JP2002020766A - Hydrogenation of gas oil - Google Patents

Hydrogenation of gas oil

Info

Publication number
JP2002020766A
JP2002020766A JP2000207266A JP2000207266A JP2002020766A JP 2002020766 A JP2002020766 A JP 2002020766A JP 2000207266 A JP2000207266 A JP 2000207266A JP 2000207266 A JP2000207266 A JP 2000207266A JP 2002020766 A JP2002020766 A JP 2002020766A
Authority
JP
Japan
Prior art keywords
oxygen
catalyst
oil
gas oil
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000207266A
Other languages
Japanese (ja)
Other versions
JP4479868B2 (en
Inventor
Yuji Yoshimura
雄二 葭村
Hiroyuki Yasuda
弘之 安田
Toshio Sato
利夫 佐藤
Michihito Kijima
倫人 木嶋
Takashi Kameoka
隆 亀岡
Koji Nakano
宏二 中野
Sumio Saito
純夫 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2000207266A priority Critical patent/JP4479868B2/en
Publication of JP2002020766A publication Critical patent/JP2002020766A/en
Application granted granted Critical
Publication of JP4479868B2 publication Critical patent/JP4479868B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for hydrogenation of gas oil that can produce the gas oil meeting the severe environmental regulations as a fuel oil. SOLUTION: The gas oil is subjected to hydrogenation in the presence of a catalyst including at least one selected from heavy rare earth elements and at least one of noble metal selected from the group VIII noble metals wherein oxygen and/or organic oxygen-containing compound are allowed to exist in the reaction system.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、軽油の水素化処理
方法に関し、更に詳しくは、特定の触媒の存在下で軽油
中に含まれる硫黄分を超深度に低減させる軽油の水素化
処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for hydrotreating gas oil, and more particularly, to a method for hydrotreating gas oil in which sulfur contained in gas oil is reduced to an ultra-low depth in the presence of a specific catalyst. .

【0002】[0002]

【従来技術】ディーゼルエンジンは、良燃費、耐久性や
信頼性、低CO排出の理由から商用車に多く用いられ
ている。しかし、このエンジンの有する経済的優位性と
は裏腹に、ディーゼル排ガスの都市部や道路沿岸域の大
気汚染に及ぼす影響は益々深刻になっている。特に、粒
子状物質(すす、有機溶剤不熔解分、硫酸塩、水分等か
ら形成)の健康に対する影響は強く懸念されており、中
央環境審議会答申(平成10年12月14日)でも、そ
の大幅低減が答申されている。軽油の品質改善の有効性
は世界的に認識されつつあり、粒子状物質の低減に向け
て、エンジンの改良や排ガスの後処理技術が鋭意検討さ
れている。
BACKGROUND ART Diesel engines, good fuel economy, durability and reliability, are used in many commercial vehicles because of the low CO 2 emissions. However, despite the economic advantages of this engine, the effects of diesel emissions on air pollution in urban and roadside areas are becoming more and more serious. In particular, the effects on health of particulate matter (formed from soot, organic solvent insoluble matter, sulfate, moisture, etc.) are strongly concerned, and the Central Environment Council Report (December 14, 1998) reported that A significant reduction has been reported. The effectiveness of gas oil quality improvement is being recognized around the world, and in order to reduce particulate matter, engine improvement and exhaust gas post-treatment technology are being intensively studied.

【0003】わが国の市販軽油は、原油を蒸留して得ら
れる直留軽油基材、分解軽油基材、固化防止のために添
加される灯油基材等から製造されており、いずれも硫黄
含有量を500ppm以下にするために深度脱硫処理が
行われた油である。深度脱硫処理に使用される触媒は、
ニッケル、コバルト及びモリブデンをベースとする遷移
金属をアルミナ等の多孔質担体上に担持したもので、脱
硫されにくい含硫黄化合物の脱硫を促進するために、軽
度な核水素化、異性化、脱硫等の機能が巧みに制御され
ている。軽油の深度脱硫処理は、高温・高水素圧条件下
で実施されており、処理時間の経過に伴う触媒性能の低
下を補償するため反応温度を上昇させて、一定品質の深
度脱硫軽油を製造している。
[0003] Commercial gas oil in Japan is manufactured from a straight-run gas oil base obtained by distilling crude oil, a cracked gas oil base, a kerosene base added to prevent solidification, and the like. Is an oil that has been subjected to a deep desulfurization treatment in order to make the oil content 500 ppm or less. The catalyst used for the deep desulfurization treatment is
A transition metal based on nickel, cobalt and molybdenum is supported on a porous carrier such as alumina, and mild nuclear hydrogenation, isomerization, desulfurization, etc. to promote desulfurization of sulfur-containing compounds that are difficult to desulfurize. The functions of are well controlled. Deep desulfurization of gas oil is performed under high temperature and high hydrogen pressure conditions, and the reaction temperature is raised to compensate for the decrease in catalyst performance with the lapse of processing time to produce a constant quality deep desulfurized gas oil. ing.

【0004】しかし、大都市圏を中心とした大気汚染
は、前述した排出ガス規制の強化にも関わらず益々深刻
化しており、今後、軽油などの燃料油に対してより一層
のクリーン化が求められている。ヨーロッパ連合では硫
黄分を2000年には350ppm以下、2005年に
は50ppm以下にすることがすでに決定されており、
いずれ、わが国においてもこれに追従した厳しい規制が
敷かれることが予想される。
[0004] However, air pollution, especially in metropolitan areas, is becoming more and more serious in spite of the stricter exhaust gas regulations mentioned above. In the future, further cleanliness is required for fuel oil such as light oil. Have been. The European Union has already determined that the sulfur content should be below 350 ppm in 2000 and below 50 ppm in 2005,
Eventually, it is expected that strict regulations will follow in Japan.

【0005】したがって、今後に予想される厳しい環境
規制に対応するためには、厳しい規制値に対応した軽油
中の硫黄分の低減を可能にする高性能触媒の開発が重要
な課題であるとともに、新しい水素化処理方法の開発が
求められている。
Therefore, in order to comply with strict environmental regulations expected in the future, the development of a high-performance catalyst capable of reducing the sulfur content in light oil in compliance with the strict regulation values is an important issue, Development of new hydrotreating methods is required.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、前述
の厳しい環境規制に対応しうる燃料油としての軽油を製
造するための改善された軽油の水素化処理方法を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an improved gas oil hydrotreating method for producing gas oil as a fuel oil capable of meeting the aforementioned strict environmental regulations.

【0007】[0007]

【課題を解決するための手段】本発明者らは、前述の問
題点を解決するために鋭意研究を重ねた結果、軽油の水
素化処理において、希土類金属中の特定の重希土類元素
と貴金属成分を含有する触媒の存在下に、酸素及び/又
は有機酸素含有化合物を含んだ軽油を使用すると、該触
媒は高い脱硫活性を示すことを見出し本発明を完成する
に至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, in the hydrogenation treatment of gas oil, a specific heavy rare earth element and a noble metal component in the rare earth metal have been found. When a gas oil containing oxygen and / or an organic oxygen-containing compound was used in the presence of a catalyst containing, the catalyst was found to exhibit high desulfurization activity, and the present invention was completed.

【0008】すなわち、本発明は、軽油を重希土類元素
から選ばれた少なくとも一種の元素と周期律表第VIII族
貴金属から選ばれた少なくとも一種の貴金属を含有する
触媒の存在下に水素化処理する方法であって、酸素及び
/又は有機酸素含有化合物を反応系内に存在させること
を特徴とする軽油の水素化処理方法に関する。
That is, the present invention hydrotreats light oil in the presence of a catalyst containing at least one element selected from heavy rare earth elements and at least one noble metal selected from Group VIII noble metals of the periodic table. The present invention relates to a method for hydrotreating light oil, wherein a compound containing oxygen and / or organic oxygen is present in a reaction system.

【0009】[0009]

【発明の実施の形態】以下、本発明の好適な実施形態に
ついて、詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail.

【0010】本発明で使用される軽油は、接触分解軽
油、熱分解軽油、直留軽油、コーカーガスオイルあるい
は従来法で水素処理された軽油などであって、軽油中の
硫黄含有量が50ppm以上の油が対象となる。好適に
は、深度脱硫軽油が使用される。
The gas oil used in the present invention is a catalytic cracking gas oil, a pyrolysis gas oil, a straight-run gas oil, a coker gas oil or a gas oil which has been hydrotreated by a conventional method, and has a sulfur content of 50 ppm or more. Oil. Preferably, deep desulfurized gas oil is used.

【0011】前記酸素及び/又は有機酸素含有化合物の
量は、軽油に対して酸素元素として10000ppm以
下、100ppm以上であることが好ましい。該酸素及
び/又は有機酸素含有化合物の量が酸素元素として10
000ppmより多くなると脱硫活性が低下することが
ある。また、該酸素及び/又は有機酸素含有化合物の量
が酸素元素として100ppmより少ない場合には、本
発明の効果が得られないことがある。該酸素及び/又は
有機酸素含有化合物の最適な量は、軽油中に含まれる硫
黄の含有量に依存し、硫黄分が多くなると共存する酸素
及び/又は有機酸素含有化合物の量も多いほうが好まし
い傾向にある。とくに好ましい酸素元素としての量は、
200〜5000ppmの範囲で選択することが望まし
い。
[0011] The amount of the oxygen and / or organic oxygen-containing compound is preferably 10,000 ppm or less and 100 ppm or more as oxygen element relative to light oil. The amount of the oxygen and / or organic oxygen-containing compound is 10
If it exceeds 000 ppm, the desulfurization activity may decrease. When the amount of the oxygen and / or organic oxygen-containing compound is less than 100 ppm as an oxygen element, the effect of the present invention may not be obtained. The optimum amount of the oxygen and / or organic oxygen-containing compound depends on the content of sulfur contained in the gas oil. As the sulfur content increases, the larger the amount of the coexisting oxygen and / or organic oxygen-containing compound, the better. It is in. A particularly preferable amount as the oxygen element is
It is desirable to select in the range of 200 to 5000 ppm.

【0012】本発明で使用される酸素源としては、酸素
ガス、空気、水などが例示され、有機酸素含有化合物と
しては、石炭液化油、バイオマス油、酸化されたLC
O、テトラロン、フェノール類、フラン類、ベンゾフラ
ン類、ナフトール類、クレゾール類、アルコール類、ア
ルデヒド類、カルボン酸類、オキシカルボン酸類、ケト
ン類などの化合物が例示される。
Examples of the oxygen source used in the present invention include oxygen gas, air, and water. Examples of the organic oxygen-containing compound include coal liquefied oil, biomass oil, and oxidized LC.
Compounds such as O, tetralone, phenols, furans, benzofurans, naphthols, cresols, alcohols, aldehydes, carboxylic acids, oxycarboxylic acids, and ketones are exemplified.

【0013】前述の酸素及び/又は有機酸素含有化合物
は、供給原料の軽油中に溶存させて反応系内に供給する
こともできるし、また、供給原料の軽油とは別の供給手
段により反応系内に供給してもよい。
The above-mentioned compound containing oxygen and / or organic oxygen can be dissolved in gas oil as a feedstock and supplied into the reaction system, or the reaction system can be supplied by a different supply means from the gas oil as the feedstock. It may be supplied inside.

【0014】本発明で使用される重希土類元素から選ば
れた少なくとも一種の元素と周期律表第VIII族貴金属か
ら選ばれた少なくとも一種の貴金属を含有する触媒とし
ては、本発明者らが先に提案した特願2000−063
986号に記載されている芳香族炭化水素の水素化触媒
組成物や特願平11−327069号及び特願平11−
358079号に記載されている触媒などが挙げられ
る。
As the catalyst used in the present invention containing at least one element selected from heavy rare earth elements and at least one noble metal selected from Group VIII noble metals of the periodic table, the present inventors have previously described Proposed Japanese Patent Application 2000-063
No. 986, the aromatic hydrocarbon hydrogenation catalyst composition disclosed in Japanese Patent Application No. 11-327069 and Japanese Patent Application No.
And the catalyst described in US Pat. No. 3,580,795.

【0015】即ち、本発明で用いる触媒の成分である重
希土類元素とは、イッテルビウム(Yb)、ガドリウム
(Gd)、テルビウム(Tb)及びジスプロシウム(D
y)の4つの元素を意味する。そして触媒成分として
は、該重希土類元素から選ばれた少なくとも一種の元素
を用いるが、該重希土類元素の含有量は、好ましくは金
属として0.5〜40重量%(触媒組成物基準)、さら
に好ましくは2.0〜20重量%の範囲にあることが望
ましい。
That is, the heavy rare earth element which is a component of the catalyst used in the present invention includes ytterbium (Yb), gadolinium (Gd), terbium (Tb) and dysprosium (D
y) means the four elements. As the catalyst component, at least one element selected from the heavy rare earth elements is used, and the content of the heavy rare earth element is preferably 0.5 to 40% by weight as a metal (based on the catalyst composition). Preferably, it is in the range of 2.0 to 20% by weight.

【0016】また、本発明で使用される触媒の他の成分
は、周期律表第VIII族貴金属から選ばれた少なくとも一
種の貴金属が用いられる。該貴金属としては、ルテニウ
ム、ロジウム、パラジウム、オスミウム、イリジウム、
白金などが例示される。前述の貴金属の含有量は、金属
として0.1〜10重量%(触媒組成物基準)、さらに
好ましくは0.5〜5重量%である。
The other components of the catalyst used in the present invention are at least one noble metal selected from Group VIII noble metals of the periodic table. As the noble metal, ruthenium, rhodium, palladium, osmium, iridium,
Platinum and the like are exemplified. The content of the above-mentioned noble metal is 0.1 to 10% by weight (based on the catalyst composition) as a metal, and more preferably 0.5 to 5% by weight.

【0017】本発明で使用する触媒における貴金属とし
ては、特にパラジウムと白金を組み合わせて使用するこ
とが好適である。パラジウムと白金を組み合わせて使用
することにより、高い水素化機能を維持して硫黄化合物
に対する耐性が増大する。これは、パラジウムが硫黄と
の親和性が高いため白金の硫黄被毒を保護していると推
定される。パラジウムと白金の組み合わせは、Pd/P
t原子比で0.1/1〜10/1の範囲が望ましい。
As the noble metal in the catalyst used in the present invention, it is particularly preferable to use a combination of palladium and platinum. By using palladium and platinum in combination, the resistance to sulfur compounds is increased while maintaining a high hydrogenation function. This is presumed to be because palladium has a high affinity for sulfur and thus protects against sulfur poisoning of platinum. The combination of palladium and platinum is Pd / P
It is desirable that the t atomic ratio is in the range of 0.1 / 1 to 10/1.

【0018】本発明での好ましい触媒のひとつは、重希
土類元素から選ばれた少なくとも一種の元素と周期律表
第VIII族貴金属から選ばれた少なくとも一種の貴金属
を、多孔性無機酸化物からなる担体に担持した触媒であ
る。
One of the preferred catalysts in the present invention is a carrier comprising a porous inorganic oxide comprising at least one element selected from heavy rare earth elements and at least one noble metal selected from Group VIII noble metals of the periodic table. It is a catalyst supported on.

【0019】前述の多孔性無機酸化物としては、アルミ
ナ、シリカ、チタニア、ジルコニア、アルミナ−シリ
カ、アルミナ−チタニア、アルミナ−ボリア、アルミナ
−リン、シリカ−チタニア、アルミナ−シリカ−チタニ
ア、アルミナ−シリカ−ボリア、アルミナ−リン−ボリ
ア、アルミナ−チタニア−ボリア、アルミナ−シリカ−
リン、アルミナ−チタニア−リン−ボリアなど、通常、
軽油などの水素化処理触媒に使用される多孔性無機酸化
物が使用可能である。
The above-mentioned porous inorganic oxides include alumina, silica, titania, zirconia, alumina-silica, alumina-titania, alumina-boria, alumina-phosphorus, silica-titania, alumina-silica-titania, alumina-silica -Boria, alumina-phosphorus-boria, alumina-titania-boria, alumina-silica-
Usually, such as phosphorus, alumina-titania-phosphorus-boria,
Porous inorganic oxides used for hydrotreating catalysts such as gas oil can be used.

【0020】また、本発明での他の好ましい触媒は、重
希土類元素から選ばれた少なくとも一種の元素と周期律
表第VIII族貴金属から選ばれた少なくとも一種の貴金属
を、結晶性アルミノシリケートゼオライトに担持した触
媒である。
Further, another preferred catalyst of the present invention is to convert at least one element selected from heavy rare earth elements and at least one noble metal selected from Group VIII noble metals of the periodic table into a crystalline aluminosilicate zeolite. It is a supported catalyst.

【0021】前述の結晶性アルミノシリケートゼオライ
トとしては、A型ゼオライト、X型ゼオライト、Y型ゼ
オライト、L型ゼオライト、ベータ型ゼオライト、モル
デナイト、チャバサイト、エリオナイト、AlPO
SAPOやZSMゼオライトで代表されるペンタシル型
ゼオライトなどのMFI型ゼオライトなどが例示され
る。特に、SiO/Alモル比が5以上、好ま
しくは10〜1000、さらに好ましくは10〜300
の超安定化Y型ゼオライトは、適当な固体酸を有するの
で好適である。
Examples of the crystalline aluminosilicate zeolite include A-type zeolite, X-type zeolite, Y-type zeolite, L-type zeolite, beta-type zeolite, mordenite, chabazite, erionite, AlPO 4 ,
Examples include MFI-type zeolites such as pentasil-type zeolites represented by SAPO and ZSM zeolites. In particular, the molar ratio of SiO 2 / Al 2 O 3 is 5 or more, preferably 10 to 1000, more preferably 10 to 300.
The super-stabilized Y-type zeolite is preferred because it has a suitable solid acid.

【0022】本発明での他の好ましい触媒は、重希土類
元素から選ばれた少なくとも一種の元素と周期律表第VI
II族貴金属から選ばれた少なくとも一種の貴金属を、結
晶性アルミノシリケートゼオライトと多孔性無機酸化物
からなる担体に担持した触媒である。多孔性無機酸化物
としては、前述の多孔性無機酸化物が使用可能で、ま
た、結晶性アルミノシリケートゼオライトとしては、前
述の結晶性アルミノシリケートゼオライトが使用可能で
ある。
Other preferred catalysts according to the present invention are at least one element selected from heavy rare earth elements and Periodic Table VI.
It is a catalyst in which at least one noble metal selected from Group II noble metals is supported on a carrier composed of a crystalline aluminosilicate zeolite and a porous inorganic oxide. The above-mentioned porous inorganic oxide can be used as the porous inorganic oxide, and the above-mentioned crystalline aluminosilicate zeolite can be used as the crystalline aluminosilicate zeolite.

【0023】本発明での水素化処理は、軽油の通常の水
素化処理条件を採用することが出来る。具体的には、反
応温度は200〜400℃、好ましくは250〜350
℃、液空間速度は0.1〜5.0h−1、好ましくは
2.0〜4.0h−1及び水素圧力は2.9〜14.7
MPa、好ましくは3.9〜7.8MPaなどが例示さ
れる。
In the hydrotreating of the present invention, ordinary conditions for hydrotreating light oil can be employed. Specifically, the reaction temperature is 200 to 400 ° C, preferably 250 to 350 ° C.
° C, the liquid hourly space velocity is 0.1 to 5.0 h -1 , preferably 2.0 to 4.0 h -1 and the hydrogen pressure is 2.9 to 14.7.
MPa, preferably 3.9 to 7.8 MPa.

【0024】重希土類元素から選ばれた少なくとも一種
の元素と周期律表第VIII族貴金属から選ばれた少なくと
も一種の貴金属を含有する触媒の存在下で、反応系内に
微量の酸素を存在させて軽油の水素化処理を行うと脱硫
活性が高くなる理由については現在のところ明らかでは
ないが、実験事実として脱硫活性が高くなることが観察
される。
In the presence of a catalyst containing at least one element selected from heavy rare earth elements and at least one noble metal selected from Group VIII noble metals of the periodic table, a trace amount of oxygen is present in the reaction system. The reason why the desulfurization activity is increased by hydrotreating gas oil is not clear at present, but it is observed that the desulfurization activity increases as an experimental fact.

【0025】本発明の水素化処理方法では、反応系内に
存在させる酸素及び/又は有機酸素含有化合物の量を軽
油あるいは軽油中の硫黄分に対して制御することによ
り、選択的に脱硫活性の向上及び水素化活性の抑制が可
能であり、少ない水素消費量で高い脱硫率が得られる特
徴を有している。また、本発明による水素化処理法は、
従来の過酸化水素等を用いた酸化脱硫法と異なりスラッ
ジの生成は全くないこと、また、酸素化合物が共存する
硫黄化合物を除去するための酸化処理油の蒸留、抽出、
吸着等による分離操作が不要であることが特徴である。
In the hydrotreating method of the present invention, the amount of the oxygen and / or organic oxygen-containing compound present in the reaction system is controlled with respect to the light oil or the sulfur content in the light oil, so that the desulfurization activity can be selectively increased. It is capable of improving and suppressing the hydrogenation activity, and has a feature that a high desulfurization rate can be obtained with a small amount of hydrogen consumption. Further, the hydrotreating method according to the present invention comprises:
Unlike the conventional oxidative desulfurization method using hydrogen peroxide, etc., there is no sludge generation, and the distillation and extraction of oxidized oil to remove sulfur compounds in which oxygen compounds coexist.
It is characterized in that a separation operation by adsorption or the like is unnecessary.

【0026】[0026]

【実施例】以下に実施例、参考例を示し本発明を具体的
に説明するが、本発明はこれにより限定されるものでは
ない。
EXAMPLES The present invention will be specifically described below with reference to examples and reference examples, but the present invention is not limited to these examples.

【0027】参考例1(触媒の調製) 重希土類元素担持用ゼオライトとして、超安定化Y型ゼ
オライト〔東ソー(株)製、HSZ−360HUA、S
iO/Al、モル比=13.9、H型ゼオライ
ト〕(以下、単にゼオライトAという)を用い、このゼ
オライトAにYb重希土類元素をイオン交換法により担
持させた。即ち、約15gのゼオライトAを、Yb金属
イオン濃度0.16mol/Lの水溶液3L中に浸漬
し、室温で24時間撹拌した後、濾過し、純水で洗浄
し、次いで110℃で一晩乾燥した。このようにして、
金属イオンとして、Ybを担持したゼオライトA(Yb
−ゼオライトA、Yb含有量;2.2wt%)を得た。
Reference Example 1 (Preparation of Catalyst) As a zeolite for supporting a heavy rare earth element, an ultra-stabilized Y-type zeolite [HSZ-360HUA, manufactured by Tosoh Corporation]
iO 2 / Al 2 O 3 , molar ratio = 13.9, H-type zeolite] (hereinafter simply referred to as zeolite A), and Yb heavy rare earth element was carried on the zeolite A by an ion exchange method. That is, about 15 g of zeolite A is immersed in 3 L of an aqueous solution having a Yb metal ion concentration of 0.16 mol / L, stirred at room temperature for 24 hours, filtered, washed with pure water, and then dried at 110 ° C. overnight. did. In this way,
Zeolite A supporting Yb as a metal ion (Yb
-Zeolite A, Yb content; 2.2 wt%).

【0028】次に、この重希土類元素担持ゼオライトA
に対し、PdとPtを含浸法により担持させた。即ち、
[Pd(NH]Clの0.109gと[Pt
(NH ]Clの0.039gを5.5mlの純
水に溶解させて含浸液を作り、この溶液を、真空排気さ
れた前記希土類元素担持ゼオライト5.0gに吸引させ
た後、真空中において温度60℃で6時間乾燥後、いっ
たんディスク状に成型した後、粉砕し、22〜48me
shに揃えた。得られた触媒A(Pd含有量:0.69
wt%、Pt含有量:0.31wt%)は、塩化アンモ
ニウム水溶液を飽和させたデシケーター中で保存した。
触媒Aは、活性評価を行う直前に酸素気流中(2L/m
in・g)、300℃で3時間(昇温率;0.5℃/m
in)焼成した。また、触媒Aの還元を、活性評価の前
処理として反応系内で行った。
Next, this heavy rare earth element-supported zeolite A
On the other hand, Pd and Pt were supported by an impregnation method. That is,
[Pd (NH3)4] Cl20.109 g of [Pt
(NH 3)4] Cl20.039g of 5.5ml pure
Dissolve in water to form an impregnating solution, and pump this solution down.
Was sucked into 5.0 g of the rare earth element-supported zeolite thus obtained.
After drying at 60 ° C. for 6 hours in a vacuum,
After shaping into a disc shape, crushed and 22-48me
sh. The obtained catalyst A (Pd content: 0.69
wt%, Pt content: 0.31 wt%)
The aqueous solution of sodium was stored in a desiccator saturated with water.
The catalyst A was placed in an oxygen stream (2 L / m2) immediately before the activity evaluation.
ing), 300 ° C. for 3 hours (heating rate: 0.5 ° C./m)
in) Fired. In addition, the reduction of the catalyst A was performed before the activity evaluation.
The treatment was performed in the reaction system.

【0029】実施例1(モデル物質による評価:有機酸
素化合物としてα−テトラロンを添加) 参考例1の触媒A(Pd−Pt/Yb/USY)を用い
て芳香族炭化水素の脱硫活性と水素化活性を評価した。
触媒は反応前に還元処理を行った。触媒を反応管に充填
し、水素気流中(常圧、0.2L/min)で300℃
で3時間(昇温速度;0.5℃/min)還元した。反
応試験は、高圧固定床流通式反応装置(アップフローモ
ード)で、原料油である4種のモデル物質の脱硫活性と
水素化活性を調べた。調製したモデル物質の内容は、
(1)テトラリン/n−ヘキサデカン=約30wt%/
約70wt%の混合溶液に4,6−ジメチルジベンゾチ
オフェン(4,6−DMDBT、硫黄濃度300pp
m)とn−ヘキサデカン(NBA、窒素濃度20pp
m)を添加、(2)テトラリン/n−ヘキサデカン=約
30wt%/約70wt%の混合溶液に4,6−DMD
BT(硫黄濃度300ppm)とNBA(窒素濃度20
ppm)とα−テトラロン(酸素濃度1000ppm)
を添加、(3)テトラリン/n−ヘキサデカン=約30
wt%/約70wt%の混合溶液に4,6−DMDBT
(硫黄濃度300ppm)とNBA(窒素濃度20pp
m)とα−テトラロン(酸素濃度2000ppm)を添
加、(4)テトラリン/n−ヘキサデカン=約30wt
%/約70wt%の混合溶液に4,6−DMDBT(硫
黄濃度300ppm)とNBA(窒素濃度20ppm)
とα−テトラロン(酸素濃度3000ppm)を添加し
たものである。反応は、触媒量0.25g、水素分圧
3.9MPa、反応温度280℃、空間速度(WHS
V)16h−1、H/Oil比500NL/Lの条件
で行った。液体生成物は定期的に採取し、FID検出器
及びキャピラリーカラムを備えたガスクロマトグラフで
分析した。また、硫黄の分析には電量滴定法による硫黄
分析装置を用いた。
Example 1 (Evaluation by Model Substance: Addition of α-Tetralone as Organic Oxygen Compound) Using Catalyst A of Reference Example 1 (Pd-Pt / Yb / USY), Desulfurization Activity and Hydrogenation of Aromatic Hydrocarbons Activity was evaluated.
The catalyst was reduced before the reaction. The catalyst is filled in a reaction tube, and is heated to 300 ° C. in a hydrogen stream (normal pressure, 0.2 L / min).
For 3 hours (heating rate; 0.5 ° C./min). In the reaction test, the desulfurization activity and the hydrogenation activity of four kinds of model substances as feedstocks were examined using a high-pressure fixed-bed flow reactor (upflow mode). The content of the prepared model substance is
(1) tetralin / n-hexadecane = about 30 wt% /
In a mixed solution of about 70 wt%, 4,6-dimethyldibenzothiophene (4,6-DMDBT, sulfur concentration 300 pp
m) and n-hexadecane (NBA, nitrogen concentration 20 pp)
m), and (2) 4,6-DMD was added to a mixed solution of tetralin / n-hexadecane = about 30 wt% / about 70 wt%.
BT (sulfur concentration 300 ppm) and NBA (nitrogen concentration 20
ppm) and α-tetralone (oxygen concentration 1000ppm)
(3) tetralin / n-hexadecane = about 30
4,6-DMDBT in a mixed solution of wt% / about 70 wt%
(Sulfur concentration 300 ppm) and NBA (nitrogen concentration 20 pp)
m) and α-tetralone (oxygen concentration 2000 ppm), and (4) tetralin / n-hexadecane = about 30 wt.
% / About 70 wt% mixed solution in 4,6-DMDBT (sulfur concentration 300 ppm) and NBA (nitrogen concentration 20 ppm)
And α-tetralone (oxygen concentration: 3000 ppm). In the reaction, the catalyst amount was 0.25 g, the hydrogen partial pressure was 3.9 MPa, the reaction temperature was 280 ° C., and the space velocity (WHS
V) The test was performed under the conditions of 16 h -1 and a H 2 / Oil ratio of 500 NL / L. Liquid products were collected periodically and analyzed on a gas chromatograph equipped with a FID detector and a capillary column. A sulfur analyzer by coulometric titration was used for sulfur analysis.

【0030】水素化脱硫の反応結果を図1に、該水添活
性を図2に示す。また、通油時間が50時間目の脱硫活
性を図3に示す。通油時間が50時間目ごろの反応が安
定した時点では、酸素が1000ppm程度存在すると
きに高い脱硫活性を示すことが判る。
FIG. 1 shows the results of the hydrodesulfurization reaction, and FIG. 2 shows the hydrogenation activity. FIG. 3 shows the desulfurization activity when the oil passing time is 50 hours. It can be seen that when the reaction is stabilized when the oil passing time is about 50 hours, high desulfurization activity is exhibited when oxygen is present at about 1000 ppm.

【0031】実施例2(モデル物質による評価:純酸素
ガスをバブリング) 参考例1の触媒A(Pd−Pt/Yb/USY)を用い
て芳香族炭化水素の脱硫活性と水素化活性を評価した。
触媒は反応前に還元処理を行った。触媒を反応管に充填
し、水素気流中(常圧、0.2L/min)で300℃
で3時間(昇温速度;0.5℃/min)還元した。反
応試験は、高圧固定床流通式反応装置(アップフローモ
ード)で、原料油である2種のモデル物質の脱硫活性と
水素化活性を調べた。調製したモデル物質の内容は、
(1)酸素濃度が1000ppmの純酸素ガスを含んだ
テトラリン/n−ヘキサデカン=約30wt%/約70
wt%の混合溶液に4,6−ジメチルジベンゾチオフェ
ン(4,6−DMDBT、硫黄濃度300ppm)とn
−ヘキサデカン(NBA、窒素濃度20ppm)を添
加、(2)酸素濃度が3000ppmの純酸素ガスを含
んだテトラリン/n−ヘキサデカン=約30wt%/約
70wt%の混合溶液に4,6−DMDBT(硫黄濃度
300ppm)とNBA(窒素濃度20ppm)を添加
したものである。反応は、触媒量0.25g、水素分圧
3.9MPa、反応温度280℃、空間速度(WHS
V)16h−1、H/Oil比500NL/Lの条件
で行った。液体生成物は定期的に採取し、FID検出器
及びキャピラリーカラムを備えたガスクロマトグラフで
分析した。また、硫黄の分析には電量滴定法による硫黄
分析装置を用いた。その結果を実施例1の結果とともに
図3に示す。反応系に酸素を共存させることにより、水
素化活性は低下するが、脱硫活性は酸素量により高くな
ることが分かる。
Example 2 (Evaluation by Model Substance: Bubbling with Pure Oxygen Gas) The desulfurization activity and hydrogenation activity of aromatic hydrocarbons were evaluated using catalyst A (Pd-Pt / Yb / USY) of Reference Example 1. .
The catalyst was reduced before the reaction. The catalyst is filled in a reaction tube, and is heated to 300 ° C. in a hydrogen stream (normal pressure, 0.2 L / min).
For 3 hours (heating rate; 0.5 ° C./min). In the reaction test, the desulfurization activity and the hydrogenation activity of two types of model materials as feedstocks were examined using a high-pressure fixed-bed flow reactor (upflow mode). The content of the prepared model substance is
(1) Tetraline / n-hexadecane containing pure oxygen gas having an oxygen concentration of 1000 ppm = about 30 wt% / about 70
In a wt% mixed solution, 4,6-dimethyldibenzothiophene (4,6-DMDBT, sulfur concentration 300 ppm) and n
Hexadecane (NBA, nitrogen concentration 20 ppm) was added. (2) 4,6-DMDBT (sulfur) was added to a mixed solution of tetralin / n-hexadecane = about 30 wt% / about 70 wt% containing pure oxygen gas having an oxygen concentration of 3000 ppm. (Concentration: 300 ppm) and NBA (nitrogen concentration: 20 ppm). In the reaction, the catalyst amount was 0.25 g, the hydrogen partial pressure was 3.9 MPa, the reaction temperature was 280 ° C., and the space velocity (WHS
V) The test was performed under the conditions of 16 h -1 and an H 2 / Oil ratio of 500 NL / L. Liquid products were collected periodically and analyzed on a gas chromatograph equipped with a FID detector and a capillary column. A sulfur analyzer by coulometric titration was used for sulfur analysis. The result is shown in FIG. 3 together with the result of Example 1. It can be seen that the coexistence of oxygen in the reaction system reduces the hydrogenation activity but increases the desulfurization activity with the amount of oxygen.

【0032】実施例3(モデル物質による評価) 参考例1で得られた触媒Aと重希土類元素を含んでいな
い触媒B(Pd−Pt/USY:構成成分は触媒Aと同
じでYbを含有していない触媒)を用いてモデル物質の
脱硫活性と水素化活性を評価した。各触媒は反応前に還
元処理を行った。触媒を反応管に充填し、水素気流中
(常圧、0.2L/min)で300℃で3時間(昇温
速度;0.5℃/min)還元した。反応試験は、高圧
固定床流通式反応装置(アップフローモード)で、原料
油であるテトラリン/n−ヘキサデカン=約30wt%
/約70wt%の混合溶液に4,6−DMDBT(硫黄
濃度300ppm)とNBA(窒素濃度20ppm)と
α−テトラロン(酸素濃度1000ppm)を添加した
ものの脱硫活性と水素化活性を調べた。反応は、触媒量
0.25g、水素分圧3.9MPa、反応温度280
℃、空間速度(WHSV)16h−1、H/Oil比
500NL/Lの条件で行った。液体生成物は定期的に
採取し、FID検出器及びキャピラリーカラムを備えた
ガスクロマトグラフで分析した。また、硫黄の分析には
電量滴定法による硫黄分析装置を用いた。その結果を図
4と図5に示す。反応が安定した時点以降では、酸素が
共存する反応系で、触媒Aの方が触媒Bより脱硫活性が
高いことが図4から分かる。
Example 3 (Evaluation by Model Substance) Catalyst A obtained in Reference Example 1 and Catalyst B containing no heavy rare earth element (Pd-Pt / USY: the same components as in Catalyst A but containing Yb) The catalyst was evaluated for its desulfurization activity and hydrogenation activity. Each catalyst was reduced before the reaction. The catalyst was filled in a reaction tube, and reduced in a hydrogen stream (normal pressure, 0.2 L / min) at 300 ° C. for 3 hours (heating rate: 0.5 ° C./min). The reaction test was performed using a high-pressure fixed-bed flow-type reactor (up-flow mode) using a feedstock of tetralin / n-hexadecane = about 30 wt%.
The desulfurization activity and the hydrogenation activity of a mixture obtained by adding 4,6-DMDBT (sulfur concentration: 300 ppm), NBA (nitrogen concentration: 20 ppm) and α-tetralone (oxygen concentration: 1000 ppm) to a mixed solution of about / 70 wt% were examined. In the reaction, the catalyst amount was 0.25 g, the hydrogen partial pressure was 3.9 MPa, and the reaction temperature was 280.
C., a space velocity (WHSV) of 16 h -1 and an H 2 / Oil ratio of 500 NL / L. Liquid products were collected periodically and analyzed on a gas chromatograph equipped with a FID detector and a capillary column. A sulfur analyzer by coulometric titration was used for sulfur analysis. The results are shown in FIGS. It can be seen from FIG. 4 that the catalyst A has a higher desulfurization activity than the catalyst B in the reaction system in which oxygen coexists after the reaction is stabilized.

【0033】実施例4(軽油による評価) 前述の触媒Aと触媒Bを用いて軽油の脱硫活性と水素化
活性を評価した。各触媒は反応前に還元処理を行った。
触媒を反応管に充填し、水素気流中(常圧、0.2L/
min)で300℃で3時間(昇温速度;0.5℃/m
in)還元した。反応試験は、高圧固定床流通式反応装
置(アップフローモード)で、原料油の深度脱硫軽油
(硫黄分:263ppm、窒素分:8ppm、全芳香族
量:26.3wt%)の脱硫活性と水素化活性を調べ
た。また、深度脱硫軽油中には溶存酸素を1100pp
m含有させた。本反応は、触媒量1.0g、水素分圧
3.9MPa、反応温度280℃、空間速度(WHS
V)4h−1、H/Oil比500NL/Lの条件で
行った。液体生成物は定期的に採取し、FID検出器を
備えた超臨界クロマトグラフで分析した。また、硫黄の
分析には電量滴定法による硫黄分析装置を用いた。その
結果を図6と図7に示す。図6および7から、酸素が共
存する反応系で、触媒Aの方が触媒Bより通油時間が長
くなると脱硫活性、水素化活性とも高くなることが分か
る。
Example 4 (Evaluation with light oil) The desulfurization activity and hydrogenation activity of light oil were evaluated using catalyst A and catalyst B described above. Each catalyst was reduced before the reaction.
The catalyst was filled in a reaction tube, and was placed in a hydrogen stream (normal pressure, 0.2 L /
min) at 300 ° C for 3 hours (heating rate; 0.5 ° C / m
in) reduced. The reaction test was conducted using a high-pressure fixed-bed flow reactor (up-flow mode), in which the desulfurization activity and hydrogen of the deep desulfurized gas oil (sulfur content: 263 ppm, nitrogen content: 8 ppm, total aromatic content: 26.3 wt%) of the feedstock oil were measured. Activating activity was examined. In addition, dissolved oxygen in deep desulfurized gas oil is 1100 pp.
m. In this reaction, the catalyst amount was 1.0 g, the hydrogen partial pressure was 3.9 MPa, the reaction temperature was 280 ° C., and the space velocity (WHS
V) The test was performed under the conditions of 4h -1 and an H 2 / Oil ratio of 500 NL / L. Liquid products were collected periodically and analyzed on a supercritical chromatograph equipped with a FID detector. A sulfur analyzer by coulometric titration was used for sulfur analysis. The results are shown in FIGS. 6 and 7, it can be seen that, in the reaction system in which oxygen coexists, as the oil passing time of the catalyst A becomes longer than that of the catalyst B, both the desulfurization activity and the hydrogenation activity become higher.

【0034】[0034]

【効果】(1)本発明の水素化処理方法によれば、酸素
及び/又は有機酸素含有化合物を含んだ軽油を重希土類
元素を含む貴金属触媒に接触させることにより、高度の
脱硫が可能である。 (2)本発明の水素化処理方法は、酸素及び/又は有機
酸素含有化合物量を制御することにより、選択的に脱硫
活性の向上及び水素化活性の安定が可能であり、少ない
水素消費量で高い脱硫が可能である。
(1) According to the hydrotreating method of the present invention, a high degree of desulfurization is possible by bringing light oil containing oxygen and / or organic oxygen-containing compounds into contact with a noble metal catalyst containing heavy rare earth elements. . (2) The hydrotreating method of the present invention can selectively improve the desulfurization activity and stabilize the hydrogenation activity by controlling the amount of the oxygen and / or organic oxygen-containing compound, and can reduce the hydrogen consumption. High desulfurization is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】原料油中の酸素濃度の違いが脱硫活性の及ぼす
影響を示す(実施例1)。
FIG. 1 shows the effect of a difference in oxygen concentration in a feed oil on desulfurization activity (Example 1).

【図2】原料油中の酸素濃度の違いが水素化活性に及ぼ
す影響を示す(実施例1)。
FIG. 2 shows the effect of a difference in oxygen concentration in a feed oil on hydrogenation activity (Example 1).

【図3】原料油中の酸素含有量と脱硫活性及び水素化活
性との関連を示す(実施例1、実施例2)。
FIG. 3 shows the relationship between the oxygen content in the feedstock oil, the desulfurization activity and the hydrogenation activity (Examples 1 and 2).

【図4】含酸素化合物原料油の脱硫反応における重希土
類元素の効果を示す(実施例3)。
FIG. 4 shows the effect of heavy rare earth elements on the desulfurization reaction of oxygen-containing compound feedstock (Example 3).

【図5】含酸素化合物原料油の水素化反応における重希
土類元素の効果を示す(実施例3)。
FIG. 5 shows the effect of heavy rare earth elements on the hydrogenation reaction of oxygen-containing compound feedstock (Example 3).

【図6】含酸素化合物原料油の脱硫反応における重希土
類元素の効果を示す(実施例4)。
FIG. 6 shows the effect of heavy rare earth elements on the desulfurization reaction of oxygen-containing compound feedstock (Example 4).

【図7】含酸素化合物原料油の水素化反応における重希
土類元素の効果を示す(実施例4)。
FIG. 7 shows the effect of heavy rare earth elements on the hydrogenation reaction of oxygen-containing compound feedstock (Example 4).

フロントページの続き (71)出願人 597126929 安田 弘之 茨城県つくば市吾妻1−408−101 (71)出願人 597126930 佐藤 利夫 茨城県つくば市下広岡702−69 (71)出願人 599069079 木嶋 倫人 茨城県つくば市吾妻1−401−409 (74)上記5名の代理人 100094466 弁理士 友松 英爾 (72)発明者 葭村 雄二 茨城県つくば市松代5丁目526−201 (72)発明者 安田 弘之 茨城県つくば市吾妻1−408−101 (72)発明者 佐藤 利夫 茨城県つくば市下広岡702−69 (72)発明者 木嶋 倫人 茨城県つくば市吾妻1−401−409 (72)発明者 亀岡 隆 福岡県北九州市若松区北湊町13−2 触媒 化成工業株式会社若松工場内 (72)発明者 中野 宏二 福岡県北九州市若松区北湊町13−2 触媒 化成工業株式会社若松工場内 (72)発明者 斉藤 純夫 神奈川県川崎市幸区堀川町580番地 触媒 化成工業株式会社内 Fターム(参考) 4G069 AA03 BA07B BC38A BC44B BC69A BC72B BC75B CC02 ZA05B 4H029 CA00 DA00 Continuation of the front page (71) Applicant 597126929 Hiroyuki Yasuda 1-408-101, Azuma, Tsukuba, Ibaraki (71) Applicant 597126930 Toshio Sato 702-69, Shimohirooka, Tsukuba, Ibaraki (71) Applicant 599069079 Norihito Kijima Ibaraki 1-401-409, Azuma, Tsukuba (74) The above five agents 100094466 Patent Attorney Eiji Tomomatsu (72) Inventor Yuji Yoshimura 5-526-201, Matsushiro, Tsukuba, Ibaraki Prefecture (72) Inventor Hiroyuki Yasuda Ibaraki Prefecture 1-408-101, Azuma, Tsukuba (72) Inventor Toshio Sato 702-69, Shimohirooka, Tsukuba, Ibaraki Prefecture (72) Inventor Tomohito Kijima 1-401-409, Azuma, Tsukuba, Ibaraki Prefecture (72) Inventor Takashi Kameoka Fukuoka 13-2 Kitaminato-cho, Wakamatsu-ku, Kitakyushu-shi, Japan Catalyst inside the Wakamatsu Plant of Kasei Kogyo Co., Ltd. (72) Koji Nakano 13-2 Kitaminato-cho, Wakamatsu-ku, Kitakyushu-shi, Fukuoka Sumio 580, Horikawa-cho, Saiwai-ku, Kawasaki-shi, Kanagawa Catalyst F-term (reference) 4G069 AA 03 BA07B BC38A BC44B BC69A BC72B BC75B CC02 ZA05B 4H029 CA00 DA00

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 軽油を重希土類元素から選ばれた少なく
とも一種の元素と周期律表第VIII族貴金属から選ばれた
少なくとも一種の貴金属を含有する触媒の存在下に水素
化処理する方法であって、酸素及び/又は有機酸素含有
化合物を反応系内に存在させることを特徴とする軽油の
水素化処理方法。
1. A method for hydrotreating gas oil in the presence of a catalyst containing at least one element selected from heavy rare earth elements and at least one noble metal selected from Group VIII noble metals of the periodic table. A method for hydrotreating light oil, wherein a compound containing oxygen and / or organic oxygen is present in the reaction system.
【請求項2】 前記酸素及び/又は有機酸素含有化合物
の量が軽油に対して酸素元素として10000ppm以
下であることを特徴とする請求項1記載の軽油の水素化
処理方法。
2. The method for hydrotreating light oil according to claim 1, wherein the amount of the compound containing oxygen and / or organic oxygen is 10000 ppm or less as oxygen element relative to light oil.
JP2000207266A 2000-07-07 2000-07-07 Process for hydrotreating diesel oil Expired - Lifetime JP4479868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000207266A JP4479868B2 (en) 2000-07-07 2000-07-07 Process for hydrotreating diesel oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000207266A JP4479868B2 (en) 2000-07-07 2000-07-07 Process for hydrotreating diesel oil

Publications (2)

Publication Number Publication Date
JP2002020766A true JP2002020766A (en) 2002-01-23
JP4479868B2 JP4479868B2 (en) 2010-06-09

Family

ID=18704052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000207266A Expired - Lifetime JP4479868B2 (en) 2000-07-07 2000-07-07 Process for hydrotreating diesel oil

Country Status (1)

Country Link
JP (1) JP4479868B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152248A1 (en) * 2014-04-01 2015-10-08 Jx日鉱日石エネルギー株式会社 Method for producing hydrogenated oil and method for producing single-ring aromatic hydrocarbon
US9495678B2 (en) 2001-02-22 2016-11-15 Sony Corporation Content providing/obtaining system
US9650582B2 (en) 2014-03-03 2017-05-16 National Institute Of Advanced Industrial Science And Technology Biodiesel fuel hydrogenation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9495678B2 (en) 2001-02-22 2016-11-15 Sony Corporation Content providing/obtaining system
US9650582B2 (en) 2014-03-03 2017-05-16 National Institute Of Advanced Industrial Science And Technology Biodiesel fuel hydrogenation method
WO2015152248A1 (en) * 2014-04-01 2015-10-08 Jx日鉱日石エネルギー株式会社 Method for producing hydrogenated oil and method for producing single-ring aromatic hydrocarbon

Also Published As

Publication number Publication date
JP4479868B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
US5919354A (en) Removal of sulfur from a hydrocarbon stream by low severity adsorption
CN1277988B (en) Modifying and hydrogenation processing for diesel union method
US4290878A (en) NOx control in platinum-promoted complete combustion cracking catalyst regeneration
RU2419486C2 (en) Alkylation bimetallic catalysts
JP2003502478A (en) Selective ring opening process for producing diesel fuel with enhanced cetane number
JP5526030B2 (en) Solid acid-assisted advanced desulfurization of diesel boiling range raw materials
US20080308459A1 (en) Process for Producing Hydrorefined Gas Oil, Hydrorefined Gas Oil, and Gas Oil Composition
US6875340B2 (en) Process for adsorptive desulfurization of light oil distillates
AU6549199A (en) Gasoline sulfur reduction in fluid catalytic cracking
Courty et al. Catalysis, the turntable for a clean future
AU627831B2 (en) Selective hydrogenation process for improving the color stability of a hydrocarbon fraction
US20040035752A1 (en) Process for producing hydrocarbons with low sulphur and nitrogen contents
US6576119B2 (en) Method of producing middle distillate products by two-stage hydrocracking and hydrocracking apparatus
US20060260983A1 (en) Method of hydrotreating gas oil fraction
JP4479868B2 (en) Process for hydrotreating diesel oil
RU2442649C2 (en) Catalyst reducing the concentration of sulphur in benzines used in the method of catalytical cracking in the catalyst fluidised layer
EP0204750A4 (en) Rejuvenation of a deactivated catalyst.
AU2012216862B2 (en) Sulphur reduction catalyst additive composition in fluid catalytic cracking and method of preparation thereof
CN105778979A (en) Catalyst for reducing sulfur content of catalytically cracked gasoline and preparation method thereof
JP2001246253A (en) Catalyst composition for hydrogenating aromatic hydrocarbon
JP3463089B2 (en) Hydrogenation catalyst, hydrogenation method, and gas oil hydrotreating method
JP2001170489A (en) Catalyst composition for hydrogenizing aromatic hydrocarbon
JP2003284961A (en) Method for producing hydrocarbon hydrogenation treatment catalyst composition
US20090166265A1 (en) Hydrorefining method
US6498279B1 (en) Ultrastable zeolite Y-containing hydrogenation catalyst and process for hydrogenating aromatic and/or heterocyclic aromatic compound-containing feed

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061115

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100309

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4479868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term