても無
理がある.また,赤信号rや青信号bを方向性補間する
にも無理がある.
As described above, the horizontal / vertical judgment is impossible. Further, it is impossible to perform directional interpolation on the red signal r and the blue signal b.

【発明が解決しようとする課題】[Problems to be solved by the invention]

【0017】既にAlready

【従来の技術】の項で述べた問題点を,下記(1)
(2)により解決する.
2. Description of the Related Art
It is solved by (2).

【0018】(1)緑信号gの広帯域復調:前述のよう
に,緑信号gはオフセット標本化される。この結果,周
知のように,水平高域と垂直高域の両成分(×印)が縮
退する.即ち,標本化により,全く異なる2次元周波数
成分が同一の2次元周波数に変換されてしまう.これ
を,相関の高い方向に補間することにより,信号再生す
る.この判定には後述の仮定を置く.
(1) Broadband demodulation of green signal g: As described above, the green signal g is offset-sampled. As a result, as is well known, both the horizontal high-frequency component and the vertical high-frequency component (marked by x) are degenerated. In other words, completely different two-dimensional frequency components are converted into the same two-dimensional frequency by sampling. The signal is reproduced by interpolating this in the direction of high correlation. The following assumptions are made in this judgment.

【0019】(2)赤信号rと青信号bの復調: 赤信
号rや青信号bを,方向性補間することなく,最近傍の
同一色のセル画素と緑信号gの相関のみにより内挿補間
する.これには,配置により,水平内挿,垂直内挿,4
隅からの内挿があるが,これは最も近い画素値を採用す
るもので,上記の水平/垂直相関の結果とは無関係であ
る.
(2) Demodulation of red signal r and blue signal b: Red signal r and blue signal b are interpolated only by the correlation between the nearest neighbor cell of the same color and green signal g without directional interpolation. . This includes horizontal interpolation, vertical interpolation, and 4
There is a corner interpolation, which uses the closest pixel value and is independent of the horizontal / vertical correlation results above.

【0020】以上の(1)(2)を換言すれば,本発明
では,緑成分gについてのみ相関性判定回路出力により
切替え,内挿補間する.そして,赤信号r,青信号bに
ついては,特に判定による切替え等は行わず,各色r,
bの周辺画素の値と緑信号gにより一義的に出力を決定
する.前記のように,引用特許では,2系統の補間が簡
単には出来ない場合があったが,本発明では問題がな
い.
In other words, in the present invention, only the green component g is switched by the output of the correlation judgment circuit and interpolation is performed in the present invention. For the red signal r and the blue signal b, no switching based on the determination is performed.
The output is uniquely determined by the value of the peripheral pixel of b and the green signal g. As described above, in the cited patent, interpolation of two systems may not be easily performed, but there is no problem in the present invention.

【0021】また,この結果として,回路が軽減され
る.因みに,前記引用特許では,同特許の図6,図1
1,図16等にあるように,内挿回路を赤信号成分,緑
信号成分,青信号成分の3つについて,それぞれ,水平
用,垂直用と,2系列設けている.そして,これらの2
系列の出力を相関性判定回路で切替えている.
As a result, the circuit is reduced. By the way, in the cited patent, FIG.
As shown in FIG. 16 and the like, two series of interpolation circuits are provided for a red signal component, a green signal component, and a blue signal component, one for horizontal and one for vertical. And these two
The output of the series is switched by the correlation judgment circuit.

【0022】[0022]

【課題を解決するための手段】前述の如く,本発明で
は,緑成分gについてのみ,水平,垂直の相関方向の判
定回路出力の結果に基づいて,この方向の内挿補間を行
う.すなわち,2つの内挿補間の結果から一方のみを採
用すべく切替える.この結果,広帯域緑信号gが確保さ
れる.赤信号r,青信号bについては,各色の周辺画素
の値と緑信号により一義的に出力する.これを実現する
ための手段として,下記の2つの処理を行う.
As described above, according to the present invention, only the green component g is interpolated in the horizontal and vertical correlation directions based on the result of the output of the determination circuit. That is, switching is performed to adopt only one of the results of the two interpolations. As a result, a broadband green signal g is secured. The red signal r and the blue signal b are uniquely output based on the values of the peripheral pixels of each color and the green signal. To implement this, the following two processes are performed.

【0023】まず,広帯域緑信号gの確保を行う.緑信
号gに関する画素の名前を図4に示す.緑信号gが存在
しない中心の画素を画素cと命名する.これは赤セルの
場合と青セルの場合がある.緑信号gはオフセット標本
化されているので,cにおける緑信号gの値を補間する
には,通常は,ダイアモンド型2次元フィルタ(あるい
は,この省略として,周囲4画素の平均値,等)を用い
る.ただし,この方法では,前記のように,図3の×印
付近の高域G信号成分は,原理的に残せない.
First, a wideband green signal g is secured. FIG. 4 shows the names of the pixels related to the green signal g. The central pixel where the green signal g does not exist is named pixel c. This can be a red cell or a blue cell. Since the green signal g is offset sampled, to interpolate the value of the green signal g at c, a diamond-type two-dimensional filter (or, for short, the average value of the surrounding four pixels, etc.) is usually used. Use. However, in this method, a high-frequency G signal component near the mark x in FIG. 3 cannot be left in principle, as described above.

【0024】このため,方向性の検出を行い,前記の縮
退した2つの成分(即ち,水平高域か,垂直高域か)の
何れかを判定して方向性補間を行い,広帯域復調を行
う.
For this reason, the directionality is detected, and one of the two degenerated components (that is, the horizontal high band or the vertical high band) is determined, and the directional interpolation is performed to perform wideband demodulation. .

【0025】ただし,この処理は,通信工学で良く知ら
れた2次元標本化の定理に反し,ここままでは実現しな
い. そこで,「各画素で,r,g,bの値はほぼ等し
い」という仮定(第1仮定)を置く.
However, this processing is not realized as it is, contrary to the two-dimensional sampling theorem well known in communication engineering. Therefore, an assumption (first assumption) that “the values of r, g, and b are substantially equal in each pixel” is set.

【0026】以下,図1に従って説明する.CCDセン
サ1より緑信号g2を取り出し,赤信号r3,青信号b
4を加味しながら,方向性のある補間回路5で内挿す
る.
The operation will be described below with reference to FIG. The green signal g2 is extracted from the CCD sensor 1, and the red signal r3 and the blue signal b
4 is interpolated by a directional interpolation circuit 5.

【0027】次に,この緑信号g6を基に,g−修正補
間回路7,8により,赤r,青b信号成分を合成する.
そして,エイリアシングによって低域に変換されていた
赤信号r,青信号bの高域成分を再生した信号9,10
を得て,これによって偽色の軽減を図る.
Next, the red r and blue b signal components are synthesized by the g-correction interpolation circuits 7 and 8 based on the green signal g6.
Signals 9 and 10 that reproduce the high-frequency components of the red signal r and the blue signal b that have been converted to low frequencies by aliasing
To reduce false colors.

【0028】しかし,この場合も情報理論的には不可能
である.そこで,信号に対する仮定を置く.ここでは,
「局所領域的には,色度はほぼ一定である」という仮定
(第2仮定)を置く.これは,経験的にもあまり無理な
仮定ではない.
However, also in this case, it is impossible in information theory. Therefore, we make assumptions about the signal. here,
An assumption (second assumption) is made that "the chromaticity is almost constant in the local area". This is not too empirical assumption.

【0029】g−修正補間回路7,8では,この仮定の
下に,例えば,赤信号rの内挿を次のように行う.即
ち,補間すべき値r’は,図3のように,周辺の赤rセ
ンサ画素の値と,その画素のg信号の真値(センサ画素
値;g)と比例関係にあるとして,図6に示すように
内挿する.即ち, r’補間値:g=r真値:g補間値 より求める.g補間値とは,前述の通りである.
Under the assumption, the g-correction interpolation circuits 7 and 8 interpolate the red signal r as follows, for example. That is, as shown in FIG. 3, the value r ′ to be interpolated is proportional to the value of the surrounding red r sensor pixel and the true value (sensor pixel value; g 0 ) of the g signal of that pixel. Interpolate as shown in 6. That is, it is obtained from r ′ interpolation value: g 0 = r true value: g interpolation value. The g interpolation value is as described above.

【0030】赤信号rや青信号bの水平や垂直高域成分
が偽色の原因となるのは,エイリアシングにより直流や
低域成分となるからである.そして,その値は標本化の
位相によって決定される.上記仮説が成立する場合,緑
信号gが正しく補間されたとすれば,比例的に補間する
ことにより,この影響は排除され,偽色は軽減され,か
つ原信号を再生することが出来る.
The reason why the horizontal and vertical high-frequency components of the red signal r and the blue signal b cause false colors is that they become DC and low-frequency components due to aliasing. And its value is determined by the sampling phase. If the above hypothesis holds, assuming that the green signal g is correctly interpolated, this effect is eliminated by performing proportional interpolation, false colors are reduced, and the original signal can be reproduced.

【0031】なお,この方法に依れば,信号処理に乗算
および割算を要する.そこで,後述のように,差分で補
間する便宜的な方法も考えられる.低彩度領域ではこれ
で十分に近似できる.
According to this method, multiplication and division are required for signal processing. Therefore, as described later, a convenient method of interpolating with the difference can be considered. This can be approximated sufficiently in the low saturation region.

【0032】[0032]

【作用】前記の2つの仮定が成立する限り,水平,垂直
高域の成分に対しては正しく原画像を再生する.即ち,
高域成分を再生し,偽色を軽減する.正しく再生せず,
偽色が残るのは,2つの仮定が成立しない場合である.
As long as the above two assumptions hold, the original image is correctly reproduced for the horizontal and vertical high frequency components. That is,
Reproduce high-frequency components and reduce false colors. Does not play correctly,
False colors remain when the two assumptions do not hold.

【0033】第1仮定が成立しないのは高彩度画像であ
る.実際に問題となるのは,高彩度で,かつ,高域成分
の場合である.ただし,偽色がマスクされ,目立たない
ため,特に支障はない.即ち,この仮定は極めて乱暴な
仮定であるが,偽色が大きな妨害となるのは彩度の低い
領域であるため,その領域では予想以上に成立つ.高域
成分でない場合は,水平内挿しても垂直内挿しても,結
果的に同様の値になるので問題ない.
The first assumption does not hold for a high chroma image. What actually matters is the case of high saturation and high frequency components. However, since false colors are masked and inconspicuous, there is no particular problem. In other words, this assumption is extremely violent, but since false color is a major obstacle in the low-saturation area, it is more than expected in that area. If it is not a high-frequency component, there is no problem if the horizontal or vertical interpolation results in the same value.

【0034】第2仮定が成立しないのは,色度に急激な
変化がある場合であるが,従来の内挿においても同様の
現象があり,特にこれ固有の支障とはならない.
The second assumption does not hold when there is a sudden change in chromaticity. However, the same phenomenon occurs in conventional interpolation, and does not cause any particular problem.

【0035】斜め高域成分については,2つの仮定が成
立しても改善されない.即ち,斜め高域成分の偽色は,
この原理からは軽減不可能である.代って,CCDセン
サ各画素の開口率に起因するアパーチャ効果による減
衰,ならびに,自然界にこのような画像が少ないことを
期待する.
The oblique high frequency component is not improved even if the two assumptions hold. That is, the false color of the oblique high frequency component is
It cannot be reduced from this principle. Instead, we expect the attenuation due to the aperture effect due to the aperture ratio of each pixel of the CCD sensor, and that there are few such images in nature.

【0036】[0036]

【実施例】ベイヤー型CCDセンサから赤r,緑g,青
bの各セル出力を得る方法,および,水平あるいは垂直
の周辺画素の値からその画素の値を内挿する回路などは
周知であり,偽色軽減処理を行っていない通常のカメラ
においてさえ,実現されている。また,多くの文献や特
許,例えば,引用特許の2ページ後半から3ペー前半に
かけて詳しく説明されている.そこで,以下,これら3
色の信号は2次元的に得られ,かつ通常の内挿も容易に
実現できるとして,その後を説明する.
DESCRIPTION OF THE PREFERRED EMBODIMENTS A method of obtaining red, green, and blue cell outputs from a Bayer type CCD sensor and a circuit for interpolating the value of a horizontal or vertical peripheral pixel from the value of the peripheral pixel are well known. This is realized even in a normal camera which does not perform the false color reduction processing. In addition, many documents and patents, for example, cited patents, are described in detail from the second half of the second page to the first half of the third page. Therefore, these 3
Color signals are obtained two-dimensionally, and normal interpolation can be easily realized.

【0037】まず,緑信号gの方向性補間による広帯域
復調を,図6を用いて説明する.緑信号gはオフセット
標本化であるから,この色が存在しない画素c(図4,
内挿画素)におけるgの値を補間する.
First, wideband demodulation of the green signal g by directional interpolation will be described with reference to FIG. Since the green signal g is offset sampling, the pixel c where this color does not exist (FIG. 4,
Interpolate the value of g in the interpolated pixel).

【0038】図3の×印付近の水平高域や垂直高域成分
は,前述のように縮退するため,原理的に再生できな
い.
The horizontal high-frequency component and the vertical high-frequency component near the mark x in FIG. 3 degenerate as described above, and cannot be reproduced in principle.

【0039】そこで,前述のように「各画素で,r,
g,bの値はほぼ等しい」(第1仮定)を考え,方向性
ある補間復調,即ち,水平補間,あるいは,垂直補間を
行う.
Therefore, as described above, "for each pixel, r,
Considering that “the values of g and b are almost equal” (first assumption), perform directional interpolation demodulation, that is, horizontal interpolation or vertical interpolation.

【0040】まず,緑信号gを内挿しようとする画素c
が,rの画素(rのセル画素)である場合,即ち,画素
位置が,水平方向x,垂直方向yともに偶数の場合を述
べる.このセルの赤信号の値r11が, 直上緑画素値gと直下緑画素値gの平均値(g
)/2 と, 直左緑画素値gと直右緑画素値gの平均値(g
)/2 の何れに近いかにより,水平/垂直の何れの相関が高い
かを識別する.
First, the pixel c for which the green signal g is to be interpolated
Is a pixel of r (cell pixel of r), that is, a case where the pixel position is an even number in both the horizontal direction x and the vertical direction y. The value r c 11 of a red signal in the cell, directly above the green pixel value g U just below the green average value of the pixel value g D (g U +
g D) / 2 and a straight left green pixel value g L and the average value of the straight right green pixel value g R (g L +
g R ) / 2, which horizontal / vertical correlation is higher is identified.

【0041】即ち,直上直下の平均値回路12と直左直
右の平均値回路13と,上記rとのそれぞれの差信号
14,15の絶対値回路16,17の出力を,比較回路
18で比較する.そして,このうちのうちの近い方(絶
対値の小さい方)の値をスイッチ回路19で切替えて,
その画素の緑信号gの内挿値とする.即ち,前者(直上
直下)であれば垂直内挿が,後者(直左直右)であれば
水平内挿が行われる.このように,センサに緑信号値が
存在しない画素cの緑信号gを,上下左右からの均等で
はなく,垂直,または水平の方向性を持たせて内挿す
る.
[0041] That is, the averaging circuit 12 immediately below just above the average circuit 13 of the straight left straight right, the output of the absolute value circuits 16 and 17 of the respective difference signal 15 between the r c, the comparator circuit 18 Compare with. Then, the closer one of these (the smaller absolute value) is switched by the switch circuit 19, and
The interpolation value of the green signal g of the pixel is used. That is, vertical interpolation is performed for the former (directly above and below), and horizontal interpolation is performed for the latter (directly left to right). As described above, the green signal g of the pixel c having no green signal value in the sensor is interpolated not vertically and horizontally but vertically or horizontally.

【0042】なお,高域成分のない領域では,方向性補
間の如何によらず結果はほぼ同じなので,特に区別する
ことなく,適当にどちらの内挿で行っても良い。上記の
方法では,どちらかで内挿される.なお,上記の「近
さ」の判定において差が小さければ,前記のソフトスイ
ッチングの手法の適用も可能である.
In a region having no high-frequency component, the result is almost the same irrespective of the directional interpolation. Therefore, any interpolation may be appropriately performed without any particular distinction. In the above method, it is interpolated by either. If the difference is small in the above-mentioned "closeness" determination, the above-mentioned soft switching method can be applied.

【0043】緑信号gを内挿すべき画素が青セルの場
合,即ち,水平x,垂直yがともに奇数である場合も同
様である.
The same applies when the pixel into which the green signal g is to be interpolated is a blue cell, that is, when both the horizontal x and the vertical y are odd.

【0044】次に,第2段階である赤信号rと青信号b
の内挿補間を行うg−修正補間回路7,8について説明
する.これによって,高域成分再生と結果的に偽色軽減
が実現する.まず,赤信号rの内挿について述べる.
Next, in the second stage, the red signal r and the blue signal b
The g-correction interpolation circuits 7 and 8 that perform the interpolation of the above will be described. As a result, high-frequency component reproduction and consequent false color reduction are realized. First, the interpolation of the red signal r is described.

【0045】前述のように「局所的には色度はほぼ一定
である」(第2仮定)と仮定する.内挿すべき赤信号
(r’:補間値)は,図6のように,周辺の赤rセンサ
画素と,その画素のg信号の真値(センサ画素値;
)と比例関係にあるとする.即ち, r’補間値:g=r真値:g補間値 として,r’補間値を求める.g補間値とは前述の通り
である.
As described above, it is assumed that "the chromaticity is almost constant locally" (second assumption). As shown in FIG. 6, the red signal (r ′: interpolation value) to be interpolated is a peripheral red r sensor pixel and the true value of the g signal of that pixel (sensor pixel value;
g 0 ). That is, the r ′ interpolation value is obtained as r ′ interpolation value: g 0 = r true value: g interpolation value. The g interpolation value is as described above.

【0046】例えば,左右2つのrセル画素に挟まれた
緑gセル画素における赤r信号の補間値を得るために
は,図6のように,緑信号gとの関係に着目して, r’:g=(r+r)/2:(g+g)/2 のような比例関係を仮定する.これから, r’=(r+r){g/(g+g)} を得る.この構成を図8に示す.
For example, to obtain an interpolated value of a red r signal in a green g cell pixel sandwiched between two right and left r cell pixels, as shown in FIG. ': g 0 = (r L + r R) / 2: assume the (g L + g R) / 2 of such proportional relationship. From this, r ′ = (r L + r R ) {g 0 / (g L + g R )} is obtained. This configuration is shown in FIG.

【0047】内挿には,上記の左右内挿の他,画素位置
により,上下内挿,4隅からの内挿がある.赤信号rの
内挿に関しては,図7に示すように,画素位置(x,
y)により,3通りがある。例えば,x=奇数,y=偶
数の場合は,左右から内挿する.
In addition to the horizontal interpolation described above, there are vertical interpolation and interpolation from four corners depending on the pixel position. Regarding the interpolation of the red signal r, as shown in FIG. 7, the pixel position (x,
There are three types according to y). For example, when x = odd and y = even, interpolation is performed from the left and right.

【0048】これらの奇偶は,センサ画素を駆動する図
1のタイマ21の最下位ビット(LSB)で判定でき
る.因みに,このような判定は,本発明のような偽色軽
減処理を行っていない周知のカメラでも,極く普通に行
っていることである。
These odd / even states can be determined by the least significant bit (LSB) of the timer 21 in FIG. 1 for driving the sensor pixels. Incidentally, such a determination is extremely common even in a known camera which does not perform the false color reduction processing as in the present invention.

【0049】ただし,水平/垂直が顕著でない時や,g
成分が小さい時は,抑圧補間値より通常補間値に大きな
荷重をかける等,ソフトスイッチングとすることも考え
られる.
However, when the horizontal / vertical directions are not remarkable, or when g
When the component is small, soft switching may be considered, such as applying a larger load to the normal interpolation value than the suppression interpolation value.

【0050】上記は青信号bについても同様に行う.The above is similarly performed for the blue signal b.

【0051】[0051]

【発明の効果】一見乱暴な第1仮定の他,無難な第2仮
定を置き,方向性ある補間によりオフセット標本化され
た緑信号gの広帯域復調すること,この緑信号による赤
rと青b信号の「g比例合成」,という2段階の方法を
提案した.
According to the present invention, in addition to the seemingly violent first assumption, a safe second assumption is set, wide-band demodulation of a green signal g offset-sampled by directional interpolation is performed. We proposed a two-stage method called "g-proportional synthesis" of signals.

【0052】実験の結果,第1仮定が成立しない一般の
カラー画像でも,広帯域復調が実現し,偽色の軽減が見
られた.
As a result of the experiment, wideband demodulation was realized and reduction of false colors was observed even in a general color image where the first assumption was not satisfied.

【0053】なお,ベイヤー原色型の場合を述べたが,
補色型であればさらに相関は高まるので,効果が高ま
る.さらに,色差線順次式では,本提案の第1段階を省
けるので,より効果的に行える.
Although the case of the Bayer primary color type has been described,
If the complementary color type is used, the correlation is further enhanced, and the effect is enhanced. Furthermore, the color difference line-sequential method can be performed more effectively because the first step of this proposal can be omitted.

【0054】前記説明では比例関係(比が一定)の場合
を述べた.ただし,前述のように,乗算割算を含み,回
路的には望ましくない.そこで,その代替案として,差
が一定,即ち, r’−(r+r)/2=g−(g+g)/2 と仮定すれば, r’=(r+r)/2+{g−(g+g)/
2} のように内挿信号が得られ,演算が簡単化される.
In the above description, the case of the proportional relationship (the ratio is constant) has been described. However, as mentioned above, it involves multiplication and division and is not desirable in terms of circuitry. Then, as an alternative, assuming that the difference is constant, that is, r ′ − (r 1 + r 2 ) / 2 = g 0 − (g 1 + g 2 ) / 2, then r ′ = (r 1 + r 2 ) / 2 + Δg 0 − (g 1 + g 2 ) /
The interpolation signal is obtained as in 2 挿, and the operation is simplified.

【0055】ここでは,いわゆるデジカメを想定して説
明したが,1走査線毎に間引くことによって,あるい
は,2走査線の信号を組合せを交代させながら加算する
ことによって飛越走査信号を得ることが出来る.
Here, the description has been made assuming a so-called digital camera. However, an interlaced scanning signal can be obtained by thinning out one scanning line or by adding signals of two scanning lines while changing combinations. .

【0056】また,CCDセンサとして赤,緑,青の原
色系の場合について説明したが,補色系であっても,画
素配列を置換えて考えれば,等価な動作が可能である.
Although the case where the CCD sensor is of the primary color system of red, green, and blue has been described, an equivalent operation is possible even with a complementary color system if the pixel array is replaced.

【0057】ここでは,CCD撮像装置の場合を説明し
たが,一般的にはこれと同様な色情報配置されて表現さ
れた画像を再生する場合に適用することが出来る.さら
に,すでにカラー画像再生して偽色が発生してしまった
画像にも適用できる.
Although the case of the CCD image pickup device has been described here, the present invention can be generally applied to a case where an image represented by the same color information arrangement is reproduced. Furthermore, it can also be applied to images that have already been reproduced in color and false colors have occurred.

【0058】[0058]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の概略の構成図FIG. 1 is a schematic configuration diagram of the present invention.

【図2】 本発明の主たる対象であるベイヤー型センサ
配置の説明図
FIG. 2 is an explanatory view of a Bayer type sensor arrangement which is a main object of the present invention.

【図3】 本発明の対象とする映像信号の周波数スペク
トルの説明図
FIG. 3 is an explanatory diagram of a frequency spectrum of a video signal to which the present invention is applied;

【図4】 補間しようとする周辺画素の命名の説明図FIG. 4 is an explanatory diagram of naming of peripheral pixels to be interpolated;

【図5】 g信号内挿回路の構成図(図1の部分)FIG. 5 is a configuration diagram of a g signal interpolation circuit (part of FIG. 1);

【図6】 g−修正回路によるr信号(b信号)の内挿
方法の説明図
FIG. 6 is an explanatory diagram of a method of interpolating an r signal (b signal) by a g-correction circuit.

【図7】 r信号(b信号)の内挿方法の場合分けの説
明図
FIG. 7 is an explanatory diagram of the case of the interpolation method of the r signal (b signal).

【図8】 r信号(b信号)の内挿の回路図FIG. 8 is a circuit diagram of interpolation of an r signal (b signal).

【図9】 高域成分の2次元周波数表示の説明図表FIG. 9 is an explanatory diagram of a two-dimensional frequency display of a high frequency component.

【符号の説明】[Explanation of symbols]

1..ベイヤ型配列のCCDセンサ,5..方向性補間
回路,7,8..g−修正補間回路,18..水平垂直
相関性判定回路,21..(CCDセンサを駆動する)
タイマ回路.
1. . 4. Bayer-type CCD sensor; . Directional interpolation circuit, 7, 8. . g-corrected interpolator, 18. . Horizontal / vertical correlation determination circuit, 21. . (Drives the CCD sensor)
Timer circuit.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】オフセット状(市松状)に配置された第1
の色画素(通常は緑信号,以下,緑信号と記す),およ
び,その間に1/2に間引されてそれぞれ格子状に配置
された第2および第3の色画素(通常は赤信号と青信
号,以下,赤信号と青信号と記す)からなるいわゆるベ
イヤ型画素配置の画像情報を再生する装置において,赤
あるいは青に対応する画素の緑信号値については,周辺
の緑信号の水平方向および垂直方向の内挿値と,該赤あ
るいは青の信号値との関係から,水平または垂直の相関
性を判定し,この結果に従って該水平あるいは垂直内挿
値のいずれかを切り替えて採用し,赤信号および青信号
については,それぞれ該信号と,センサから得られた緑
信号と上記内挿補間された緑信号との関係により内挿補
間することを特徴とするカラー画像情報からの画像再生
方式カラー画像再生方式.
1. A first arrangement arranged in an offset manner (checkered form).
Color pixels (usually referred to as a green signal, hereinafter referred to as a green signal), and second and third color pixels (usually a red signal and a In a device for reproducing image information of a so-called Bayer-type pixel arrangement composed of a blue signal (hereinafter, referred to as a red signal and a blue signal), the green signal value of a pixel corresponding to red or blue is determined in the horizontal and vertical directions of the surrounding green signal. The horizontal or vertical correlation is determined from the relationship between the interpolated value in the direction and the red or blue signal value, and either the horizontal or vertical interpolated value is switched and adopted according to the result. And a green signal obtained by interpolating the green signal obtained from the sensor and the green signal interpolated. Formula.
【請求項2】いわゆるベイヤ型画素配置されたカラー画
像情報を光電変換デバイスから得る第1項記載の画像再
生方式.
2. An image reproduction system according to claim 1, wherein color image information in which so-called Bayer-type pixels are arranged is obtained from a photoelectric conversion device.
JP2000243448A 2000-07-06 2000-07-06 System for reproducing image from color image information of bayer type color arrangement Pending JP2002027487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000243448A JP2002027487A (en) 2000-07-06 2000-07-06 System for reproducing image from color image information of bayer type color arrangement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000243448A JP2002027487A (en) 2000-07-06 2000-07-06 System for reproducing image from color image information of bayer type color arrangement

Publications (1)

Publication Number Publication Date
JP2002027487A true JP2002027487A (en) 2002-01-25

Family

ID=18734301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000243448A Pending JP2002027487A (en) 2000-07-06 2000-07-06 System for reproducing image from color image information of bayer type color arrangement

Country Status (1)

Country Link
JP (1) JP2002027487A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100698626B1 (en) 2004-12-10 2007-03-21 삼성전자주식회사 The image interpolation device for preventing the aliasing and the method thereof
US8773556B2 (en) 2009-08-18 2014-07-08 Sony Corporation Signal processing device, imaging device, and signal processing method for color interpolation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100698626B1 (en) 2004-12-10 2007-03-21 삼성전자주식회사 The image interpolation device for preventing the aliasing and the method thereof
US8773556B2 (en) 2009-08-18 2014-07-08 Sony Corporation Signal processing device, imaging device, and signal processing method for color interpolation

Similar Documents

Publication Publication Date Title
KR100699831B1 (en) Method and apparatus for interpolating Bayer-pattern color signals
US7376288B2 (en) Edge adaptive demosaic system and method
EP0618739B1 (en) Digital video camera and recording apparatus
US7973831B2 (en) Solid-state image sensor and imaging apparatus using the same
US7333678B1 (en) Edge adaptive demosaic system and method
US7053944B1 (en) Method of using hue to interpolate color pixel signals
US6727945B1 (en) Color signal interpolation
JP2002027487A (en) System for reproducing image from color image information of bayer type color arrangement
JPH06339146A (en) Television camera
JPH06303617A (en) Image pickup device
JP3344202B2 (en) Image signal processing device
JPS63108885A (en) Color image pickup system
JP2514221B2 (en) Television receiver
JP2569735B2 (en) Standard method conversion method
JP3499369B2 (en) Signal processing circuit for single-chip color camera
US20100194915A1 (en) Method and apparatus for processing color values provided by a camera sensor
JPH08275185A (en) Contour correction circuit
JPH0488785A (en) Color image pickup element and signal processing device
JP3752911B2 (en) Image signal processing device
JPH07264627A (en) Video signal processing circuit
JPH09327027A (en) Image processing unit
JPH05145934A (en) Signal interpolating device
JPH1127685A (en) Image pickup device
JPH05344513A (en) Simple television camera
JPS61157094A (en) Image pickup device