JP2002022884A - Recovery method for uranium - Google Patents

Recovery method for uranium

Info

Publication number
JP2002022884A
JP2002022884A JP2000200611A JP2000200611A JP2002022884A JP 2002022884 A JP2002022884 A JP 2002022884A JP 2000200611 A JP2000200611 A JP 2000200611A JP 2000200611 A JP2000200611 A JP 2000200611A JP 2002022884 A JP2002022884 A JP 2002022884A
Authority
JP
Japan
Prior art keywords
nuclear fuel
spent nuclear
ncp
uranium
nitric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000200611A
Other languages
Japanese (ja)
Inventor
Varga Tomash
バルガ トマシュ
Yasuhisa Ikeda
泰久 池田
Hiroshi Tomiyasu
博 冨安
Masanobu Nogami
雅伸 野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Research and Innovation
Original Assignee
Institute of Research and Innovation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Research and Innovation filed Critical Institute of Research and Innovation
Priority to JP2000200611A priority Critical patent/JP2002022884A/en
Publication of JP2002022884A publication Critical patent/JP2002022884A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Extraction Or Liquid Replacement (AREA)

Abstract

PROBLEM TO BE SOLVED: To drastically reduce the reprocessing operation afterward owing to the availability of selectively removing the most of uranyl ions from spent nuclear fuel by easy operation and at a low cost. SOLUTION: A method for recovering uranium as deposit of UO2(NO3)2(NCP)2 from uranyl ion is provided by dissolving spent nuclear fuel into nitric acid solution in a reprocessing process of spent nuclear fuel and adding and reacting NCP to it.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、使用済み核燃料の
再処理工程において、当該核燃料からウランを分離回収
する方法に関する。
[0001] The present invention relates to a method for separating and recovering uranium from nuclear fuel in a process of reprocessing spent nuclear fuel.

【0002】[0002]

【従来の技術】使用済み核燃料の再処理工程は、使用済
み核燃料からウラン及びプルトニウムを分離回収し、残
った核分裂生成物(FP)を除去するための化学的工程
である。現在、工業的に行われている再処理工程は、抽
出剤としてリン酸トリブチルを用い、使用済み核燃料を
溶解した硝酸溶液からウラン及びプルトニウムを抽出す
るピューレックス(PUREX)法が唯一の方法であ
る。
2. Description of the Related Art A reprocessing step of spent nuclear fuel is a chemical step for separating and recovering uranium and plutonium from spent nuclear fuel and removing remaining fission products (FP). At present, the only reprocessing step that is performed industrially is the PUREX method of extracting uranium and plutonium from a nitric acid solution in which spent nuclear fuel is dissolved using tributyl phosphate as an extractant. .

【0003】しかしながら、使用済み核燃料は、概ね質
量の約95%がウラン、約1%がプルトニウム、残りが
FPから構成されているため、上記方法によると、燃料
の大部分を占めるウランを抽出除去するには多量のリン
酸トリブチルが必要である。燃料溶液中のウラン及びプ
ルトニウムは各々6価のウラニルイオン(UO2 2+)、
4価のプルトニウムイオン(Pu4+)として存在するの
で、このUO2 2+及びPu4+は逆抽出されて、リン酸ト
リブチルは再利用されるが、これも次第に劣化するの
で、最終的には多量のリン酸トリブチルが廃棄されるこ
ととなる。しかし、リン酸トリブチルはリン化合物であ
るため、高温処理(焼却、熱分解、溶融処理等)を行う
場合、分解時にリン酸が生成し、これがオフガス系に移
行して材料を腐食するという問題があった。
[0003] However, the spent nuclear fuel is composed of about 95% by mass of uranium, about 1% by plutonium, and the remainder by FP. Requires a large amount of tributyl phosphate. Uranium and plutonium in the fuel solution are each hexavalent uranyl ion (UO 2 2+ ),
Since it exists as a tetravalent plutonium ion (Pu 4+ ), the UO 2 2+ and Pu 4+ are back-extracted and the tributyl phosphate is reused, but also gradually deteriorates. Means that a large amount of tributyl phosphate is discarded. However, since tributyl phosphate is a phosphorus compound, when high-temperature treatment (incineration, thermal decomposition, melting treatment, etc.) is performed, phosphoric acid is generated at the time of decomposition, which transfers to an off-gas system and corrodes the material. there were.

【0004】[0004]

【発明が解決しようとする課題】上記問題を解決するた
めに、前記抽出工程の前にウランを粗分離し、抽出工程
以降の負担を軽減するための研究が行われ、ウランを過
飽和濃度にし、固体として沈殿させる晶出法が提案され
ている。しかし、この方法も、ウランをより多く析出さ
せるためには、溶液を冷却することが必要であって、経
費が高くなると共に、ウラン以外の不純物が共沈するた
め、沈殿生成物の処理が厄介であるという欠点があっ
た。
In order to solve the above-mentioned problems, researches have been conducted to roughly separate uranium before the extraction step and to reduce the burden after the extraction step. A crystallization method of precipitating as a solid has been proposed. However, this method also requires cooling the solution in order to precipitate more uranium, which increases the cost and also causes co-precipitation of impurities other than uranium. There was a disadvantage that it was.

【0005】従って、本発明は、簡単な操作で、安価
に、使用済み核燃料中からウランを回収する方法を提供
することを目的とするものである。
Accordingly, it is an object of the present invention to provide a method for recovering uranium from spent nuclear fuel at a low cost with a simple operation.

【0006】[0006]

【課題を解決するための手段】このような実情におい
て、本発明者は種々研究を行った結果、使用済み核燃料
中のFP元素イオンは、硝酸水溶液中で、N−シクロヘ
キシル−2−ピロリドン(NCP)と反応して錯体を形
成するが、その中でウラニルイオンのみが酸性条件下で
水に不溶性のUO2(NO3)2(NCP)2錯体を生成し、他
のFP元素イオン、例えばY3+、Ba2+、Cs+、Zr
2+、Pd2+、RuNO3+、Rh3+から得られる錯体は
酸性条件下で水に可溶性であることを見出した。
Under such circumstances, the present inventors have conducted various studies and found that FP element ions in spent nuclear fuel can be converted into N-cyclohexyl-2-pyrrolidone (NCP) in a nitric acid aqueous solution. ) To form a complex in which only the uranyl ion forms a UO 2 (NO 3 ) 2 (NCP) 2 complex which is insoluble in water under acidic conditions, and forms other FP element ions such as Y 3+ , Ba2 + , Cs + , Zr
The complex obtained from O 2+ , Pd 2+ , RuNO 3+ , Rh 3+ was found to be soluble in water under acidic conditions.

【0007】従って、本発明は、使用済み核燃料の再処
理工程において、使用済み核燃料を硝酸水溶液に溶解
し、これにNCPを加えて反応させ、ウラニルイオンを
UO2(NO3)2(NCP)2の沈殿物として回収することを
特徴とするウランの回収方法を提供するものである。
Accordingly, in the present invention, in the reprocessing step of spent nuclear fuel, spent nuclear fuel is dissolved in an aqueous nitric acid solution, NCP is added thereto and reacted, and uranyl ions are converted into UO 2 (NO 3 ) 2 (NCP). The present invention provides a method for recovering uranium, which is characterized in that it is recovered as a precipitate of 2 .

【0008】[0008]

【発明の実施の形態】本発明方法は、再処理工程に付さ
れる使用済み核燃料について適用することができる。本
発明によれば、まず使用済み核燃料を硝酸水溶液に溶解
させる。硝酸水溶液中には少なくともFP元素イオンと
当量以上の硝酸イオンが存在することが必要であるが、
当該溶液を酸性条件下にするために過剰の硝酸を含むの
が好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The method of the present invention can be applied to spent nuclear fuel subjected to a reprocessing step. According to the present invention, first, spent nuclear fuel is dissolved in an aqueous nitric acid solution. In the nitric acid aqueous solution, it is necessary that at least nitric acid ions equivalent to the FP element ions are present,
Preferably, the solution contains an excess of nitric acid to bring the solution under acidic conditions.

【0009】次いで、この溶液にNCPを加えてよく混
合する。NCPは無色で粘性の高い液体であり、水と任
意の割合で混合する。NCPはクリーニング業や製紙業
において広く使用されているほか、オイルやガスのメン
テナンス、感光性樹脂、繊維の染色剤、溶剤等として使
用されているが、錯体形成剤として使用した例はない。
Next, NCP is added to this solution and mixed well. NCP is a colorless and highly viscous liquid, and is mixed with water at an arbitrary ratio. NCP is widely used in the cleaning industry and papermaking industry, and is also used as oil and gas maintenance, photosensitive resin, fiber dye, solvent and the like, but there is no example of using it as a complexing agent.

【0010】使用済み核燃料の硝酸水溶液にNCPを加
え、更に必要によって硝酸を追加して充分に混合し、室
温で放置するとUO2(NO3)2(NCP)2錯体の黄色結晶
が沈殿する。また、硝酸の代りにエーテル、シクロヘキ
サン、クロロホルム等の不溶性溶媒を加えることによっ
ても当該錯体を沈殿させることができる。そして、ウラ
ニルイオン以外のFP元素イオンとの錯体は沈殿しない
ので、使用済み核燃料の硝酸水溶液中からウラニルイオ
ンのみを選択的に分離回収することができる。
NCP is added to an aqueous nitric acid solution of spent nuclear fuel, and if necessary, nitric acid is further added and mixed well. When the mixture is left at room temperature, yellow crystals of a UO 2 (NO 3 ) 2 (NCP) 2 complex precipitate. Alternatively, the complex can be precipitated by adding an insoluble solvent such as ether, cyclohexane, or chloroform instead of nitric acid. Further, since complexes with FP element ions other than uranyl ions do not precipitate, only uranyl ions can be selectively separated and recovered from the aqueous nitric acid solution of the used nuclear fuel.

【0011】分離したUO2(NO3)2(NCP)2の沈殿は
そのまま焼却処理すればよく、これによって得られるウ
ランの酸化物は再利用に供することができる。一方この
ようにして大部分のウラニルイオンを除去した使用済み
核燃料溶液は更に従来の溶媒抽出法、イオン交換法、沈
殿法等に付して再処理を行うことができる。
The separated precipitate of UO 2 (NO 3 ) 2 (NCP) 2 may be incinerated as it is, and the resulting uranium oxide can be reused. On the other hand, the spent nuclear fuel solution from which most uranyl ions have been removed in this way can be subjected to a conventional solvent extraction method, ion exchange method, precipitation method or the like to be reprocessed.

【0012】[0012]

【実施例】次に参考例を挙げて本発明を説明する。Next, the present invention will be described with reference to reference examples.

【0013】参考例1 UO2(NO3)2・6H2O 101.7mg(0.202ミ
リモル)を水2mLに溶解し、これにNCP 0.125
mL(0.744ミリモル)を加える。これを攪拌すると
暗黄色に変化する。次いで、65%硝酸2mLを加えて混
合し、18〜20℃で放置し、生成した黄色結晶をと
り、冷水、エーテルで洗浄し、乾燥して、UO2(NO3)
2(NCP)2 100mgを得た。これはアセトン、ニトロ
メタン、アセトニトリル、ジクロロメタン、フルオロベ
ンゼンに溶解し、水にやや溶解し、シクロヘキサン、エ
ーテル、クロロホルムに不溶である。
Reference Example 1 101.7 mg (0.202 mmol) of UO 2 (NO 3 ) 2 .6H 2 O was dissolved in 2 mL of water, and NCP 0.125 was added thereto.
Add mL (0.744 mmol). When this is stirred, it turns dark yellow. Next, 2 mL of 65% nitric acid was added and mixed, and the mixture was allowed to stand at 18 to 20 ° C., and the formed yellow crystals were collected, washed with cold water and ether, dried, and dried to obtain UO 2 (NO 3 ).
100 mg of 2 (NCP) 2 were obtained. It is soluble in acetone, nitromethane, acetonitrile, dichloromethane, fluorobenzene, slightly soluble in water, and insoluble in cyclohexane, ether and chloroform.

【0014】 元素分析 理論値(%):C 32.97 H 4.71 N 7.69 実測値(%):C 32.83 H 4.56 N 7.64 IR(cm-1):1606〔1682〕(νC=O) 927〔949,UO2(NO3)2(H2 O)2〕(νO=U=O)Elemental analysis Theoretical value (%): C 32.97 H 4.71 N 7.69 Actual value (%): C 32.83 H 4.56 N 7.64 IR (cm −1 ): 1606 [ 1682] (νC = O) 927 [949, UO 2 (NO 3 ) 2 (H 2 O) 2 ] (νO = U = O)

【0015】[0015]

【発明の効果】本発明によれば、簡単な操作で、安価
に、使用済み核燃料から大部分のウラニルイオンを選択
的に除去できるので、その後の再処理操作を大幅に軽減
することができる。
According to the present invention, most of the uranyl ions can be selectively removed from spent nuclear fuel with a simple operation and at a low cost, so that the subsequent reprocessing operation can be greatly reduced.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野上 雅伸 東京都大田区東矢口1−8−1−202 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masanobu Nogami 1-8-1-202 Higashiyaguchi, Ota-ku, Tokyo

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 使用済み核燃料の再処理工程において、
使用済み核燃料を硝酸水溶液に溶解し、これにN−シク
ロヘキシル−2−ピロリドン(NCP)を加えて反応さ
せ、ウラニルイオンをUO2(NO3)2(NCP)2の沈殿物
として回収することを特徴とするウランの回収方法。
In the reprocessing step of spent nuclear fuel,
Dissolving the spent nuclear fuel in an aqueous nitric acid solution, adding N-cyclohexyl-2-pyrrolidone (NCP) thereto and reacting the same, and recovering uranyl ions as UO 2 (NO 3 ) 2 (NCP) 2 precipitates. Characteristic uranium recovery method.
JP2000200611A 2000-07-03 2000-07-03 Recovery method for uranium Pending JP2002022884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000200611A JP2002022884A (en) 2000-07-03 2000-07-03 Recovery method for uranium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000200611A JP2002022884A (en) 2000-07-03 2000-07-03 Recovery method for uranium

Publications (1)

Publication Number Publication Date
JP2002022884A true JP2002022884A (en) 2002-01-23

Family

ID=18698455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000200611A Pending JP2002022884A (en) 2000-07-03 2000-07-03 Recovery method for uranium

Country Status (1)

Country Link
JP (1) JP2002022884A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009186399A (en) * 2008-02-08 2009-08-20 Nippon Tmi Co Ltd Method for reprocessing spent nuclear fuel
JP2015125139A (en) * 2013-12-27 2015-07-06 株式会社東芝 Nuclear fuel substance weighing management method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009186399A (en) * 2008-02-08 2009-08-20 Nippon Tmi Co Ltd Method for reprocessing spent nuclear fuel
JP2015125139A (en) * 2013-12-27 2015-07-06 株式会社東芝 Nuclear fuel substance weighing management method

Similar Documents

Publication Publication Date Title
EP1008147A2 (en) Ionic liquids as solvents
US10252983B2 (en) Dissymmetric N,N-dialkylamides, the synthesis thereof and uses of same
Campbell et al. The chemistry of fuel reprocessing: present practices, future trends
JP2002022884A (en) Recovery method for uranium
US5510091A (en) Method of separating transplutonium elements from lanthanides in acidic solutions by solvent extraction
JP2551683B2 (en) Method for separating uranium and plutonium from uranium-plutonium mixed solution
JPH0534286B2 (en)
JPH0453277B2 (en)
US4741857A (en) Method of purifying neutral organophosphorus extractants
US3979498A (en) Recovery of cesium and palladium from nuclear reactor fuel processing waste
US5503812A (en) Method for separating and purifying fission noble metals
JP4395589B2 (en) Method for selectively separating and recovering uranium (VI) present in aqueous solution with branched N, N-dialkylmonoamide
US7011798B2 (en) Process for reprocessing spent nuclear fuels by utilizing phenomenon of cocrystallization
US20240079157A1 (en) Method for stripping uranium(vi) and an actinide(iv) from an organic solution by oxalic precipitation
US4276235A (en) Method for purifying bidentate organophosphorous compounds
JP2858640B2 (en) Reprocessing of spent nuclear fuel under mild conditions
US3075826A (en) Separation of cesium values from aqueous solution
Toth et al. Aqueous and pyrochemical reprocessing of actinide fuels
US3443912A (en) Separation of uranium and thorium from plutonium
Navratil Plutonium and americium processing chemistry and technology
JPS61236615A (en) Method of recovering uranium from nucleus fuel scrap
US4756853A (en) Process for the conversion into usable condition of actinide ions contained in the solid residue of a sulfate reprocessing process for organic, actinide-containing radioactive solid waste
US2912303A (en) Dissolution of lanthanum fluoride precipitates
Healy et al. Alkali phosphotungstates. Part V. Extraction of caesium from fission product solutions
Shuktomova et al. Combination of ion exchange and electrodeposition as a method of separation and preconcentration of U and Th isotopes for their alpha-spectrometric determination in rock, soil and plant