JP2002025115A - Optical information recording medium - Google Patents

Optical information recording medium

Info

Publication number
JP2002025115A
JP2002025115A JP2000210235A JP2000210235A JP2002025115A JP 2002025115 A JP2002025115 A JP 2002025115A JP 2000210235 A JP2000210235 A JP 2000210235A JP 2000210235 A JP2000210235 A JP 2000210235A JP 2002025115 A JP2002025115 A JP 2002025115A
Authority
JP
Japan
Prior art keywords
layer
recording medium
translucent
dielectric layer
heat radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000210235A
Other languages
Japanese (ja)
Other versions
JP2002025115A5 (en
JP4053715B2 (en
Inventor
Takashi Ono
孝志 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2000210235A priority Critical patent/JP4053715B2/en
Publication of JP2002025115A publication Critical patent/JP2002025115A/en
Publication of JP2002025115A5 publication Critical patent/JP2002025115A5/ja
Application granted granted Critical
Publication of JP4053715B2 publication Critical patent/JP4053715B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an optical information recording medium having a satisfactory transmittance and a heat releasing effect necessary for the formation of a recording mark and useful for a multilayered recording medium. SOLUTION: The optical information recording medium has at least a first dielectric layer, a recording layer, a second dielectric layer, a metal-base translucent heat releasing layer, a third dielectric layer and a translucent reflecting layer in this order, A multilayered optical information recording medium including the optical information recording medium having >=20% transmittance is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、書き換え可能な高
密度な光学的情報記録用媒体(以下、光記録媒体と称す
ることもある。)に関する。特に、透過率が大きく、複
数の光記録媒体が積層された多層化記録媒体への用途が
期待される相変化型記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rewritable, high-density optical information recording medium (hereinafter sometimes referred to as an optical recording medium). In particular, the present invention relates to a phase change recording medium which has a high transmittance and is expected to be used for a multilayer recording medium in which a plurality of optical recording media are stacked.

【0002】[0002]

【従来の技術】情報量の増大に伴い高密度でかつ高速に
大量のデータの記録・再生ができる記録媒体が求められ
ているが、光記録媒体はまさにこうした用途に応え得る
記録媒体の一つとして期待されている。光記録媒体には
一度だけ記録が可能な追記型と、記録・消去が何度でも
繰り返し可能な書き換え型がある。書き換え型光記録媒
体としては、光磁気効果を利用した光磁気記録媒体や、
可逆的な結晶−アモルファス状態の変化に伴う反射率変
化を利用した相変化型記録媒体があげられる。相変化型
記録媒体では通常、誘電体層、記録層、誘電体層及び金
属反射層をこの順に設けた層構造を有する。金属反射層
は、熱拡散を促進して放熱効果を高め、アモルファスマ
ークをより安定に形成するために用いられ、金属放熱層
とも言われる。その為、金属放熱層は、アモルファス形
成に必要な十分な放熱効果を得るために重要であり、通
常、高反射率・高熱伝導率の金属を主成分とする材料か
ら形成されている。又、記録層と金属放熱層の間に設け
られる誘電体層は、記録時に記録層からの熱拡散を促進
してアモルファスマーク形成に寄与し、消去時には蓄熱
層として作用するので、放熱効果を制御するために重要
である。
2. Description of the Related Art With the increase in the amount of information, a recording medium capable of recording and reproducing a large amount of data at a high density and at a high speed has been demanded. An optical recording medium is one of recording media which can meet such a purpose. It is expected as. Optical recording media include a write-once type, which allows recording only once, and a rewritable type, which allows recording / erasing to be repeated any number of times. As rewritable optical recording media, magneto-optical recording media utilizing the magneto-optical effect,
A phase-change type recording medium using a change in reflectivity accompanying a change in a reversible crystalline-amorphous state is exemplified. A phase-change recording medium usually has a layer structure in which a dielectric layer, a recording layer, a dielectric layer, and a metal reflection layer are provided in this order. The metal reflection layer is used to promote heat diffusion to enhance the heat dissipation effect and more stably form the amorphous mark, and is also called a metal heat dissipation layer. Therefore, the metal heat dissipation layer is important for obtaining a sufficient heat dissipation effect required for forming an amorphous phase, and is usually formed of a material mainly composed of a metal having high reflectance and high thermal conductivity. Also, the dielectric layer provided between the recording layer and the metal heat dissipation layer promotes heat diffusion from the recording layer during recording and contributes to the formation of amorphous marks, and acts as a heat storage layer during erasure, thus controlling the heat dissipation effect. It is important to.

【0003】近年は、より膨大な情報量を高速度で記録
・再生するためにさらなる高密度化を目指し記録媒体の
多層化が検討されている。すなわち使用光学系の焦点深
度より大きな距離を隔てて2以上の光記録媒体を積み重
ねて作製することにより記録密度を大きくする試みであ
る。ここで積層される個々の光記録媒体を、以下記録媒
体ユニットと称することもある。この場合レーザー光の
入射方向から見て最も遠い記録媒体ユニット以外の記録
媒体ユニットでは、レーザー光を透過する事が必要にな
る。レーザー光透過のためには、光透過性が求められる
記録媒体ユニットにおいては前記の金属放熱層は基本的
には用いないことが好ましく、用いる場合には十分な光
透過が得られる程度に薄くすることが必要となる。
In recent years, in order to record and reproduce an enormous amount of information at a high speed, a multilayer recording medium has been studied with the aim of further increasing the density. That is, this is an attempt to increase the recording density by stacking and manufacturing two or more optical recording media at a distance greater than the depth of focus of the optical system used. The individual optical recording media stacked here may be hereinafter referred to as a recording medium unit. In this case, the recording medium units other than the recording medium unit farthest from the incident direction of the laser light need to transmit the laser light. In order to transmit laser light, it is preferable that the metal heat radiation layer is basically not used in a recording medium unit requiring light transmission, and when used, the metal heat radiation layer is thin enough to obtain sufficient light transmission. It is necessary.

【0004】しかしながら、金属放熱層がない場合また
は薄い場合には放熱効果が十分でなくなる。その為、光
透過性が求められる記録媒体ユニットが相変化型記録媒
体の場合、アモルファスを形成したい部分が溶融後冷却
されるとき再結晶化してしまいアモルファスマークの形
成が不十分になるという問題がある。記録層の組成等を
変化させ結晶化速度を小さくし再結晶化を防ぐと、こん
どは消去用レーザー照射部のアモルファスマークの結晶
化が不十分になってしまう。すなわち書換可能記録媒体
としての使用可能な結晶化速度の範囲が狭くなってしま
う。
However, when the metal heat radiation layer is not provided or is thin, the heat radiation effect becomes insufficient. Therefore, when the recording medium unit requiring light transmittance is a phase-change type recording medium, there is a problem that a portion where an amorphous material is to be formed is recrystallized when cooled after being melted, and the formation of an amorphous mark becomes insufficient. is there. If the crystallization rate is reduced by changing the composition of the recording layer to prevent recrystallization, the crystallization of the amorphous mark in the erasing portion of the erasing laser will be insufficient. That is, the range of the crystallization speed that can be used as a rewritable recording medium is narrowed.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記問題点を
解決するためになされたもので、その目的は、記録媒体
の多層化に用い得る記録媒体ユニットとして必要とされ
る十分な透過率と記録マーク形成に必要な十分な放熱効
果の両立を達成することにある。放熱効果を大きくする
には金属放熱層はある程度の膜厚を必要とするが、他
方、膜が厚いと透過光量が小さくなるという問題点があ
る。金属放熱層の膜厚と透過光量の制御について検討し
た結果、金属放熱層上にさらに誘電体層と半透明反射層
を設けることにより改善されることを見出し本発明を完
成した。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a recording medium having a sufficient transmittance required for a recording medium unit which can be used for multilayering a recording medium. An object of the present invention is to achieve both a sufficient heat radiation effect necessary for forming a recording mark. In order to increase the heat radiation effect, the metal heat radiation layer needs to have a certain thickness. On the other hand, if the film is thick, there is a problem that the amount of transmitted light is reduced. As a result of studying the control of the film thickness and the amount of transmitted light of the metal heat dissipation layer, the present inventors have found that improvement can be achieved by further providing a dielectric layer and a translucent reflection layer on the metal heat dissipation layer, and completed the present invention.

【0006】[0006]

【課題を解決するための手段】本発明は、記録媒体の多
層化に用い得る光学的情報記録用媒体、特に光透過性が
求められる記録媒体ユニットとしての用途が期待される
光学的情報記録用媒体を提供するものであり、その要旨
は、少なくとも、第1誘電体層、記録層、第2誘電体
層、金属を主成分とする半透明放熱層、第3誘電体層、
及び半透明反射層をこの順に有することを特徴とする光
学的情報記録用媒体に存する。本発明の他の要旨は、少
なくとも、第1誘電体層、記録層、第2誘電体層、金属
を主成分とする半透明放熱層、第3誘電体層、及び半透
明反射層をこの順に有し、且つ透過率が20%以上の記
録媒体を含むことを特徴とする2以上の記録媒体が積層
された光学的情報記録用媒体に存する。
SUMMARY OF THE INVENTION The present invention relates to an optical information recording medium which can be used for multi-layering a recording medium, and particularly to an optical information recording medium which is expected to be used as a recording medium unit which requires light transmittance. The present invention provides at least a first dielectric layer, a recording layer, a second dielectric layer, a translucent heat-radiating layer mainly composed of a metal, a third dielectric layer,
And a translucent reflective layer in this order. Another gist of the present invention is that at least a first dielectric layer, a recording layer, a second dielectric layer, a translucent heat radiation layer mainly composed of a metal, a third dielectric layer, and a translucent reflective layer are arranged in this order. An optical information recording medium comprising two or more recording media having a transmittance and a transmittance of 20% or more.

【0007】本発明の好適な態様としては、上記光学的
情報記録用媒体において、半透明放熱層が銀を主成分と
する材料からなり、又その膜厚が2〜50nmであるこ
と、第2誘電体層の膜厚が30nm以下であること、第
3誘電体層の膜厚をd、屈折率をn、使用レーザー波長
をλとしたとき[λ/(8n)]<d<[λ/(2
n)]であり、かつ、半透明反射層が金属を主成分とす
る材料であること、及び記録層が、相変化型記録層であ
ることを挙げることが出来る。更に、2以上の記録媒体
が積層された光学的情報記録用媒体において、透過率が
20%以上の前記光記録媒体は、入射光側に近接して設
けられること、及び半透明放熱層及び半透明反射層は、
銀を主成分とする金属材料からなり、且つ半透明反射層
の膜厚は半透明放熱層の膜厚以下とすることも好適な態
様として挙げられる。
According to a preferred aspect of the present invention, in the above-mentioned optical information recording medium, the translucent heat radiation layer is made of a material containing silver as a main component, and has a thickness of 2 to 50 nm. When the thickness of the dielectric layer is 30 nm or less, the thickness of the third dielectric layer is d, the refractive index is n, and the laser wavelength used is λ, [λ / (8n)] <d <[λ / (2
n)], and the semi-transparent reflective layer is a material mainly composed of a metal, and the recording layer is a phase-change type recording layer. Further, in an optical information recording medium in which two or more recording media are laminated, the optical recording medium having a transmittance of 20% or more is provided close to the incident light side, The transparent reflective layer
As a preferred embodiment, it is made of a metal material containing silver as a main component, and the thickness of the translucent reflective layer is set to be equal to or less than the thickness of the translucent heat radiation layer.

【0008】[0008]

【発明の実施の形態】本発明の光学的情報記録用媒体
は、上記のごとく、少なくとも、第1誘電体層、記録
層、第2誘電体層、金属を主成分とする半透明放熱層、
第3誘電体層、及び半透明反射層をこの順に有するもの
であり、特に多層化記録媒体を構成する記録媒体ユニッ
トとしては、少なくとも、第1誘電体層、記録層、第2
誘電体層、金属を主成分とする半透明放熱層、第3誘電
体層、及び半透明反射層をこの順に有し、且つ透過率が
20%以上の光記録媒体である。一般的に、誘電体層、
記録層、誘電体層及び金属放熱層から構成される相変化
型記録媒体の金属放熱層は、高い放熱効果が必要とされ
ているため、その効果を十分発揮するのにある程度の膜
厚を有している。しかし、この様な有効な放熱効果を有
する膜厚では、レーザー光に対する反射率が高く、記録
媒体としての光透過率は小さくなってしまうので、大き
な透過率が必要とされる多層化記録媒体における記録媒
体ユニットとしては適用できず、記録媒体ユニットの場
合には一般的には金属放熱層は設けることができないと
考えられていた。
BEST MODE FOR CARRYING OUT THE INVENTION As described above, the optical information recording medium of the present invention comprises at least a first dielectric layer, a recording layer, a second dielectric layer, a semi-transparent heat radiation layer mainly composed of metal,
It has a third dielectric layer and a translucent reflective layer in this order. In particular, as a recording medium unit constituting a multilayer recording medium, at least a first dielectric layer, a recording layer, a second
An optical recording medium having a dielectric layer, a translucent heat radiation layer mainly composed of a metal, a third dielectric layer, and a translucent reflective layer in this order, and having a transmittance of 20% or more. Generally, a dielectric layer,
The metal heat radiating layer of the phase change recording medium composed of the recording layer, the dielectric layer and the metal heat radiating layer is required to have a high heat radiating effect, and therefore has a certain thickness to sufficiently exhibit the effect. are doing. However, with such a film thickness having an effective heat dissipation effect, the reflectance to laser light is high, and the light transmittance as a recording medium becomes small. It was not applicable as a recording medium unit, and it was generally thought that a metal heat dissipation layer could not be provided in the case of a recording medium unit.

【0009】本発明の記録媒体は上記の層構成からなる
が、金属放熱層の膜厚を適度に調整すると共に、さらに
位相調整用誘電体層と半透明反射層を追加し多重反射さ
せることにより、結果として反射率を小さく透過率を大
きくすることができると共に高い放熱性も確保できると
の新規な知見に基づくのである。なお、本明細書中にお
いて、膜が「半透明」であるとは、通常、光の透過率が
3%以上である状態を示す。本発明の「半透明放熱層」
及び「半透明反射層」での光透過率は、3%以上が好ま
しく、特に好ましくは5%以上、さらに好ましくは10
%以上、最も好ましくは15%以上である。透過率は、
使用する波長の光に対する複素屈折率と膜厚から計算す
ることができる。本発明の「記録媒体」としての光透過
率は、通常20%以上、好ましくは30%以上である。
The recording medium of the present invention has the above-mentioned layer structure. By appropriately adjusting the film thickness of the metal heat dissipation layer, and further adding a dielectric layer for phase adjustment and a translucent reflection layer to cause multiple reflection. As a result, it is based on the novel finding that the reflectance can be reduced and the transmittance can be increased, and high heat dissipation can be secured. In the present specification, the term “semi-transparent” means that the film usually has a light transmittance of 3% or more. "Translucent heat dissipation layer" of the present invention
And the light transmittance of the “translucent reflective layer” is preferably 3% or more, particularly preferably 5% or more, and more preferably 10% or more.
%, Most preferably 15% or more. The transmittance is
It can be calculated from the complex refractive index and the film thickness for the light of the used wavelength. The light transmittance of the “recording medium” of the present invention is usually 20% or more, preferably 30% or more.

【0010】本発明は上記の如く、多重反射を利用して
反射光量を小さく透過光量を大きくするものであるが、
このような場合、半透明放熱層や半透明反射層は光を吸
収しやすくなる傾向にある。したがって半透明放熱層や
半透明反射層を構成する材料としてはできるだけ光吸収
の小さい材料を選ぶことが好ましい。半透明放熱層は上
記のようにある程度の透過光を有するが、記録媒体全体
としての透過率を大きくするためには、比較的薄い膜厚
で用いられる。比較的薄い膜厚で有効な放熱効果を得る
には、半透明放熱層として用いる材料は熱伝導度が十分
に大きいものである必要がある。熱伝導度が大きい材料
としてはAg、Au、Al、Cu等を主成分とする金属
が挙げられる。この中で熱伝導度が最も大きいものはA
gであるため、熱伝導度の点ではAgが最も好ましい。
As described above, the present invention utilizes multiple reflection to reduce the amount of reflected light and increase the amount of transmitted light.
In such a case, the translucent heat dissipation layer and the translucent reflection layer tend to absorb light easily. Therefore, it is preferable to select a material that absorbs as little light as possible as a material constituting the translucent heat radiation layer and the translucent reflection layer. Although the translucent heat radiation layer has a certain amount of transmitted light as described above, it is used with a relatively thin film thickness in order to increase the transmittance of the entire recording medium. In order to obtain an effective heat radiation effect with a relatively thin film thickness, the material used as the translucent heat radiation layer needs to have a sufficiently large thermal conductivity. As a material having a high thermal conductivity, a metal mainly composed of Ag, Au, Al, Cu, or the like can be given. Among them, the one with the largest thermal conductivity is A
Because of g, Ag is most preferable in terms of thermal conductivity.

【0011】一方、光吸収を考慮すると上記の金属の中
ではAgが最も好ましい。特に短波長ではAu、Cu、
AlはAgと比較して光を吸収しやすくなるため、65
0nm以下の短波長レーザーを使用する場合にはAgを
用いることが特に好ましい。さらにAgはスパッタリン
グターゲットとしての値段が比較的安く、放電が安定で
成膜速度が速く、空気中で安定であるため生産性、経済
性の点で好ましい。したがって総合的に見て半透明放熱
層としてはAgが最も好ましい材料である。更に、半透
明放熱層を形成し得る材料主成分としての金属Ag、A
l、Au、Cuは、不純物が混ざると熱伝導度が低下し
光の吸収が大きくなる欠点を有してはいるが、安定性や
膜表面平坦性が改善されることもあり、5at.%以下
程度の不純物元素を含んでいてもよい。不純物元素とし
ては、Cr、Mo、Mg、Zr、V、Ag、In、G
a、Zn、Sn、Si、Cu、Au、Al、Pd、P
t、Pb、Cr、Co、O、Se、V、Nb、Ti、
O、N等が挙げられる。
On the other hand, in consideration of light absorption, Ag is most preferable among the above metals. Especially at short wavelengths, Au, Cu,
Al is easier to absorb light than Ag,
When a short wavelength laser of 0 nm or less is used, it is particularly preferable to use Ag. Further, Ag is relatively inexpensive as a sputtering target, is stable in discharge, has a high film-forming speed, and is stable in the air, which is preferable in terms of productivity and economy. Therefore, Ag is the most preferable material for the translucent heat radiation layer as a whole. Further, metal Ag, A as a material main component capable of forming a translucent heat radiation layer
1, Au and Cu have the disadvantage that when mixed with impurities, the thermal conductivity is reduced and the light absorption is increased, but the stability and the film surface flatness are sometimes improved, and 5 at. % Or less. As impurity elements, Cr, Mo, Mg, Zr, V, Ag, In, G
a, Zn, Sn, Si, Cu, Au, Al, Pd, P
t, Pb, Cr, Co, O, Se, V, Nb, Ti,
O, N and the like can be mentioned.

【0012】半透明放熱層の膜厚については、用いる材
料や使用するレーザー波長により最適膜厚は変化する
が、材料がAgでレーザー波長が400〜650nm付
近の場合は、膜厚は2〜50nm程度が良く、より好ま
しくは5〜30nmである。2nmより薄いと放熱効果
が小さくなり、他方50nmより厚いと透過光量が小さ
くなるので好ましくない。Agは短波長で複素屈折率の
虚数部分の絶対値が小さくなるため同じ膜厚であっても
短波長の方が透過率が大きくなる傾向にある。したがっ
て十分な放熱効果と十分な透過率の両立は短波長の方が
達成しやすい傾向にあり、本発明の効果は短波長でより
有利になる。ただし相変化型光ディスクの記録層の信号
強度は短波長で小さくなる傾向にある。
The optimum film thickness of the translucent heat radiation layer varies depending on the material used and the laser wavelength used. When the material is Ag and the laser wavelength is around 400 to 650 nm, the film thickness is 2 to 50 nm. The degree is good, more preferably 5 to 30 nm. If the thickness is less than 2 nm, the heat radiation effect is reduced, while if it is greater than 50 nm, the amount of transmitted light is undesirably small. Since the absolute value of the imaginary part of the complex refractive index becomes small at a short wavelength of Ag, even at the same film thickness, the transmittance tends to be larger at a shorter wavelength. Therefore, a balance between a sufficient heat radiation effect and a sufficient transmittance tends to be more easily achieved at a short wavelength, and the effect of the present invention becomes more advantageous at a short wavelength. However, the signal intensity of the recording layer of the phase change optical disk tends to decrease at short wavelengths.

【0013】半透明放熱層と、第2または第3誘電体層
との間でこれらの層を形成する材料により元素拡散等の
相互作用が生ずる場合には、放熱層と誘電体層間の界面
に拡散防止層等をさらに設けることが好ましい。拡散防
止層材料としては、酸化ケイ素、窒化ケイ素、炭化ケイ
素、酸化タンタル、酸化セリウム、酸化ランタン、酸化
イットリウム、酸化アルミニウム、酸化銀等が好ましい
材料として挙げられる。なお、ダイヤモンドは熱伝導度
がさらに大きく透明になり得るため放熱層として好まし
い材料であるが、製膜上に難点がある。
When an interaction such as element diffusion occurs between the translucent heat radiation layer and the second or third dielectric layer due to a material forming these layers, the interface between the heat radiation layer and the dielectric layer is formed. It is preferable to further provide a diffusion prevention layer and the like. Preferred examples of the material for the diffusion preventing layer include silicon oxide, silicon nitride, silicon carbide, tantalum oxide, cerium oxide, lanthanum oxide, yttrium oxide, aluminum oxide, and silver oxide. Note that diamond is a preferable material for the heat dissipation layer because it has higher thermal conductivity and can be transparent, but has a problem in film formation.

【0014】半透明反射層は、半透明放熱層に第3誘電
体層を介して設けられており、記録層から距離がやや離
れているため大きな放熱効果は期待できない。半透明反
射層は光学的にはある程度の反射率が得られ光吸収の小
さいものであることが重要である。半透明反射層が金属
を主成分とする材料から形成される場合、この条件は上
記半透明放熱層としての必要条件でもあるので、半透明
放熱層として使用される好ましい材料を金属半透明反射
層として使用可能である。前記のAg、Au、Al、C
u等を主成分とする金属材料の中ではやはりAgが最も
好ましい。
The translucent reflective layer is provided on the translucent heat radiating layer with the third dielectric layer interposed therebetween. Since the transflective layer is slightly distant from the recording layer, a large heat radiating effect cannot be expected. It is important that the translucent reflective layer has a certain degree of optical reflectivity and low light absorption. When the translucent reflective layer is formed from a material containing a metal as a main component, since this condition is also a necessary condition for the translucent heat dissipation layer, a preferable material used for the translucent heat dissipation layer is a metal translucent reflection layer. It can be used as Ag, Au, Al, C
Ag is the most preferable metal material mainly containing u or the like.

【0015】半透明反射層の膜厚については、用いる材
料や使用するレーザー波長により最適膜厚は変化する
が、材料がAgでレーザー波長が400〜650nmの
場合は膜厚は50nm程度以下が良い。50nmより厚
いと透過光量が小さくなり、記録媒体全体としての透過
率が低下し、特に多層記録媒体における記録媒体ユニッ
トとしての使用に適しない場合がある。半透明反射層の
最適膜厚は半透明放熱層膜厚等と関係しており、相互の
材料や使用レーザーの波長によっても異なるが、半透明
放熱層以下の膜厚、特に同等或いは多少薄い膜厚とした
場合の多くが良好である。ただし、あまりに薄いのも記
録媒体の特性や製造上の困難が伴うので、通常1nm以
上である。半透明反射層と第3誘電体層との間または半
透明反射層とその上に必要に応じ設けられる紫外線硬化
樹脂層もしくは接着剤層等との間に元素拡散等の相互作
用が生ずる場合には、それぞれの層間の界面に拡散防止
層等をさらに設けることが好ましい。拡散防止層の材料
としては、上記半透明放熱層と誘電体層間に設けられる
拡散防止層に使用される材料が使用できる。
The optimum thickness of the translucent reflective layer varies depending on the material used and the laser wavelength used. However, when the material is Ag and the laser wavelength is 400 to 650 nm, the thickness is preferably about 50 nm or less. . If the thickness is larger than 50 nm, the amount of transmitted light is small, and the transmittance of the entire recording medium is reduced. In some cases, it is not suitable for use as a recording medium unit in a multilayer recording medium. The optimum thickness of the translucent reflective layer is related to the thickness of the translucent heat dissipation layer, etc., and varies depending on the mutual material and the wavelength of the laser used. In many cases, the thickness is good. However, if the thickness is too thin, the characteristics of the recording medium and manufacturing difficulties are involved, so that the thickness is usually 1 nm or more. When an interaction such as element diffusion occurs between the translucent reflective layer and the third dielectric layer or between the translucent reflective layer and an ultraviolet curable resin layer or an adhesive layer provided thereon as necessary. It is preferable to further provide a diffusion prevention layer or the like at the interface between the respective layers. As the material of the diffusion prevention layer, the material used for the diffusion prevention layer provided between the translucent heat radiation layer and the dielectric layer can be used.

【0016】半透明反射層としては、屈折率の異なる2
種類以上の透明誘電体層を積層して作製する誘電体ミラ
ーも使用可能である。誘電体ミラーは、半透明反射層が
必要とするある程度の反射率が得られ吸収の小さいもの
という条件を満たす最も好ましい材料であろう。誘電体
ミラーの例としてはZnS-SiO2とSiO2の積層膜
等が挙げられる。誘電体ミラーは、使用するレーザー波
長をλ、誘電体屈折率をnとし、各積層誘電体膜の膜厚
をλ/(4n)として積層することが好ましい。しか
し、誘電体ミラーは金属半透明反射層と比較して、作製
のための時間や作製装置の複雑さの点で不利であり、又
保存安定性についても問題になる場合がある。
As the translucent reflection layer, two layers having different refractive indexes are used.
A dielectric mirror manufactured by laminating more than two kinds of transparent dielectric layers can also be used. The dielectric mirror may be the most preferable material that satisfies the condition that a certain degree of reflectance required by the translucent reflection layer is obtained and the absorption is small. Examples of the dielectric mirror include a laminated film of ZnS—SiO 2 and SiO 2 . It is preferable that the dielectric mirrors are laminated such that the laser wavelength to be used is λ, the dielectric refractive index is n, and the thickness of each laminated dielectric film is λ / (4n). However, the dielectric mirror is disadvantageous in terms of the time required for fabrication and the complexity of the fabrication apparatus as compared with the metal translucent reflective layer, and may also have a problem in storage stability.

【0017】半透明放熱層と半透明反射層の間に設けら
れる誘電体層(第3誘電体層)は多重反射時の位相を調
整する役割がある。誘電体層の材料は、屈折率、熱伝導
率、化学的安定性、機械的強度、密着性、膜形成速度等
に留意して決定される。一般的には透明性が高く高融点
である金属や半導体の酸化物、硫化物、窒化物やCa、
Mg、Li等のフッ化物を用いることができる。これら
の酸化物、硫化物、窒化物、フッ化物は必ずしも化学量
論的組成をとる必要はなく、屈折率等の制御のために組
成を制御したり、混合して用いることも有効である。よ
り具体的にはZnSや希土類硫化物と酸化物、窒化物、
炭化物等の耐熱化合物の混合物が挙げられ、繰り返し記
録特性を考慮すると誘電体混合物がよい。
A dielectric layer (third dielectric layer) provided between the translucent heat radiation layer and the translucent reflection layer has a role of adjusting the phase at the time of multiple reflection. The material of the dielectric layer is determined in consideration of the refractive index, thermal conductivity, chemical stability, mechanical strength, adhesion, film formation speed, and the like. In general, metal and semiconductor oxides, sulfides, nitrides and Ca, which are highly transparent and have a high melting point,
A fluoride such as Mg or Li can be used. These oxides, sulfides, nitrides, and fluorides do not always need to have a stoichiometric composition, and it is effective to control the composition for controlling the refractive index and the like, or to use a mixture thereof. More specifically, ZnS or rare earth sulfide and oxide, nitride,
A mixture of a heat-resistant compound such as a carbide may be used, and a dielectric mixture is preferable in consideration of repetitive recording characteristics.

【0018】具体的には、硫化亜鉛、硫化タンタル、希
土類(Y、La、Ce、Nd等)硫化物のような硫化物
を単独或いは混合物として20mol%以上90mol
%以下含むものが好ましい。混合物の残部は、融点又は
分解温度が1000℃以上の耐熱性化合物であることが
好ましい。融点又は分解温度が1000℃以上の耐熱性
化合物としては、Mg,Ca,Sr,Y,La,Ce,Ho,Er,Yb,Ti,Zr,H
f,V,Nb,Ta,Zn,Al,Si,Ge,Pb等の酸化物、窒化物、炭化物
やCa、Mg、Li等のフッ化物が挙げられる。これら
の中、ZnSとSiO2とからなる混合物が相変化型光
記録媒体の誘電体層に用いられる場合が多い。又、誘電
体層の膜密度はバルク状態の80%以上であることが機
械的強度の面から望ましい(Thin Solid Films、第27
8巻(1996年)、74〜81ページ)。
Specifically, sulfides such as zinc sulfide, tantalum sulfide, and rare earth (Y, La, Ce, Nd, etc.) sulfides are used alone or as a mixture in an amount of 20 mol% to 90 mol%.
% Is preferable. The balance of the mixture is preferably a heat-resistant compound having a melting point or decomposition temperature of 1000 ° C. or higher. As a heat-resistant compound having a melting point or a decomposition temperature of 1000 ° C. or more, Mg, Ca, Sr, Y, La, Ce, Ho, Er, Yb, Ti, Zr, H
Examples thereof include oxides such as f, V, Nb, Ta, Zn, Al, Si, Ge, and Pb, nitrides, carbides, and fluorides such as Ca, Mg, and Li. Of these, a mixture of ZnS and SiO 2 is often used for a dielectric layer of a phase-change optical recording medium. The film density of the dielectric layer is preferably 80% or more of the bulk state from the viewpoint of mechanical strength (Thin Solid Films, No. 27).
8 (1996), pp. 74-81).

【0019】第3誘電体層の好ましい膜厚は、誘電体、
半透明放熱層、半透明反射層等の材料や膜厚、使用レー
ザー波長等によって変化する。本発明記録媒体の層構成
では半透明放熱層と半透明反射層の透過率と反射率の両
方がある程度大きい場合の多重反射となるため現象は複
雑ではあるが、半透明放熱層と半透明反射層が金属を主
成分とする材料からなる場合は、第3誘電体層の膜厚に
ついては以下のように現象を簡略化して考えるとわかり
やすい。即ち、半透明放熱層、第3誘電体層、半透明反
射層の3層構成の透過率を大きくするには、この部分の
反射率を小さくすることが有効と思われる。そのために
は半透明放熱層で反射した光の位相と、半透明放熱層を
透過して半透明反射層で反射され再度半透明放熱層を透
過し戻ってきたきた光の位相を半波長分ずらして打ち消
し合うようにすれば良いと思われる。つまり、第3誘電
体層の膜厚をd、屈折率をn、使用レーザー波長をλと
したとき、d=λ/(4n)付近に好適な範囲があると
思われる。実際には多重反射の効果や半透明放熱層と半
透明反射層の膜厚の効果等でこの値から多少ずれること
があるとしても、第3誘電体層の膜厚(d)としては、
[λ/(8n)]<d<[λ/(2n)]が好ましい。
The preferred thickness of the third dielectric layer is a dielectric,
It varies depending on the material and thickness of the translucent heat radiation layer, the translucent reflection layer, etc., the used laser wavelength, and the like. In the layer structure of the recording medium of the present invention, the phenomenon is complicated because multiple reflection occurs when both the transmittance and the reflectance of the translucent heat radiation layer and the translucent reflection layer are large to some extent. When the layer is made of a material mainly composed of a metal, the thickness of the third dielectric layer can be easily understood by simplifying the phenomenon as follows. That is, in order to increase the transmittance of the three-layer structure including the translucent heat dissipation layer, the third dielectric layer, and the translucent reflection layer, it is considered effective to reduce the reflectance in this portion. For this purpose, the phase of the light reflected by the translucent heat dissipation layer and the phase of the light transmitted through the translucent heat dissipation layer, reflected by the translucent reflection layer, and transmitted again through the translucent heat dissipation layer are shifted by a half wavelength. I think it would be good to cancel each other out. That is, when the thickness of the third dielectric layer is d, the refractive index is n, and the used laser wavelength is λ, it is considered that there is a suitable range around d = λ / (4n). Actually, even if the value slightly deviates from this value due to the effect of multiple reflection or the effect of the film thickness of the translucent heat dissipation layer and the translucent reflection layer, the film thickness (d) of the third dielectric layer is
[Λ / (8n)] <d <[λ / (2n)] is preferable.

【0020】第2誘電体層は、記録層と半透明放熱層と
の間に設けられ、この誘電体層は記録層から半透明放熱
層へ流れる熱を制御する役割を有する。第2誘電体層の
膜厚は2〜30nm程度が好ましく、より好ましくは5
〜20nmである。30nmを超えて厚すぎると放熱効
果が不十分になり、他方2nmより薄すぎると記録感度
が悪化したり、更には記録層や半透明放熱層との間で元
素拡散等が起こってしまい好ましくない。第2誘電体層
の材料としては半透明放熱層と半透明反射層の間に設け
られる上記第3誘電体層に使用される材料と同様のもの
が使用可能である。
The second dielectric layer is provided between the recording layer and the translucent heat radiation layer, and this dielectric layer has a role of controlling heat flowing from the recording layer to the translucent heat radiation layer. The thickness of the second dielectric layer is preferably about 2 to 30 nm, more preferably 5 to 30 nm.
2020 nm. When the thickness is more than 30 nm, the heat radiation effect becomes insufficient. On the other hand, when the thickness is less than 2 nm, the recording sensitivity deteriorates, and furthermore, element diffusion between the recording layer and the translucent heat radiation layer occurs, which is not preferable. . As the material of the second dielectric layer, the same material as that used for the third dielectric layer provided between the translucent heat radiation layer and the translucent reflection layer can be used.

【0021】第1誘電体層は、第2誘電体層と共に記録
層の上下を被覆するように設けられ、また、一般的に
は、第1誘電体層は記録層と基板の間に介在する。第1
誘電体層は熱による基板変形を抑制することが必要であ
り、その膜厚は30nm以上が好ましい。30nm未満
では、繰り返しオーバーライト中に微視的な基板変形が
蓄積され、再生光が散乱されてノイズ上昇が著しくな
る。一方、誘電体層の厚みが500nmを超えると誘電
体自体の内部応力や基板との弾性特性の差が顕著になっ
て、クラックが発生しやすくなる。成膜時間の関係から
200nm程度が実質的に上限となるが、200nmよ
り厚いと記録層面で見た溝形状が変わってしまう点でも
好ましくない。より好ましくは150nm以下である。
第1誘電体層の材料としては、半透明放熱層と半透明反
射層の間に設けられる上記第3誘電体層に使用される材
料と同様のものが使用可能である。
The first dielectric layer is provided so as to cover the upper and lower portions of the recording layer together with the second dielectric layer. In general, the first dielectric layer is interposed between the recording layer and the substrate. . First
The dielectric layer needs to suppress deformation of the substrate due to heat, and the thickness thereof is preferably 30 nm or more. If it is less than 30 nm, microscopic substrate deformation is accumulated during repeated overwriting, and the reproduction light is scattered, so that the noise rises significantly. On the other hand, if the thickness of the dielectric layer exceeds 500 nm, the internal stress of the dielectric itself and the difference in elastic properties between the dielectric layer and the substrate become significant, and cracks are likely to occur. Although the upper limit is substantially about 200 nm from the relation of the film formation time, it is not preferable that the thickness is larger than 200 nm because the groove shape seen on the recording layer surface changes. More preferably, it is 150 nm or less.
As the material of the first dielectric layer, the same material as that used for the third dielectric layer provided between the translucent heat radiation layer and the translucent reflective layer can be used.

【0022】本発明の光記録媒体における記録層として
は公知の相変化型光記録層が使用でき、例えばGeSb
TeやInSbTe、AgSbTe、AgInSbTe
といった系列化合物がオーバーライト可能な材料として
選ばれる。これらの中、{(Sb2Te31-x(GeT
e)x1-ySby合金(ただし、0.2<x<0.9、
0≦y<0.1)、または(SbxTe1-xy1-y合金
(ただし、0.6<x<0.9、0.7<y<1、Mは
Ge、Ag、In、Ga、Zn、Sn、Si、Cu、A
u、Pd、Pt、Pb、Cr、Co、O、S、Se、
V、Nb、Taより選ばれる少なくとも1種)を主成分
とする薄膜は、結晶・非晶質いずれの状態も安定で、か
つ、両状態間の高速の相転移が可能である。さらに、繰
り返しオーバーライトを行った時に偏析が生じにくいと
いった利点があり、最も実用的な材料である。記録層が
(SbxTe1-xy1-y合金(ただし、0.6<x<
0.9、0.7<y<1、MはGe、Ag、In、G
a、Zn、Sn、Si、Cu、Au、Pd、Pt、P
b、Cr、Co、O、S、Se、V、Nb、Taより選
ばれる少なくとも1種)を主成分とする相変化型媒体で
ある場合、熱分布の違いがマーク形状に反映されやすい
ので、本発明では特に重要となる。
As the recording layer in the optical recording medium of the present invention, a known phase-change type optical recording layer can be used. For example, GeSb
Te, InSbTe, AgSbTe, AgInSbTe
Are selected as overwritable materials. Among them, {(Sb 2 Te 3 ) 1-x (GeT
e) x} 1-y Sb y alloy (wherein, 0.2 <x <0.9,
0 ≦ y <0.1) or (Sb x Te 1-x ) y M 1-y alloy (where 0.6 <x <0.9, 0.7 <y <1, M is Ge, Ag , In, Ga, Zn, Sn, Si, Cu, A
u, Pd, Pt, Pb, Cr, Co, O, S, Se,
The thin film mainly containing at least one selected from V, Nb, and Ta) is stable in both crystalline and amorphous states, and is capable of high-speed phase transition between the two states. Furthermore, it has the advantage that segregation hardly occurs when repeated overwriting is performed, and is the most practical material. The recording layer is made of (Sb x Te 1-x ) y M 1-y alloy (where 0.6 <x <
0.9, 0.7 <y <1, M is Ge, Ag, In, G
a, Zn, Sn, Si, Cu, Au, Pd, Pt, P
b, Cr, Co, O, S, Se, V, Nb, and Ta) as the main components, the difference in heat distribution is easily reflected in the mark shape. This is particularly important in the present invention.

【0023】記録層が相変化型光記録層の場合、その厚
みは3nmから15nmの範囲が好ましい。記録層の厚
みが3nmより薄いと十分なコントラストが得られ難
く、また初期結晶化が困難となりやすい。一方15nm
を越すと十分な透過率が得にくくなるので好ましくな
い。より好ましくは5〜10nmである。
When the recording layer is a phase change type optical recording layer, its thickness is preferably in the range of 3 nm to 15 nm. If the thickness of the recording layer is less than 3 nm, it is difficult to obtain a sufficient contrast, and initial crystallization tends to be difficult. On the other hand 15nm
If it exceeds, it is difficult to obtain a sufficient transmittance, which is not preferable. More preferably, it is 5 to 10 nm.

【0024】上記記録層は合金ターゲットを不活性ガ
ス、特にArガス中でスパッタして得られることが多
い。なお、記録層および誘電体層の厚みは、上記機械的
強度、信頼性の面からの制限の他に、多層構成に伴う干
渉効果も考慮して、レーザー光の吸収効率が良く、記録
信号の振幅すなわち記録状態と未記録状態のコントラス
トが大きくなるように選ばれる。
The above-mentioned recording layer is often obtained by sputtering an alloy target in an inert gas, particularly Ar gas. The thicknesses of the recording layer and the dielectric layer are good for the absorption efficiency of the laser light, taking into account the interference effect associated with the multilayer structure, in addition to the mechanical strength and the limitation in terms of reliability. The amplitude is selected so that the contrast between the recorded state and the unrecorded state is increased.

【0025】本発明の光記録媒体において、基板として
は、ポリカーボネート、アクリル、ポリオレフィンなど
の透明樹脂、あるいはガラスを用いることができる。こ
れらの中、ポリカーボネートは実績もあり安価で経済性
にも優れているので好ましい。基板の厚さは、通常0.
05〜5mm、好ましくは0.1〜2mmである。
In the optical recording medium of the present invention, a transparent resin such as polycarbonate, acrylic, or polyolefin, or glass can be used as the substrate. Of these, polycarbonate is preferred because it has a proven track record and is inexpensive and excellent in economic efficiency. The thickness of the substrate is usually 0.
It is from 0.5 to 5 mm, preferably from 0.1 to 2 mm.

【0026】前述の記録層、第1〜3誘電体層、半透明
放熱層、半透明反射層、拡散防止層等はスパッタリング
法などによって形成される。これらの層は各層のスパッ
タリングターゲット、即ち記録膜用ターゲット、誘電体
膜用ターゲット、必要な場合には反射層材料用ターゲッ
ト等を同一真空チャンバー内に設置したインライン装置
で膜形成を行うことが各層間の酸化や汚染を防ぐ点で望
ましい。また、生産性の面からも優れている。
The recording layer, the first to third dielectric layers, the translucent heat radiation layer, the translucent reflection layer, the diffusion preventing layer and the like are formed by a sputtering method or the like. Each of these layers can be formed by an in-line apparatus in which a sputtering target of each layer, that is, a target for a recording film, a target for a dielectric film, and a target for a reflective layer material, if necessary, are installed in the same vacuum chamber. It is desirable in preventing oxidation and contamination between layers. It is also excellent in terms of productivity.

【0027】本発明の光記録媒体の層構成は、例えば、
基板側から記録・再生用レーザー光を入射して使用する
場合は、基本的には基板上に第1誘電体層、記録層、第
2誘電体層、半透明放熱層、第3誘電体層、半透明反射
層をこの順に設け、必要に応じ保護コート層がその上に
設けられる。一方、より高密度媒体を得るため対物レン
ズNAをより大きくした光学系に対しては膜面側からの
入射が好ましくなることもあり、記録・再生用レーザー
光が膜面から入射される場合は、上記構造とは逆の層構
成となる。また、場合により基板の両側にこれら各層を
構成しても、膜面(保護コート層)を内側にして両側に
各層を有する光記録媒体とすることもできる。更に、本
発明の光記録媒体を、2以上の記録媒体が積層された多
層化光記録媒体の記録媒体ユニットとして使用する場合
には、例えば、入射光が基板側から行われる場合、上記
の如き基板、第1誘電体層、記録層、第2誘電体層、半
透明放熱層、第3誘電体層、半透明反射層をこの順に積
層し、その上に接着層を介して他の光記録媒体ユニット
が積層された構造を採ることが出来る。他の光記録媒体
ユニットとしては、公知の層構成、例えば誘電体層、記
録層、誘電体層及び金属反射層をこの順に設けた層構造
を有する相変化型光記録媒体を用いることができる。但
し、これらに限定されるものではなく、再生専用型、ラ
イトワンス型、光磁気型等各種のものが使用できる。な
お、上記接着層には、十分な光透過性と十分な厚さ(通
常10μm以上)が求められる。
The layer structure of the optical recording medium of the present invention is, for example,
When a recording / reproducing laser beam is incident from the substrate side and used, basically, a first dielectric layer, a recording layer, a second dielectric layer, a translucent heat radiation layer, and a third dielectric layer are formed on the substrate. A translucent reflective layer is provided in this order, and a protective coat layer is provided thereon if necessary. On the other hand, for an optical system with a larger objective lens NA in order to obtain a higher density medium, incidence from the film surface side may be preferable, and when recording / reproducing laser light is incident from the film surface, , The layer structure is opposite to the above structure. In some cases, even if these layers are formed on both sides of the substrate, an optical recording medium having each layer on both sides with the film surface (protective coating layer) inside may be used. Further, when the optical recording medium of the present invention is used as a recording medium unit of a multilayer optical recording medium in which two or more recording media are stacked, for example, when incident light is emitted from the substrate side, A substrate, a first dielectric layer, a recording layer, a second dielectric layer, a translucent heat radiation layer, a third dielectric layer, and a translucent reflective layer are laminated in this order, and another optical recording is performed thereon via an adhesive layer. A structure in which the medium units are stacked can be adopted. As another optical recording medium unit, a phase change type optical recording medium having a known layer structure, for example, a layer structure in which a dielectric layer, a recording layer, a dielectric layer, and a metal reflection layer are provided in this order can be used. However, the present invention is not limited to these, and various types such as a read-only type, a write-once type, and a magneto-optical type can be used. The adhesive layer is required to have a sufficient light transmittance and a sufficient thickness (normally, 10 μm or more).

【0028】[0028]

【実施例】以下、本発明を実施例により更に詳細に説明
するが、本発明はその要旨を超えない限り、これらの実
施例により制限されるものではない。なお、実施例(光
記録媒体の作製)を行うに先立ち、最終目的とする信号
強度が大きく、且つ透過率が大きい記録媒体の取得のた
めに、以下のシミュレーションを行った。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples unless it exceeds the gist thereof. Prior to performing the example (production of an optical recording medium), the following simulation was performed in order to obtain a recording medium having a high signal intensity and a high transmittance, which is a final target.

【0029】最適膜厚の算出 後述の条件1〜5に示す5種類の膜構成について光学計
算をおこなった。計算では、結晶反射率、非晶質反射
率、結晶透過率、非晶質透過率を各層膜厚を変化させて
計算し、(結晶反射率)−(非晶質反射率)>0.1を満た
し、且つ結晶透過率が最大になるような膜厚を求めた
(ここで“結晶反射率”とは相変化記録層が結晶状態で
あるときの媒体の反射率という意味である。)。
Calculation of Optimum Film Thickness Optical calculation was performed for five types of film constitutions shown in the following conditions 1 to 5. In the calculation, the crystal reflectance, the amorphous reflectance, the crystal transmittance, and the amorphous transmittance were calculated by changing the thickness of each layer, and (crystal reflectance) − (amorphous reflectance)> 0.1 And a film thickness that maximizes the crystal transmittance was obtained (here, “crystal reflectance” means the reflectance of the medium when the phase-change recording layer is in a crystalline state).

【0030】条件1〜5は以下のとおりである。 条件1:基板、誘電体層1、記録層、誘電体層2、紫外
線硬化樹脂層を順に設けた場合を想定した。計算した膜
厚は、誘電体1は0〜160nmで5nm刻み、記録層
は3〜15nmで2nm刻み、誘電体2は0〜160n
mで5nm刻みとした。誘電体膜厚に関しては、光学的
な性質は周期的に変化するが計算条件においてほぼ1周
期に相当する膜厚範囲に設定した。記録層の計算膜厚範
囲は前述の好ましい膜厚範囲付近とした。
Conditions 1 to 5 are as follows. Condition 1: It is assumed that a substrate, a dielectric layer 1, a recording layer, a dielectric layer 2, and an ultraviolet curable resin layer are sequentially provided. The calculated film thicknesses of the dielectric 1 are 0 to 160 nm in increments of 5 nm, the recording layer is 3 to 15 nm in increments of 2 nm, and the dielectric 2 is 0 to 160 n.
m in steps of 5 nm. Regarding the dielectric film thickness, the optical properties change periodically, but the film thickness was set to a film thickness range corresponding to approximately one cycle under the calculation conditions. The calculated thickness range of the recording layer was around the above-mentioned preferred thickness range.

【0031】条件2:基板、誘電体層1、記録層、誘電
体層2、半透明放熱層、紫外線硬化樹脂層を順に設けた
場合を想定した。計算した膜厚は、誘電体1は0〜16
0nmで5nm刻み、記録層は3〜15nmで2nm刻
み、誘電体2は5〜20nmで5nm刻み、半透明放熱
層は20nmとした。半透明放熱層についてはAg膜を
想定し、放熱効果がある程度得られそうな20nmに固
定し後述の条件4の場合と透過率を比較した。誘電体2
は放熱効果が得られるようにある程度薄い膜厚にする必
要があるため、計算範囲は5〜30nmとした。
Condition 2: It is assumed that a substrate, a dielectric layer 1, a recording layer, a dielectric layer 2, a translucent heat radiation layer, and an ultraviolet curable resin layer are sequentially provided. The calculated film thickness is 0-16 for dielectric 1.
The recording layer was 3 nm in increments of 2 nm, the dielectric 2 was 5 nm in increments of 5 nm, and the translucent heat radiation layer was 20 nm. The translucent heat radiation layer was assumed to be an Ag film, and was fixed at 20 nm where a heat radiation effect was likely to be obtained to some extent, and the transmittance was compared with the case of Condition 4 described later. Dielectric 2
It is necessary to make the film thickness thin to some extent so as to obtain a heat radiation effect, so the calculation range was 5 to 30 nm.

【0032】条件3:半透明放熱層の膜厚を30nmと
したこと以外は条件2と同様の計算条件とした。後述の
条件5の場合と透過率を比較した。
Condition 3: The calculation conditions were the same as those in Condition 2, except that the thickness of the translucent heat radiation layer was 30 nm. The transmittance was compared with the condition 5 described below.

【0033】条件4:基板、誘電体層1、記録層、誘電
体層2、半透明放熱層、誘電体層3、半透明反射層、紫
外線硬化樹脂層を順に設けた場合を想定した。計算した
膜厚は、誘電体1は0〜160nmで5nm刻み、記録
層は3〜15nmで2nm刻み、誘電体2は5〜30n
mで5nm刻み、半透明放熱層は20nm、誘電体層3
は0〜160nmで5nm刻み、半透明反射層は0〜5
0nmで5nm刻みとした。
Condition 4: It is assumed that a substrate, a dielectric layer 1, a recording layer, a dielectric layer 2, a translucent heat radiation layer, a dielectric layer 3, a translucent reflective layer, and an ultraviolet curable resin layer are sequentially provided. The calculated film thickness is as follows. The dielectric 1 has a thickness of 0 to 160 nm in increments of 5 nm, the recording layer has a thickness of 3 to 15 nm in increments of 2 nm, and the dielectric 2 has a thickness of 5 to 30 n.
m in 5 nm increments, the translucent heat dissipation layer is 20 nm, and the dielectric layer 3
Is from 0 to 160 nm in increments of 5 nm, and the translucent reflective layer is from 0 to 5
It was set at 0 nm in 5 nm steps.

【0034】条件5:半透明放熱層の膜厚を30nmと
したこと以外は条件4と同様の計算条件とした。なお、
計算に用いた各層の複素屈折率はエリプソメータを用い
650nmの波長で実測した値を用いた。測定には誘電
体層として(ZnS)80(SiO220、記録層として
Ge5Sb71Te24、半透明放熱層と半透明反射層とし
てAgを用いた。結果は誘電体層は2.1−0i、記録
層はアモルファス状態で3.8−2.8i、結晶状態で
2.6−4.7i、放熱層、反射層は0.1−4.1i
であった。基板と紫外線硬化樹脂層は1.5−0iとし
た。
Condition 5: The same calculation conditions as in Condition 4 were used except that the thickness of the translucent heat radiation layer was 30 nm. In addition,
As the complex refractive index of each layer used in the calculation, a value actually measured at a wavelength of 650 nm using an ellipsometer was used. For the measurement, (ZnS) 80 (SiO 2 ) 20 was used as the dielectric layer, Ge 5 Sb 71 Te 24 was used as the recording layer, and Ag was used as the translucent heat dissipation layer and the translucent reflection layer. As a result, the dielectric layer was 2.1-0i, the recording layer was 3.8-2.8i in an amorphous state, 2.6-4.7i in a crystalline state, and the heat radiation layer and the reflection layer were 0.1-4.1i.
Met. The substrate and the ultraviolet curable resin layer were 1.5-0i.

【0035】計算結果は表1に示すとおり、条件4、5
での透過率は放熱層を設けない条件1よりは小さいもの
の条件2,3での透過率より大きく、本発明の構成が光
学的に有効であることがわかる。
As shown in Table 1, the calculation results are as shown in Tables 4 and 5.
Is smaller than the condition 1 without the heat radiation layer, but is larger than the transmittance under the conditions 2 and 3, indicating that the configuration of the present invention is optically effective.

【0036】[0036]

【表1】 [Table 1]

【0037】実施例 実際に光記録媒体(以下、光ディスクと記す)を作製
し、半透明放熱層を設けた構成が半透明放熱層を設けな
い構成より放熱効果に優れていることを以下のようにし
て示した。厚さ0.6mmのポリカーボネート基板上に
ZnS-SiO2第1誘電体層(55nm)、Ge5Sb
71Te24記録層(10nm)、ZnS-SiO2第2誘電
体層(5nm)、SiO2拡散防止層(2nm)、Ag
半透明放熱層(20nm)、SiO2拡散防止層(2n
m)、ZnS-SiO2第3誘電体層(90nm)、Si
2拡散防止層(2nm)、Ag半透明反射層(15n
m)、SiO2拡散防止層(2nm)をスパッタリング
法により作製し、この上にさらに紫外線硬化樹脂からな
る保護コートをおこなった(実施例)。基板溝幅は0.
35um、溝深さは33nm、溝ピッチ0.74umで
ある。なお、記録層膜厚は、実験上、初期結晶化を容易
にするために膜厚(10nm)とした。
EXAMPLE The following describes that an optical recording medium (hereinafter, referred to as an optical disk) is actually manufactured and provided with a translucent heat radiation layer is more excellent in heat radiation effect than a structure without a translucent heat radiation layer. And shown. ZnS-SiO 2 first dielectric layer on a polycarbonate substrate having a thickness of 0.6mm (55nm), Ge 5 Sb
71 Te 24 recording layer (10 nm), ZnS-SiO 2 second dielectric layer (5 nm), SiO 2 diffusion prevention layer (2 nm), Ag
Translucent heat radiation layer (20 nm), SiO 2 diffusion prevention layer (2n
m), ZnS—SiO 2 third dielectric layer (90 nm), Si
O 2 diffusion prevention layer (2 nm), Ag translucent reflection layer (15 n
m), a SiO 2 diffusion preventing layer (2 nm) was formed by a sputtering method, and a protective coat made of an ultraviolet curable resin was further applied thereon (Example). The substrate groove width is 0.
35 μm, the groove depth is 33 nm, and the groove pitch is 0.74 μm. The thickness of the recording layer was experimentally set to be 10 nm in order to facilitate initial crystallization.

【0038】この光ディスクを初期結晶化した後、波長
635nm、NA0.6の光学系を有する光ディスク評
価装置を用いて記録特性を測定した。記録条件は、線速
度4m/s、消去パワーPeと記録パワーPwの比Pe
/Pw=0.5、クロック周期を38.2nsとし、8
−16変調ランダム信号をパルストレイン法を用い溝内
に記録した。10回のダイレクトオーバーライト(DO
W)後のEdge to clockジッタのパワー依存性の測定結
果を図1に示す。ジッタ値はクロック周期で規格化した
値を用いた。
After initial crystallization of the optical disk, recording characteristics were measured using an optical disk evaluation apparatus having an optical system with a wavelength of 635 nm and an NA of 0.6. The recording conditions were a linear velocity of 4 m / s, a ratio Pe between the erasing power Pe and the recording power Pw.
/Pw=0.5, the clock cycle is 38.2 ns, and 8
A -16 modulated random signal was recorded in the groove using the pulse train method. 10 direct overwrites (DO
FIG. 1 shows a measurement result of the power dependency of the Edge to clock jitter after W). As the jitter value, a value standardized by the clock cycle was used.

【0039】この光ディスクの透過率は鏡面部で記録層
が結晶状態のとき30%、記録層がアモルファス状態の
とき37%であった。透過率の算出は、120nm厚の
Ag膜からの反射光量を0.6mmのポリカーボネート
基板を通して測定したときの値をR1とし、前記光ディ
スクを通して測定したときの値をR2としたとき、透過
率=(R2/R1)1/2の式から求めた。この結果は、
記録層が計算値(5nm)より厚いこともあり、光ディ
スクの透過率は必ずしも十分に大きいとは言えないが、
2層化記録媒体の可能性を示すことは明らかである。
The transmittance of this optical disk was 30% when the recording layer was in a crystalline state at the mirror surface and 37% when the recording layer was in an amorphous state. The transmittance was calculated as follows: when the value of the amount of light reflected from the Ag film having a thickness of 120 nm measured through a 0.6 mm polycarbonate substrate was R1, and when the value measured through the optical disk was R2, the transmittance was (= R2 / R1) 1/2 . The result is
Although the recording layer may be thicker than the calculated value (5 nm), the transmittance of the optical disk is not necessarily large enough.
Clearly, it shows the potential of a two-layer recording medium.

【0040】比較例1 厚さ0.6mmのポリカーボネート基板上にZnS-S
iO2誘電体層(105nm)、Ge5Sb71Te24記録
層(10nm)、ZnS-SiO2誘電体層(115n
m)をスパッタリング法により作製し、この上にさらに
紫外線硬化樹脂からなる保護コートをおこなった(比較
例1)。この光ディスクにつき上記と全く同じ記録特性
の評価をおこなった。その結果、8〜14mWの記録パ
ワーではジッタの測定が可能であるような記録マークは
形成されなかった。この光ディスクはアモルファスマー
クが形成された場合は十分な信号強度がでるように設計
されたものであり、記録マークができない理由は放熱が
不十分であるため、溶融後その部分が再結晶化している
ためと思われる。以上より実施例での放熱効果は比較例
1と比較して十分に大きいことがわかる。透過率をさら
に大きくするため記録層を薄くした場合には、逃がすべ
き熱量が小さくなるためさらに効率よい放熱効果が得ら
れると考えられる。
COMPARATIVE EXAMPLE 1 ZnS-S was placed on a polycarbonate substrate having a thickness of 0.6 mm.
iO 2 dielectric layer (105 nm), Ge 5 Sb 71 Te 24 recording layer (10 nm), ZnS—SiO 2 dielectric layer (115 n)
m) was prepared by a sputtering method, and a protective coat made of an ultraviolet curable resin was further applied thereon (Comparative Example 1). This optical disc was evaluated for the same recording characteristics as described above. As a result, at a recording power of 8 to 14 mW, a recording mark capable of measuring jitter was not formed. This optical disk is designed so that a sufficient signal intensity is obtained when an amorphous mark is formed. The reason for the inability to record a mark is insufficient heat radiation, so that the portion is recrystallized after melting. It seems to be. From the above, it can be seen that the heat radiation effect in the example is sufficiently large as compared with the comparative example 1. When the recording layer is made thinner in order to further increase the transmittance, the amount of heat to be released is reduced, so that it is considered that a more efficient heat dissipation effect can be obtained.

【0041】比較例2 厚さ0.6mmのポリカーボネート基板上にZnS-S
iO2誘電体層(55nm)、Ge5Sb71Te24記録層
(10nm)、ZnS-SiO2誘電体層(5nm)、S
iO2拡散防止層(2nm)、Ag半透明放熱層(20
nm)、SiO2拡散防止層(2nm)をスパッタリン
グ法により作製し、この上にさらに紫外線硬化樹脂から
なる保護コートをおこなった(比較例2)。この光ディ
スクの透過率は鏡面部で記録層が結晶状態のとき16
%、記録層がアモルファス状態のとき20%であり、実
施例の透過率より小さかった。
Comparative Example 2 ZnS-S was placed on a 0.6 mm thick polycarbonate substrate.
iO 2 dielectric layer (55 nm), Ge 5 Sb 71 Te 24 recording layer (10 nm), ZnS—SiO 2 dielectric layer (5 nm), S
iO 2 diffusion prevention layer (2 nm), Ag translucent heat dissipation layer (20
nm) and a SiO 2 diffusion preventing layer (2 nm) were formed by a sputtering method, and a protective coat made of an ultraviolet curable resin was further applied thereon (Comparative Example 2). The transmittance of this optical disk is 16 when the recording layer is in a crystalline state at the mirror surface.
%, And 20% when the recording layer was in the amorphous state, which was smaller than the transmittance of the example.

【0042】[0042]

【発明の効果】本発明の層構成からなる光学的情報記録
用媒体においては、信号強度、放熱効果、透過率のすべ
てを十分に大きくすることが可能になり、特により高密
度化のための多層化記録媒体への応用が期待される。
According to the optical information recording medium having the layer structure of the present invention, it is possible to sufficiently increase the signal intensity, the heat radiation effect, and the transmittance, and in particular, to increase the density. The application to multilayer recording media is expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1は実施例のEdge to clockジッタのパワ
ー依存性の測定結果を示す。
FIG. 1 shows a measurement result of power dependency of Edge to clock jitter in an embodiment.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも、第1誘電体層、記録層、第
2誘電体層、金属を主成分とする半透明放熱層、第3誘
電体層、及び半透明反射層をこの順に有することを特徴
とする光学的情報記録用媒体。
At least a first dielectric layer, a recording layer, a second dielectric layer, a translucent heat radiation layer mainly composed of a metal, a third dielectric layer, and a translucent reflective layer are provided in this order. Characteristic optical information recording medium.
【請求項2】 少なくとも、第1誘電体層、記録層、第
2誘電体層、金属を主成分とする半透明放熱層、第3誘
電体層、及び半透明反射層をこの順に有し、且つ透過率
が20%以上の光記録媒体を含むことを特徴とする2以
上の記録媒体が積層された光学的情報記録用媒体。
2. It has at least a first dielectric layer, a recording layer, a second dielectric layer, a translucent heat radiation layer mainly composed of metal, a third dielectric layer, and a translucent reflective layer in this order. An optical information recording medium in which two or more recording media are stacked, the optical information recording media including an optical recording medium having a transmittance of 20% or more.
【請求項3】 半透明放熱層が銀を主成分とする材料か
らなることを特徴とする請求項1または2記載の光学的
情報記録用媒体。
3. The optical information recording medium according to claim 1, wherein the translucent heat radiation layer is made of a material containing silver as a main component.
【請求項4】 半透明放熱層の膜厚が2〜50nmであ
る請求項1〜3のいずれか1項記載の光学的情報記録用
媒体。
4. The optical information recording medium according to claim 1, wherein the thickness of the translucent heat radiation layer is 2 to 50 nm.
【請求項5】 第2誘電体層の膜厚が30nm以下であ
る請求項1〜4のいずれか1項記載の光学的情報記録用
媒体。
5. The optical information recording medium according to claim 1, wherein the thickness of the second dielectric layer is 30 nm or less.
【請求項6】 第3誘電体層の膜厚をd、屈折率をn、
使用レーザー波長をλとしたとき[λ/(8n)]<d
<[λ/(2n)]であり、かつ、半透明反射層が金属
を主成分とする材料からなることを特徴とする請求項1
〜5のいずれか1項記載の光学的情報記録用媒体。
6. The film thickness of the third dielectric layer is d, the refractive index is n,
When the used laser wavelength is λ, [λ / (8n)] <d
<[Lambda] / (2n)], and the translucent reflective layer is made of a material mainly composed of a metal.
The optical information recording medium according to any one of claims 1 to 5, wherein
【請求項7】 記録層が、相変化型記録層であることを
特徴とする請求項1〜6のいずれか1項記載の光学的情
報記録用媒体。
7. The optical information recording medium according to claim 1, wherein the recording layer is a phase change type recording layer.
【請求項8】 請求項2記載の該光記録媒体は、入射光
側に近接して設けられることを特徴とする請求項2記載
の2以上の記録媒体が積層された光学的情報記録用媒
体。
8. The optical information recording medium according to claim 2, wherein the optical recording medium is provided close to the incident light side. .
【請求項9】 半透明放熱層及び半透明反射層は、銀を
主成分とする金属材料からなり、且つ半透明反射層の膜
厚は半透明放熱層の膜厚以下であることを特徴とする請
求項1〜8のいずれか一項記載の光学的情報記録用媒
体。
9. The translucent heat radiation layer and the translucent reflection layer are made of a metal material containing silver as a main component, and the thickness of the translucent reflection layer is equal to or less than the thickness of the translucent heat radiation layer. The optical information recording medium according to claim 1.
JP2000210235A 2000-07-11 2000-07-11 Optical information recording medium Expired - Lifetime JP4053715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000210235A JP4053715B2 (en) 2000-07-11 2000-07-11 Optical information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000210235A JP4053715B2 (en) 2000-07-11 2000-07-11 Optical information recording medium

Publications (3)

Publication Number Publication Date
JP2002025115A true JP2002025115A (en) 2002-01-25
JP2002025115A5 JP2002025115A5 (en) 2005-02-03
JP4053715B2 JP4053715B2 (en) 2008-02-27

Family

ID=18706524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000210235A Expired - Lifetime JP4053715B2 (en) 2000-07-11 2000-07-11 Optical information recording medium

Country Status (1)

Country Link
JP (1) JP4053715B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003098619A1 (en) * 2002-04-22 2003-11-27 Tdk Corporation Optical recording medium
US7668070B2 (en) 2005-08-30 2010-02-23 Nec Corporation Optical recording medium having a plurality of recording layers
US8034426B2 (en) 2005-03-17 2011-10-11 Ricoh Company, Ltd. Two-layered optical recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003098619A1 (en) * 2002-04-22 2003-11-27 Tdk Corporation Optical recording medium
US8034426B2 (en) 2005-03-17 2011-10-11 Ricoh Company, Ltd. Two-layered optical recording medium
US7668070B2 (en) 2005-08-30 2010-02-23 Nec Corporation Optical recording medium having a plurality of recording layers

Also Published As

Publication number Publication date
JP4053715B2 (en) 2008-02-27

Similar Documents

Publication Publication Date Title
US5555537A (en) Optical data storage system with multiple write-once phase-change recording layers
AU758976B2 (en) Optical recording medium
US7608385B2 (en) Information recording medium and method for producing the same
KR20010020233A (en) Optical recording medium
JP2004265561A (en) Optical recording medium
KR100697135B1 (en) Optical recording medium
EP1040937A1 (en) Write once optical information recording medium
JPWO2007119439A1 (en) Information recording medium and manufacturing method thereof
EP1345218A2 (en) Optical information recording medium and manufacturing method and recording/reproducing method for the same
EP1457977A1 (en) Method of regulating reflectance of worm type optical recording medium and worm type optical recording medium
US6638594B1 (en) Rewritable optical information recording medium
JP2005122872A (en) Two-layer phase-change type information recording medium and its recording and reproducing method
JP2000222777A (en) Optical information recording medium
JP4053715B2 (en) Optical information recording medium
JP2002074742A (en) Information recording medium
JP3908571B2 (en) Optical information recording medium, manufacturing method thereof, and recording / reproducing method thereof
JP4227278B2 (en) Information recording medium, manufacturing method thereof, and recording / reproducing method thereof
JP4306988B2 (en) Information recording medium
KR20070085520A (en) Information recording medium and method for manufacturing same
JP2007323743A (en) Phase transition type optical recording medium
EP1764793A1 (en) Optical recording medium and process for producing the same
JP2004348881A (en) Phase change type optical recording medium
US20050207329A1 (en) Optical recording medium
JP2004311011A (en) Optical information recording medium, its manufacturing method, and recording method and recording device of information using the medium
JPH11185289A (en) Wo optical information recording medium

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051121

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051220

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4053715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

EXPY Cancellation because of completion of term
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350