JP2002023145A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JP2002023145A
JP2002023145A JP2000211753A JP2000211753A JP2002023145A JP 2002023145 A JP2002023145 A JP 2002023145A JP 2000211753 A JP2000211753 A JP 2000211753A JP 2000211753 A JP2000211753 A JP 2000211753A JP 2002023145 A JP2002023145 A JP 2002023145A
Authority
JP
Japan
Prior art keywords
layer
liquid crystal
light
display device
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000211753A
Other languages
Japanese (ja)
Inventor
Ken Sumiyoshi
研 住吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2000211753A priority Critical patent/JP2002023145A/en
Priority to PCT/JP2001/006041 priority patent/WO2002005021A1/en
Publication of JP2002023145A publication Critical patent/JP2002023145A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133536Reflective polarizers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133543Cholesteric polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133545Dielectric stack polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133565Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements inside the LC elements, i.e. between the cell substrates

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a liquid crystal display device with fast response and wide viewing angle. SOLUTION: The device has a liquid crystal layer 1, polarization selective layer 2 and fluorescent layer 3, and the polarization state (c) of the exciting light 4 is modulated by the liquid crystal layer 1 to generate a polarization state (b), which excites the phosphor to obtain fluorescent light 5 as the display light. Since the fluorescent light from the fluorescent layer 3 is used, display with a wide viewing angle can be obtained. Moreover, the polarizing selective layer 2 and fluorescent layer 3 can be formed inside of the liquid crystal panel, no misalignment in the view field is caused. Since the exciting light is modified into a narrow band, a fast-response liquid crystal mode such as pi liquid crystal can be used without using an optical compensator.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、液晶表示装置に
関するものである。
[0001] The present invention relates to a liquid crystal display device.

【0002】[0002]

【従来の技術】近年、液晶ディスプレイ(LCD)の発
展には目覚しいものがある。特に、モニター用途のLC
Dでは、着実に画面サイズが大きくなりつつある。これ
に伴って、大画面LCDでの課題である視野角依存性を
緩和したものが多く発表されている。また、LCDの表
示動作が遅いという課題を解決しようとした発表も行わ
れている。以上のように、今後のLCD開発では広視野
角、動画表示といった画質性能向上が広く求められてい
る。
2. Description of the Related Art In recent years, the development of liquid crystal displays (LCDs) has been remarkable. In particular, LC for monitor applications
In D, the screen size is steadily increasing. Along with this, many publications have alleviated the viewing angle dependency, which is a problem in large-screen LCDs. There have also been announcements that attempt to solve the problem of slow LCD display operations. As described above, in the future LCD development, there is a wide demand for improvement in image quality performance such as a wide viewing angle and moving image display.

【0003】以上の背景の中で、新たに蛍光層を用いた
広視野角LCDが提案されている。この例を特表平9−
511588号や特開平11−237632号に見る事
ができる。特表平9−511588号に開示されている
構造を図13に示す。この構造では、2枚の偏光板4
0,41を有するねじれネマチック(TN)液晶パネル
42の上部に蛍光層43を設けるものである。液晶パネ
ル42背面より紫外光あるいは青色あるいは近紫外光を
入射させる。この入射光をTN液晶パネル42で変調す
る。以上のように変調されたTN液晶パネル42からの
出射光が、蛍光層43に当たり蛍光を発する。蛍光はほ
ぼ等方的に発生するため、どの方位から見ても視認可能
な表示が得られる。
[0003] In the above background, a wide viewing angle LCD using a fluorescent layer has been newly proposed. This example is shown in Table 9-
It can be seen in JP-A-511588 and JP-A-11-237632. FIG. 13 shows a structure disclosed in Japanese Patent Publication No. 9-511588. In this structure, two polarizing plates 4
A fluorescent layer 43 is provided on a twisted nematic (TN) liquid crystal panel 42 having 0, 41. Ultraviolet light or blue or near-ultraviolet light is incident from the back of the liquid crystal panel 42. This incident light is modulated by the TN liquid crystal panel 42. The light emitted from the TN liquid crystal panel 42 modulated as described above hits the fluorescent layer 43 and emits fluorescence. Since the fluorescent light is generated almost isotropically, a display which is visible from any direction can be obtained.

【0004】しかし、図13の構成では、上部ガラス基
板44が厚いために蛍光層43に励起光が届くまでに、
横方向に拡散してしまう。このため、ある液晶パネル画
素から出射する励起光が隣接する蛍光層43に届いてし
まい、表示滲みが発生するという問題があった。また、
斜めから見込んだ場合にも同様の現象が生じるため、液
晶パネル画素と蛍光層画素の1対1対応がずれてしま
う。
However, in the configuration of FIG. 13, since the upper glass substrate 44 is thick, the excitation light reaches the fluorescent layer 43 until the excitation light reaches the fluorescent layer 43.
It diffuses in the horizontal direction. For this reason, there is a problem that the excitation light emitted from a certain liquid crystal panel pixel reaches the adjacent fluorescent layer 43, and display blur occurs. Also,
A similar phenomenon occurs when viewed obliquely, so that the one-to-one correspondence between the liquid crystal panel pixels and the fluorescent layer pixels is shifted.

【0005】以上のような課題を解決する方式は、特開
平11−237632号にあるようにガラス基板45,
46内に蛍光層43と偏光板40を作りこむ図14の構
成が挙げられる。また、よりガラス基板45,46内に
作りこみやすい図15の構成も提案されている。図15
の構成を説明する。青色光源47を出射した青色光の
内、左円偏光のみが右巻きコレステリック液晶層48を
透過する。この左円偏光はλ/4板49によって直線偏
光となり、STN液晶層50へ入射する。STN液晶層
50が直線偏光のまま光を出射すれば、その先のλ/4
板51によって右円偏光に変換される。さらに右巻きコ
レステリック液晶層52を配置すれば、反射されるため
蛍光層43に達せず、表示に寄与しない。一方、STN
液晶層50が直線偏光を楕円偏光に変換すれば、その先
のλ/4板51および右巻きコレステリック液晶層52
を一部通過することができる。従って、蛍光層43に青
色光が達し、青色光と異なる蛍光が発生し表示に寄与す
る。以上のような図14および図15の構成は、液晶パ
ネル内部に蛍光層43が作りこまれているため、前述し
た液晶パネル画素の蛍光層画素の対応関係がずれること
がない。
A method for solving the above-mentioned problems is disclosed in Japanese Patent Application Laid-Open No. 11-237632.
The structure of FIG. 14 in which the fluorescent layer 43 and the polarizing plate 40 are formed in 46 is exemplified. Further, a configuration shown in FIG. 15 that is easier to form in the glass substrates 45 and 46 has also been proposed. FIG.
Will be described. Of the blue light emitted from the blue light source 47, only the left circularly polarized light passes through the right-handed cholesteric liquid crystal layer 48. This left circularly polarized light becomes linearly polarized light by the λ / 4 plate 49 and enters the STN liquid crystal layer 50. If the STN liquid crystal layer 50 emits light with linearly polarized light, the λ / 4
The light is converted to right circularly polarized light by the plate 51. Further, if the right-handed cholesteric liquid crystal layer 52 is disposed, the light is reflected and does not reach the fluorescent layer 43, and does not contribute to display. On the other hand, STN
When the liquid crystal layer 50 converts the linearly polarized light into elliptically polarized light, the λ / 4 plate 51 and the right-handed cholesteric liquid crystal layer 52
Can partially pass through. Accordingly, the blue light reaches the fluorescent layer 43, and fluorescence different from the blue light is generated, which contributes to display. 14 and 15 described above, since the fluorescent layer 43 is formed inside the liquid crystal panel, the correspondence relationship between the fluorescent layer pixels of the liquid crystal panel pixels described above does not shift.

【0006】[0006]

【発明が解決しようとする課題】しかし、図14および
図15の構成を液晶パネル内部に作り込むことは実際上
困難である。例えば、図14の構成では、偏光板を液晶
パネル内部に作ることが必要である。この偏光板層を作
成した後に、図14に示すように電極層や配向膜を形成
する必要がある。特開平11−237632号公報に記
載されたものではSTN液晶を主に想定して書かれてい
る。ところが、薄膜トランジスタ(TFT)駆動のLC
Dでは、前述の電極層や配向膜以外にさらにTFTの各
層を作ること求められる。
However, it is practically difficult to build the structures shown in FIGS. 14 and 15 inside a liquid crystal panel. For example, in the configuration of FIG. 14, it is necessary to form a polarizing plate inside a liquid crystal panel. After forming this polarizing plate layer, it is necessary to form an electrode layer and an alignment film as shown in FIG. Japanese Patent Application Laid-Open No. 11-237632 describes an STN liquid crystal mainly. However, a thin film transistor (TFT) driven LC
In D, it is required to form each layer of the TFT in addition to the above-mentioned electrode layer and alignment film.

【0007】一般に偏光板は一軸延紳した高分子中に二
色性染料を染色することにより行われる。このため、耐
熱性の上限が100℃程度である。ところが、上記のT
FTの各層や電極層や配向膜の形成には200℃以上の
高温が必要であり、これらを作りこむことはほとんど不
可能である。また、図15の構成では、偏光板に替わり
λ/4板49,51とコレステリック液晶層48,52
を液晶パネル内部に作りこまなければならない。上述の
偏光層と比較して、両層は耐熱性を高くできる可能性が
ある。しかし、形成にさらなる高温を要するTFTの各
層、電極層、配向膜を作り込むことは事実上困難であ
る。そこで、この発明は広視野角、高速応答、高輝度な
表示画面を得ることができる液晶表示装置を提供するも
のである。
Generally, a polarizing plate is produced by dyeing a uniaxially stretched polymer with a dichroic dye. Therefore, the upper limit of the heat resistance is about 100 ° C. However, the above T
The formation of each layer of FT, the electrode layer, and the alignment film requires a high temperature of 200 ° C. or more, and it is almost impossible to form them. Further, in the configuration of FIG. 15, λ / 4 plates 49 and 51 and cholesteric liquid crystal layers 48 and 52 are used instead of the polarizing plate.
Must be built inside the LCD panel. Both layers may have higher heat resistance than the above-mentioned polarizing layers. However, it is practically difficult to form each of the TFT layers, electrode layers, and alignment films that require even higher temperatures for formation. Accordingly, the present invention provides a liquid crystal display device capable of obtaining a display screen with a wide viewing angle, high-speed response, and high brightness.

【0008】[0008]

【課題を解決するための手段】請求項1に記載の液晶表
示装置は、図1に例示するように、励起光が、少なくと
も液晶層1、偏光選択層2、蛍光層3を通過することか
ら構成される。作用について説明すると、偏光選択層2
はある波長のある偏光状態(a)の光を反射し、同一波
長の他偏光状態(b)の光を透過させる機能を有する。
一定の偏光状態(c)の励起光4が液晶層1に入射し
て、偏光状態(a)に変換される。このとき、偏光選択
層2はこの光を反射するので、蛍光層3に達せず表示に
寄与しない。液晶に電圧を印加するとその複屈折性が変
化する。このとき、一定の偏光状態(c)の励起光4が
液晶層1に入射して偏光状態(b)に変換されると、偏
光選択層2を透過するので、蛍光層3から蛍光5が発生
する。以上のように、請求項1に記載した発明によれば
作成上簡易な構成で表示動作を行わせることができる。
According to the liquid crystal display device of the present invention, the excitation light passes through at least the liquid crystal layer 1, the polarization selection layer 2, and the fluorescent layer 3, as shown in FIG. Be composed. The operation will be described below.
Has the function of reflecting light of a certain polarization state (a) at a certain wavelength and transmitting light of the same polarization and another polarization state (b).
Excitation light 4 in a certain polarization state (c) enters the liquid crystal layer 1 and is converted into a polarization state (a). At this time, since the polarization selection layer 2 reflects this light, it does not reach the fluorescent layer 3 and does not contribute to display. When a voltage is applied to the liquid crystal, its birefringence changes. At this time, when the excitation light 4 having a certain polarization state (c) enters the liquid crystal layer 1 and is converted into the polarization state (b), the excitation light 4 passes through the polarization selection layer 2 and the fluorescent layer 3 generates the fluorescent light 5. I do. As described above, according to the first aspect of the present invention, the display operation can be performed with a simple configuration in creation.

【0009】前記偏光選択層2は、以下に示す2つの構
成により実現できる。請求項2に記載の発明は、請求項
1の偏光選択層2が、コレステリック液晶層からなるこ
とを特徴とした液晶表示装置である。これは、図2に示
すように、螺旋構造を有するコレステリック液晶層6を
挙げることができる。コレステリック液晶層6が右捩れ
のとき、右円偏光8を反射し、左円偏光7を透過する。
このときの波長はコレステリック液晶の螺旋ピッチで決
定される。
The polarization selection layer 2 can be realized by the following two configurations. The invention according to claim 2 is a liquid crystal display device, wherein the polarization selection layer 2 according to claim 1 is formed of a cholesteric liquid crystal layer. This includes a cholesteric liquid crystal layer 6 having a helical structure as shown in FIG. When the cholesteric liquid crystal layer 6 is twisted right, it reflects right circularly polarized light 8 and transmits left circularly polarized light 7.
The wavelength at this time is determined by the helical pitch of the cholesteric liquid crystal.

【0010】請求項3に記載の発明は、請求項1の偏光
選択層2が、少なくとも1種類の異方性を有する層を含
む交代多層構造9からなることを特徴とした液晶表示装
置である。この動作を図3を用いて説明する。この場
合、多層構造は、2種類(x、y)の交代積層構造であ
る。x層10とy層11の屈折率は、p偏光12方向と
s偏光13方向で異なる。もし、p偏光方向でx層10
とy層11の屈折率が同一の場合には、p偏光12は透
過することができる。一方、s偏光方向でx層10とy
層11の屈折率が異なる場合には、ある波長のs偏光1
3は反射する。この波長は交代積層の周期で決まる。以
上のような偏光方向での屈折率の一致・不一致は、少な
くともx層10あるいはy層11のどちらかが異方的な
場合に実現できる。以上のように、直線偏光(p偏光1
2あるいはs偏光13)を入射させると、特定の波長の
特定の直線偏光のみを反射させることが可能である。
A third aspect of the present invention is a liquid crystal display device, wherein the polarization selective layer 2 of the first aspect has an alternating multilayer structure 9 including at least one layer having anisotropy. . This operation will be described with reference to FIG. In this case, the multilayer structure is two types (x, y) of alternately laminated structures. The refractive indexes of the x layer 10 and the y layer 11 are different in the p-polarized light 12 direction and the s-polarized light 13 direction. If the x layer 10 in the p polarization direction
When the refractive index of the y-layer 11 is the same as that of the y-layer 11, the p-polarized light 12 can pass. On the other hand, the x layer 10 and the y layer
When the refractive index of the layer 11 is different, the s-polarized
3 is reflected. This wavelength is determined by the cycle of the alternate lamination. The matching / mismatching of the refractive indices in the polarization direction as described above can be realized when at least either the x layer 10 or the y layer 11 is anisotropic. As described above, linearly polarized light (p-polarized light 1
When 2 or s-polarized light 13) is incident, it is possible to reflect only specific linearly polarized light of a specific wavelength.

【0011】請求項4に記載の発明は、請求項1の液晶
パネル内部に偏光選択層2、蛍光層3が作り込まれてい
ることを特徴とする液晶表示装置である。以上のような
偏光選択層2と蛍光層3をガラス基板上に形成すること
は可能である。この後に液晶パネルを作成すれば、容易
に液晶パネル内部に偏光選択層2および蛍光層3を作成
することが可能である。
According to a fourth aspect of the present invention, there is provided a liquid crystal display device wherein the polarization selection layer 2 and the fluorescent layer 3 are formed inside the liquid crystal panel of the first aspect. It is possible to form the above-described polarization selection layer 2 and fluorescent layer 3 on a glass substrate. If a liquid crystal panel is subsequently formed, the polarization selection layer 2 and the fluorescent layer 3 can be easily formed inside the liquid crystal panel.

【0012】請求項5に記載の発明は、請求項4に記載
の液晶表示装置において、能動素子アレイを有する液晶
パネルの対向基板上に偏光選択層2、蛍光層3が設けら
れていることを特徴とする液晶表示装置である。これを
図4を用いて説明する。図4では薄膜トランジスタ(T
FT)やダイオード(MIM)などの能動素子アレイ基板
14と、偏光選択層2および蛍光層3を有する対向基板
15から構成される。本発明においては、能動素子アレ
イ基板14は従来の基板作成方法を踏襲することができ
る。変更する点は対向基板15のみであり、従来の液晶
パネルの製造工程を大幅に変更することなく作成可能で
ある。
According to a fifth aspect of the present invention, in the liquid crystal display device of the fourth aspect, the polarization selection layer 2 and the fluorescent layer 3 are provided on a counter substrate of a liquid crystal panel having an active element array. A liquid crystal display device characterized by the following. This will be described with reference to FIG. FIG. 4 shows a thin film transistor (T
It comprises an active element array substrate 14 such as FT) or diode (MIM), and a counter substrate 15 having the polarization selection layer 2 and the fluorescent layer 3. In the present invention, the active element array substrate 14 can follow a conventional substrate manufacturing method. The only point to be changed is the counter substrate 15, which can be manufactured without greatly changing the manufacturing process of the conventional liquid crystal panel.

【0013】請求項6に記載の発明は、請求項5におけ
る対向基板15上の蛍光層3と偏光選択層2の間に少な
くとも平坦化層を有することを特徴とする液晶表示装置
である。蛍光層3は、大別すると無機物質と有機物質の
どちらかで作成できる。蛍光層3を形成した後には、偏
光選択層、電極層、液晶配向層と順次積層していく必要
がある。このため、蛍光層3は比較的高い温度を経験す
るので、耐熱性に優れた無機物質からなる蛍光層3が有
利である。しかし、無機蛍光物質は数ミクロン程度の粒
子であることが多く、無機蛍光物質表面は凹凸構造を有
している。この凹凸構造は、後の偏光選択層や液晶配向
に悪影響を与える。このような悪影響は、無機蛍光物質
表面に平坦化層を形成することにより解決できる。
According to a sixth aspect of the present invention, there is provided a liquid crystal display device comprising at least a flattening layer between the fluorescent layer 3 and the polarization selection layer 2 on the counter substrate 15 according to the fifth aspect. The fluorescent layer 3 can be roughly made of either an inorganic substance or an organic substance. After the fluorescent layer 3 is formed, it is necessary to sequentially stack the polarization selection layer, the electrode layer, and the liquid crystal alignment layer. For this reason, since the fluorescent layer 3 experiences a relatively high temperature, the fluorescent layer 3 made of an inorganic material having excellent heat resistance is advantageous. However, the inorganic fluorescent substance is often particles of about several microns, and the surface of the inorganic fluorescent substance has an uneven structure. This concavo-convex structure adversely affects the polarization selection layer and the liquid crystal alignment later. Such an adverse effect can be solved by forming a flattening layer on the surface of the inorganic fluorescent substance.

【0014】請求項7に記載の発明は、請求項5におけ
る対向基板15上の蛍光層3と偏光選択層2の間に少な
くとも配向層を有することを特徴とする液晶表示装置で
ある。前述の偏光選択層2を形成する場合には、その方
位軸を設定しなければならない。例えば、図2ではコレ
ステリック液晶層6の配向方向を規定しなければならな
い。また、図3の異方性の交代多層構造では、異方性方
向を決めなければならない。以上のような方位軸設定
は、偏光選択層2の作成直前に配向層を形成して、その
後の配向処理によって行う。
According to a seventh aspect of the present invention, there is provided a liquid crystal display device having at least an alignment layer between the fluorescent layer 3 and the polarization selection layer 2 on the counter substrate 15 according to the fifth aspect. When forming the above-described polarization selection layer 2, its azimuth axis must be set. For example, in FIG. 2, the orientation direction of the cholesteric liquid crystal layer 6 must be defined. In the anisotropic alternating multilayer structure shown in FIG. 3, the direction of anisotropy must be determined. The setting of the azimuth axis as described above is performed by forming an alignment layer immediately before forming the polarization selection layer 2 and performing a subsequent alignment process.

【0015】請求項8に記載の発明は、請求項5におけ
る対向基板15上の蛍光層3と偏光選択層2の間に少な
くとも波長選択層を有することを特徴とする液晶表示装
置である。これを図5を用いて説明する。波長選択層1
6を透過した励起光4は、蛍光層3に入射する。蛍光層
3では等方的に蛍光5を発する。このため、表示面方向
に出射される蛍光5は大雑把には半分以下である。残り
の蛍光5は再び波長選択層16へ向かう。蛍光5の波長
は励起光波長と異なるため、この波長選択層16を通過
していく。このため、表示光としては全蛍光量の半分以
下の輝度しか得られない。これを解決するために、図5
に示すように波長選択層16を蛍光層3と偏光選択層2
の間に挿入するのである。この波長選択層16は、高屈
折率層と低屈折率層を用いて、夫々の層厚さを制御して
作成することができる。この設計手法は、数値計算を用
いて広く行われている。以上の設計手法を用いて波長選
択層16を設計すれば、励起光波長を透過するように、
また励起光波長より長波長の蛍光を反射するようにでき
る。このため、偏光選択層2へ戻ろうとする蛍光5は、
波長選択層16によって反射され表示に寄与することが
できる。以上のようにして、本発明を用いれば、表示を
より明るくすることができる。
According to an eighth aspect of the present invention, there is provided a liquid crystal display device having at least a wavelength selection layer between the fluorescent layer 3 and the polarization selection layer 2 on the counter substrate 15 according to the fifth aspect. This will be described with reference to FIG. Wavelength selection layer 1
The excitation light 4 transmitted through 6 enters the fluorescent layer 3. The fluorescent layer 3 emits fluorescent light 5 isotropically. Therefore, the fluorescence 5 emitted in the direction of the display surface is roughly half or less. The remaining fluorescent light 5 goes to the wavelength selection layer 16 again. Since the wavelength of the fluorescence 5 is different from the wavelength of the excitation light, the fluorescence 5 passes through the wavelength selection layer 16. For this reason, only less than half of the total fluorescence is obtained as display light. In order to solve this, FIG.
As shown in the figure, the wavelength selection layer 16 is made up of the fluorescent layer 3 and the polarization selection layer 2.
It is inserted between. The wavelength selection layer 16 can be formed using a high refractive index layer and a low refractive index layer while controlling the thickness of each layer. This design technique is widely performed using numerical calculations. If the wavelength selection layer 16 is designed using the above-described design method, the wavelength selection layer 16 is designed to transmit the excitation light wavelength.
Further, it is possible to reflect fluorescence having a wavelength longer than the wavelength of the excitation light. For this reason, the fluorescence 5 that is going to return to the polarization selection layer 2 is
The light is reflected by the wavelength selection layer 16 and can contribute to display. As described above, according to the present invention, the display can be made brighter.

【0016】請求項9に記載の発明は、請求項1の液晶
表示装置において減光層を有するものである。これを図
6を用いて説明する。一般に表示装置は室内照明下で使
用される。このために、本発明の場合には、使用者の目
には表示蛍光以外に、室内光17の影響も同時に見るこ
ととなる。より具体的には、以下のとおりである。すで
に述べたように無機蛍光層表面は凹凸構造を有してい
る。このため、室内光17が蛍光層3裏面に入射すると
散乱され、使用者はこの散乱光も同時に見ることとな
る。また、室内光17が励起光となって、蛍光層3裏面
から入射して新たに蛍光を発生させる。以上のような室
内光17の影響のため、たとえ表示蛍光が存在しなくて
も使用者はある程度の光を認知するので、表示画像のコ
ントラスト比が低下する。以上の課題は、図7に示すよ
うに減光層18を蛍光層3と使用者の間に配置すること
により解決する。すなわち、室内光17は減光層18を
通過して蛍光層3に入射し、そこからの散乱光は再び減
光層18を通過する。すなわち、使用者の目に入るため
には、減光層18を二度通過しなければならない。一
方、表示蛍光は減光層18を一度通過して使用者の目に
達する。このため、表示蛍光が多少暗くなるが、室内光
17に関しては減光層18の効果が2度効くため、コン
トラストが劇的に向上する。
According to a ninth aspect of the present invention, there is provided the liquid crystal display device according to the first aspect, wherein the liquid crystal display device has a light reducing layer. This will be described with reference to FIG. Generally, a display device is used under room lighting. For this reason, in the case of the present invention, the user's eyes simultaneously see the influence of the room light 17 in addition to the display fluorescence. More specifically, it is as follows. As described above, the surface of the inorganic fluorescent layer has an uneven structure. For this reason, when the room light 17 is incident on the back surface of the fluorescent layer 3, it is scattered, and the user sees the scattered light at the same time. In addition, the room light 17 becomes excitation light, enters from the back surface of the fluorescent layer 3, and newly generates fluorescence. Due to the influence of the room light 17 as described above, even if there is no display fluorescence, the user perceives a certain amount of light, and the contrast ratio of the displayed image is reduced. The above problem can be solved by disposing the dimming layer 18 between the fluorescent layer 3 and the user as shown in FIG. That is, the room light 17 passes through the light-reducing layer 18 and enters the fluorescent layer 3, and scattered light from the room light 17 passes through the light-reducing layer 18 again. That is, it must pass through the dimming layer 18 twice to get into the eyes of the user. On the other hand, the display fluorescence passes through the dimming layer 18 once and reaches the user's eyes. For this reason, the display fluorescence is slightly darkened, but the contrast of the room light 17 is dramatically improved because the effect of the light reducing layer 18 is effective twice.

【0017】請求項10に記載の発明は、請求項9にお
ける減光層18が対向基板15表面に配置されているこ
とを特徴とする液晶表示装置である。上述の請求項9に
記載の発明を実現する最も簡易な構成を図8に示す。こ
の構造に従えば、請求項5に記載した構成に加えて液晶
パネル表面に減光層18を形成すればよい。もっとも簡
単には、フィルム状の減光層18を液晶パネル表面に貼
り付けるだけでよい。従って、より簡単にコントラスト
を向上させることができる。尚、図において19は遮光
層、20は配光膜、21は偏光励起光源を示す。
According to a tenth aspect of the present invention, there is provided a liquid crystal display device according to the ninth aspect, wherein the dimming layer is disposed on the surface of the counter substrate. FIG. 8 shows the simplest configuration for realizing the above-described invention. According to this structure, the dimming layer 18 may be formed on the liquid crystal panel surface in addition to the configuration described in claim 5. In the simplest case, it is only necessary to attach the film-like light reducing layer 18 to the liquid crystal panel surface. Therefore, the contrast can be more easily improved. In the drawing, 19 indicates a light shielding layer, 20 indicates a light distribution film, and 21 indicates a polarized light excitation light source.

【0018】請求項11に記載の発明は、請求項5にお
ける対向基板15上にレンズアレイあるいは導波路アレ
イを有することを特徴とする液晶表示装置である。これ
を図9を用いて説明する。蛍光層3からの蛍光5はほぼ
等方的に発生することを既に述べた。この内、表示光と
なりうるのはガラス基板を出射できる蛍光のみである。
しかし、ガラス基板―空気界面に入射する光の内、一定
角度以内の光しか空気中へ出射することができない。こ
の角度はガラス基板の屈折率によって決まる。そこで、
図9のように画素単位毎にレンズ22を作り、光路を曲
げて、空気中で蛍光5を出射させる。これにより、表示
画面の輝度を向上させることが可能である。尚、レンズ
アレイを用いた場合について説明したが、導波路アレイ
を用いても同様の効果を生じる。
According to an eleventh aspect of the present invention, there is provided a liquid crystal display device having a lens array or a waveguide array on the counter substrate 15 according to the fifth aspect. This will be described with reference to FIG. It has already been described that the fluorescent light 5 from the fluorescent layer 3 is generated almost isotropically. Among them, only fluorescent light that can be emitted from the glass substrate can be display light.
However, of the light incident on the glass substrate-air interface, only light within a certain angle can be emitted into the air. This angle is determined by the refractive index of the glass substrate. Therefore,
As shown in FIG. 9, a lens 22 is formed for each pixel unit, the optical path is bent, and the fluorescent light 5 is emitted in the air. Thereby, it is possible to improve the brightness of the display screen. Although the case where the lens array is used has been described, the same effect can be obtained by using the waveguide array.

【0019】[0019]

【発明の実施の形態】以下、この発明の第1の実施の形
態を図10を用いて説明する。図10では、能動素子ア
レイ基板としてアモルファスシリコン薄膜トランジスタ
アレイ基板23を用いる。アモルファスシリコン薄膜ト
ランジスタアレイ基板23は、よく知られているよう
に、ガラス基板上に膜形成とフォトリソグラフィー工程
を繰り返すことにより作成できる。この基板上に配向膜
20を形成し、ラビング処理を施す。以上のようにし
て、アモルファスシリコン薄膜トランジスタアレイ基板
23が完成する。また、対向基板15は以下のように形
成できる。ガラス基板上に蛍光体を含有する樹脂を印刷
する。この際、蛍光体3の種類を替えて3回印刷を行え
ば、R、G、Bのカラー画素に対応した蛍光層3が完成
する。以上の蛍光層3は耐熱性に優れるが、粗面状態で
ある。そこで、有機樹脂からなる平坦化層24を被覆し
て表面凹凸を埋める。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIG. In FIG. 10, an amorphous silicon thin film transistor array substrate 23 is used as an active element array substrate. As is well known, the amorphous silicon thin film transistor array substrate 23 can be formed by repeating a film formation and a photolithography process on a glass substrate. An alignment film 20 is formed on the substrate, and a rubbing process is performed. As described above, the amorphous silicon thin film transistor array substrate 23 is completed. Further, the counter substrate 15 can be formed as follows. A resin containing a phosphor is printed on a glass substrate. At this time, if printing is performed three times while changing the type of the phosphor 3, the phosphor layer 3 corresponding to the R, G, and B color pixels is completed. The above fluorescent layer 3 is excellent in heat resistance, but is in a rough surface state. Therefore, the surface unevenness is filled by covering the flattening layer 24 made of an organic resin.

【0020】以上の平坦化層24表面に、周知のラビン
グ処理を施す。この後、紫外線硬化性のコレステリック
液晶溶液を塗布する。このコレステリック液晶のピッチ
は、励起光の波長の2倍程度になるように調整する。こ
の後、紫外線を照射し、コレステリック液晶層6を硬化
させて、安定な構造を取らせるようにする。以上のよう
にして、偏光選択層を得ることができる。この後、遮光
層19をフォトリソグラフィー工程で形成する。この遮
光膜は、蛍光層3からの蛍光が薄膜トランジスタに入射
するのを防ぐ。さらに、配向膜20を形成して、ラビン
グ処理を施す。以上のようにして、対向基板15が完成
する。
The surface of the flattening layer 24 is subjected to a known rubbing treatment. Thereafter, a UV-curable cholesteric liquid crystal solution is applied. The pitch of the cholesteric liquid crystal is adjusted to be about twice the wavelength of the excitation light. Thereafter, the cholesteric liquid crystal layer 6 is cured by irradiating ultraviolet rays so that a stable structure is obtained. As described above, a polarization selective layer can be obtained. Thereafter, the light shielding layer 19 is formed by a photolithography process. This light-shielding film prevents fluorescence from the fluorescent layer 3 from entering the thin film transistor. Further, an alignment film 20 is formed and a rubbing process is performed. As described above, the counter substrate 15 is completed.

【0021】以上のアモルファスシリコン薄膜トランジ
スタアレイ基板23と対向基板15をラビング方向が反
平行になるように張り合わせる。この後、真空中でネマ
チック液晶(ホモジニアス液晶層25)を注入して、封
孔する。この際に、両基板間の間隔dと液晶の屈折率異
方性Δnとの積Δndを、励起光の波長域でスイッチン
グできるように設定する。この後、偏光板26をアモル
ファスシリコン薄膜トランジスタアレイ基板23の裏面
に貼る。また、フィルム形状の減光層18を対向基板1
5の裏面に貼る。以上の液晶パネルをブラックライト光
源28と導光板27からなる面状励起光源上に配置す
る。
The above-mentioned amorphous silicon thin film transistor array substrate 23 and counter substrate 15 are bonded so that the rubbing directions are antiparallel. Thereafter, a nematic liquid crystal (homogeneous liquid crystal layer 25) is injected in a vacuum to seal the hole. At this time, the product Δnd of the distance d between the two substrates and the refractive index anisotropy Δn of the liquid crystal is set so that switching can be performed in the wavelength range of the excitation light. Thereafter, the polarizing plate 26 is attached to the back surface of the amorphous silicon thin film transistor array substrate 23. Further, the film-shaped light-reducing layer 18 is formed on
Paste on the back of 5. The above liquid crystal panel is disposed on a planar excitation light source including a black light source 28 and a light guide plate 27.

【0022】次に、図11を用いて第2の実施形態を説
明する。アモルファスシリコン薄膜トランジスタアレイ
基板23は、すでに述べた方法で作成することができ
る。一方、対向基板15は図12のようにして作成す
る。対向基板15上に高屈折率層29を形成する
(a)。この上にフォトレジスト層30を形成し、マス
ク31を用いて露光する(b)。得られたフォトレジス
トパターンは適当な加熱処理を施し、リフローさせるこ
とにより、レンズ形状に変形させることができる
(c)。この変形したフォトマスク層をマスクにして、
高屈折率層29を形成加工する(d)。これはエッチン
グ加工することによって得られる。この際にフォトレジ
スト層30と高屈折率層29が同じエッチングレイトに
なるようにできれば、フォトレジスト層30の形状をそ
のまま高屈折率層29に掘り込むことができる(e)。
この後、紫外線硬化性の低屈折率層32を塗布し、焦点
距離調整基板33を張り合わせればレンズアレイを作成
することができる(f)。この焦点距離調整基板33の
厚さをレンズアレイの焦点距離に保つことができれば、
蛍光層からの蛍光をより効率的に集光することができ
る。
Next, a second embodiment will be described with reference to FIG. The amorphous silicon thin film transistor array substrate 23 can be formed by the method described above. On the other hand, the counter substrate 15 is formed as shown in FIG. A high refractive index layer 29 is formed on the counter substrate 15 (a). A photoresist layer 30 is formed thereon, and is exposed using a mask 31 (b). The obtained photoresist pattern can be deformed into a lens shape by performing an appropriate heat treatment and reflowing (c). Using this deformed photomask layer as a mask,
The high refractive index layer 29 is formed and processed (d). This is obtained by etching. At this time, if the photoresist layer 30 and the high refractive index layer 29 can be made to have the same etching rate, the shape of the photoresist layer 30 can be dug into the high refractive index layer 29 as it is (e).
Thereafter, an ultraviolet curable low refractive index layer 32 is applied, and a focal length adjusting substrate 33 is adhered to form a lens array (f). If the thickness of the focal length adjusting substrate 33 can be maintained at the focal length of the lens array,
Fluorescence from the fluorescent layer can be more efficiently collected.

【0023】この後、図11に示すように蛍光層3をR
用,G用,B用と3回印刷塗布する。さらに、平坦化膜
24を塗布し、蛍光層3表面を平坦にする。この後に波
長選択層35を真空蒸着法により作成する。例えば、酸
化シリコン膜と酸化チタン膜を多数積層することによ
り、望む波長選択層35を作成することができる。この
表面に配向膜20を塗布し、ラビング処理を行う。上述
の基板を加熱しながら、配向膜上にコレステリック液晶
ポリマー34を塗布する。コレステリック液晶ポリマー
34のピッチは、励起光波長の2倍になるように調整す
る。この後、急速に室温に戻すと、コレステリック液晶
ポリマー34は凍結し室温で安定な状態となる。さら
に、遮光膜19を成膜、成型する。この遮光膜19は、
薄膜トランジスタに光が入射するのを防ぐ。遮光膜上に
さらに配向膜20を形成し、ラビング処理を施す。以上
のようにして対向基板15の製造が完了する。
Thereafter, as shown in FIG.
And G and B three times. Further, a flattening film 24 is applied to flatten the surface of the fluorescent layer 3. Thereafter, the wavelength selection layer 35 is formed by a vacuum evaporation method. For example, a desired wavelength selection layer 35 can be formed by stacking a large number of silicon oxide films and titanium oxide films. An alignment film 20 is applied to this surface, and a rubbing process is performed. The cholesteric liquid crystal polymer 34 is applied on the alignment film while heating the substrate. The pitch of the cholesteric liquid crystal polymer 34 is adjusted to be twice the wavelength of the excitation light. Thereafter, when the temperature is rapidly returned to room temperature, the cholesteric liquid crystal polymer 34 freezes and becomes stable at room temperature. Further, a light shielding film 19 is formed and molded. This light shielding film 19
Light is prevented from entering the thin film transistor. An alignment film 20 is further formed on the light-shielding film, and a rubbing process is performed. The manufacture of the counter substrate 15 is completed as described above.

【0024】以上のようにして得られた両基板15,2
3をラビング方向が反平行になるように張り合わせる。
この両基板の間隙にネマチック液晶を注入することによ
って、パイ型液晶を元にした表示動作が可能になる。こ
の液晶パネルの一方の面に四分の一波長板37と偏光板
26を貼り、他方の面に減光層18を貼る。青色光源3
6と導光板27からなるバックライト光源を配置すれば
完成する。また、液晶として強誘電性液晶や反強誘電性
液晶を用いれば、より高速な動作が可能となる。
The substrates 15, 2 obtained as described above
3 are bonded so that the rubbing directions are antiparallel.
By injecting the nematic liquid crystal into the gap between the two substrates, a display operation based on the pi-type liquid crystal can be performed. A quarter-wave plate 37 and a polarizing plate 26 are attached to one surface of the liquid crystal panel, and the dimming layer 18 is attached to the other surface. Blue light source 3
This is completed by arranging a backlight light source composed of the light guide plate 6 and the light guide plate 27. Further, when a ferroelectric liquid crystal or an antiferroelectric liquid crystal is used as the liquid crystal, higher-speed operation can be performed.

【0025】[0025]

【発明の効果】以上のように、この発明によれば蛍光を
用いた広視野な液晶表示装置が得られる。特に、ネマチ
ック液晶においては、高速応答と高コントラスト比や、
高速応答と高透過率を両立させることが従来困難であっ
た。
As described above, according to the present invention, a wide-field liquid crystal display device using fluorescence can be obtained. In particular, in nematic liquid crystals, high-speed response and high contrast ratio,
It has been conventionally difficult to achieve both high-speed response and high transmittance.

【0026】すなわち、液晶層内にツイスト構造を持た
ないホモジニアス液晶やパイ型液晶は高速動作すること
は知られていたが、単独では黒表示が不可能であった。
黒表示を得るためには光学補償板との組み合わせが必要
である。しかし、既に説明したように、光学補償板と液
晶層の複屈折の正確な一致が必要であり、製造マージン
が狭く、高コントラスト比を得ることは実用上困難であ
った。このため、液晶応答は速くても、高コントラスト
比と両立できなかった。しかし、本発明によれば、励起
光がほとんど単一波長のために光学補償板を使わなくと
も、励起光のオンオフをさせることができる。従って、
液晶の高速応答と高コントラスト比を両立することがで
きる。
That is, it has been known that a homogeneous liquid crystal or a pie-type liquid crystal having no twist structure in a liquid crystal layer operates at a high speed, but cannot display black by itself.
In order to obtain a black display, a combination with an optical compensator is required. However, as described above, it is necessary to exactly match the birefringence of the optical compensator and the liquid crystal layer, the production margin is narrow, and it has been practically difficult to obtain a high contrast ratio. For this reason, even if the liquid crystal response was fast, it was not compatible with a high contrast ratio. However, according to the present invention, since the excitation light has almost a single wavelength, the excitation light can be turned on and off without using an optical compensator. Therefore,
High-speed response and high contrast ratio of liquid crystal can be compatible.

【0027】一方、ネマチック液晶を高速に応答させる
有効な手段として、液晶層の厚さを薄くすることが知ら
れていた。しかし、液晶層の厚さを薄くすれば、複屈折
量が低下する。このため、透過時の最大光量が確保でき
なくなるという問題があった。以上のように、従来のネ
マチック液晶では高速応答と高透過率が両立できなかっ
た。しかし、本発明では、液晶層の複屈折量は短波長の
励起光波長程度あればよく、薄い液晶層で大きな蛍光量
を得ることが可能である。以上のように、本発明の液晶
表示装置を用いれば、広視野角、高速応答、高輝度な表
示画面を得ることができる。
On the other hand, it has been known that the thickness of the liquid crystal layer is reduced as an effective means for responding the nematic liquid crystal at high speed. However, when the thickness of the liquid crystal layer is reduced, the amount of birefringence decreases. For this reason, there has been a problem that the maximum amount of light during transmission cannot be secured. As described above, the conventional nematic liquid crystal cannot achieve both high-speed response and high transmittance. However, in the present invention, the amount of birefringence of the liquid crystal layer only needs to be about the short wavelength of the excitation light, and a large amount of fluorescence can be obtained with a thin liquid crystal layer. As described above, by using the liquid crystal display device of the present invention, a display screen having a wide viewing angle, high-speed response, and high luminance can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 請求項1に記載した発明を説明する構成図で
ある。
FIG. 1 is a configuration diagram illustrating the invention described in claim 1;

【図2】 請求項2の要部であるコレステリック液晶層
の光学動作を説明する図である。
FIG. 2 is a diagram illustrating an optical operation of a cholesteric liquid crystal layer, which is a main part of claim 2.

【図3】 請求項3の要部である異方性交代多層構造の
光学動作を説明する図である。
FIG. 3 is a diagram illustrating an optical operation of an anisotropic alternating multilayer structure, which is a main part of claim 3;

【図4】 請求項5に記載した発明を説明する構成図で
ある。
FIG. 4 is a configuration diagram for explaining the invention described in claim 5;

【図5】 請求項8に記載した発明を説明する構成図で
ある。
FIG. 5 is a configuration diagram for explaining the invention described in claim 8;

【図6】 請求項9に記載した発明を説明するため室内
光の影響を示す模式図である。
FIG. 6 is a schematic diagram showing the influence of room light for explaining the invention described in claim 9;

【図7】 請求項9に記載した発明を説明する構成図で
ある。
FIG. 7 is a configuration diagram for explaining the invention described in claim 9;

【図8】 請求項10に記載した発明を説明する構成図
である。
FIG. 8 is a configuration diagram for explaining the invention described in claim 10;

【図9】 請求項11に記載した発明を説明する構成図
である。
FIG. 9 is a configuration diagram for explaining the invention described in claim 11;

【図10】 この発明の第1の実施の形態の構成図であ
る。
FIG. 10 is a configuration diagram of a first embodiment of the present invention.

【図11】 この発明の第2の実施の形態の構成図であ
る。
FIG. 11 is a configuration diagram of a second embodiment of the present invention.

【図12】 前記第2の実施の形態の作成方法の模式図
である。
FIG. 12 is a schematic diagram of a creation method according to the second embodiment.

【図13】 従来の技術を説明する構成図である。FIG. 13 is a configuration diagram illustrating a conventional technique.

【図14】 従来の技術を説明する構成図である。FIG. 14 is a configuration diagram illustrating a conventional technique.

【図15】 従来の技術を説明する構成図である。FIG. 15 is a configuration diagram illustrating a conventional technique.

【符号の説明】 1…液晶層 2…偏光選択層 3…蛍光層 4…励起光 6…コレスレリック液晶層 9…交代多層構造 14・・・能動素子アレイ基板 15・・・対向基板 16・・・波長選択層 18・・・減光層 22・・・レンズ 24・・・平坦化層[Explanation of Symbols] 1 ... liquid crystal layer 2 ... polarization selection layer 3 ... fluorescent layer 4 ... excitation light 6 ... cholesteric liquid crystal layer 9 ... alternating multilayer structure 14 ... active element array substrate 15 ... counter substrate 16 ...・ Wavelength selection layer 18 ・ ・ ・ Darkening layer 22 ・ ・ ・ Lens 24 ・ ・ ・ Planarization layer

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H049 BA05 BA43 BB64 BC22 2H091 FA07Y FA29X FA41Z FA50X FB02 FB06 FC12 FC22 FD06 GA01 GA06 HA07 HA10 LA19 LA30 5C094 AA06 AA08 AA10 AA12 AA13 BA03 BA12 BA32 BA43 CA19 CA24 DA12 DA13 DB01 EA04 EB02 ED01 ED03 ED20 5G435 AA00 AA02 AA03 AA04 BB12 BB15 CC09 DD11 EE25 FF05 FF08 FF11 GG02 GG11 HH06 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2H049 BA05 BA43 BB64 BC22 2H091 FA07Y FA29X FA41Z FA50X FB02 FB06 FC12 FC22 FD06 GA01 GA06 HA07 HA10 LA19 LA30 5C094 AA06 AA08 AA10 AA12 AA13 BA03 BA12 BA32 DA04 ED01 ED03 ED20 5G435 AA00 AA02 AA03 AA04 BB12 BB15 CC09 DD11 EE25 FF05 FF08 FF11 GG02 GG11 HH06

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 励起光が、少なくとも液晶層、偏光選択
層、蛍光層を通過することを特徴とする液晶表示装置。
1. A liquid crystal display device in which excitation light passes through at least a liquid crystal layer, a polarization selection layer, and a fluorescent layer.
【請求項2】 偏光選択層が、コレステリック液晶層か
らなることを特徴とする請求項1に記載の液晶表示装
置。
2. The liquid crystal display device according to claim 1, wherein the polarization selection layer comprises a cholesteric liquid crystal layer.
【請求項3】 偏光選択層が、少なくとも1種類の異方
性を有する層を含む交代多層構造からなることを特徴と
する請求項1に記載の液晶表示装置。
3. The liquid crystal display device according to claim 1, wherein the polarization selection layer has an alternating multilayer structure including at least one layer having anisotropy.
【請求項4】 液晶パネル内部に少なくとも偏光選択
層、蛍光層が作り込まれていることを特徴とする請求項
1に記載の液晶表示装置。
4. The liquid crystal display device according to claim 1, wherein at least a polarization selection layer and a fluorescent layer are formed inside the liquid crystal panel.
【請求項5】 上記液晶パネルが能動素子アレイを有
し、液晶パネルの対向基板上に少なくとも偏光選択層、
蛍光層が設けられていることを特徴とする請求項4に記
載の液晶表示装置。
5. The liquid crystal panel has an active element array, and has at least a polarization selection layer on a counter substrate of the liquid crystal panel.
The liquid crystal display device according to claim 4, further comprising a fluorescent layer.
【請求項6】 対向基板上の蛍光層と偏光選択層の間に
少なくとも平坦化層を有することを特徴とする請求項5
に記載の液晶表示装置。
6. The device according to claim 5, wherein at least a flattening layer is provided between the fluorescent layer and the polarization selection layer on the counter substrate.
3. The liquid crystal display device according to 1.
【請求項7】 対向基板上の蛍光層と偏光選択層の間に
少なくとも配向層を有することを特徴とする請求項5に
記載の液晶表示装置。
7. The liquid crystal display device according to claim 5, further comprising at least an alignment layer between the fluorescent layer and the polarization selection layer on the counter substrate.
【請求項8】 対向基板上の蛍光層と偏光選択層の間に
少なくとも波長選択層を有することを特徴とする請求項
5に記載の液晶表示装置。
8. The liquid crystal display device according to claim 5, further comprising at least a wavelength selection layer between the fluorescent layer and the polarization selection layer on the opposing substrate.
【請求項9】 減光層を有する請求項1に記載の液晶表
示装置。
9. The liquid crystal display device according to claim 1, further comprising a dimming layer.
【請求項10】 請求項9に記載した減光層が対向基板
表面に配置されていることを特徴とする請求項5に記載
の液晶表示装置。
10. The liquid crystal display device according to claim 5, wherein the light reducing layer according to claim 9 is disposed on a surface of the counter substrate.
【請求項11】 対向基板上にレンズアレイあるいは導
波路アレイを有することを特徴とする請求項5に記載の
液晶表示装置。
11. The liquid crystal display device according to claim 5, wherein a lens array or a waveguide array is provided on the opposing substrate.
JP2000211753A 2000-07-12 2000-07-12 Liquid crystal display device Pending JP2002023145A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000211753A JP2002023145A (en) 2000-07-12 2000-07-12 Liquid crystal display device
PCT/JP2001/006041 WO2002005021A1 (en) 2000-07-12 2001-07-12 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000211753A JP2002023145A (en) 2000-07-12 2000-07-12 Liquid crystal display device

Publications (1)

Publication Number Publication Date
JP2002023145A true JP2002023145A (en) 2002-01-23

Family

ID=18707805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000211753A Pending JP2002023145A (en) 2000-07-12 2000-07-12 Liquid crystal display device

Country Status (2)

Country Link
JP (1) JP2002023145A (en)
WO (1) WO2002005021A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043172A1 (en) * 2010-10-01 2012-04-05 シャープ株式会社 Phosphor substrate, and display device and lighting device each equipped with same
WO2012144426A1 (en) * 2011-04-19 2012-10-26 シャープ株式会社 Fluorescent light body substrate and display device
JP2013521521A (en) * 2010-03-01 2013-06-10 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Electro-optic switching element and electro-optic display

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102998734B (en) * 2012-11-19 2016-03-23 京东方科技集团股份有限公司 Graphical delayer and manufacture method, display device
CN103017027A (en) * 2012-12-04 2013-04-03 京东方科技集团股份有限公司 Surface light source device and liquid crystal display device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0862602A (en) * 1994-07-26 1996-03-08 Samsung Electron Devices Co Ltd Display device
JPH09507308A (en) * 1993-12-21 1997-07-22 ミネソタ マイニング アンド マニュファクチャリング カンパニー Optical polarization device
JPH09511588A (en) * 1994-04-06 1997-11-18 スクリーン テクノロジー リミテッド Display screen
JPH1152371A (en) * 1997-07-31 1999-02-26 Nec Corp Liquid crystal display element
JPH11109341A (en) * 1997-09-29 1999-04-23 Toshiba Electronic Engineering Corp Liquid crystal display device
JPH11237632A (en) * 1998-02-24 1999-08-31 Sharp Corp Fluorescence type liquid crystal display device
JP2000019504A (en) * 1998-06-26 2000-01-21 Idemitsu Kosan Co Ltd Liquid crystal optical element
JP2000081847A (en) * 1999-09-27 2000-03-21 Toshiba Corp Picture display device and light emitting device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4822144A (en) * 1986-12-24 1989-04-18 U.S. Philips Corporation Electro-optic color display including luminescent layer and interference filter
JP3416056B2 (en) * 1998-07-27 2003-06-16 シャープ株式会社 Liquid crystal display

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09507308A (en) * 1993-12-21 1997-07-22 ミネソタ マイニング アンド マニュファクチャリング カンパニー Optical polarization device
JPH09511588A (en) * 1994-04-06 1997-11-18 スクリーン テクノロジー リミテッド Display screen
JPH0862602A (en) * 1994-07-26 1996-03-08 Samsung Electron Devices Co Ltd Display device
JPH1152371A (en) * 1997-07-31 1999-02-26 Nec Corp Liquid crystal display element
JPH11109341A (en) * 1997-09-29 1999-04-23 Toshiba Electronic Engineering Corp Liquid crystal display device
JPH11237632A (en) * 1998-02-24 1999-08-31 Sharp Corp Fluorescence type liquid crystal display device
JP2000019504A (en) * 1998-06-26 2000-01-21 Idemitsu Kosan Co Ltd Liquid crystal optical element
JP2000081847A (en) * 1999-09-27 2000-03-21 Toshiba Corp Picture display device and light emitting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013521521A (en) * 2010-03-01 2013-06-10 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Electro-optic switching element and electro-optic display
WO2012043172A1 (en) * 2010-10-01 2012-04-05 シャープ株式会社 Phosphor substrate, and display device and lighting device each equipped with same
WO2012144426A1 (en) * 2011-04-19 2012-10-26 シャープ株式会社 Fluorescent light body substrate and display device

Also Published As

Publication number Publication date
WO2002005021A1 (en) 2002-01-17

Similar Documents

Publication Publication Date Title
JP3549176B2 (en) Liquid crystal display device and method for manufacturing color filter substrate
TWI323363B (en)
JP3351945B2 (en) Reflective liquid crystal display
US5684551A (en) Reflective type liquid crystal display device with phase compensator and reflector with undulating surface
KR101418728B1 (en) Display device
KR100778167B1 (en) Liquid crystal display element
TW574521B (en) Liquid crystal display and its producing method
JP2011002775A (en) Liquid crystal display
WO2009090778A1 (en) Liquid crystal display
JP2010079024A (en) Liquid crystal display device
KR20060018773A (en) Transflective type display device and method for forming the same
JP3310569B2 (en) Reflective liquid crystal display
TW507094B (en) Liquid crystal display device
WO2006030512A1 (en) Liquid crystal display element
KR101555497B1 (en) Method of displaying image and display apparatus performing the method
JPH10206844A (en) Liquid crystal display device
KR100393390B1 (en) reflective liquid crystal display device
JP2002023145A (en) Liquid crystal display device
WO2007013313A1 (en) Transmissive liquid crystal display
JP3074123B2 (en) Liquid crystal display device
JP3000669B2 (en) Liquid crystal display
JP4105675B2 (en) Liquid crystal display
JPH0432818A (en) Liquid crystal display device
KR101165467B1 (en) Liquid crystal display device and method for fabricating the same
JP2002196315A (en) Liquid crystal display device and producing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070611

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080508

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080508

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090701

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101220