JP2002022070A - Oil well pipe screw joint excellent in external pressure resisting performance - Google Patents

Oil well pipe screw joint excellent in external pressure resisting performance

Info

Publication number
JP2002022070A
JP2002022070A JP2000207220A JP2000207220A JP2002022070A JP 2002022070 A JP2002022070 A JP 2002022070A JP 2000207220 A JP2000207220 A JP 2000207220A JP 2000207220 A JP2000207220 A JP 2000207220A JP 2002022070 A JP2002022070 A JP 2002022070A
Authority
JP
Japan
Prior art keywords
screw
thread
external pressure
threaded
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000207220A
Other languages
Japanese (ja)
Inventor
Kazushi Maruyama
和士 丸山
Yasutsugu Tsukano
保嗣 塚野
Eiji Tsuru
英司 津留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000207220A priority Critical patent/JP2002022070A/en
Publication of JP2002022070A publication Critical patent/JP2002022070A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Non-Disconnectible Joints And Screw-Threaded Joints (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oil well pipe joint excellent in sealing property to external pressure in a coupling type oil well pipe fitting for fastening a male screw pin to a short pipe having both boxed ends and an integral type oil well tube fitting consisting of a pair of pins and a box. SOLUTION: This oil well pipe screw joint excellent in external pressure resisting performance comprises a pin having a run-out type taper male thread with buttress thread arranged at the tube end and a seal part formed of a smooth taper surface and a tip shoulder part, which is arranged on the extension line of the male thread; and the box having a taper female thread with buttress thread arranged on the pin inner surface so as to be fitted thereto and a shoulder abutting on the smooth taper surface and the pin tip, which is arranged on the deep side thereof. The inner side is swollen over the whole area of at least the male thread complete screw part and the non-threaded seal part to enhance the radial displacement resistance to external pressure of the male thread.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、両端にボックス加
工を施した短管に雄ネジピンを締結するカップリングタ
イプの油井管継手、および一対のピン、ボックスからな
るインテグラルタイプのの油井管継手において、外圧に
対するシール性に優れた油井管継手に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coupling type oil country tubular joint in which a male pipe pin is fastened to a short pipe whose both ends are box-processed, and an integral type oil country pipe joint comprising a pair of pins and a box. The present invention relates to an oil country tubular good having excellent sealing performance against external pressure.

【0002】[0002]

【従来の技術】従来、油井管継手のシール性能に関して
は、内部流体が鋼管の外に漏れないことが重視され、外
圧性能に関する関心が薄かったことが指摘されている。
しかし、昨今では枯渇しそうな油ガス層の生産性を向上
させるために、地層に亀裂を入れ、油、ガスの通りを良
くする増進回収法が多用されるようになって来ている。
この増進回収法では、高圧水を地層に送るためにパイプ
に高い内圧が作用し、これとバランスを図るために管外
面から圧力をかけておくという方法が採用されている
が、パイプ内の内圧が地層に抜けたり、生産時に内圧が
低下した場合に、外圧が単独でパイプに作用したことと
同一の状態となって継手事態が高い外圧に晒され破壊に
至り油、ガスが漏洩するという問題がある。
2. Description of the Related Art It has been pointed out that with regard to the sealing performance of oil country tubular goods, it has been emphasized that the internal fluid does not leak out of the steel pipe, and that there has been little interest in external pressure performance.
However, recently, in order to improve the productivity of an oil and gas layer that is likely to be depleted, an enhanced recovery method for cracking the formation and improving the flow of oil and gas has been frequently used.
In this enhanced recovery method, a high internal pressure acts on the pipe to send high-pressure water to the stratum, and in order to balance this, pressure is applied from the outer surface of the pipe. If the internal pressure drops during formation or the internal pressure drops during production, the same situation occurs when the external pressure acts on the pipe alone, and the joint situation is exposed to high external pressure, leading to destruction and leakage of oil and gas. There is.

【0003】図1に従来の雄ネジ先端部に金属接触部を
具備する油井管特殊継手の一部断面図を示した。図1に
おいて、継手の外圧に対する継手内部への油、ガスの漏
洩現象は、先ず外部流体がネジ嵌合部に侵入し、その流
体圧力で雄ネジ1は内部に、雌ネジ2は外側に変位しよ
うとする。これら変位は、ネジ先端部に配置した金属接
触部の密着部3をこじ開けるように働き、予め付与した
金属接触部の密着量を上回るほどネジ部の半径方向変位
が大きくなった時点で、外部流体は金属接触部3をも貫
通して継手内部に油、ガスが漏洩することになる。
FIG. 1 shows a partial cross-sectional view of a conventional oil country tubular good joint having a metal contact portion at the tip of a male screw. In FIG. 1, the leakage of oil and gas into the joint due to the external pressure of the joint is as follows. First, the external fluid enters the screw fitting portion, and the male screw 1 is displaced inside and the female screw 2 is displaced outward by the fluid pressure. try to. These displacements work to pry open the contact portion 3 of the metal contact portion disposed at the screw tip, and when the radial displacement of the screw portion becomes larger as the amount of contact of the metal contact portion provided in advance becomes larger, the external fluid Will leak oil and gas into the joint through the metal contact 3 as well.

【0004】現行の油井管ネジ継手でも外部抵抗に効果
があると考えられる要素は幾つかある。第一は、仮に外
圧が雄ネジと雌ネジの間に侵入しても、それが雄ネジ先
端に設けた金属接触部3をこじ開けないように、例え
ば、図1に示したネジ山4側面を鋭角θ1 とし、雄ネジ
が雌ネジから離れにくくすることであり、第二に、金属
接触部3のノーズ先端をネジ山同様に鋭角θ2 とし、金
属接触部3が埀離しにくくすることや、第三は、ネジ間
に、例えばテフロン(登録商標)シールリングのような
樹脂パッキン6を挿入すること、などがある。しかし、
第一、第二の方法では、引張り、圧縮の両方向軸力が作
用するために鋭角とした傾斜面が降伏すれば、そこに隙
間が生じ、外圧により雄ネジが半径方向内側に変位する
のをくい止める作用はかなり喪失するという問題があ
る。また、第三の方法では、外圧シール効果は期待でき
るが現地における樹脂パッキン挿入の不具合からトラブ
ルが頻発し、使用者側から敬遠されるという問題があ
る。そのために、これらの問題を解決する外圧に対する
シール性の高い油井管継手の開発が望まれている。
There are several factors that are considered to be effective for external resistance even with the current oil country tubular goods threaded joints. First, even if external pressure enters between the male screw and the female screw, for example, the side of the screw thread 4 shown in FIG. and acute angle theta 1, a male screw is to difficult away from the female screw, the second, the nose tip of the metal contact 3 threads similarly as acute theta 2, Ya the metal contact 3 is less likely to埀離The third is to insert a resin packing 6 such as a Teflon (registered trademark) seal ring between the screws. But,
In the first and second methods, if an acute angled inclined surface yields due to the action of tension in both directions of tension and compression, a gap is created there, and the external thread displaces the external thread radially inward due to external pressure. There is a problem that the blocking effect is considerably lost. Further, in the third method, an external pressure sealing effect can be expected, but there is a problem that trouble frequently occurs due to a failure in inserting the resin packing at the site, and the user side is avoided. Therefore, development of an oil country tubular good with high sealing performance against external pressure that solves these problems is desired.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記課題を
解決した外圧に対するシール性の高い油井管継手を提供
するものである。
SUMMARY OF THE INVENTION The present invention provides an oil country tubular good with high sealing performance against external pressure, which solves the above-mentioned problems.

【0006】[0006]

【課題を解決するための手段】本発明は、ネジ部とその
ネジ部先端に階段状の金属接触部を有する油井管テーパ
ネジ継手において、ネジ嵌合部まで外圧が侵入したきた
時に、その雄ネジにテーパ加工が施されているが故に、
肉厚が薄くなり、外圧によって収縮し易くなった雄ネジ
部の半径方向内側への変形抵抗を高め、牽いては雄ネジ
先端部に設けた階段状の金属接触部がこじ開けられない
ように工夫した油井管ネジ継手であり、その要旨は次の
通りである。
SUMMARY OF THE INVENTION The present invention relates to an oil country tubular good tapered threaded joint having a threaded portion and a stepped metal contact portion at the tip of the threaded portion. Because taper processing is given to
Increased resistance to deformation of the external thread, which has become thinner and easily contracted by external pressure, inward in the radial direction, and designed to prevent the stair-shaped metal contact part provided at the distal end of the external thread from being pryed open. This is a threaded oil well pipe threaded joint, the gist of which is as follows.

【0007】本発明は、管端にバットレスネジ山でラン
アウトタイプのテーパ雄ネジおよびその延長線上に平滑
テーパ面と先端肩部で構成されるシール部を配置したピ
ンと、これと嵌合するように前記ピン内面にバットレス
ネジ山のテーパ雌ネジおよびその奥に平滑テーパ面と前
記ピン先端と衝接するショルダーを配置したボックスか
らなる油井管ネジ継手において、少なくとも雄ネジ完全
ネジ部およびネジなしシール部の内面全域にわたって、
好ましくは、前記雄ネジ延長線上に内面増肉部を管軸に
平行に施し、内側を膨らませて雄ネジの外圧に対する半
径方向変位抵抗を高めたことカップリングタイプおよび
インテグラルタイプのケーシング用・チュービング用の
耐外圧性能の優れた油井管ネジ継手であり、また、前記
雄ネジ延長線上の内面増肉部形成手段がスエージ加工で
施され、前記スエージ加工後の外面テーパをネジテーパ
に平行にすることにより内面増肉部もテーパネジに平行
になるようにし、前記テーパネジ部断面肉厚がネジ全体
にわたって母管肉厚に近似するようしたカップリングタ
イプおよびインテグラルタイプのケーシング用・チュー
ビング用の耐外圧性能の優れた油井管ネジ継手である。
According to the present invention, there is provided a pin having a run-out type tapered male screw with a buttress thread at a pipe end, and a pin having a seal portion formed of a smooth tapered surface and a tip shoulder on an extension of the run-out tapered screw. In an oil country tubular good threaded joint consisting of a box in which a buttress threaded tapered female thread on the inner surface of the pin and a shoulder in contact with the smooth tapered surface and the tip of the pin are arranged at the inner portion, at least a male thread completely threaded portion and a threadless seal portion are formed. Over the entire inner surface,
Preferably, for the tubing for coupling type and integral type casings, an inner wall thickness increasing portion is provided on the extension line of the external thread in parallel with the pipe axis, and the inner side is expanded to increase radial displacement resistance against external pressure of the external thread. An oil country tubular good threaded joint having excellent external pressure resistance, and the inner surface thickening portion forming means on the extension of the external thread is swaged, and the outer surface taper after the swaging is made parallel to the screw taper. The inner wall thickened portion is also parallel to the tapered screw, and the tapered screw portion has excellent external pressure resistance for casing and tubing for coupling and integral type casings in which the cross-sectional thickness approximates the wall thickness of the entire pipe over the entire screw. Oil well pipe threaded joint.

【0008】また、本発明は、上記構成において、前記
スエージ加工において、母管となる鋼管径をAPI規格
ケーシング鋼管径より最大6mm大きく、かつそれに相
当する増大量だけ鋼管内径も大きくし、前記API規格
で定められた最小規格内径を保証できる内径まで前記ス
エージ加工を施すことにより、ネジ下内面およびネジな
し内面のスエージ加工ままの内面部の範囲を長くし、こ
れを以てテーパネジ加工部の肉厚をできるだけ厚く確保
することであり、また、、前記スエージ加工において、
上下半割り金型を用いてスエージ加工後の形状をネジ部
に対応する部位をネジテーパに平行にし、ネジなし部は
更にテーパを緩くすることで内面への余分な張出しを最
小にしたカップリングタイプおよびインテグラルタイプ
のケーシング用・チュービング用の耐外圧性能の優れた
油井管ネジ継手である。
In the swaging, the present invention is characterized in that, in the swaging, the diameter of the steel pipe serving as the mother pipe is at most 6 mm larger than the diameter of the API standard casing steel pipe, and the inner diameter of the steel pipe is also increased by a corresponding increase. By performing the swaging to the inner diameter that can guarantee the minimum standard inner diameter specified by the standard, the range of the inner surface portion of the inner surface under the screw and the inner surface without the screw as it is swaged is lengthened, thereby increasing the thickness of the tapered screw processing portion. It is to ensure as thick as possible, and in the swaging process,
Coupling type in which the part corresponding to the threaded part after the swage processing is made parallel to the screw taper using the upper and lower half molds, and the extra part on the inner surface is minimized by further loosening the tapered part. It is an oil well pipe threaded joint with excellent external pressure resistance for integral type casing and tubing.

【0009】[0009]

【発明の実施の形態】カップリングタイプおよびインテ
グラルタイプのケーシング用・チュービング用油井管ネ
ジ継手において、外圧に対する雄ネジの半径方向変形抵
抗を高めるには、薄くなった雄ネジ部の肉厚を厚くすれ
ばよく、本発明においては内側に増肉することによって
おれを達成しようとするものである。これまでにも、油
井管の内側を増肉した例は存在していたが、それはドリ
ルタイプ、丸山ネジチュービングパイプの管恥加熱内外
アプセット成形によるもので、これらは継手強度を確保
するための手段で用いられていた。しかし、テーパネジ
切り上がり終端が図1に示す4(c)のようなランアウ
トタイプのバットレスネジを配するチュービング、ケー
シング油井管継手には、ネジ継手効率の高い信頼性から
内アプセット加工を施す必要はなかった。
BEST MODE FOR CARRYING OUT THE INVENTION In a coupling type and integral type oil country tubular screw joint for casing and tubing, in order to increase the radial deformation resistance of the external thread against external pressure, the thickness of the thinned external thread is increased. In the present invention, it is intended to achieve me by increasing the thickness inside. Until now, there was an example of increasing the thickness of the inside of an oil well pipe, but this was due to the use of a drill type, round shank tubing pipe shading heating inside and outside upset molding, and these were means to secure the joint strength. It was used in. However, it is not necessary to perform inner upset processing on tubing and casing oil country tubular goods in which run-out type buttress screws such as 4 (c) shown in FIG. Did not.

【0010】また、この種の継手にも熱間加工でなく、
冷間スエージ加工で内側に膨らませたものは存在してい
るが、その目的は金属接触部の肉厚を一定に保つため
に、その削り代を確保すること、または金属接触部が薄
い場合には、その部分を内側に増肉して厚くすることで
あって、ネジ下まで意識して膨らませていた例はない。
一部の平行ネジでは、明らかにネジ部の肉厚がパイプ本
体より薄くなるネジ締結構造を有するので雄ネジ内側を
スエージ加工により膨らませていた例はあるものの、こ
れは平行ネジの弱点を補う目的であって、ランアウトテ
ーパネジは本来、平行ネジの継手強度の弱点を補うこと
を狙いとしているので、敢えて雄ネジ内側を完全にカバ
ーする形でスエージまたはアップセットする必要はない
と考えられており、そのような油井管ケーシング、チュ
ービングは過去に見当たらない。これは、ネジ嵌合部に
浸入した外圧に対して、雄ネジを厚くして半径方向変位
を抑制しようとの必要性が過去にはなかったと考えられ
る。下記(1)式は円筒に外圧pが作用した時の外面の
半径方向変位量:Uの計算式である。
In addition, this type of joint is not hot-worked,
Although there is something that has been inflated inward by cold swaging, the purpose is to secure the cutting allowance to keep the thickness of the metal contact part constant, or if the metal contact part is thin This is to increase the thickness of the part inward, and there is no example of swelling under the screw.
Some parallel screws have a screw fastening structure in which the thickness of the thread part is clearly thinner than the pipe body, so there is an example in which the inside of the male screw is swaged by swaging, but this is to compensate for the weakness of the parallel screw However, since the run-out taper screw originally aims to compensate for the weakness of the joint strength of the parallel screw, it is considered that it is not necessary to swage or upset in a form that completely covers the inside of the male screw, Such oil well casing, tubing has not been found in the past. This is presumably because there was no need in the past to increase the thickness of the male screw to suppress the radial displacement in response to the external pressure that entered the screw fitting portion. The following equation (1) is an equation for calculating the amount of displacement U of the outer surface in the radial direction when an external pressure p acts on the cylinder.

【0011】U=pr2 /(Et)・・・・・ (1) ここで、rはパイプの肉厚中心半径、Eはヤング率、t
は肉厚である。このように、円筒外面の半径方向変位は
半径の2乗に比例し、肉厚に反比例する。P,r,Eは
変えることのできないパラメーターである。継手デザイ
ンで工夫できるのは唯一肉厚:tである。雄ネジ部の肉
厚(t)の現象はそのまま半径方向変位に影響する。例
えば、ネジ部の肉厚が母管部より20%現象すれば半径
方向変位は0.8の逆数1.25倍となる。いま、パイ
プ半径;120mm、肉厚:12mm、負荷外圧:70
0気圧、ヤング率:21000kg/mm2 とすれば、
半径方向変位量:Uは0.4mmとなる。肉厚がネジ加
工により20%減少したとすれば、半径方向変位量:U
を0.4mmに維持するには圧力を560気圧に下げる
必要がある。つまり、この継手の外圧に対する金属接触
部のシール機能がネジ部の半径方向変位が0.4mmに
なるまで維持されていたとすれば、ネジ部の80%薄肉
化はシール性能が700気圧から560気圧に低下した
のと等しくなる。
U = pr 2 / (Et) (1) where r is the radius of the center of the wall thickness of the pipe, E is Young's modulus, t
Is thick. Thus, the radial displacement of the cylindrical outer surface is proportional to the square of the radius and inversely proportional to the wall thickness. P, r, and E are parameters that cannot be changed. The only thing that can be devised in the joint design is the wall thickness: t. The phenomenon of the thickness (t) of the male screw portion directly affects the radial displacement. For example, if the thickness of the screw portion is 20% smaller than that of the mother tube portion, the displacement in the radial direction is 1.25 times the reciprocal of 0.8. Now, pipe radius: 120 mm, wall thickness: 12 mm, load external pressure: 70
Assuming 0 atm and Young's modulus: 21000 kg / mm 2 ,
Radial displacement: U is 0.4 mm. Assuming that the wall thickness is reduced by 20% by the threading, the radial displacement amount: U
Needs to be reduced to 560 atm to maintain 0.4 mm. That is, if the sealing function of the metal contact portion against the external pressure of the joint was maintained until the radial displacement of the screw portion became 0.4 mm, the thinning of the thread portion by 80% reduced the sealing performance from 700 atm to 560 atm. It is equal to having fallen.

【0012】以上の例示から分かるように、継手の耐外
圧シール性向上のためのネジ下増肉効果は顕著である。
ここで、本発明で工夫した点は、増肉手段とどのような
形状に増肉するかである。増肉手段には、熱間加工と冷
間加工の2種類があるが、先ず、加工費の安価な冷間ス
エージ法について述べる。内面増肉量は大きい程良いの
で、最大限ネジ下内面の増肉を得るには、図2に示すよ
うに、雄ネジテーパの外縁プロフィルに沿って管端のス
エージ加工を施すのが良い。こうすることで、パイプ内
面の増肉部奥行き、厚みを最大にできる。すなわち、図
2において、7(a)はスエージ前の管端形状であり、
7(b)はスエージ後の管端形状を示している。スエー
ジ金型の内面テーパはネジテーパより若干大きくとりス
エージ加工後の管端外面テーパがネジテーパと同じにな
るようにすべきである。テーパが大き過ぎればネジ加工
後の増肉部の奥行きが短くなり完全ネジの内面全体にわ
たって増肉できなくなり、反対にテーパが小さ過ぎれば
ネジ加工後の増肉部の奥行きは確保できるが増肉部が不
足することになる。
As can be seen from the above examples, the effect of increasing the wall thickness under the screw for improving the external pressure sealing resistance of the joint is remarkable.
Here, the point devised in the present invention is the thickness increasing means and the shape in which the thickness is increased. There are two types of thickening means, hot working and cold working. First, the cold swaging method with low working cost will be described. The larger the inner wall thickness, the better. Therefore, in order to obtain the maximum wall thickness of the inner surface under the screw, it is preferable to swage the pipe end along the outer edge profile of the external thread taper as shown in FIG. By doing so, the depth and thickness of the thickened portion on the inner surface of the pipe can be maximized. That is, in FIG. 2, 7 (a) is a pipe end shape before swaging,
7 (b) shows the pipe end shape after swaging. The inner surface taper of the swage mold should be slightly larger than the screw taper so that the tube end outer surface taper after swaging is the same as the screw taper. If the taper is too large, the depth of the thickened part after threading becomes short, and it is not possible to increase the thickness of the entire inner surface of the complete screw. Conversely, if the taper is too small, the depth of the thickened part after threading can be secured but increased Department will be short.

【0013】内面増肉されたものは、そのままの形状で
は内面ドリフト検査に合格しないので必要な内径にボア
リング加工する必要がある。機械加工した部分は僅かな
クリアランスで規定のマンドレルバーを貫通させること
が可能である。実用的にはマンドレル径+1mmであれ
ば十分である。以上の冷管スエージ加工と内面ボアリン
グ加工の組み合わせで、雄ネジ先端部の外圧に対する半
径方向変位を最小限に抑えることが可能となる。これ
は。図2に示すように、本来雄ネジ先端に進むにつれて
ネジ下肉厚:t’がテーパネジのため薄くなるところを
スエージ加工を最適に行ったため肉厚:tを母管肉厚t
0 に近似できたからである。
[0013] The inner-wall-increased portion does not pass the inner-surface drift inspection with its shape as it is, so it is necessary to bore it to a required inner diameter. The machined part can penetrate the defined mandrel bar with little clearance. In practice, it is sufficient if the diameter of the mandrel is +1 mm. The combination of the cold tube swaging and the inner surface boring described above makes it possible to minimize the radial displacement of the distal end portion of the male screw against external pressure. this is. As shown in FIG. 2, where the thickness under the screw: t ′ becomes thinner due to the tapered thread as it progresses toward the tip of the male screw, the swaging was optimally performed.
This is because it could be approximated to zero .

【0014】図2に示すように、テーパネジ先端までス
エージままの範囲を残し、ネジ部の肉厚を厚く保つに
は、現行API規格鋼管を適用すると無理がある。その
理由は、現行API規格では(鋼管内径−3.18m
m)のドリフトマンドレルを通す必要があり、ネジテー
パに沿って管端をスエージすると、ネジ長さ:100m
m、テーパ:1/16の場、内径は6.25mm小さく
なるので、このドリフト検査を満足できなくなる。従っ
て、ドリフト検査も満足し、かつスエージ範囲を図2に
ように長くとるには、鋼管外径を大きくすると良い。し
かし、鋼管外径を大きくすると外径規格に抵触する懸念
がでてくるが、油井管の適用を考えると、内径について
はビットを管内面に通すので前記規格に沿ってないと使
用できないが、外径に対しては鋼管を埋める坑壁とのク
リアランスを念頭に決定されているので前記規格値は余
裕を持っており、多少の径拡大は事実上受け入れられる
ことになる。これまでにも、外径をAPI規格より大き
くした鋼管はオーバーサイズドケーシングの例がある。
この場合は、鋼管内面にできるだけ大きな鋼管を通した
い、または、厚肉鋼管にして内径が小さくなる欠点をカ
バーしたいという事情があった。本発明による改善は、
テーパネジ部の厚みを厚くするため管端にスエージを施
し、その形状をできるだけ残して使用したいというのが
発明の動機となっている。
As shown in FIG. 2, it is impossible to apply the current API standard steel pipe in order to leave the range of the swage as far as the tip of the tapered screw and to keep the thickness of the screw portion thick. The reason is that in the current API standard (steel tube inner diameter -3.18m
m), it is necessary to pass through the drift mandrel, and when the pipe end is swaged along the thread taper, the thread length: 100 m
In the case of m, taper: 1/16, the inner diameter becomes smaller by 6.25 mm, so that this drift inspection cannot be satisfied. Therefore, in order to satisfy the drift inspection and increase the swage range as shown in FIG. 2, it is preferable to increase the outer diameter of the steel pipe. However, when the outer diameter of the steel pipe is increased, there is a concern that the outer diameter standard may be violated.However, considering the application of oil country tubular goods, the inner diameter passes through the inner surface of the pipe so that the bit cannot be used unless it complies with the standard. Since the outer diameter is determined in consideration of the clearance between the outer wall and the pit wall in which the steel pipe is buried, the standard value has a margin, and a slight increase in the diameter is practically accepted. Heretofore, there is an example of an oversized casing for a steel pipe having an outer diameter larger than the API standard.
In this case, it is necessary to pass a steel pipe as large as possible through the inner surface of the steel pipe, or to cover a disadvantage that the inner diameter is reduced by forming a thick steel pipe. The improvement according to the invention is:
The motivation of the invention is to swage the end of the pipe in order to increase the thickness of the tapered thread portion and to use the pipe as much as possible.

【0015】前述した冷間スエージ加工には2通りの方
法があり、それぞれ一長一短がある。第一の方法は、図
3に示すように、内面テーパ加工したカップ型ダイスに
パイプ端を押し込む方法である。この方法は、本発明の
ような奥行き深くスエージする時に適している。第二の
方法は、図4に示すように、半割りした上下金型を押し
付ける方法で、この特徴はスエージ後の管端プロフィル
を一様プロフィルでなく、組み合わせテーパにすること
が可能である。このようにすることで、最終製品の形状
が同一でも、均一テーパスエージに比べ、ボアリング加
工時に内面削り代を減らすことが可能となり生産性を向
上することができる。しかし、欠点としては、半割り金
型であるため、境界部の肉厚・形状不均一部ができ易い
ことである。いずれの方法によりネジ下肉厚:tを母管
肉厚:t0 に近似させるスエージ加工は可能である。
There are two methods for the cold swaging described above, each having advantages and disadvantages. The first method is, as shown in FIG. 3, a method in which a pipe end is pushed into a cup-shaped die whose inner surface is tapered. This method is suitable when swaging deeply as in the present invention. The second method is, as shown in FIG. 4, a method in which the upper and lower molds are pressed in half, and this feature makes it possible to make the pipe end profile after swaging not a uniform profile but a combined taper. By doing so, even if the shape of the final product is the same, it is possible to reduce the inner surface cutting allowance at the time of bore processing, as compared with the uniform taper swage, and it is possible to improve productivity. However, a drawback is that since the mold is a half-split mold, it is easy to form an uneven thickness and shape portion at the boundary. Screw under thickness by any of the methods: mother tube wall thickness of t: swaging to approximate to t 0 is possible.

【0016】このした冷間スエージ加工は材料強化とい
う観点からも、ネジ部の半径方向変形抵抗を高めること
ができ、スエージ加工を行うことにより円周方向の圧縮
耐力が増加するからである。これは、テーパネジの締め
込み、外圧の作用で雄ネジ部は圧縮降伏し易い状態にな
っているので、それを防止する効果として役立つ。すな
わち、スエージ加工は増肉形状を得るだけでなく、材質
的にも管端を強化する効果がある。ただし、硫化水素を
含む腐食環境下では冷間スエージ加工材は応力腐食割れ
感受性が増すので、その場合は冷間スエージ加工後に応
力除去焼鈍を施す必要があるが、加工硬化は気体できな
い。
This is because the cold swaging can increase the radial deformation resistance of the threaded portion from the viewpoint of strengthening the material, and the swage working increases the compressive strength in the circumferential direction. This is useful as an effect of preventing the male thread portion from being easily compressed and yielded by the action of tightening of the tapered screw and external pressure. That is, swaging not only has the effect of increasing the wall thickness but also has the effect of strengthening the pipe end in terms of material. However, in a corrosive environment containing hydrogen sulfide, the cold swaged material has increased stress corrosion cracking susceptibility. In this case, it is necessary to perform stress relief annealing after the cold swaged work, but work hardening cannot be performed.

【0017】次に熱間アプセット法による内面増肉法に
ついて述べる。冷間スエージ加工では管端肉厚を元の肉
厚以上にはできないが、熱間アプセット法では増肉が可
能である。従って、図5に示すようなネジ下部のアプセ
ット形状を管軸に平行にでき、雄ネジ終端部の肉厚:t
は母管肉厚:t0 より厚くできる。そのため、雄ネジ部
の外圧による半径方向変位に対する抵抗は冷間スエージ
加工より大きくできる。しかし、この欠点は、冷間スエ
ージ加工に比べコストが高いことである。熱間アプセッ
ト加工は、図6に示すようなポンチで1000〜120
0℃に加熱した管端を鍛造して行われる。1ヒート2ブ
ローが一般的方法であり、2ヒート3ブローもヘビーア
プセット時は適用されることもある。本発明にように、
ケーシング、チュービングに適用する場合の内アプセッ
ト量は2〜4mm程度であるので1ヒート2ブローで十
分である。
Next, the inner surface thickening method by the hot upset method will be described. Although the pipe end wall thickness cannot be made larger than the original wall thickness by cold swaging, the wall thickness can be increased by the hot upset method. Therefore, the upset shape of the lower portion of the screw as shown in FIG. 5 can be made parallel to the pipe axis, and the thickness of the male screw terminal portion: t
Can be thicker than the mother tube wall thickness: t 0 . Therefore, the resistance to the radial displacement of the external thread portion due to the external pressure can be made larger than that of cold swaging. However, the disadvantage is that it is more expensive than cold swaging. Hot upset processing is performed using a punch as shown in FIG.
This is performed by forging a pipe end heated to 0 ° C. One heat and two blows are a general method, and two heats and three blows may be applied at the time of heavy upset. As in the present invention,
When applied to casings and tubing, the upset amount is about 2 to 4 mm, so one heat and two blows are sufficient.

【0018】[0018]

【実施例】図7(a)に、スエージ加工を施してネジ下
内面およびネジなし内面を膨らませたランアウトケーシ
ングタイプテーパネジ継手の実施例を示す。鋼管は、外
径:139.7mm(5.5インチ)、肉厚:9.17
mmのAPI規格油井戸管である。鋼管1の先端にはテ
ーパ:1/16のAPI規格バットレスを加工し、その
延長線上3にはテーパ:1/10で対応する雌ネジネジ
なし部との間に干渉代:0.5mmを設けた金属シール
部である。雄ネジ先端は、外圧がネジ嵌合部に侵入した
とき雄ネジ先端が内側に収縮しないように端面を内側に
凹状にテーパ加工している。鋼管1のスエージ加工は、
ネジ嵌合したとき、完全ネジ終端位置:Tpに相当する
位置から内側に1.79°折れ曲がるようにした。ネジ
切り加工前に内面ボアリングを行った。ボアリング径
は、内径より2.18mm小さく、119.8mmとし
た。その理由は、API規格で決められているドリフト
マンドレルを問題なく通すためである。その結果、ボア
リング深さは34mmとなった。このように、スエージ
加工を施すことにより、上記ボアリング深さである34
mm区間は管体より内側に1.09mmだけ厚く造るこ
とができた。残りの前記35mmも暫時厚くなってい
る。つまり、上述のように1.79°の角度でスエージ
したとき初めて69mmにわたる奥行きの深い増肉が得
られる。1.09mmの増肉効果は、肉厚増加代が完全
ネジ中心部で15%程度なので前述の(1)式より15
%程度耐外圧シール性能が増加していることとなる。
FIG. 7 (a) shows an embodiment of a run-out casing type tapered threaded joint in which the inner surface under the screw and the inner surface without the screw are swaged to expand the inner surface. The steel pipe has an outer diameter of 139.7 mm (5.5 inches) and a wall thickness of 9.17.
mm API standard oil well tube. An API standard buttress with a taper: 1/16 was machined at the tip of the steel pipe 1, and an interference margin: 0.5 mm was provided on an extension 3 of the steel pipe 1 with a taper: 1/10 and the corresponding female screwless portion. It is a metal seal part. The end of the male screw has an end face tapered concavely inward so that the tip of the male screw does not contract inward when external pressure enters the screw fitting portion. Swage processing of steel pipe 1
At the time of screw fitting, it was designed to be bent 1.79 ° inward from the position corresponding to the complete screw termination position: Tp. The inner surface was bored before threading. The bore diameter was set to 119.8 mm, which was 2.18 mm smaller than the inner diameter. The reason is that the drift mandrel defined by the API standard can be passed without any problem. As a result, the bore depth was 34 mm. By performing swaging in this way, the above-mentioned bore depth of 34 is obtained.
The mm section could be made thicker by 1.09 mm inside the tube. The remaining 35 mm is also temporarily thick. That is, when swaging at an angle of 1.79 ° as described above, a thickening with a depth of 69 mm can be obtained for the first time. The wall thickness increasing effect of 1.09 mm is 15% from the above-mentioned equation (1) because the wall thickness increase is about 15% at the center of the complete screw.
This means that the external pressure sealing performance is increased by about%.

【0019】図7(b)は、前述のスエージ形状を最大
限に活用した耐外圧継手を示したもので、この特徴は、
API規格の鋼管より僅かに外径を大きく造ることによ
りボアリングによって削られるネジ下内面部分をできる
だけ減らした点である。このようにすることによって、
パイプ外面にはテーパネジを切っていながらネジ部厚み
がテーパに沿って現象しない継手が得られる。このよう
に、本発明による継手では、耐外圧性能を最大とするた
めに、鋼管外径にも一役買って貰うところに特徴を持た
せている。
FIG. 7 (b) shows an external pressure resistant joint that makes full use of the above-mentioned swage shape.
The point is that by making the outer diameter slightly larger than that of the API standard steel pipe, the inner surface portion under the screw which is cut by the bore is reduced as much as possible. By doing this,
A joint is obtained in which the thread thickness does not change along the taper while the taper thread is being cut on the outer surface of the pipe. As described above, the joint according to the present invention is characterized in that the outer diameter of the steel pipe also plays a role in order to maximize the resistance to external pressure.

【0020】本発明の実施例では、外径はAPI規格が
139.7mm(5.5インチ)であるのに対して3.
4mm大きく143.1mm(5.63インチ)として
いる。外径を大きくすることで、ネジ傾斜:1.79°
に平行な内面スエージ部を54mmにわたって得ること
ができる。このように、本発明における 図7(b)に
おいては、図7(a)に比べると19mm長くなってい
る。ボアリング径は、図7(a)と同じ119.18m
mとした。このボアリング径は、掘削時パイプ内面を通
るビット外径で決まるので変更に対する自由度は小さ
い。一方、継手を含む鋼管外径については、鋼管と坑壁
とのクリアランスで決まり、通常はセメンチング作業に
差し障りのない1.5インチ(38mm)程度がその目
安となる。
In the embodiment of the present invention, the outer diameter is set to 3.9.7 mm (5.5 inches) in comparison with the API standard.
It is 43.1 mm (5.63 inches) larger by 4 mm. Increasing outer diameter allows screw inclination: 1.79 °
Can be obtained over an area of 54 mm. Thus, in FIG. 7B of the present invention, the length is 19 mm longer than in FIG. 7A. The bore diameter is 119.18 m, which is the same as in FIG.
m. Since the bore diameter is determined by the outer diameter of the bit passing through the inner surface of the pipe during excavation, the degree of freedom for change is small. On the other hand, the outer diameter of the steel pipe including the joint is determined by the clearance between the steel pipe and the pit wall, and is usually about 1.5 inches (38 mm) that does not hinder the cementing work.

【0021】すなわち、鋼管外径には比較的余裕があ
り、本実施例のようにパイプ、カップリング径をそれぞ
れ通常の鋼管・継手より3.4mm大きくしても実害は
ないということになる。本実施例においてスエージに無
関係のカップリング径まで大きくしている理由は、継手
の引張強度を決める危険断面(雄ネジSP、雌ネジS
C)は、雄ネジ、雌ネジではほぼ同等にする狙いからで
ある。油井管ケーシングにはAPIバットレスタイプの
1/16テーパネジが適用される場合が多い。図7
(b)の示した継手をAPI規格ケーシングの種々のサ
イズに対して揃えるには、完全ネジ長さが約50mmか
ら90mmまで変化するので、それぞれ外径に換算する
と3.4mm〜5.6mm大きな径の鋼管が必要とな
る。因みに、図7(b)のような継手とするとスエージ
しない継手に比べ、完全ネジ部中心位置の肉厚は約21
%増加するので、耐外圧性能が21%増加することにな
る。図7(b)は、外径を大きくする上限を示したもの
であるから、坑壁とのクリアランス上、そこまで大きく
できないときは、できる範囲で外径を大きくすれば図7
(a)と図7(b)の中間の耐外圧性能の工場が期待で
きる。その場合でも、スエージの傾斜角はネジテーパと
平行にすることが最良である。
That is, there is a relatively large margin in the outer diameter of the steel pipe, and there is no actual harm even if the diameter of the pipe and the coupling is 3.4 mm larger than that of the ordinary steel pipe / joint as in this embodiment. In this embodiment, the reason why the diameter of the coupling is increased up to the swage-independent coupling diameter is that a critical section (male screw SP, female screw S
C) is intended to make the male screw and the female screw almost equal. The oil well tube casing is often applied with an API buttress type 1/16 taper screw. FIG.
In order to make the joint shown in (b) compatible with various sizes of the API standard casing, since the complete screw length changes from about 50 mm to 90 mm, it is 3.4 mm to 5.6 mm larger when converted to the outer diameter. A steel pipe with a diameter is required. By the way, when the joint as shown in FIG. 7B is used, the thickness at the center position of the completely threaded portion is about 21 compared with the joint without swaging.
%, The external pressure resistance performance is increased by 21%. FIG. 7 (b) shows the upper limit for increasing the outer diameter. Therefore, when the outer diameter cannot be increased due to the clearance with the pit wall, if the outer diameter is increased as much as possible, FIG.
A factory having an external pressure resistance intermediate between that of FIG. 7A and that of FIG. 7B can be expected. Even in such a case, it is best to make the inclination angle of the swage parallel to the screw taper.

【0022】[0022]

【発明の効果】以上説明したように、本発明による油井
管継手は、ネジ部からネジなし金属接触部へ遷移する部
分の半径方向変形抵抗を高め、金属接触シール部を外圧
に対して撓みにくくすることで耐外圧性能の優れた油井
管継手を得ることが可能になった。
As described above, the oil country tubular good joint according to the present invention increases the radial deformation resistance at the transition from the threaded portion to the threadless metal contact portion, and makes the metal contact seal portion less likely to bend against external pressure. By doing so, it became possible to obtain an oil country tubular good with excellent external pressure resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の油井管継手の一部断面図である。FIG. 1 is a partial sectional view of a conventional oil country tubular good.

【図2】本発明による最適スエージ加工を施した雄ネジ
の一部拡大断面図。
FIG. 2 is a partially enlarged cross-sectional view of a male screw subjected to optimum swaging according to the present invention.

【図3】本発明による押し込み型管端スエージ加工を施
した管端拡大断面図。
FIG. 3 is an enlarged sectional view of a pipe end swaged by a push-in type pipe end according to the present invention.

【図4】本発明による半割り金型による管端拡大断面
図。
FIG. 4 is an enlarged sectional view of a pipe end by a half mold according to the present invention.

【図5】本発明による最適内面アプセット加工を施した
雄ネジの一部拡大断面図。
FIG. 5 is a partially enlarged cross-sectional view of a male screw subjected to optimal inner upset processing according to the present invention.

【図6】本発明による管端内面加熱アプセット加工を示
す図。
FIG. 6 is a view showing a tube end inner surface heating upset process according to the present invention.

【図7】(a)は、耐シール性能の優れた油井管継手一
部断面拡大図で、(a)は従来鋼管サイズのスエージを
示す図で、(b)は大径鋼管サイズのスエージを示す
図。
7 (a) is a partially enlarged sectional view of an oil country tubular good having excellent sealing resistance, FIG. 7 (a) is a view showing a conventional steel pipe size swage, and FIG. 7 (b) is a large diameter steel pipe size swage. FIG.

【符号の説明】[Explanation of symbols]

1…雄ネジ(ピン) 2…雌ネジ(カップリング) 3…金属接触シール部 4(a)…バットレスネジ 4(b)…ロードフランク面の傾斜したバットレスネジ 4(c)…ランアウトネジ 5…内面凹テーパーショルダー 6…テフロンシールリング 7(a)…スエージ前管端形状 7(b)…スエージ後管端形状 8…スエージによる内面増肉部 9…ボアリング径 10…内面増肉区間 11…加熱アプセットによる内面増肉部 12…カップ型スエージ金型 13…半割り型スエージ金型 14…アプセット用コンテナ 15…アプセットポンチ 16…アプセット前鋼管 L…完全ネジ部 g…不完全ネジ部 t0 …管体肉厚 t’…スエージなしのネジ部肉厚 t…スエージありのネジ部肉厚 Tp…完全ネジと不完全ネジの境界 Sp…鋼管の危険断面積 Sc…カップリングの危険断面積DESCRIPTION OF SYMBOLS 1 ... Male screw (pin) 2 ... Female screw (coupling) 3 ... Metal contact seal part 4 (a) ... Buttress screw 4 (b) ... Buttress screw with inclined load flank surface 4 (c) ... Runout screw 5 ... Inner concave taper shoulder 6 Teflon seal ring 7 (a) ... pipe end shape before swaging 7 (b) ... pipe end shape after swage 8 ... inner surface thickening part by swage 9 ... bore diameter 10 ... inner surface thickening section 11 ... heating inner surface thickening section by upsetting 12 ... cup swaging die 13 ... mold half swaging dies 14 ... upset containers 15 ... upset punch 16 ... upset before steel L ... full thread portion g ... incomplete thread portion t 0 ... tube Body thickness t ': Thread thickness without swage t: Thread thickness with swage Tp: Boundary between complete screw and incomplete screw Sp: Dangerous cross section of steel pipe Sc Danger cross-sectional area of the coupling

フロントページの続き (72)発明者 津留 英司 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 Fターム(参考) 3H013 JA02 Continued on the front page (72) Inventor Eiji Tsuru 20-1 Shintomi, Futtsu-shi, Chiba F-term in Nippon Steel Corporation Technology Development Division (reference) 3H013 JA02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 管端にバットレスネジ山でランアウトタ
イプのテーパ雄ネジおよびその延長線上に平滑テーパ面
と先端肩部で構成されるシール部を配置したピンと、こ
れと嵌合するように前記ピン内面にバットレスネジ山の
テーパ雌ネジおよびその奥に平滑テーパ面と前記ピン先
端と衝接するショルダーを配置したボックスからなる油
井管ネジ継手において、少なくとも雄ネジ完全ネジ部お
よびネジなしシール部の内面全域にわたって内側を膨ら
ませて雄ネジの外圧に対する半径方向変位抵抗を高めた
ことを特徴とする耐外圧性能の優れた油井管ネジ継手。
1. A pin having a run-out type tapered male screw with a buttress screw thread at a pipe end and a seal portion composed of a smooth tapered surface and a tip shoulder portion on an extension of the run-out tapered male screw. In an oil country tubular good threaded joint comprising a tapered female thread with a buttress thread on the inner surface and a box having a smooth tapered surface and a shoulder in contact with the tip of the pin at the back thereof, at least the entire inner surface of the completely threaded male threaded part and the threadless seal part An oil-well pipe thread joint with excellent external pressure resistance, characterized in that the inner side is inflated to increase the radial displacement resistance of the external thread against external pressure.
【請求項2】 前記雄ネジ延長線上に内面増肉部を管軸
に平行に施したことを特徴とする請求項1記載の耐外圧
性能の優れた油井管ネジ継手。
2. An oil country tubular good threaded joint having excellent external pressure resistance according to claim 1, wherein an inner wall thickening portion is provided on the extension line of the external thread in parallel with the pipe axis.
【請求項3】 前記雄ネジ延長線上の内面増肉部形成手
段がスエージ加工で施され、前記スエージ加工後の外面
テーパをネジテーパに平行にすることにより内面増肉部
もテーパネジに平行になるようにし、前記テーパネジ部
断面肉厚がネジ全体にわたって母管肉厚に近似するよう
したことを特徴とする請求項1記載の耐外圧性能の優れ
た油井管ネジ継手。
3. The internal-wall-thickening portion forming means on the extension line of the male screw is swaged, and the external-surface taper after the swaging is made parallel to the screw-taper so that the internal-wall-thick portion also becomes parallel to the taper screw. The threaded joint of an oil country tubular good having excellent external pressure resistance according to claim 1, wherein the tapered thread portion cross-sectional thickness is made to be close to the thickness of the mother pipe over the entire screw.
【請求項4】 前記スエージ加工において、母管となる
鋼管径をAPI規格ケーシング鋼管径より最大6mm大
きく、かつそれに相当する増大量だけ鋼管内径も大きく
し、前記API規格で定められた最小規格内径を保証で
きる内径まで前記スエージ加工を施すことにより、ネジ
下内面およびネジなし内面のスエージ加工ままの内面部
の範囲を長くし、これを以てテーパネジ加工部の肉厚を
できるだけ厚く確保することを特徴とする請求項3記載
の耐外圧性能の優れた油井管ネジ継手。
4. In the swaging process, the diameter of a steel pipe serving as a mother pipe is made up to 6 mm larger than the diameter of an API standard casing steel pipe and the inner diameter of the steel pipe is also increased by an amount corresponding to the maximum diameter. By performing the swage processing to the inner diameter that can guarantee that, the range of the inner surface portion of the inner surface under the screw and the inner surface without the screw as it is swaged is lengthened, thereby securing the thickness of the tapered screw processed portion as thick as possible. The threaded oil country tubular good with excellent external pressure resistance according to claim 3.
【請求項5】 前記スエージ加工において、上下半割り
金型を用いてスエージ加工後の形状をネジ部に対応する
部位をネジテーパに平行にし、ネジなし部は更にテーパ
を緩くすることで内面への余分な張出しを最小にしたこ
とを特徴とする請求項3または4記載の耐外圧性能の優
れた油井管ネジ継手。
5. In the swaging process, a portion corresponding to the threaded portion is made parallel to the thread taper using a half-upper die and a portion corresponding to the threaded portion, and the non-threaded portion is further tapered so that the inner surface is formed. The threaded oil country tubular good with excellent external pressure resistance according to claim 3 or 4, wherein excess overhang is minimized.
JP2000207220A 2000-07-07 2000-07-07 Oil well pipe screw joint excellent in external pressure resisting performance Withdrawn JP2002022070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000207220A JP2002022070A (en) 2000-07-07 2000-07-07 Oil well pipe screw joint excellent in external pressure resisting performance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000207220A JP2002022070A (en) 2000-07-07 2000-07-07 Oil well pipe screw joint excellent in external pressure resisting performance

Publications (1)

Publication Number Publication Date
JP2002022070A true JP2002022070A (en) 2002-01-23

Family

ID=18704019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000207220A Withdrawn JP2002022070A (en) 2000-07-07 2000-07-07 Oil well pipe screw joint excellent in external pressure resisting performance

Country Status (1)

Country Link
JP (1) JP2002022070A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7494159B2 (en) 2004-08-27 2009-02-24 Sumitomo Metal Industries, Ltd. Threaded joint for steel pipes
JP2013511684A (en) * 2009-11-18 2013-04-04 ハンティング エナジー サービシーズ、インク Pipe connection of drill stem with internal reinforcement ring

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7494159B2 (en) 2004-08-27 2009-02-24 Sumitomo Metal Industries, Ltd. Threaded joint for steel pipes
JP2013511684A (en) * 2009-11-18 2013-04-04 ハンティング エナジー サービシーズ、インク Pipe connection of drill stem with internal reinforcement ring

Similar Documents

Publication Publication Date Title
CN100451420C (en) Threaded joint for steel pipes
US20030038476A1 (en) Production riser connector
US2062407A (en) Joint
JP5100755B2 (en) Threaded joints for steel pipes
CA1161883A (en) Threaded joint with high gas-leak-tightness for oil and gas well pipe
JP4275863B2 (en) Integrated screw-in connection of two metal tubes
US10495241B2 (en) Threaded joint for steel pipe
US4120083A (en) Method of pipe joining
US11300233B2 (en) Threaded connection for steel pipe
JP4740869B2 (en) Fittings and methods for producing fittings
JP4842136B2 (en) Fittings and methods for producing fittings
JPH0730863B2 (en) Metal-to-metal wedge screw joint connector
US4064619A (en) Method of joining plastic coated pipe
EP0149612B1 (en) Tubular connection with cylindrical and tapered stepped threads
EA038876B1 (en) Steel-pipe threaded joint
JP3297697B2 (en) Threaded joint for oil country tubular goods with excellent external pressure resistance
JP2002022070A (en) Oil well pipe screw joint excellent in external pressure resisting performance
US5143411A (en) Threaded tubular connection
CN115875520A (en) Threaded joint for steel pipe
CA3149749C (en) Threaded connection for pipe
JP2001317668A (en) Oil well pipe joint excellent in performance of external pressure resistance
JPS5983887A (en) Pipe joint for oil well pipe
OA21189A (en) Threaded coupling for pipe.
JP2001082644A (en) Manufacture of screw joint for oil well pipe
JPH10169855A (en) Threaded joint for large diameter oil well pipe

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071002