JP2002018592A - Solid wire for circumferential weld of carbon steel pipe and welding method using the same - Google Patents

Solid wire for circumferential weld of carbon steel pipe and welding method using the same

Info

Publication number
JP2002018592A
JP2002018592A JP2000205747A JP2000205747A JP2002018592A JP 2002018592 A JP2002018592 A JP 2002018592A JP 2000205747 A JP2000205747 A JP 2000205747A JP 2000205747 A JP2000205747 A JP 2000205747A JP 2002018592 A JP2002018592 A JP 2002018592A
Authority
JP
Japan
Prior art keywords
welding
mass
steel pipe
amount
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000205747A
Other languages
Japanese (ja)
Inventor
Hisahiro Tamaoki
尚弘 玉置
Masatomo Murayama
雅智 村山
Sadafumi Miura
定史 三浦
Kazuki Sugiura
一樹 杉浦
Reiichi Suzuki
励一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kokan Koji KK
Kobe Steel Ltd
JFE Engineering Corp
Original Assignee
Nippon Kokan Koji KK
Kobe Steel Ltd
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Koji KK, Kobe Steel Ltd, NKK Corp, Nippon Kokan Ltd filed Critical Nippon Kokan Koji KK
Priority to JP2000205747A priority Critical patent/JP2002018592A/en
Publication of JP2002018592A publication Critical patent/JP2002018592A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a slid wire for circumferential weld of a carbon steel pipe used for a high efficiency welding system having a narrowed groove, higher speed and the reduction of heat to be inputted, applicable to a carbon steel pipe having strength of API-X<=60, imparting excellent mechanical properties to weld metal and having good welding operability in all attitudes and excellent defect resistance and to provide a welding method using the same solid wire for welding. SOLUTION: This solid wire for girth-welding a steel pipe has components containing, by mass, 0.03 to 0.12% C, 0.35 to 0.60% Si, 1.60 to 2.10% Mn, 0.30 to 0.90% Ni, <=0.015% P, <=0.015% S, <=0.020% Ti, <=0.10% Cr, <=0.01% Al, <=0.01% Nb, <=0.30% Cu and <=0.20% Mo, and the balance Fe with inevitable impurities.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガス及び石油等を
通運するパイプライン等を構成する鋼管の全姿勢周溶接
に適用する鋼管周溶接用ソリッドワイヤ及びそれを使用
するガスシールドアーク溶接方法に関し、特に、狭開先
化及び高速化による高能率溶接システムにおいて、ライ
ンパイプAPI−X60以下の強度を有する炭素鋼鋼管
に適用でき、溶接作業性が良好で、溶接金属の機械的性
能が優れ、更に耐欠陥性が優れた鋼管周溶接用ソリッド
ワイヤ及びこの鋼管周溶接用ソリッドワイヤを使用する
溶接方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid wire for girth welding of steel pipes, which is applied to girth welding of steel pipes constituting a pipeline or the like that carries gas, oil, etc., and a gas shield arc welding method using the same. In particular, in a high-efficiency welding system with a narrow groove and a high speed, it can be applied to a carbon steel pipe having a strength of line pipe API-X60 or less, has good welding workability, and has excellent mechanical performance of a weld metal, Furthermore, the present invention relates to a solid wire for peripheral welding of steel pipe having excellent defect resistance and a welding method using the solid wire for peripheral welding of steel pipe.

【0002】[0002]

【従来の技術】パイプラインはその目的及び用途に鑑み
て極めて高い信頼性が要求される構造物であり、その溶
接部においても高い品質が要求される。例えば、静的強
度を示す溶接部引張強さ、脆性破壊性を示す低温靭性、
疲労破壊感受性に関係するビード形状及び水素割れ感受
性に関係する最高硬さ等の多くのスペックが使用条件に
応じて規定されている。
2. Description of the Related Art A pipeline is a structure that requires extremely high reliability in view of its purpose and application, and a high quality is also required for its welded portion. For example, welded tensile strength indicating static strength, low-temperature toughness indicating brittle fracture,
Many specifications such as a bead shape related to fatigue fracture susceptibility and a maximum hardness related to hydrogen cracking susceptibility are defined according to use conditions.

【0003】従来、パイプライン用鋼管の継手の周方向
溶接は現地施工が多く、姿勢が360°の全姿勢となら
ざるを得ないため、被覆アーク溶接棒を使用したマニュ
アルによる溶接方法が主流であった。しかしながら、近
時、工期の短縮化及び低コスト化を目的として自動溶接
化が検討され、現在では周溶接に適した小型溶接ロボッ
トが開発され、実績を上げている。
[0003] Conventionally, the circumferential welding of steel pipe joints for pipelines is often performed on site and the position must be 360 ° in all positions. Therefore, a manual welding method using a coated arc welding rod is mainly used. there were. However, recently, automatic welding has been studied for the purpose of shortening the construction period and reducing cost, and at present, a small welding robot suitable for girth welding has been developed and has achieved results.

【0004】この従来の自動溶接システムにおいて、溶
接ワイヤは通常の溶接ワイヤが使用されている。例え
ば、ラインパイプAPI−X60鋼管以下の強度を有す
る炭素鋼管には、低電流溶接用として一般的に使用され
ている溶接ワイヤ、例えば、NKK技報No.136
1991年 p.49に記載されているJIS(Japane
se Industrial Standard:日本工業規格)Z3312の
YGW12及びAWS(American Welding Society:ア
メリカ溶接協会)A5.18のER70S−6に相当す
るC(0.15質量%以下)−Si(0.7〜1.0質
量%)−Mn(1.3〜1.6質量%)系の組成を有す
る溶接ワイヤがそのまま使われている。
In this conventional automatic welding system, a normal welding wire is used as a welding wire. For example, for a carbon steel pipe having a strength equal to or less than that of a line pipe API-X60 steel pipe, a welding wire generally used for low current welding, for example, NKK technical bulletin No. 136
1991 p. JIS (Japane)
se Industrial Standard: YGW12 of Z3312 and ER70S-6 of AWS (American Welding Society: A5.18) C (0.15% by mass or less) -Si (0.7-1% by mass). A welding wire having a composition of (0% by mass) -Mn (1.3 to 1.6% by mass) is used as it is.

【0005】近時、工期の短縮化及び低コスト化が更に
一層要求され、狭開先化及び高速化による高能率溶接シ
ステムが開発されつつある。
[0005] Recently, there has been a further demand for further shortening of the construction period and cost reduction, and a high-efficiency welding system with a narrow groove and a high speed has been developed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、狭開先
化及び高速化による高能率溶接システム(以下、高能率
溶接システムという)においては、以下に示す問題点が
ある。この高能率溶接システムにおいては、極度の入熱
低下、パス間温度の低下及び開先角度の減少に伴う溶接
金属の凝固面の並行衝突化によるビード中央への偏析の
促進といった現象が発生し、通常の溶接ワイヤを使用す
ると、溶接金属における強度及び硬度の過剰並びに靭性
の低下が避けられない。
However, a high-efficiency welding system (hereinafter, referred to as a high-efficiency welding system) with a narrow groove and a high speed has the following problems. In this high-efficiency welding system, the phenomenon of extremely low heat input, reduction of interpass temperature and acceleration of segregation to the center of the bead due to parallel collision of the solidified surface of the weld metal due to the decrease in groove angle occur, When a normal welding wire is used, excessive strength and hardness of the weld metal and a decrease in toughness are inevitable.

【0007】前述の高能率溶接システムにおいては、溶
接金属は通常の適性冷却速度条件を超える大きな冷却速
度で冷却される。例えば、JISZ3325において規
定されている低温鋼用の溶接材料を使用しても、冷却速
度が大きいため硬度過剰となり、シャルピー吸収エネル
ギも向上しない。また、スラグ剥離性が劣り、ビードが
垂れて凸状になる。更に、低電流域におけるアークの不
安定性に起因するビード不良等の問題が発生し、全姿勢
における溶接作業性が著しく低下する。更にまた、狭開
先・高速溶接では凝固割れの感受性が高まることから、
従来のワイヤ以上の耐割れ性が要求される。これらのこ
とから、高能率溶接システムに適用でき、溶接部の機械
的性能が優れ、良好な全姿勢作業性を実現可能な溶接ワ
イヤが求められている。
[0007] In the above-described high-efficiency welding system, the weld metal is cooled at a large cooling rate exceeding the normal suitable cooling rate condition. For example, even if a welding material for low-temperature steel specified in JISZ3325 is used, the cooling rate is high and the hardness becomes excessive, and the Charpy absorbed energy does not improve. In addition, the slag removability is inferior, and the bead sags and becomes convex. Further, a problem such as a bead defect due to instability of the arc in a low current region occurs, and welding workability in all positions is significantly reduced. Furthermore, the sensitivity of solidification cracking increases with narrow groove and high speed welding,
Crack resistance higher than that of conventional wires is required. For these reasons, there is a need for a welding wire that can be applied to a high-efficiency welding system, has excellent mechanical performance at the welded portion, and can achieve good all-position workability.

【0008】本発明はかかる問題点に鑑みてなされたも
のであって、狭開先化、高速化及び入熱量が15kJ/
cm以下の低入熱化による高能率溶接システムにおい
て、API−X60以下の強度を有する炭素鋼鋼管に適
用でき、溶接金属の靭性、強度及び硬度等の機械的性能
が優れており、スパッタ発生量、アーク安定性及びスラ
グ剥離性等の全姿勢溶接作業性が良好で、耐割れ性、耐
融合不良性及び耐ブローホール性等の耐欠陥性が優れた
炭素鋼鋼管周溶接用ソリッドワイヤ及びこの溶接用ソリ
ッドワイヤを使用する溶接方法を提供することを目的と
する。
The present invention has been made in view of the above problems, and has a narrow groove, a high speed, and a heat input of 15 kJ /.
cm, a high efficiency welding system with low heat input, can be applied to carbon steel pipes having a strength of API-X60 or less, and has excellent mechanical properties such as toughness, strength and hardness of the weld metal, Solid wire for circumferential welding of carbon steel pipes with good weldability in all positions such as arc stability and slag peelability, and excellent defect resistance such as cracking resistance, poor fusion resistance and blowhole resistance. An object of the present invention is to provide a welding method using a solid wire for welding.

【0009】[0009]

【課題を解決するための手段】本発明に係る鋼管周溶接
用ソリッドワイヤは、シールドガスとして100体積%
CO2ガス又はArが75体積%以下であるArとCO2
との混合ガスを使用する炭素鋼鋼管周溶接用ソリッドワ
イヤにおいて、C:0.03乃至0.12質量%、S
i:0.35乃至0.60質量%、Mn:1.60乃至
2.10質量%、Ni:0.30乃至0.90質量%、
P:0.015質量%以下、S:0.015質量%以
下、Ti:0.020質量%以下、Cr:0.10質量
%以下、Al:0.01質量%以下、Nb:0.01質
量%以下、Cu:0.30質量%以下及びMo:0.2
0質量%以下を含有し、残部がFe及び不可避的不純物
からなる組成を有することを特徴とする。
The solid wire for circumferential welding of a steel pipe according to the present invention is 100% by volume as a shielding gas.
Ar and CO 2 in which CO 2 gas or Ar is 75% by volume or less
C: 0.03 to 0.12% by mass in a solid wire for circumferential welding of carbon steel pipe using a gas mixture of
i: 0.35 to 0.60 mass%, Mn: 1.60 to 2.10 mass%, Ni: 0.30 to 0.90 mass%,
P: 0.015% by mass or less, S: 0.015% by mass or less, Ti: 0.020% by mass or less, Cr: 0.10% by mass or less, Al: 0.01% by mass or less, Nb: 0.01 % By mass, Cu: 0.30% by mass or less, and Mo: 0.2
0% by mass or less, with the balance being Fe and unavoidable impurities.

【0010】本発明においては、ソリッドワイヤの組成
を前記範囲に限定することにより、狭開先化、高速化及
び低入熱化による高能率溶接システムにおいて、溶接金
属における靭性、強度及び硬度等の機械的性能を向上さ
せ、耐割れ性及び耐ブローホール性等の耐欠陥性を改善
するとともに、スパッタ発生量、アーク安定性及びスラ
グ剥離性等の溶接作業性を良好にすることができる。な
お、本発明において、低入熱とは15kJ/cm以下を
いう。
In the present invention, by limiting the composition of the solid wire to the above range, in a highly efficient welding system by narrowing the groove, increasing the speed, and reducing the heat input, the toughness, strength, hardness and the like of the weld metal are reduced. It is possible to improve mechanical performance, improve defect resistance such as crack resistance and blow hole resistance, and improve welding workability such as spatter generation, arc stability and slag peeling property. In addition, in this invention, low heat input means 15 kJ / cm or less.

【0011】本発明に係る鋼管周継手溶接方法は、前記
溶接用ソリッドワイヤを使用し、シールドガスとして1
00体積%CO2ガス又はArとCO2との混合ガスを使
用して全姿勢溶接により鋼管の継手を周方向に溶接する
方法であって、前記混合ガスの組成はArが75体積%
以下であることを特徴とする。
[0011] In the method for welding a steel pipe peripheral joint according to the present invention, the solid wire for welding is used, and one wire is used as a shielding gas.
A method of welding a joint of a steel pipe in a circumferential direction by all-position welding using a CO 2 gas of 00 volume% or a mixed gas of Ar and CO 2 , wherein the composition of the mixed gas is 75 vol% Ar.
It is characterized by the following.

【0012】本発明においては、Arを75体積%以下
とすることにより、開先壁方向の溶込み深さを確保し、
狭開先化及び高速化された全姿勢溶接方法において、溶
込み不良及び梨型凝固割れ欠陥の発生を防止することが
できる。また、ブローホールの発生も抑制できる。
In the present invention, the penetration depth in the direction of the groove wall is secured by making Ar 75% by volume or less,
In the narrow-groove and high-speed all-position welding method, poor penetration and generation of a pear-shaped solidification crack defect can be prevented. In addition, generation of blow holes can be suppressed.

【0013】[0013]

【発明の実施の形態】本発明者等は、溶接ワイヤの成分
に関し、溶接金属の機械的性能並びにビード形状及びア
ーク安定性等の溶接作業性に大きな影響を及ぼす主要脱
酸元素であるSi及びMnの含有量及びそれらの構成比
を変化させ、更に、溶接金属の靭性及び強度に影響を及
ぼすMo及びNi等を組み合わせて多数の溶接ワイヤを
試作し、溶接金属の機械的性能、耐欠陥性及び溶接作業
性を向上させるべく、種々の実験研究を行った。
BEST MODE FOR CARRYING OUT THE INVENTION The inventors of the present invention have reported that, regarding the components of a welding wire, Si and Si, which are the main deoxidizing elements that have a great effect on the mechanical properties of the weld metal and on the welding workability such as bead shape and arc stability, are described. By changing the Mn content and their constituent ratios, and further producing a large number of welding wires by combining Mo, Ni, etc. which affect the toughness and strength of the weld metal, the mechanical performance and defect resistance of the weld metal In order to improve welding workability, various experimental studies were conducted.

【0014】その結果、前述の高能率溶接システムにお
いては、従来の溶接システムにおける場合よりも溶接金
属中の酸素量が多くなるため、溶接金属において粗大フ
ェライト粒が発達し、特に靭性が低下しやすいことを見
出した。そこで、溶接作業性を従来の溶接システムと同
等以上に保持しながら、溶接金属の靭性の向上を図るこ
とを主目的として更に実験研究を行い、以下に示すよう
な結果を得た。
As a result, in the above-described high-efficiency welding system, since the amount of oxygen in the weld metal becomes larger than in the conventional welding system, coarse ferrite grains develop in the weld metal, and in particular, the toughness tends to decrease. I found that. Therefore, further experimental research was conducted with the main purpose of improving the toughness of the weld metal while maintaining the welding workability equal to or higher than that of the conventional welding system, and the following results were obtained.

【0015】本発明者等は、Si及びMnについては、
脱酸力を強化しながらフェライトの成長を抑制するため
に、従来の溶接ワイヤに比べ低Si−高Mn化すること
が有効であることを見出した。図1は、溶接ワイヤ中の
Si及びMnの含有量と溶接金属の機械的性能及び溶接
作業性との関係を示すグラフ図である。図1に示すよう
に、溶接ワイヤ中のSi量が本発明で規定する範囲より
も多いと溶接金属の靭性が不足し、前記Si量が本発明
で規定する範囲よりも少ないとビード止端形状及びアー
ク安定性が劣化する。また、溶接ワイヤ中のMn量が本
発明で規定する範囲よりも多いと溶接金属の硬度が過剰
になるとともにスラグの剥離性が劣化し、前記Mn量が
本発明で規定する範囲よりも少ないと溶接金属の強度及
び靭性が不足するとともにビードの形状が凸化する。
The present inventors have found that Si and Mn are:
In order to suppress the growth of ferrite while strengthening the deoxidizing power, it has been found that it is effective to reduce the Si-Mn content compared to a conventional welding wire. FIG. 1 is a graph showing the relationship between the contents of Si and Mn in a welding wire and the mechanical performance and welding workability of a weld metal. As shown in FIG. 1, if the Si content in the welding wire is larger than the range specified in the present invention, the toughness of the weld metal is insufficient, and if the Si content is smaller than the range specified in the present invention, the bead toe shape is reduced. And the arc stability is degraded. Further, when the amount of Mn in the welding wire is larger than the range specified in the present invention, the hardness of the weld metal becomes excessive and the slag removability deteriorates, and the Mn amount is smaller than the range specified in the present invention. The strength and toughness of the weld metal are insufficient, and the shape of the bead becomes convex.

【0016】また、Niについては、0.3質量%以上
の添加により溶接金属の靭性の向上が顕著であったが、
0.9質量%を超えて添加すると、前述の高能率溶接シ
ステムにおいては割れが発生することを見出した。図2
は、溶接ワイヤ中のNiの含有量と溶接金属のシャルピ
ー吸収エネルギ(vE0℃)及び凝固割れ発生率との関
係を示すグラフ図である。図2に示すように、溶接ワイ
ヤ中のNi量が多くなるとシャルピー吸収エネルギが増
加するが、Ni量が0.9質量%を超えると割れが発生
し、Ni量が多くなるほど割れの発生率が高くなること
を見出した。
With respect to Ni, the addition of 0.3% by mass or more significantly improved the toughness of the weld metal.
It has been found that when added in excess of 0.9% by mass, cracks occur in the above-described high-efficiency welding system. FIG.
FIG. 3 is a graph showing the relationship between the Ni content in the welding wire, the Charpy absorbed energy (vE0 ° C.) of the weld metal, and the solidification cracking occurrence rate. As shown in FIG. 2, the Charpy absorbed energy increases as the Ni content in the welding wire increases, but cracks occur when the Ni content exceeds 0.9% by mass, and the cracking rate increases as the Ni content increases. Found to be higher.

【0017】以下に、本発明におけるガスシールドアー
ク溶接用ワイヤに含有される化学成分の限定理由につい
て詳細に説明する。
Hereinafter, the reasons for limiting the chemical components contained in the gas-shielded arc welding wire according to the present invention will be described in detail.

【0018】C:0.03乃至0.12質量% Cは溶接金属の強度を確保するために必要な元素であ
る。また、全姿勢溶接ではビードの垂れを防ぐために短
絡溶滴移行が必要となるが、C量が多いと短絡回数が増
加しアークが安定する。溶接金属の強度確保及びアーク
安定性確保のために有効なC量は0.03質量%以上で
ある。一方、C量が0.12質量%を超えるとCO爆発
が過剰になり、スパッタ発生量が増加するため溶接作業
性が低下する。また、溶接金属の焼入れ性が上昇するた
め強度が過剰になる。更に、高温割れ感受性及び水素割
れ感受性も増加する。従って、C量の上限は0.12質
量%とする。
C: 0.03 to 0.12% by mass C is an element necessary for securing the strength of the weld metal. Further, in all-position welding, it is necessary to transfer a short-circuit droplet in order to prevent the bead from sagging. However, if the C content is large, the number of short-circuits increases and the arc is stabilized. The effective amount of C for ensuring the strength and arc stability of the weld metal is 0.03% by mass or more. On the other hand, if the amount of C exceeds 0.12% by mass, the explosion of CO becomes excessive and the amount of spatter generated increases, so that the welding workability decreases. Further, the hardenability of the weld metal is increased, so that the strength becomes excessive. In addition, hot cracking susceptibility and hydrogen cracking susceptibility also increase. Therefore, the upper limit of the amount of C is set to 0.12% by mass.

【0019】Si:0.35乃至0.60質量% Siは主要な脱酸元素であり、溶接ワイヤには必須の元
素である。しかし、入熱量が15kJ/cm以下の低入
熱施工では、脱酸に必要なSi量は通常よりも少なくて
すむ。図1に示すように、溶接ワイヤ中のSi量が0.
60質量%を超えると、溶接金属において粗大なフェラ
イト粒が形成しやすくなり、靭性が低下する。また、ス
ラグ量も増加し除去の手間が増大する。しかしながら、
Si量が0.35質量%未満では、ビード止端部のなじ
みが悪くなり外観が悪化する。更に、脱酸不足になるた
めアーク安定性が低下し、ブローホールが発生すること
もある。従って、Si量は0.35乃至0.60質量%
とする。
Si: 0.35 to 0.60 mass% Si is a main deoxidizing element and is an essential element for a welding wire. However, in a low heat input construction with a heat input of 15 kJ / cm or less, the amount of Si required for deoxidation may be smaller than usual. 1. As shown in FIG.
If it exceeds 60% by mass, coarse ferrite grains are easily formed in the weld metal, and the toughness is reduced. In addition, the amount of slag increases, and the time and effort for removal increase. However,
If the amount of Si is less than 0.35% by mass, the conformity of the bead toe becomes poor and the appearance is deteriorated. In addition, since deoxidation is insufficient, arc stability is reduced, and blow holes may be generated. Therefore, the amount of Si is 0.35 to 0.60% by mass.
And

【0020】Mn:1.60乃至2.10質量% MnもSiと同様に主要な脱酸元素であり、溶接金属の
焼入れ性を向上し、強度及び靭性を増加させる効果があ
る。また、S等の耐割れ性を低下させる元素を固定し、
耐割れ性を改善する効果もある。図1に示すように、M
n量が1.60質量%未満では脱酸不足となり、溶接金
属の強度及び靭性が確保できない。また、全姿勢溶接に
おいてビードが垂れやすくなりビード形状が劣化する。
更に、耐割れ性も劣る。逆に、Mn量が2.10質量%
を超えると、溶接金属の硬度が過剰になるとともにスラ
グ量が増大し除去の手間が増大する。従って、Mn量の
上限は2.10質量%とする。
Mn: 1.60 to 2.10% by mass Mn is also a major deoxidizing element like Si, and has the effect of improving the hardenability of the weld metal and increasing the strength and toughness. In addition, an element that lowers crack resistance such as S is fixed,
It also has the effect of improving crack resistance. As shown in FIG.
If the n content is less than 1.60% by mass, deoxidation is insufficient, and the strength and toughness of the weld metal cannot be secured. In addition, the bead easily sags in all position welding, and the bead shape is deteriorated.
Furthermore, crack resistance is also poor. Conversely, the Mn content is 2.10% by mass.
If it exceeds, the hardness of the weld metal becomes excessive, the amount of slag increases, and the trouble of removal increases. Therefore, the upper limit of the amount of Mn is set to 2.10% by mass.

【0021】Ni:0.30乃至0.90質量% Niは靭性向上に有効である。しかしながら、溶接ワイ
ヤ中のNi量が0.30質量%未満では前記効果は十分
に現れない。また、Niを0.90質量%を超えて添加
すると、アーク安定性が低下するとともに、凝固割れを
発生しやすくなる。更に、溶接金属の硬度を大幅に増大
させる。従って、Ni量の上限は0.90質量%とす
る。
Ni: 0.30 to 0.90% by Mass Ni is effective for improving toughness. However, if the amount of Ni in the welding wire is less than 0.30% by mass, the above effect is not sufficiently exhibited. Further, if Ni is added in excess of 0.90% by mass, arc stability is reduced and solidification cracks are easily generated. In addition, it significantly increases the hardness of the weld metal. Therefore, the upper limit of the amount of Ni is set to 0.90% by mass.

【0022】P:0.015質量%以下 Pは溶接金属の耐高温割れ性及び低温靭性を大幅に劣化
させる。従って、溶接ワイヤ中のP量は可及的に少ない
ほうが好ましい。実用上、0.015質量%までは許容
できるので、P量の上限は0.015質量%とする。
P: 0.015% by mass or less P significantly deteriorates the hot crack resistance and the low temperature toughness of the weld metal. Therefore, it is preferable that the amount of P in the welding wire is as small as possible. Practically, up to 0.015% by mass is permissible, so the upper limit of the P content is 0.015% by mass.

【0023】S:0.015質量%以下 Sは溶接金属の耐高温割れ性及び低温靭性を大幅に劣化
させる。従って、溶接ワイヤ中のS量は可及的に少ない
ほうが好ましい。実用上、0.015質量%までは許容
できるので、S量の上限は0.015質量%とする。
S: 0.015% by mass or less S significantly deteriorates the hot crack resistance and the low temperature toughness of the weld metal. Therefore, the S content in the welding wire is preferably as small as possible. Since practically, up to 0.015% by mass is permissible, the upper limit of the amount of S is set to 0.015% by mass.

【0024】Ti:0.020質量%以下 Tiは高電流域におけるアーク安定性を改善する効果が
あるが、全姿勢溶接においてはむしろ低電流域における
アーク安定性が重要である。Tiが多量に添加される
と、低電流域のアーク安定性が低下する。また、Tiを
添加するとスラグ量が増加し、除去作業の手間が増大す
る。従って、Ti量は少ないほうが好ましい。Ti量が
0.020質量%以下であれば問題ないので、Ti量の
上限は0.020質量%とする。
Ti: 0.020% by mass or less Ti has the effect of improving the arc stability in a high current range, but the arc stability in a low current range is more important in all-position welding. When a large amount of Ti is added, the arc stability in a low current region decreases. Further, when Ti is added, the amount of slag increases, and the work of removing the slag increases. Therefore, it is preferable that the amount of Ti is small. Since there is no problem if the Ti content is 0.020% by mass or less, the upper limit of the Ti amount is set to 0.020% by mass.

【0025】Cr:0.10質量%以下 Crは溶接金属の耐蝕性を向上させる効果があり、パイ
プライン用の鋼管及び溶接ワイヤには、耐炭酸ガス腐食
性の向上を目的としてCrを添加したものがある。しか
しながら、炭酸ガス腐食が問題とならないような一般の
炭素鋼鋼管の場合、溶接ワイヤ中へのCr添加による耐
蝕性向上は過剰品質になり高価格となるばかりでなく、
スラグ剥離性、靭性及びアーク安定性の低下並びに溶接
金属の強度の過剰につながるため、Cr量は少ない方が
好ましい。Cr量が0.10質量%以下であればこれら
の悪影響は現れないため、Cr量の上限を0.10質量
%とする。
Cr: 0.10% by mass or less Cr has the effect of improving the corrosion resistance of the weld metal, and Cr is added to steel pipes and welding wires for pipelines for the purpose of improving carbon dioxide gas corrosion resistance. There is something. However, in the case of general carbon steel pipes in which carbon dioxide corrosion does not pose a problem, the improvement of corrosion resistance by adding Cr to the welding wire not only results in excessive quality and high price, but also
It is preferable that the amount of Cr is small, because it leads to a decrease in slag peelability, toughness and arc stability and an increase in the strength of the weld metal. If the Cr content is 0.10% by mass or less, these adverse effects do not appear, so the upper limit of the Cr amount is set to 0.10% by mass.

【0026】Al:0.01質量%以下 Alは溶接金属の強度を大幅に増大させ、靭性を低下さ
せる。また、スパッタ発生量を大幅に増加させ、スラグ
量も増加させる。従って、Al量は可及的に少ないほう
が好ましい。経済性を考慮し、Al量の上限を0.01
質量%とする。
Al: 0.01% by mass or less Al greatly increases the strength of the weld metal and lowers the toughness. In addition, the amount of spatter generated is greatly increased, and the amount of slag is also increased. Therefore, it is preferable that the amount of Al is as small as possible. Considering economics, the upper limit of the amount of Al is 0.01
% By mass.

【0027】Nb:0.01質量%以下 Nbは溶接金属の強度を大幅に増大させ、靭性を低下さ
せる。また、スパッタ発生量を大幅に増加させ、スラグ
量も増加させる。従って、Nb量は可及的に少ないほう
が好ましい。経済性を考慮し、Nb量の上限を0.01
質量%とする。
Nb: 0.01% by mass or less Nb greatly increases the strength of the weld metal and lowers the toughness. In addition, the amount of spatter generated is greatly increased, and the amount of slag is also increased. Therefore, the Nb content is preferably as small as possible. Considering economics, the upper limit of the Nb amount is 0.01
% By mass.

【0028】Cu:0.30質量%以下 CuはCrと同様に溶接金属の耐蝕性を向上させる効果
があるといわれているが、一方で靭性及び耐割れ性を低
下させるという問題点がある。従って、耐蝕性が重視さ
れない場合はCu量は可及的に少ない方が好ましい。C
u量が0.30質量%以下であれば前記問題点は発生し
ないため、Cu量の上限を0.30質量%とする。な
お、本発明において、溶接ワイヤがめっきワイヤである
場合は、Cu量とは心線に含まれるCu量にめっきに含
まれるCu量を加えたものになる。
Cu: 0.30% by mass or less Cu is said to have the effect of improving the corrosion resistance of the weld metal like Cr, but has the problem of lowering toughness and crack resistance. Therefore, when the corrosion resistance is not important, the Cu content is preferably as small as possible. C
If the u content is 0.30 mass% or less, the above problem does not occur. Therefore, the upper limit of the Cu content is set to 0.30 mass%. In the present invention, when the welding wire is a plated wire, the amount of Cu is the sum of the amount of Cu contained in the core wire and the amount of Cu contained in the plating.

【0029】Mo:0.20質量%以下 Moは溶接金属の焼入れ性を向上させ、強度及び靭性を
増加させる効果がある。しかしながら、高能率溶接シス
テムにおいては、高速溶接化による低入熱施工により十
分な溶接部の強度が確保されるため、API−X60以
下の鋼管であれば、Moを故意に添加しなくても母材以
上の強度が得られる。溶接ワイヤ中のMo量が0.20
質量%以下であれば、溶接金属の強度が過剰とならない
ため、Mo量の上限は0.20質量%とする。
Mo: 0.20% by mass or less Mo has the effect of improving the hardenability of the weld metal and increasing the strength and toughness. However, in a high-efficiency welding system, a sufficient heat-strength is ensured by a low heat input construction by high-speed welding, so that a steel pipe of API-X60 or less can be used without intentionally adding Mo. Higher strength than material can be obtained. Mo content in welding wire is 0.20
If the amount is less than or equal to% by mass, the strength of the weld metal will not be excessive, so the upper limit of the amount of Mo is set to 0.20% by mass.

【0030】次に、シールドガスの組成の限定理由につ
いて述べる。
Next, the reasons for limiting the composition of the shielding gas will be described.

【0031】ArとCO2 との混合ガスにおいてAr:
75体積%以下 本発明の溶接方法において使用するシールドガスは、1
00体積%CO2又は75体積%以下のArとCO2との
混合ガスであることが必要である。Ar混合比が75体
積%を超えると溶込み状態が鋭くかつ浅くなり、開先壁
方向の溶込み深さが小さくなるため、狭開先・高速化さ
れた高能率溶接システムにおいては、溶込み不良及び梨
型凝固割れの欠陥が発生しやすくなる。従って、シール
ドガス中のAr混合比は75体積%以下とする。
In a mixed gas of Ar and CO 2 , Ar:
75% by volume or less The shielding gas used in the welding method of the present invention is 1
It is necessary to be a mixed gas of Ar and CO 2 of 00 vol% CO 2 or 75 vol% or less. When the Ar mixing ratio exceeds 75% by volume, the penetration state becomes sharp and shallow, and the penetration depth in the direction of the groove wall becomes small. Therefore, in a high-efficiency welding system with a narrow groove and a high speed, penetration is performed. Defective and pear-shaped solidification cracking defects are likely to occur. Therefore, the Ar mixing ratio in the shielding gas is set to 75% by volume or less.

【0032】[0032]

【実施例】以下に、本発明の実施例を本発明範囲から外
れる比較例と比較して具体的に説明する。図3は本実施
例における溶接方法を示す図であって、(a)は鋼管周
継手を示す模式図であり、(b)は溶接部の開先の形状
を示す断面図である。図3(a)及び(b)に示すよう
に、鋼管の周継手を高能率溶接システム専用の溶接ロボ
ットを使用して自動溶接した。表1はこのときの溶接条
件を示す。また、この鋼管はAPI−X60炭素鋼鋼管
であり、板厚は12.7mmである。表2は、この鋼管
の化学成分を示す。更に、表3及び4は供試した溶接ワ
イヤの成分を示す。
EXAMPLES Examples of the present invention will be specifically described below in comparison with comparative examples that fall outside the scope of the present invention. 3A and 3B are diagrams illustrating a welding method in the present embodiment, in which FIG. 3A is a schematic diagram illustrating a steel pipe peripheral joint, and FIG. 3B is a cross-sectional view illustrating a shape of a groove of a welded portion. As shown in FIGS. 3A and 3B, a peripheral joint of a steel pipe was automatically welded using a welding robot dedicated to a high-efficiency welding system. Table 1 shows the welding conditions at this time. This steel pipe is an API-X60 carbon steel pipe, and the plate thickness is 12.7 mm. Table 2 shows the chemical composition of this steel pipe. Further, Tables 3 and 4 show the components of the tested welding wires.

【0033】表3及び4に示す溶接ワイヤ及び組成を変
えたシールドガスを組み合わせて溶接試験を行った。溶
接部の機械的性能の評価として、全厚継手引張試験、溶
接部シャルピー衝撃試験及び溶接部ビッカース硬度試験
を行った。全厚継手引張試験においては、破断形態が母
材破断である場合を合格とした。溶接部シャルピー衝撃
試験においては、溶接部の板厚中央部から試験片のノッ
チが開先の中央部になるように試験片を採取し、吸収エ
ネルギ(vE0℃)を測定した。3本の試験片について
測定し、その平均値が100J以上である場合を合格と
した。溶接部ビッカース硬度試験においては、耐HIC
(Hydrogen Induced Cracking:水素誘起割れ)性の観
点より、表面下1mmの位置を0.5mmピッチで測定
し、硬度(Hv)の最大値が220以下である場合を合
格とした。また、耐欠陥性の評価として、X線透過試験
により、割れ、融合不良(LF)及びブローホール(B
H)の有無を確認し、これらの欠陥が認められない場合
を○、一部生じた場合を△、多量に生じた場合を×とし
た。更に、溶接作業性の評価として、アーク安定性、ビ
ード形状及びスラグの除去性(スラグ量、剥離性)を作
業者の官能により評価し、良好である場合を合格
(○)、不良である場合を不合格(×)とした。表5は
この溶接試験の結果を示す。
A welding test was carried out by combining the welding wires shown in Tables 3 and 4 and the shielding gas having different compositions. As the evaluation of the mechanical performance of the weld, a full thickness joint tensile test, a weld Charpy impact test, and a weld Vickers hardness test were performed. In the full-thickness joint tensile test, a case where the fracture mode was a base material fracture was regarded as acceptable. In the Charpy impact test of the weld, a test piece was sampled from the center of the plate thickness of the weld so that the notch of the test piece was at the center of the groove, and the absorbed energy (vE0 ° C.) was measured. The measurement was performed on three test pieces, and a case where the average value was 100 J or more was regarded as a pass. In the Vickers hardness test for welds, HIC resistance
From the viewpoint of (Hydrogen Induced Cracking), a position 1 mm below the surface was measured at a 0.5 mm pitch, and a case where the maximum value of the hardness (Hv) was 220 or less was determined to be acceptable. In addition, as an evaluation of the defect resistance, cracks, poor fusion (LF) and blowholes (B
The presence or absence of H) was confirmed, and the case where these defects were not recognized was evaluated as ○, the case where some of them were generated was evaluated as 多量, and the case where a large amount was generated was evaluated as ×. Further, as the evaluation of the welding workability, the arc stability, the bead shape, and the removability of the slag (the amount of the slag, the releasability) were evaluated based on the sensory characteristics of the operator. Was rejected (x). Table 5 shows the results of this welding test.

【0034】[0034]

【表1】 [Table 1]

【0035】なお、表1の溶接方向において、12時と
は鋼管の最上部を指し、3時は鋼管の側部、6時は鋼管
の最下部を指す。従って、12時→3時→6時とは、鋼
管の最上部から溶接を始め、鋼管の下部に向かって溶接
を行い、最下部において溶接を終了することを示してい
る。本実施例においては、このように鋼管の半周を溶接
し、次に、鋼管の反対側も同様に最上部から最下部まで
溶接し、全周を溶接した。
In the welding directions in Table 1, 12:00 indicates the uppermost portion of the steel pipe, 3 o'clock indicates the side of the steel pipe, and 6 o'clock indicates the lowermost portion of the steel pipe. Therefore, 12: 00 → 3: 00 → 6: 00 means that welding is started from the uppermost part of the steel pipe, welding is performed toward the lower part of the steel pipe, and welding is completed at the lowermost part. In the present embodiment, half the circumference of the steel pipe was welded in this manner, and then the opposite side of the steel pipe was similarly welded from the top to the bottom, and the entire circumference was welded.

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【表3】 [Table 3]

【0038】[0038]

【表4】 [Table 4]

【0039】[0039]

【表5】 [Table 5]

【0040】以下、前記溶接試験の結果について詳細に
説明する。前記表5におけるNo.T1乃至T18は本
発明の実施例である。実施例No.T1乃至T18は、
溶接ワイヤの成分及びシールドガスの組成が本発明の範
囲内にあるため、溶接金属の機械的性能、耐欠陥性及び
溶接作業性が優れていた。従って、これらの実施例にお
いては、高能率溶接システムにより良好な溶接を実現で
きた。
Hereinafter, the results of the welding test will be described in detail. No. in Table 5 above. T1 to T18 are embodiments of the present invention. Example No. T1 to T18 are
Since the components of the welding wire and the composition of the shielding gas were within the scope of the present invention, the mechanical properties, defect resistance and welding workability of the weld metal were excellent. Therefore, in these examples, good welding was realized by the high-efficiency welding system.

【0041】これに対し、前記表5におけるNo.T1
9乃至T44は比較例である。比較例No.T19は溶
接ワイヤ中のC量が低いため、溶接部の強度が不足し、
短絡移行のアーク安定性が劣っていた。比較例No.T
20は逆にC量が過剰であるため、溶接部の強度が高す
ぎ、最高硬度が220を超えていた。また、耐割れ性が
劣化し割れが生じており、スパッタ発生量も多かった。
比較例No.T21及びT22はSi量が本発明範囲よ
り低かったため、ビードが垂れやすくビード形状が悪く
なり、また、脱酸不足によりブローホールが生じてい
た。特に、溶接ワイヤ中のMn量が下限値に近い量であ
る比較例No.T21は、強度も不足していた。
On the other hand, no. T1
9 to T44 are comparative examples. Comparative Example No. In T19, since the C content in the welding wire is low, the strength of the weld is insufficient,
The arc stability at the short circuit transfer was poor. Comparative Example No. T
On the other hand, No. 20 had an excessive C content, so that the strength of the weld was too high and the maximum hardness exceeded 220. In addition, cracking resistance was deteriorated, cracking occurred, and the amount of spatter generated was large.
Comparative Example No. In T21 and T22, since the amount of Si was lower than the range of the present invention, the beads were easily sagged, the bead shape was deteriorated, and blowholes were generated due to insufficient deoxidation. In particular, in Comparative Example No. 1 in which the amount of Mn in the welding wire was close to the lower limit. T21 also lacked strength.

【0042】比較例No.T23、T25及びT27は
溶接ワイヤ中のMn量が下限より低いため、焼入れ性が
不足し、シャルピー吸収エネルギが低かった。また、M
nによる耐高温割れ性の向上効果が得られないため割れ
が生じていた。更に、アーク安定性が劣り、ビードが垂
れやすくビード形状が悪かった。特に、溶接ワイヤ中の
Si量が下限値に近い量である比較例No.T23は、
溶接金属の強度も不足していた。比較例No.T24、
T26及びT28は溶接ワイヤ中のMn量が本発明の上
限値よりも高いため、焼入れ性が過剰となり、最高硬度
が220を超えていた。また、スラグが多く発生し、ス
ラグ除去性が低下した。
Comparative Example No. In T23, T25 and T27, since the Mn content in the welding wire was lower than the lower limit, the hardenability was insufficient and the Charpy absorbed energy was low. Also, M
Since the effect of improving the hot cracking resistance by n was not obtained, cracking occurred. Furthermore, the arc stability was poor, the beads were easily sagged, and the bead shape was poor. In particular, in Comparative Example No. 1 in which the amount of Si in the welding wire was close to the lower limit. T23 is
The strength of the weld metal was also insufficient. Comparative Example No. T24,
In T26 and T28, since the Mn content in the welding wire was higher than the upper limit of the present invention, the quenchability was excessive and the maximum hardness exceeded 220. In addition, a large amount of slag was generated, and the slag removal property was reduced.

【0043】比較例No.T29、T30及びT31は
溶接ワイヤ中のSi量が過剰であるため、溶接金属の最
高硬度が220を超えると共に、粗大なフェライト粒が
生じ、シャルピー吸収エネルギが低くなった。また、S
i酸化物が多く生成したためスラグ量が多くなり、スラ
グ除去性が低下した。比較例No.T32は溶接ワイヤ
中のP量が過剰であるため、耐高温割れ性が低下し、割
れが多く生じた。また、靭性も低下した。比較例No.
T33は溶接ワイヤ中のS量が過剰であるため、耐高温
割れ性が低下し、割れが多く生じた。また、靭性も低下
した。
Comparative Example No. In T29, T30, and T31, since the amount of Si in the welding wire was excessive, the maximum hardness of the weld metal exceeded 220, coarse ferrite grains were generated, and the Charpy absorbed energy was low. Also, S
Since a large amount of i-oxide was generated, the amount of slag increased, and the slag removal property was reduced. Comparative Example No. In T32, since the P content in the welding wire was excessive, the hot cracking resistance was reduced, and many cracks occurred. Also, the toughness was reduced. Comparative Example No.
In T33, since the S content in the welding wire was excessive, the hot cracking resistance was lowered and many cracks occurred. Also, the toughness was reduced.

【0044】比較例No.T34は溶接ワイヤ中のNi
量が不足しているため、靭性向上効果が得られず、シャ
ルピー吸収エネルギが不足した。比較例No.T35は
溶接ワイヤ中にNiが過剰に添加されているため、溶接
金属の焼入れ性が過剰となり最高硬度が220を超え
た。また、耐高温割れ性が低下し、割れが生じた。比較
例No.T36は溶接ワイヤ中のTi量が過剰であるた
め、スラグの発生量が増加し、且つ、スラグ剥離性も悪
くスラグ除去性が低下した。また、短絡溶滴移行の安定
性が著しく低下し、スパッタ発生量も多かった。
Comparative Example No. T34 is Ni in the welding wire
Since the amount was insufficient, the effect of improving toughness was not obtained, and the Charpy absorbed energy was insufficient. Comparative Example No. In T35, since the Ni was excessively added to the welding wire, the hardenability of the weld metal became excessive and the maximum hardness exceeded 220. In addition, the hot cracking resistance was reduced, and cracking occurred. Comparative Example No. In T36, since the amount of Ti in the welding wire was excessive, the amount of slag generated increased, and the slag removability was poor, and the slag removal property was reduced. In addition, the stability of the transfer of the short-circuit droplet was significantly reduced, and the amount of spatter generated was large.

【0045】比較例No.T37は溶接ワイヤ中のCr
量が過剰であるため、溶接金属が強度過剰となり、最高
硬さが220を超えた。また、靭性が低下し、シャルピ
ー吸収エネルギが低下した。アーク安定性も劣り、スパ
ッタ発生量が多く、スラグ量の増加と剥離性低下により
スラグ除去性も劣った。比較例No.T38は溶接ワイ
ヤ中のAl量が過剰であるため、溶接金属が強度過剰と
なり、最高硬さが220を超えた。また、靭性は低下
し、シャルピー吸収エネルギが低下した。アーク安定性
も劣り、スパッタ発生量が多く、スラグ量の増加と剥離
性低下によりスラグ除去性も劣った。比較例No.T3
9は溶接ワイヤ中のNb量が過剰であるため、溶接金属
が強度過剰となり、最高硬さが220を超えた。また、
靭性が低下し、シャルピー吸収エネルギは低かった。ア
ーク安定性も劣り、スパッタ発生量が多く、スラグ量の
増加と剥離性低下によりスラグ除去性も劣った。比較例
No.T40は溶接ワイヤ中のCu量が過剰であるた
め、溶接金属の耐割れ性及び靭性が低下し、割れが多発
しシャルピー吸収エネルギが低かった。比較例No.T
41は溶接ワイヤ中のMo量が過剰であるため、溶接金
属の焼入れ性が過剰となり、溶接部の最高硬さが220
を超えた。
Comparative Example No. T37 is Cr in the welding wire
Due to the excessive amount, the weld metal became excessively strong and the maximum hardness exceeded 220. Further, the toughness was reduced, and the Charpy absorbed energy was reduced. The arc stability was also inferior, the amount of spatter generated was large, and the slag removal property was also inferior due to an increase in the amount of slag and a decrease in peelability. Comparative Example No. In T38, since the amount of Al in the welding wire was excessive, the strength of the weld metal was excessive, and the maximum hardness exceeded 220. Further, the toughness was reduced, and the Charpy absorbed energy was reduced. The arc stability was also inferior, the amount of spatter generated was large, and the slag removal property was also inferior due to an increase in the amount of slag and a decrease in peelability. Comparative Example No. T3
In No. 9, since the Nb content in the welding wire was excessive, the strength of the weld metal was excessive, and the maximum hardness exceeded 220. Also,
The toughness was reduced and the Charpy absorbed energy was low. The arc stability was also inferior, the amount of spatter generated was large, and the slag removal property was also inferior due to an increase in the amount of slag and a decrease in peelability. Comparative Example No. In T40, since the amount of Cu in the welding wire was excessive, the crack resistance and toughness of the weld metal were reduced, cracks occurred frequently, and the Charpy absorbed energy was low. Comparative Example No. T
In No. 41, since the Mo content in the welding wire is excessive, the hardenability of the weld metal becomes excessive, and the maximum hardness of the welded portion is 220.
Exceeded.

【0046】比較例No.T42は一般的な鋼管の全姿
勢溶接で使用されているワイヤであるAWS ER70
S−6及びJISZ3312 YGW12に該当する溶
接ワイヤを使用した場合である。この溶接ワイヤ(W3
8)は、Si量が高く、Niが無添加であるため、シャ
ルピー吸収エネルギが低く、スラグ量が多かった。更
に、Mn量が少ないためビードが垂れやすく、耐割れ性
の効果が得られず、また、S量も多いため、割れが多発
した。アーク安定性も悪かった。
Comparative Example No. T42 is AWS ER70 which is a wire used for general welding of a steel pipe in all positions.
This is a case where a welding wire corresponding to S-6 and JISZ3312 YGW12 is used. This welding wire (W3
In No. 8), since the amount of Si was high and Ni was not added, the Charpy absorbed energy was low and the amount of slag was large. Further, since the amount of Mn was small, the bead was easy to drop, and the effect of crack resistance was not obtained. Further, since the amount of S was large, cracks occurred frequently. Arc stability was also poor.

【0047】比較例No.T43及びT44は、溶接ワ
イヤの組成は本発明の範囲内であるが、溶接時における
シールドガス組成が本発明の溶接ワイヤの使用条件から
外れている。即ち、シールドガス中のArの比率が高す
ぎるため、溶け込み範囲が狭くなり、開先面の融合不良
及びArに起因したブローホールが多発した。また、溶
接金属の酸素量が低下して焼入れ性が過剰となり、溶接
部の最高硬さが220を超えた。
Comparative Example No. In T43 and T44, the composition of the welding wire is within the range of the present invention, but the shielding gas composition at the time of welding is out of the use conditions of the welding wire of the present invention. That is, since the ratio of Ar in the shield gas was too high, the penetration range was narrowed, and poor fusion of the groove surface and blowholes caused by Ar occurred frequently. In addition, the amount of oxygen in the weld metal was reduced and the hardenability became excessive, and the maximum hardness of the welded portion exceeded 220.

【0048】なお、本発明における開先形状は本実施例
の開先形状に限定されることなく、開先角度が40°ま
でのV開先、U開先及び多段開先に対しても同様に有効
である。また、本発明におけるトーチ運棒法は回転アー
ク法及び横振りウィービング法に限定されることなく、
他の方法においても有効である。また、溶接ビードの積
層方法は、上記実施例では表1に示すように全層下進溶
接であったが、本発明はそれに限らず、例えば、仕上層
のみ上進溶接としてもよい。この場合の上進溶接とは、
鋼管の下部から上部に向かって溶接する方法を指す。更
に、上記実施例では溶接ビードの積層において1層を1
パスで積層したが、本発明はそれに限らず、1層を2パ
ス以上で積層する振分溶接を行ってもよい。
The groove shape in the present invention is not limited to the groove shape of this embodiment, and the same applies to a V groove, a U groove and a multi-step groove having a groove angle of up to 40 °. It is effective for Also, the torch rod method in the present invention is not limited to the rotating arc method and the horizontal weaving method,
It is effective in other methods. Further, the method of laminating the welding beads in the above-described embodiment is all-layer downward welding as shown in Table 1, but the present invention is not limited to this, and for example, only the finishing layer may be upward-welding. In this case, upward welding
Refers to the method of welding from the bottom to the top of a steel pipe. Further, in the above embodiment, one layer is used for laminating the weld beads.
Although the lamination is performed in the pass, the present invention is not limited thereto, and the distribution welding in which one layer is laminated in two or more passes may be performed.

【0049】[0049]

【発明の効果】以上詳述したように、本発明によれば、
溶接ワイヤの各成分及びシールドガス組成を適正に規定
することにより、複雑な姿勢で溶接するため施工が難し
いパイプラインの周溶接において、狭開先化及び高速化
による高能率溶接システムを導入した場合でも、溶接金
属の強度、硬度及び靭性等の機械的性能、耐割れ性、耐
融合不良性及び耐ブローホール性等の耐欠陥性並びにビ
ード形状、アーク安定性、低スパッタ発生量及びスラグ
除去性等の溶接作業性の全てを良好にすることができ
る。これにより、パイプラインの現地溶接等において、
溶接作業の能率及び溶接された製品の品質を向上させ、
コストを下げることができる。これらの効果の工業的価
値は極めて大きい。
As described in detail above, according to the present invention,
In the case of introducing a highly efficient welding system by narrowing the gap and increasing the speed in girth welding of pipelines that are difficult to construct because welding is performed in a complicated posture by properly specifying the components of the welding wire and the shielding gas composition However, mechanical properties such as strength, hardness and toughness of weld metal, crack resistance, defect resistance such as poor fusion resistance and blowhole resistance, bead shape, arc stability, low spatter generation and slag removal , Etc., can be improved. As a result, in on-site welding of pipelines,
Improve the efficiency of welding work and the quality of welded products,
Costs can be reduced. The industrial value of these effects is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】溶接ワイヤ中のSi及びMnの含有量と溶接金
属の機械的性能及び溶接作業性との関係を示すグラフ図
である。
FIG. 1 is a graph showing the relationship between the contents of Si and Mn in a welding wire and the mechanical performance and welding workability of a weld metal.

【図2】溶接ワイヤ中のNiの含有量と溶接金属のシャ
ルピー吸収エネルギ及び凝固割れ発生率との関係を示す
グラフ図である。
FIG. 2 is a graph showing the relationship between the Ni content in a welding wire, the Charpy absorbed energy of a weld metal, and the rate of solidification cracking.

【図3】本発明の実施例における溶接方法を示す図であ
って、(a)は鋼管周継手を示す模式図であり、(b)
は溶接部の開先の形状を示す断面図である。
3A and 3B are diagrams showing a welding method in an embodiment of the present invention, wherein FIG. 3A is a schematic diagram showing a steel pipe peripheral joint, and FIG.
FIG. 4 is a cross-sectional view showing a shape of a groove of a welded portion.

【符号の説明】[Explanation of symbols]

1;鋼管 2;開先 3;銅裏当て 1; steel pipe 2; groove 3; copper backing

───────────────────────────────────────────────────── フロントページの続き (72)発明者 玉置 尚弘 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 村山 雅智 神奈川県横浜市鶴見区小野町88番地 日本 鋼管工事株式会社内 (72)発明者 三浦 定史 神奈川県横浜市鶴見区小野町88番地 日本 鋼管工事株式会社内 (72)発明者 杉浦 一樹 神奈川県横浜市鶴見区小野町88番地 日本 鋼管工事株式会社内 (72)発明者 鈴木 励一 神奈川県藤沢市宮前字裏河内100番1 株 式会社神戸製鋼所藤沢事業所内 Fターム(参考) 4E001 AA03 BB06 BB09 CA07 CC03 DA06 DD02 DD04 DF01 DF04 EA01 EA03 EA04 EA05 EA08 4E081 AA03 AA05 BA27 BB04 CA09 CA10 DA05 DA23 DA36 DA40 DA62 EA38  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Naohiro Tamaki 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Within Nihon Kokan Co., Ltd. Construction Co., Ltd. (72) Inventor Sadafumi Miura 88, Ono-cho, Tsurumi-ku, Yokohama, Japan Kanagawa Pref. (72) Inventor Reichi Suzuki 100-1 Urakawachi, Miyama-ji, Fujisawa-shi, Kanagawa F-term in Kobe Steel, Ltd.Fujisawa Plant (Reference) 4E081 AA03 AA05 BA27 BB04 CA09 CA10 DA05 DA23 DA36 DA40 DA62 EA38

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 シールドガスとして100体積%CO2
ガス又はArが75体積%以下であるArとCO2との
混合ガスを使用する炭素鋼鋼管周溶接用ソリッドワイヤ
において、C:0.03乃至0.12質量%、Si:
0.35乃至0.60質量%、Mn:1.60乃至2.
10質量%、Ni:0.30乃至0.90質量%、P:
0.015質量%以下、S:0.015質量%以下、T
i:0.020質量%以下、Cr:0.10質量%以
下、Al:0.01質量%以下、Nb:0.01質量%
以下、Cu:0.30質量%以下及びMo:0.20質
量%以下を含有し、残部がFe及び不可避的不純物から
なる組成を有することを特徴とする炭素鋼鋼管周溶接用
ソリッドワイヤ。
1. A 100% by volume CO 2 as a shielding gas
In a solid wire for circumferential welding of carbon steel pipes using a gas or a mixed gas of Ar and CO 2 in which Ar is 75% by volume or less, C: 0.03 to 0.12% by mass, Si:
0.35 to 0.60 mass%, Mn: 1.60 to 2.
10% by mass, Ni: 0.30 to 0.90% by mass, P:
0.015% by mass or less, S: 0.015% by mass or less, T
i: 0.020% by mass or less, Cr: 0.10% by mass or less, Al: 0.01% by mass or less, Nb: 0.01% by mass
Hereinafter, a solid wire for circumferential welding of carbon steel pipes, characterized by containing Cu: 0.30% by mass or less and Mo: 0.20% by mass or less, and having a balance of Fe and unavoidable impurities.
【請求項2】 請求項1に記載のソリッドワイヤを使用
し、シールドガスとして100体積%CO2ガス又はA
rとCO2との混合ガスを使用して全姿勢溶接により鋼
管の継手を周方向に溶接する方法であって、前記混合ガ
スの組成はArが75体積%以下であることを特徴とす
る炭素鋼鋼管周溶接方法。
2. The solid wire according to claim 1, wherein 100% by volume CO 2 gas or A is used as a shielding gas.
A method of circumferentially welding a steel pipe joint by all-position welding using a mixed gas of r and CO 2 , wherein the composition of the mixed gas is such that Ar is 75% by volume or less. Steel pipe girth welding method.
JP2000205747A 2000-07-06 2000-07-06 Solid wire for circumferential weld of carbon steel pipe and welding method using the same Pending JP2002018592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000205747A JP2002018592A (en) 2000-07-06 2000-07-06 Solid wire for circumferential weld of carbon steel pipe and welding method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000205747A JP2002018592A (en) 2000-07-06 2000-07-06 Solid wire for circumferential weld of carbon steel pipe and welding method using the same

Publications (1)

Publication Number Publication Date
JP2002018592A true JP2002018592A (en) 2002-01-22

Family

ID=18702784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000205747A Pending JP2002018592A (en) 2000-07-06 2000-07-06 Solid wire for circumferential weld of carbon steel pipe and welding method using the same

Country Status (1)

Country Link
JP (1) JP2002018592A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012210653A (en) * 2011-03-18 2012-11-01 Nippon Steel Corp Method for welding of thermo-mechanically controlled steel sheet
CN102873467A (en) * 2012-09-06 2013-01-16 沈阳工业大学 Welding wire of steel-copper dissimilar metal submerged-arc welding and welding method of welding wirethereof
WO2014006998A1 (en) * 2012-07-05 2014-01-09 日野自動車株式会社 Welding method
CN103846571A (en) * 2014-03-26 2014-06-11 锦州天鹅焊材股份有限公司 Welding wire for submerged-arc welding of high-efficiency X100 pipeline steel and application of welding wire
CN104493330A (en) * 2014-11-11 2015-04-08 中国石油天然气集团公司 Circumferential weld butt welding method of double-metal composite pipe
CN104907673A (en) * 2015-06-30 2015-09-16 湖北省建工工业设备安装有限公司 Installation method of outdoor carbon steel oxygen transferring pipeline
CN107350657A (en) * 2017-05-27 2017-11-17 内蒙古包钢钢联股份有限公司 Weld railway vehicle dynamics gas protecting welding wire
CN107900555A (en) * 2017-12-18 2018-04-13 武汉钢铁有限公司 A kind of welding wire for 630MPa grades high Nb steel two pass submerged-arc welding

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012210653A (en) * 2011-03-18 2012-11-01 Nippon Steel Corp Method for welding of thermo-mechanically controlled steel sheet
WO2014006998A1 (en) * 2012-07-05 2014-01-09 日野自動車株式会社 Welding method
JP2014014823A (en) * 2012-07-05 2014-01-30 Hino Motors Ltd Welding method
CN102873467A (en) * 2012-09-06 2013-01-16 沈阳工业大学 Welding wire of steel-copper dissimilar metal submerged-arc welding and welding method of welding wirethereof
CN103846571A (en) * 2014-03-26 2014-06-11 锦州天鹅焊材股份有限公司 Welding wire for submerged-arc welding of high-efficiency X100 pipeline steel and application of welding wire
CN104493330A (en) * 2014-11-11 2015-04-08 中国石油天然气集团公司 Circumferential weld butt welding method of double-metal composite pipe
CN104907673A (en) * 2015-06-30 2015-09-16 湖北省建工工业设备安装有限公司 Installation method of outdoor carbon steel oxygen transferring pipeline
CN107350657A (en) * 2017-05-27 2017-11-17 内蒙古包钢钢联股份有限公司 Weld railway vehicle dynamics gas protecting welding wire
CN107900555A (en) * 2017-12-18 2018-04-13 武汉钢铁有限公司 A kind of welding wire for 630MPa grades high Nb steel two pass submerged-arc welding
CN107900555B (en) * 2017-12-18 2020-04-21 武汉钢铁有限公司 Welding wire for 630MPa grade high Nb steel double-channel submerged arc welding

Similar Documents

Publication Publication Date Title
JP5005309B2 (en) Gas shielded arc welding flux cored wire for high strength steel
JP4886440B2 (en) High strength weld metal with excellent low temperature toughness
JP5339871B2 (en) Flux-cored wire for submerged arc welding of low temperature steel and welding method.
KR101583197B1 (en) Bonded flux for submerged arc welding
US10688602B2 (en) Submerged arc welding process
EP2067566A1 (en) Flux-cored wire for submerged arc welding of low-temperature steel and a method for welding using the same
JP5137468B2 (en) Solid wire for carbon dioxide shielded arc welding
JP5244059B2 (en) Welded solid wire and weld metal
JP6418365B1 (en) Ni-base alloy wire for submerged arc welding, and method for manufacturing welded joint
JP2015009247A (en) Welding solid wire, welding method, and weld metal
CN112512742B (en) Solid welding wire and method for manufacturing welded joint
JP2002018592A (en) Solid wire for circumferential weld of carbon steel pipe and welding method using the same
JP6447793B1 (en) Ni-based alloy core wire for coated arc welding rod, coated arc welding rod, and manufacturing method of coated arc welding rod
JP5830278B2 (en) Submerged arc welding method for low alloy steel with excellent sulfuric acid resistance and hydrochloric acid resistance
KR101719797B1 (en) Flux cored wire
JP3877940B2 (en) Solid wire for circumferential welding of carbon steel pipe and welding method using the same
JP4745900B2 (en) High strength weld metal with good low temperature toughness, low temperature cracking resistance and bead shape during all position welding
JP2019048323A (en) Flux-cored wire for gas shield arc-welding, and method of manufacturing weld joint
JP3352920B2 (en) Gas shielded arc welding method
JP2007229781A (en) Flux-cored wire
JP2711071B2 (en) Bond flux for submerged arc welding
JP2004261858A (en) Wire for welding martensitic stainless steel pipe
JP4576262B2 (en) Solid wire for gas shielded arc welding for steel pipe circumference welded joint and welding method
WO2022130905A1 (en) Flux cored wire
JPH09285891A (en) Electro gas arc welding fluxed core wire