JP2002013907A - Plane shape measuring method for phase-shift interference fringe simultaneous photographing device - Google Patents

Plane shape measuring method for phase-shift interference fringe simultaneous photographing device

Info

Publication number
JP2002013907A
JP2002013907A JP2000197484A JP2000197484A JP2002013907A JP 2002013907 A JP2002013907 A JP 2002013907A JP 2000197484 A JP2000197484 A JP 2000197484A JP 2000197484 A JP2000197484 A JP 2000197484A JP 2002013907 A JP2002013907 A JP 2002013907A
Authority
JP
Japan
Prior art keywords
optical
interference fringe
light
phase difference
shift interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000197484A
Other languages
Japanese (ja)
Other versions
JP3714854B2 (en
Inventor
Kazuhiko Kawasaki
川崎  和彦
Hiroshi Haino
宏 配野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2000197484A priority Critical patent/JP3714854B2/en
Publication of JP2002013907A publication Critical patent/JP2002013907A/en
Application granted granted Critical
Publication of JP3714854B2 publication Critical patent/JP3714854B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a plane shape measuring method capable of providing a phase-shift interference fringe image that can be analyzed with high accuracy even if biases and amplitudes are different from each other at various points in observation areas of three branch phase-shift interference fringes for a phase- shift interference fringe simultaneous photographing device. SOLUTION: The biases and amplitudes of the branch phase-shift interference fringes and reference light observed for each branch are previously measured at various points in the observation areas. By using the biases and amplitudes and reference light image data acquired by the measurement, luminance conversion is given to branch phase-shift interference fringe image data acquired in succeeding measurement of tested surfaces to perform matching of the biases and amplitudes by a point-by-point basis in the observation areas, thereby sharply increasing the accuracy of a phase-shift interference fringe simultaneous measuring device.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被検面と参照面か
らの反射光が光学的に無干渉状態にある原光束を複数の
分枝原光束に分割し、それぞれ分枝原光束に異なる固定
的光学位相差を与えて干渉させ、複数の撮像装置で同時
撮像を行う位相シフト干渉縞同時計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention divides an original light beam in which reflected light from a test surface and a reference surface is optically free from interference into a plurality of branched original light beams, each of which is different from a branched original light beam. The present invention relates to a phase shift interference fringe simultaneous measurement apparatus that performs simultaneous imaging with a plurality of imaging devices by giving a fixed optical phase difference and causing interference.

【0002】[0002]

【従来の技術】従来、図1に示すような位相シフト干渉
縞同時計測装置が本出願人による特願平11−1368
31号出願で提案されている。即ち、同位相シフト干渉
縞同時計測装置においては、レーザ光源1からのレーザ
光束はレンズ2よりビーム径を拡大され、ビームスプリ
ッタ3を透過してコリメートレンズ4にて平行光束とさ
れる。そして、この平行光束は参照面5で反射された参
照光と参照面5,1/4波長板6を透過し被検面7で反
射された試料光を生成するが、この参照光と試料光は直
交する直線偏光で光学的無干渉状態にある。
2. Description of the Related Art Conventionally, a phase shift interference fringe simultaneous measuring apparatus as shown in FIG. 1 has been proposed by the present applicant in Japanese Patent Application No. 11-1368.
No. 31 has been proposed. That is, in the simultaneous phase shift interference fringe measuring apparatus, the laser beam from the laser light source 1 is expanded in beam diameter by the lens 2, passes through the beam splitter 3, and is converted into a parallel beam by the collimator lens 4. The parallel light flux transmits the reference light reflected by the reference surface 5 and the sample light transmitted through the reference surface 5 and the quarter-wave plate 6 and reflected by the test surface 7. Is orthogonal linearly polarized light and is optically free from interference.

【0003】また、ビームスプリッタ3で反射された参
照光と試料光は 1/4波長板8でそれぞれ互いに回転
方向の異なる円偏光状態となり三分光プリズム9で3つ
の分枝光束に分割される。それぞれの分枝光束の光路上
には偏光板10〜12が配置され、光軸に対してほぼ直
交する面内における偏光板の透過軸角度が設定され、固
定的光学位相差を与えた分枝位相シフト干渉縞が発生
し、これらの分枝位相シフト干渉縞が撮像装置13〜1
5により同時に撮像される。
Further, the reference light and the sample light reflected by the beam splitter 3 are turned into circularly polarized light states having different rotation directions from each other by a 8 wavelength plate 8 and are divided into three branched light beams by a trispectral prism 9. Polarizing plates 10 to 12 are arranged on the optical path of each branching light beam, the transmission axis angle of the polarizing plate is set in a plane substantially orthogonal to the optical axis, and a branch having a fixed optical phase difference is provided. Phase shift interference fringes occur, and these branched phase shift interference fringes are captured by the imaging devices 13 to 1.
5 are imaged simultaneously.

【0004】[0004]

【発明が解決しようとする課題】つまり、この位相シフ
ト干渉縞同時計測装置では、偏光板10〜12の透過軸
の正確な角度の設定により、計測に必要な分枝位相シフ
ト干渉縞が与えられるが、この装置において被検面起伏
形状を高精度に計測するためには、3つの分枝位相シフ
ト干渉縞間におけるバイアス、振幅が観測領域内の各点
にて等しいことが前提となる。ところが、三分光プリズ
ム9における分割強度誤差や1/4波長板8の低速軸の
設置誤差にともなう透過光の楕円偏光化などが原因とな
り、3つの分枝位相シフト干渉縞のバイアスと振幅は、
実際にはそれぞれ異なるものとなる。このため従来は、
分枝位相シフト干渉縞画像からバイアスと振幅の代表値
を算出し相互の差を補正する対策がとられている。しか
し、分枝光路上に介在する光学素子を均一に作用させる
ことは、現実にはむずかしく、分枝位相シフト干渉縞間
のバイアスと振幅の値は観測領域内の各点にて異なるの
が現実であり、代表値で一様に補正する方法では、一画
面内においてバイアスと振幅のばらつきが補正後に残っ
てしまう問題がある。
That is, in this phase shift interference fringe simultaneous measurement apparatus, a branched phase shift interference fringe necessary for measurement is given by setting the exact angle of the transmission axis of the polarizing plates 10 to 12. However, in order to measure the undulating shape of the surface to be measured with high accuracy in this apparatus, it is premised that the bias and the amplitude between the three branched phase-shift interference fringes are equal at each point in the observation region. However, the bias and amplitude of the three branched phase-shift interference fringes due to the divisional intensity error in the three-spectrum prism 9 and the elliptically polarized transmitted light due to the error in setting the low-speed axis of the quarter-wave plate 8,
In practice, they will be different. For this reason, conventionally,
Measures have been taken to calculate a representative value of the bias and the amplitude from the branched phase-shift interference fringe image and correct the mutual difference. However, it is actually difficult to make the optical elements intervening on the branching optical path act uniformly, and in reality, the values of the bias and amplitude between the branching phase shift interference fringes are different at each point in the observation region. In addition, the method of uniformly correcting with a representative value has a problem that a variation in bias and amplitude remains in one screen after the correction.

【0005】本発明の目的は、前述したような位相シフ
ト干渉縞同時撮像装置の問題に鑑み、3つの分枝位相シ
フト干渉縞の観測領域内の各点におけるバイアス、振幅
が互いに異なっていても、高精度に解析できる位相シフ
ト干渉縞画像を得ることができる平面形状計測方法を得
るにある。
An object of the present invention is to solve the above-described problem of the phase shift interference fringe simultaneous imaging apparatus as described above, and even if the bias and amplitude at each point in the observation region of the three branched phase shift interference fringes are different from each other. Another object of the present invention is to provide a planar shape measuring method capable of obtaining a phase shift interference fringe image which can be analyzed with high accuracy.

【0006】[0006]

【課題を解決するための手段】この目的を達成するた
め、本発明は、分枝位相シフト干渉縞のバイアスと振幅
値と分枝ごとに観測される参照光を観測領域内の各点に
おいて予め計測し、計測によって得られたバイアスと振
幅の値と参照光画像データを用いて、以後の被検面計測
時に得られる分枝位相シフト干渉縞画像データに対し輝
度変換を施してバイアス、振幅の整合を観測領域内の各
点ごとに行なうことで、位相シフト干渉縞同時計測装置
大幅な高精度化を図ることを提案するものである。つま
り、本発明においては、レーザ光源からのコヒーレント
光束を参照面と被検面に照射し、前記参照面及び前記被
検面のそれぞれからの反射光である参照光と試料光の偏
光面を偏光光学素子を介在させて互いに直交させること
により、光学的無干渉状態となした原光束を生成する観
測光学系と、前記原光束を複数に分光した分枝原光束に
分け、前記分枝原光束のそれぞれに偏光光学素子を介し
て異なる固定的光学位相差を与えた複数の分枝位相シフ
ト干渉縞を発生させ、前記被検面の観測範囲にある一つ
の位置がそれぞれの分枝観測座標系において同一位置に
なるよう位置の整合させ、分枝光束ごとに設けられた撮
像装置でこれらの干渉縞に対応する画像データを取得
し、前記被検面の観測範囲の平面起伏形状を位相シフト
法を用いて数値データとして再現させる位相シフト干渉
縞同時撮像装置において、前記参照光と前記試料光との
間に相対的な光学的位相差を別途与えたときに前記各撮
像装置で得られる分枝ごとの位相シフト干渉縞画像デー
タから算出した分枝原光束ごとのバイアスと振幅と、試
料光がない状態で各分枝原光束ごとに得られる分枝参照
光画像データとを用いて平面起伏形状計測時の分枝ごと
の位相シフト干渉縞画像データを輝度変換して、観測領
域内の各点におけるバイアスと振幅を整合調整し、位相
シフト法により干渉縞の各点ごとの位相算出を行う位相
シフト干渉縞同時撮像装置における平面形状計測方法が
提案される。
In order to achieve this object, the present invention provides a method in which a bias and an amplitude value of a branched phase-shifted interference fringe and a reference light observed for each branch are previously determined at each point in an observation area. Measured, using the bias and amplitude values obtained by the measurement and the reference light image data, apply brightness conversion to the branched phase shift interference fringe image data obtained at the The present invention proposes that the simultaneous measurement of the phase shift interference fringe can be greatly improved by performing the matching for each point in the observation area. That is, in the present invention, the reference surface and the test surface are irradiated with the coherent light beam from the laser light source, and the reference light and the sample light, which are the reflected light from the reference surface and the test surface, are polarized. An observation optical system that generates an original light beam in an optically non-interfering state by intersecting the original light beam through an optical element and splitting the original light beam into a plurality of branched original light beams. Generate a plurality of branched phase-shift interference fringes, each of which has a different fixed optical phase difference via a polarizing optical element, and one position in the observation range of the surface to be measured is in each of the branch observation coordinate systems. The positions are aligned so as to be the same position, image data corresponding to these interference fringes is acquired by an imaging device provided for each branch light beam, and the plane undulation shape of the observation range of the surface to be inspected is phase-shifted. Numeric using In the simultaneous phase shift interference fringe imaging apparatus to be reproduced as data, the phase for each branch obtained by each imaging apparatus when a relative optical phase difference is separately provided between the reference light and the sample light. The bias and amplitude of each branched original light beam calculated from the shift interference fringe image data and the branch reference light image data obtained for each branched original light beam in the absence of the sample light are used to measure the planar undulation shape. Phase-shift interference fringes that perform brightness conversion of phase-shift interference fringe image data for each branch, match and adjust the bias and amplitude at each point in the observation area, and calculate the phase of each point of the interference fringe using the phase shift method. A planar shape measurement method in a simultaneous imaging device is proposed.

【0007】後述する本発明の好ましい実施例の説明に
おいては、 1)前記参照光と前記試料光との間に相対的な光学的位相
差を別途与える際、前記レーザ光源の波長をわずかづつ
変化させることにより前記光学的位相差を発生させる方
法、 2)前記参照光と前記試料光との間に相対的な光学的位相
差を別途与える際、前記参照面あるいは前記被検面のど
ちらか一方を光軸に沿ってわずかづつ平行移動させるこ
とにより、前記光学的位相差を発生させる方法、 3)前記参照光と前記試料光との間に相対的な光学的位相
差を別途与える際、前記参照面と前記被検面との間の光
路に1より大きい屈折率をもつ無反射透過体であって、
互いに厚みが異なる少なくとも1枚の平行板を挿入する
ことにより前記光学位的相差を発生させる方法、 4)前記参照光と前記試料光との間に相対的な光学的位相
差を別途与える際、前記参照面と前記被検面との間の光
路に1より大きい屈折率を持つ無反射透過体であって、
参照面及び被検面に向かい合う2面が平行でない光学楔
を挿入し、光軸に対してほぼ略直交する面内において光
学楔を楔方向に移動させ前記光学的位相差を発生させる
方法、 5)前記参照光と前記試料光との間に相対的な光学的位相
差を別途与える際、前記参照面を被検面との間に液晶を
配置し、液晶の電気的な制御により屈折率を可変し、所
定の光学的位相差を発生させる方法、
In the following description of a preferred embodiment of the present invention, 1) when a relative optical phase difference is separately provided between the reference light and the sample light, the wavelength of the laser light source is changed little by little. 2) a method of generating a relative optical phase difference between the reference light and the sample light by providing a relative optical phase difference between the reference light and the sample light. The method of generating the optical phase difference by slightly translating the optical axis along the optical axis, 3) When separately providing a relative optical phase difference between the reference light and the sample light, A non-reflective transmissive body having a refractive index greater than 1 in an optical path between a reference surface and the test surface,
A method of generating the optical phase difference by inserting at least one parallel plate having a different thickness from each other.4) When separately providing a relative optical phase difference between the reference light and the sample light, A non-reflective transmissive body having a refractive index greater than 1 in an optical path between the reference surface and the test surface,
A method in which an optical wedge whose two surfaces facing the reference surface and the test surface are not parallel is inserted, and the optical wedge is moved in the wedge direction in a plane substantially perpendicular to the optical axis to generate the optical phase difference; When separately providing a relative optical phase difference between the reference light and the sample light, a liquid crystal is arranged between the reference surface and the surface to be measured, and the refractive index is controlled by electric control of the liquid crystal. Variable, to generate a predetermined optical phase difference,

【0008】そして、本発明の実施例の説明において
は、 1)各点ごとに求めた前記バイアスと振幅の他点との差異
が、許容範囲である各点の集合ごとに整理された前記バ
イアスと振幅の値であるもの、 2)各点ごとに求めた前記バイアスと振幅の値から得た単
純平均または中央値または2乗平均値が、バイアスと振
幅の代表値として、各点の位置に関係なく全領域に用い
られるもの、 3)前述した各平面形状計測方法を具体化するための、波
長をわずかづつ変化できるレーザ光源、光軸に沿ってわ
ずかづつ平行移動できる前記参照面あるいは前記被検
面、前記参照面と前記被検面との間の光路に位置される
1より大きい屈折率の無反射透過体平行板、前記参照面
と前記被検面との間の光路に位置される1より大きい屈
折率をもちかつ楔方向に移動できる光学楔、前記参照面
と前記被検面との間の光路に位置されかつ電気的制御で
屈折率を変化できる液晶を組み込まれた位相シフト干渉
縞同時撮像装置も説明される。
In the description of the embodiment of the present invention, 1) the difference between the bias obtained for each point and another point of the amplitude is determined by the bias which is arranged for each set of points within an allowable range. 2) The simple average, median or square mean value obtained from the bias and amplitude values obtained for each point is used as a representative value of the bias and amplitude at the position of each point. 3) a laser light source that can change the wavelength little by little, the reference surface or the object that can be translated little by little along the optical axis, for realizing each of the planar shape measurement methods described above. An inspection surface, a non-reflective transmissive parallel plate having a refractive index greater than 1 and located in an optical path between the reference surface and the test surface, and an optical path between the reference surface and the test surface Has a refractive index greater than 1 and moves in the wedge direction Kill optical wedge, it is also described phase shift interference fringe simultaneous imaging device incorporated a liquid crystal capable of changing the refractive index at the location to and electrically controlling the optical path between the reference surface and the test surface.

【0009】[0009]

【発明の実施の形態】本発明の平面形状計測方法は、図
1に示した位相シフト干渉縞同時撮像装置において、分
枝位相シフト干渉縞のバイアスと振幅値と分枝ごとに観
測される参照光を観測領域内の各点において予め計測
し、計測によって得られたバイアスと振幅の値と参照光
画像データを用いて、以後の被検面計測時に得られる分
枝位相シフト干渉縞画像データに対し輝度変換を施して
バイアス、振幅の整合を観測領域内の各点ごとに行なう
ことを特徴とするものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The plane shape measuring method according to the present invention uses a phase shift interference fringe simultaneous imaging device shown in FIG. The light is measured in advance at each point in the observation area, and the values of the bias and amplitude obtained by the measurement and the reference light image data are used to convert the branched phase shift interference fringe image data obtained at the time of the subsequent measurement of the test surface. On the other hand, it is characterized in that brightness conversion is performed and bias and amplitude matching is performed for each point in the observation region.

【0010】本発明の平面形状計測方法を具体的に説明
すると、位相シフト法を用いて3枚の干渉縞から被検面
起伏形状を算出する場合、3枚の干渉縞を次式でそれぞ
れ表し、被検面起伏形状に相当するφ(x,y)を算出
するのが一般的である。
More specifically, the plane shape measuring method of the present invention will be described. When calculating the undulating shape of a test surface from three interference fringes using the phase shift method, the three interference fringes are expressed by the following equations, respectively. In general, φ (x, y) corresponding to the undulating shape of the test surface is calculated.

【数1】 ここで、I1 (x,y)、I2 (x,y)、I3 (x,
y)はビデオカメラなどの撮像装置で計測される輝度情
報を、B(x,y)、A(x,y)はそれぞれの干渉縞
のバイアス、振幅を、α(x,y)とβ(x,y)は干
渉計にて計画的に付加される位相シフト量を表す。
(Equation 1) Here, I 1 (x, y), I 2 (x, y), I 3 (x, y)
y) is luminance information measured by an imaging device such as a video camera, B (x, y) and A (x, y) are bias and amplitude of each interference fringe, and α (x, y) and β ( (x, y) represents a phase shift amount intentionally added by the interferometer.

【0011】図1に示した位相シフト干渉縞同時計測装
置で被検面7を観測したときに撮像装置13〜15で得
られる分枝位相シフト干渉縞も(1−1式)、(1−2
式)、(1−3式)と同様に表されるのが理想である。
ところが、位相シフト干渉縞同時撮像装置においては位
相シフト量α(x,y)、β(x,y)が計画値通り与
えられていたとしても、円偏光生成に用いた1/4波長
板6,8の低速軸設置誤差や3分割プリズムの光束分割
誤差などが原因して、分枝位相シフト干渉縞間のバイア
ス、振幅はそれぞれ異なったものとなる。さらには、干
渉計構成部品の反射率や透過率の不均一性により、任意
のx,y座標上において3枚の干渉縞画像間で対応する
点どおしのバイアスと振幅はx,y各点にて異なるか
ら、当然に、これらの問題に対して対策を施さなけれ
は、形状算出時に大きな誤差を生じることになる。
When the surface 7 to be inspected is observed by the simultaneous phase shift interference fringe measuring device shown in FIG. 1, the branched phase shift interference fringes obtained by the imaging devices 13 to 15 are also expressed by (1-1) and (1- 2
Ideally, it is expressed in the same way as (Expression) and (1-3 Expression).
However, in the phase shift interference fringe simultaneous imaging apparatus, even if the phase shift amounts α (x, y) and β (x, y) are given as planned, the 波長 wavelength plate 6 used for generating circularly polarized light is used. , 8, the bias and the amplitude between the branched phase-shift interference fringes are different from each other due to the low-speed axis setting error of 3 and the beam splitting error of the three-segment prism. Further, due to the non-uniformity of the reflectance and transmittance of the interferometer components, the bias and amplitude of the corresponding points between the three interference fringe images on arbitrary x and y coordinates are x and y. Naturally, unless measures are taken against these problems, a large error will occur at the time of shape calculation.

【0012】そこで、本発明では、3枚の干渉縞の輝度
情報I1 (x,y)、I2 (x,y)、I3 (x,y)
に対して輝度変換を施し、分枝位相シフト干渉縞間のバ
イアス、振幅の整合調整をx,y各点にて行なったもの
と計画的に与えられた位相シフト量α(x,y)、β
(x,y)を用いて、φ(x,y)を算出するが、この
具体的な方法を次に説明する。
Therefore, in the present invention, luminance information I 1 (x, y), I 2 (x, y), and I 3 (x, y) of three interference fringes are provided.
Is subjected to luminance conversion, and the adjustment of the bias and amplitude matching between the branched phase-shift interference fringes is performed at each of the x and y points, and the phase shift amount α (x, y) given systematically, β
(X, y) is used to calculate φ (x, y). A specific method will be described below.

【0013】前述したような問題を加味して、位相シフ
ト干渉縞同時撮像装置の撮像装置13〜15で得られた
干渉縞は次の(2−1式)〜(2−3式)でそれぞれ表
される。
In consideration of the above-described problems, the interference fringes obtained by the imaging devices 13 to 15 of the phase shift interference fringe simultaneous imaging device are expressed by the following equations (2-1) to (2-3), respectively. expressed.

【0014】[0014]

【数2】 (Equation 2)

【0015】また、参照光と試料光の間に光学的位相差
δi を別途与えたときに、得られる分枝ごとの位相シフ
ト干渉縞は次の(3−1式)〜(3−3式)で表わすこ
とができる。
When an optical phase difference δ i is separately given between the reference light and the sample light, the obtained phase shift interference fringes for each branch are expressed by the following equations (3-1) to (3-3). Expression).

【数3】 (Equation 3)

【0016】δi を任意に変化させて分枝ごとに3枚以
上の分枝位相シフト干渉縞を得ると、各分枝ごとのバイ
アスと振幅を算出することができる。ここで、一つの算
出方法例を示すと、δi を干渉縞位相1周期2πを等し
く分割する値δi =i2π/N;i=1,2,3,・・
・Nとした場合には、以下の計算を行なうことにより各
分枝ごとのバイアス及び振幅は次の(4−1式)〜(4
−3式)及び(5−1式)〜(5−3式)で算出され
る。
When δ i is arbitrarily changed and three or more branch phase-shift interference fringes are obtained for each branch, the bias and amplitude for each branch can be calculated. Here, as one calculation method example, δ i is a value δ i = i2π / N that equally divides one period of interference fringe phase 2π; i = 1, 2, 3,.
When N is set, the bias and amplitude for each branch are calculated by the following calculation to obtain the following equations (4-1) to (4).
-3) and (5-1) to (5-3).

【0017】[0017]

【数4】 (Equation 4)

【0018】ここで得られたB1 (x,y)、B2
(x,y)、B3 (x,y)、A1 (x,y)、A2
(x,y)、A3 (x,y)をバイアス及び振幅の整合
調整用被検面Sを計測したときの値とし、また、参照光
と試料光をそれぞれa(x,y)、b(x,y)とし、
分枝ごとに配置した撮像装置13〜15に到達する参照
光と試料光をa1 (x,y)、a2 (x,y)、a3
(x,y)とb1 (x,y)、b2 (x,y)、b3
(x,y)とする(以後は、x,yの次元を省き簡略化
して示す)。したがって、各分枝ごとのバイアスと振幅
と参照光と試料光の関係は
The obtained B 1 (x, y), B 2
(X, y), B 3 (x, y), A 1 (x, y), A 2
(X, y) and A 3 (x, y) are values when measuring the bias and amplitude matching adjustment test surface S, and the reference light and the sample light are a (x, y) and b, respectively. (X, y),
The reference light and the sample light reaching the imaging devices 13 to 15 arranged for each branch are represented by a 1 (x, y), a 2 (x, y), a 3
(X, y), b 1 (x, y), b 2 (x, y), b 3
(X, y) (hereinafter, the dimensions of x and y are omitted and simplified). Therefore, the relationship between the bias, amplitude, reference light, and sample light for each branch is

【数5】 で表される。(Equation 5) It is represented by

【0019】次に、異なる被検面Tを計測する際に、先
に算出したバイアス及び振幅値を用いて分枝位相シフト
干渉縞画像に対して輝度変換を施し、バイアス及び振幅
の整合調整を図り、被検面Tの起伏形状を算出する方法
を説明する。図2(a)はバイアス及び振幅整合調整用
被検面Sを計測する場合の撮像装置に入力される反射光
強度モデルを、図2(b)は被検面Tの計測時に撮像装
置に入力される反射光強度モデルをそれぞれ示す。
Next, when measuring different test surfaces T, brightness conversion is performed on the branched phase-shift interference fringe image using the previously calculated bias and amplitude values, and the bias and amplitude matching adjustment is performed. A method of calculating the undulating shape of the test surface T will be described. FIG. 2A shows a reflected light intensity model input to the imaging device when measuring the bias and amplitude matching adjustment target surface S, and FIG. 2B shows an input to the imaging device when measuring the target surface T. The respective reflected light intensity models are shown below.

【0020】これらの図2(a),(b)において、被
検面T計測時の試料光b’とbがb’=γbの関係にあ
るとすると、3台の撮像装置13〜15に到達する試料
光はそれぞれb’1 =γb1 、b’2 =γb2 、b’3
=γb3 のように同様の割合で影響を受けると考えるこ
とができる。これらを考慮すると、被検面T計測時の分
枝ごとのバイアスB1 ’、B2 ’、B3 ’、振幅A
1 ’、A2 ’、A3 ’と先に得られているバイアスB
1 、B2 、B3 と振幅A1 、A2 、A3 の関係は、次の
(8−1式)〜(8−3式)及び(9−1式)〜(9−
3式)で表される。
In FIGS. 2A and 2B, assuming that the sample light b ′ and b at the time of measuring the surface T to be inspected have a relationship of b ′ = γb, the three imaging devices 13 to 15 The arriving sample lights are b ′ 1 = γb 1 , b ′ 2 = γb 2 , b ′ 3, respectively.
= Γb 3 can be considered to be affected at a similar rate. Considering these, the biases B 1 ′, B 2 ′, B 3 ′ and the amplitude A
1 ', A 2', bias is obtained previously and A 3 'B
The relations between 1 , B 2 , B 3 and the amplitudes A 1 , A 2 , A 3 are expressed by the following equations (8-1) to (8-3) and (9-1) to (9-
3).

【数6】 (Equation 6)

【0021】よって、被検面Tの観測時に得られる3枚
の分枝位相シフト干渉縞は、それぞれ
Therefore, the three branched phase-shift interference fringes obtained at the time of observing the test surface T are respectively

【数7】 で表されることになる。(Equation 7) Will be represented by

【0022】(10−1式)〜(10−3式)中のa
1 、a2 、a3 は、試料光を遮光したときに得られる参
照光強度であり、被検面によらず時間的に一定の値であ
る。また、b1 、b2 、b3 はa1 、a2 、a3 とバイ
アス及び振幅の整合調整用被検面Sより得られた、B
1 、B2 、B3 の(6−1式)〜(7−3式)の関係か
ら算出することができる。
A in formulas (10-1) to (10-3)
1 , a 2 , and a 3 are reference light intensities obtained when the sample light is shielded, and are constant values over time irrespective of the test surface. B 1 , b 2 , and b 3 are B 1 obtained from the test surface S for adjusting the bias and amplitude with a 1 , a 2 , and a 3.
It can be calculated from the relationships of (Equation 6-1) to (Equation 7-3) of 1 , B 2 and B 3 .

【0023】式(10−1)〜(10−3)の3つの式
を用いたφの算出を以下に説明すると、(10−1式)
−a1 から、
The calculation of φ using the three equations (10-1) to (10-3) will be described below.
From -a 1 ,

【数8】 (10−2式)−a2 から、(Equation 8) (10-2 type) from -a 2,

【数9】 (10−3式)−a3 から、(Equation 9) From (10-3 type) -a 3,

【数10】 が得られる。(Equation 10) Is obtained.

【0024】そして、(11−1式)〜(11−3式)
から、
Then, (Equations 11-1) to (11-3)
From

【数11】 が得られる。[Equation 11] Is obtained.

【0025】行列式はThe determinant is

【数12】 になり、例えばα=π/2、β=πのときは、%1≠0
でφについて解くことができる。
(Equation 12) For example, when α = π / 2 and β = π,% 1 ≠ 0
Can be solved for φ.

【0026】したがって、(12式)は次式に書き換え
られる。
Therefore, the equation (12) can be rewritten as the following equation.

【数13】 となる。(Equation 13) Becomes

【0027】よって、位相φはTherefore, the phase φ is

【数14】 より得られるが、これは、分枝位相シフト干渉縞間のバ
イアス及び振幅の差異が観測領域内のx,y面内の各点
にて解消された後に、算出されたφ(x,y)被検面起
伏形状算出結果である。
[Equation 14] Which is calculated after the bias and amplitude differences between the branched phase-shifted interference fringes have been resolved at each point in the x, y plane in the observation region. It is a calculation result of the undulating shape of the test surface.

【0028】次に、分枝位相シフト干渉縞のバイアスと
振幅を計測するために、参照光と試料光に光学位相差を
別途与える方法について説明する。参照面5に対する被
検面7の距離がd(x,y)の時に撮像装置13より得
られる干渉縞は前述した(1−1式)において、
Next, a method for separately providing an optical phase difference between the reference light and the sample light in order to measure the bias and the amplitude of the branched phase shift interference fringes will be described. The interference fringe obtained from the imaging device 13 when the distance of the test surface 7 to the reference surface 5 is d (x, y) is expressed by the equation (1-1) described above.

【数15】 であるから、次式で表される。(Equation 15) Therefore, it is expressed by the following equation.

【数16】 I(x,y)は干渉縞強度、B(x,y)、A(x,
y)はそれぞれバイアス、振幅、λはレーザ光源1の波
長を表す。
(Equation 16) I (x, y) is the interference fringe intensity, B (x, y), A (x, y)
y) represents the bias and amplitude, respectively, and λ represents the wavelength of the laser light source 1.

【0029】ここで、波長λを微少量Δλi 変化させた
ときの干渉縞は、
Here, the interference fringe when the wavelength λ is changed by a small amount Δλ i is

【数17】 ここで、[Equation 17] here,

【数18】 であるから、(Equation 18) Because

【数19】 で表される。[Equation 19] It is represented by

【0030】同様に、撮像装置14、撮像装置15によ
って得られる干渉縞は
Similarly, the interference fringes obtained by the imaging devices 14 and 15 are

【数20】 (Equation 20)

【0031】で表される。つまり、δi =C・Δλi
相当する量、及び/または、レーザ光源1の波長をΔλ
i だけ変化させることで、参照光と試料光に光学位相差
を別途付加できる。そして、分枝ごとに得られる複数の
位相シフト干渉縞画像から(4−1式)〜(4−3式)
及び(5−1式)〜(5−3式)に示した演算を行なう
ことで、各分枝位相シフト干渉縞のバイアス及び振幅
を、x,y各点ごとに算出することができる。
## EQU1 ## That is, the amount corresponding to δ i = C · Δλ i and / or the wavelength of the laser light source 1 is set to Δλ
By changing only i , an optical phase difference can be separately added to the reference light and the sample light. Then, from a plurality of phase-shift interference fringe images obtained for each branch, (Equations 4-1) to (4-3)
By performing the operations shown in (Equation 5-1) to (Equation 5-3), the bias and amplitude of each branched phase shift interference fringe can be calculated for each of the x and y points.

【0032】また、参照光と試料光に光学位相差を別途
与える際に、図3や図4に示すように、参照面あるいは
被検面を光軸方向にΔdi 平行移動させても、各分枝位
相シフト干渉縞のバイアス、振幅をx,yの各点ごとに
算出することができる。その時の分枝位相シフト干渉縞
は次式で表される。
Further, in providing a reference beam and a sample beam optical phase difference separately, as shown in FIGS. 3 and 4, also be [Delta] d i translating the reference surface or the test surface in the optical axis direction, each The bias and amplitude of the branched phase-shift interference fringes can be calculated for each point of x and y. The branch phase shift interference fringe at that time is expressed by the following equation.

【数21】 (Equation 21)

【0033】つまり、(18−1式)〜(18−3式)
から明らかなように、 に相当する変位量Δdi を与えたときに、各分枝原光束
ごとに得られる複数の位相シフト干渉縞から(4−1
式)〜(4−2式)、(5−1式)〜(5−3式)に示
した演算を行なうことで、各分枝位相シフト干渉縞のバ
イアス及び振幅を、x,yの各点ごとに算出することが
できる。
That is, (Equations 18-1) to (18-3)
As is clear from Equivalent when given a displacement amount [Delta] d i which, from a plurality of phase shift interference fringe obtained for each minute EdaHara flux to (4-1
By performing the calculations shown in Expressions (4) to (4-2) and (5-1) to (5-3), the bias and amplitude of each branch phase shift interference fringe can be changed by x and y. It can be calculated for each point.

【0034】また、参照光と試料光に光学位相差を別途
与えるに当たっては、前記参照面5を被検面7との間の
光路に1より大きい屈折率を持つ無反射透過体で厚みの
異なる平行板を挿入しても、分枝位相シフト干渉縞間の
固定的光学位相差を計測することができる。
In order to separately provide an optical phase difference between the reference light and the sample light, the reference surface 5 is provided on the optical path between the reference surface 5 and the test surface 7 with a non-reflective transmissive member having a refractive index larger than 1 and having a different thickness. Even if a parallel plate is inserted, the fixed optical phase difference between the branched phase shift interference fringes can be measured.

【0035】例えば、図5に示すように屈折率nで厚み
がl1 、l2 の平行板16,17を用い、 平行板16,17を挿入していない状態を δ1 厚みl1 の平行板16の挿入時を δ2 厚みl2 の平行板17の挿入時を δ3 とする場合や、図6に示すように、屈折率n1 、n2
厚みが同じlの平行板18,19を用いて、 平行板18,19を挿入していない状態を δ1 屈折率n1 の平行板18の挿入時を δ2 屈折率n2 の平行板19の挿入時を δ3 としても、参照光と試料光に光学的位相差を別途与える
ことが可能で、分枝位相シフト干渉縞のバイアス、振幅
をx,y各点ごとに算出することができる。
[0035] For example, the parallel thickness of l 1, using a parallel plates 16 and 17 of l 2, 1 a state not inserted parallel plates 16 and 17 [delta] thickness l 1 in the refractive index n as shown in FIG. 5 When the insertion of the plate 16 is δ 2 and the insertion of the parallel plate 17 having a thickness l 2 is δ 3 , or as shown in FIG. 6, the parallel plates 18 having the same refractive index n 1 and n 2 and the same thickness l, 19, the state in which the parallel plates 18 and 19 are not inserted is set as δ 1 when the parallel plate 18 with the refractive index n 1 is inserted and δ 2 when the parallel plate 19 with the refractive index n 2 is inserted as δ 3 . An optical phase difference can be separately given to the reference light and the sample light, and the bias and amplitude of the branched phase shift interference fringes can be calculated for each of x and y points.

【0036】また、参照光と試料光に光学的位相差を別
途与える際に、図7に示すように、前記参照面と被検面
との間の光路に1より大きい屈折率を持つ無反射透過体
であって、参照面と被検面と向かい合う2面が平行でな
い光学楔7を挿入し、光学楔7を光軸とほぼ直交する面
内において楔方向に移動させ、各分枝位相シフト干渉縞
のバイアス、振幅をx,y各点ごとに算出することも可
能である。
In addition, when an optical phase difference is separately provided between the reference light and the sample light, as shown in FIG. 7, an anti-reflection having an index of refraction greater than 1 is provided in an optical path between the reference surface and the test surface. An optical wedge 7 which is a transmitting body and whose two surfaces facing the reference surface and the test surface are not parallel is inserted, and the optical wedge 7 is moved in the wedge direction in a plane substantially orthogonal to the optical axis, and each branch phase shift is performed. It is also possible to calculate the bias and amplitude of the interference fringes for each of the x and y points.

【0037】さらに、図8のように液晶21を参照面と
被検面の間に挿入し、制御装置22による電圧などの電
気的な制御により液晶21の屈折率を可変させ、δ1
δ2、δ3 に相当する光学的位相差を発生させても各分
枝位相シフト干渉縞のバイアス、振幅をx,y各点ごと
に算出することも可能である。
Further, as shown in FIG. 8, the liquid crystal 21 is inserted between the reference surface and the surface to be inspected, and the refractive index of the liquid crystal 21 is varied by electric control such as voltage by the control device 22 to obtain δ 1 ,
Even if an optical phase difference corresponding to δ 2 and δ 3 is generated, it is possible to calculate the bias and amplitude of each of the branched phase-shift interference fringes for each of the x and y points.

【0038】勿論、前述した方法により得られる各分枝
原光束の位相シフト干渉縞のバイアス及び振幅B1
(x,y)、B2 (x,y)、B3 (x,y)、A1
(x,y)、A2 (x,y)、A3 (x,y)は、輝度
変換による分枝位相シフト干渉縞のバイアス、振幅整合
の調整にそのまま使用されてもよい。
Of course, the bias and amplitude B 1 of the phase shift interference fringe of each branched original light beam obtained by the method described above.
(X, y), B 2 (x, y), B 3 (x, y), A 1
(X, y), A 2 (x, y), and A 3 (x, y) may be used as they are for adjusting the bias and amplitude matching of the branched phase shift interference fringes by the luminance conversion.

【0039】データ処理をさらに容易にする方法につい
て説明すると、図9はB1 (x,y)のデータ中のある
1 に対する1次元のデータB1 (x,y1 )を表して
おり、グラフはB1 (x,y1 )が観測領域内の位置x
に対して値が異なることを意味している。図9におい
て、本発明では、B1 (X,y1 )に対してある許容範
囲tを設定し、その範囲内にある数値データ群を一まと
めに整理して代表値で置き換え、B1 ’(x,y1 )で
図示したようなデータ列を作成する。この考えをx、y
の2次元のデータ群に応用し、ある許容範囲t内にある
領域のデータ群を代表値で置き換える。また、B2
(x,y)、B3 (x,y)、A1 (x,y)、A2
(x,y)、A3 (x,y)に対しても同様の処理を施
し、B2 ’(x,y)、B3 ’(x,y)、A1
(x,y)、A2 ’(x,y)、A3 ’(x,y)を作
成する。B1 ’(x,y)、B2 ’(x,y)、B3
(x,y)、A1 ’(x,y)、A2 ’(x,y)、A
3 ’(x,y)を使用して、計算機に内に保有するパラ
メータ数を減らすことでメモリ容量の節約が可能とな
る。さらには、図10に示すように、B1 (x,y)、
2 (x,y)、B3 (x,y)、A1 (x,y)、A
2 (x,y)、A3 (x,y)を単純平均や中央値B
1 ’、B2 ’、B3 ’、A1 ’、A2 ’、A3 ’で置き
換えたり、あるいは、図11に示すように、2乗平均よ
り算出したB1 ’(x,y)、B2 ’(x,y)、B
3 ’(x,y)、A1 ’(x,y)、A2 ’(x,
y)、A3 ’(x,y)にすれば、平面形状計測装置に
て被検面起伏形状を算出する際に、さらに多くのメモリ
容量の節約が可能となる。
[0039] Referring to a method of data processing more easily, 9 B 1 (x, y) 1-dimensional data B 1 (x, y 1) for y 1 with the data of which represent, The graph shows that B 1 (x, y 1 ) is the position x in the observation area.
Means different values for. In FIG. 9, in the present invention, a certain allowable range t is set for B 1 (X, y 1 ), numerical data groups within the range are collectively arranged and replaced with a representative value, and B 1 ′ A data string as shown in (x, y 1 ) is created. X, y
And replaces the data group in an area within a certain allowable range t with a representative value. Also, B 2
(X, y), B 3 (x, y), A 1 (x, y), A 2
The same processing is performed on (x, y) and A 3 (x, y), and B 2 ′ (x, y), B 3 ′ (x, y), A 1
(X, y), A 2 ′ (x, y), and A 3 ′ (x, y) are created. B 1 '(x, y), B 2 ' (x, y), B 3 '
(X, y), A 1 '(x, y), A 2 ' (x, y), A
By using 3 '(x, y), it is possible to save memory capacity by reducing the number of parameters held in the computer. Further, as shown in FIG. 10, B 1 (x, y),
B 2 (x, y), B 3 (x, y), A 1 (x, y), A
2 (x, y) and A 3 (x, y) are calculated by simple average or median B
1 ′, B 2 ′, B 3 ′, A 1 ′, A 2 ′, A 3 ′, or as shown in FIG. 11, B 1 ′ (x, y) calculated from the root mean square, B 2 '(x, y), B
3 '(x, y), A 1' (x, y), A 2 '(x,
If y) and A 3 ′ (x, y) are used, more memory capacity can be saved when calculating the undulating shape of the surface to be measured by the plane shape measuring device.

【0040】[0040]

【発明の効果】以上の説明から明らかなように、本発明
によれば、分枝ごとに、異なる分布状態から得られる分
枝位相シフト干渉縞のバイアス、振幅を予め計測し、以
後の被検面計測時に得られる分枝位相シフト干渉縞のバ
イアス、振幅を観測領域内のx,y各点にて輝度変換を
施して整合調整を行ない、被検起伏形状算出を行なうこ
とで大幅な精度向上が実現できる。
As is apparent from the above description, according to the present invention, for each branch, the bias and amplitude of the branched phase-shifted interference fringes obtained from different distribution states are measured in advance, and the subsequent test is performed. The bias and amplitude of the branched phase shift interference fringes obtained during surface measurement are subjected to brightness conversion at each of the x and y points in the observation area to perform matching adjustment, and calculation of the undulating shape of the test significantly improves accuracy. Can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による位相シフト干渉縞同時撮像装置の
光学系の概念図である。
FIG. 1 is a conceptual diagram of an optical system of a phase shift interference fringe simultaneous imaging apparatus according to the present invention.

【図2】(a),(b)は被検面S,Tの計測時に撮像
装置に入力される反射光強度の比較モデルである。
FIGS. 2A and 2B are comparison models of the intensity of reflected light input to the imaging device when measuring the surfaces S and T to be measured.

【図3】同位相シフト干渉縞同時撮像装置における第1
の光学的位相差付与手段の説明図である。
FIG. 3 is a diagram illustrating a first example of the same phase shift interference fringe simultaneous imaging apparatus.
FIG. 4 is an explanatory diagram of an optical phase difference providing means.

【図4】同位相シフト干渉縞同時撮像装置における第2
の光学的位相差付与手段の説明図である。
FIG. 4 shows a second example of the same phase shift interference fringe simultaneous imaging apparatus.
FIG. 4 is an explanatory diagram of an optical phase difference providing means.

【図5】同位相シフト干渉縞同時撮像装置における第3
の光学的位相差付与手段の説明図である。
FIG. 5 is a diagram illustrating a third example of the same phase shift interference fringe simultaneous imaging apparatus.
FIG. 4 is an explanatory diagram of an optical phase difference providing means.

【図6】同位相シフト干渉縞同時撮像装置における第4
の光学的位相差付与手段の説明図である。
FIG. 6 shows a fourth example of the same phase shift interference fringe simultaneous imaging apparatus.
FIG. 4 is an explanatory diagram of an optical phase difference providing means.

【図7】同位相シフト干渉縞同時撮像装置における第5
の光学的位相差付与手段の説明図である。
FIG. 7 shows a fifth embodiment of the same phase shift interference fringe simultaneous imaging apparatus.
FIG. 4 is an explanatory diagram of an optical phase difference providing means.

【図8】同位相シフト干渉縞同時撮像装置における第6
の光学的位相差付与手段の説明図である。
FIG. 8 shows a sixth embodiment of the same phase shift interference fringe simultaneous imaging apparatus.
FIG. 4 is an explanatory diagram of an optical phase difference providing means.

【図9】本発明による分枝ごとの干渉縞のバイアス、振
幅の算出方法の説明図である。
FIG. 9 is an explanatory diagram of a method of calculating a bias and an amplitude of an interference fringe for each branch according to the present invention.

【図10】単純平均による分枝ごとの干渉縞のバイア
ス、振幅の算出方法の説明図である。
FIG. 10 is an explanatory diagram of a method of calculating the bias and amplitude of interference fringes for each branch by simple averaging.

【図11】2乗平均による分枝ごとの干渉縞のバイア
ス、振幅の算出方法の説明図である。
FIG. 11 is an explanatory diagram of a method of calculating a bias and an amplitude of an interference fringe for each branch by a root mean square.

【符号の説明】[Explanation of symbols]

1 レーザ光源 2 レンズ 3 ビームスプリッタ 4 コリメータレンズ 5 参照面 6 1/4波長板 7 被検面 8 1/4波長板 9 3分光プリズム 10〜12 偏光板 13〜15 撮像装置 16〜19 平行板 20 光学楔 21 液晶 22 制御装置 DESCRIPTION OF SYMBOLS 1 Laser light source 2 Lens 3 Beam splitter 4 Collimator lens 5 Reference surface 6 1/4 wavelength plate 7 Test surface 8 1/4 wavelength plate 9 3 Dispersion prism 10-12 Polarization plate 13-15 Imaging device 16-19 Parallel plate 20 Optical wedge 21 Liquid crystal 22 Controller

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F064 AA09 FF01 GG13 GG22 GG32 GG38 GG44 GG52 GG53 HH03 HH08 JJ01 2F065 AA53 BB05 DD07 EE00 FF49 FF51 FF61 GG04 GG23 JJ03 JJ26 LL00 LL04 LL33 LL36 LL46 LL47 NN06 QQ00 QQ26 QQ41 QQ42  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2F064 AA09 FF01 GG13 GG22 GG32 GG38 GG44 GG52 GG53 HH03 HH08 JJ01 2F065 AA53 BB05 DD07 EE00 FF49 FF51 FF61 GG04 GG23 JJ03 JJ26 LL00 LL04 LL00 LL04 LL04 LL04 LL00

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 レーザ光源からのコヒーレント光束を参
照面と被検面に照射し、前記参照面及び前記被検面のそ
れぞれからの反射光である参照光と試料光の偏光面を偏
光光学素子を介在させて互いに直交させることにより、
光学的無干渉状態となした原光束を生成する観測光学系
と、 前記原光束を複数に分光した分枝原光束に分け、前記分
枝原光束のそれぞれに偏光光学素子を介して異なる固定
的光学位相差を与えた複数の分枝位相シフト干渉縞を発
生させ、前記被検面の観測範囲にある一つの位置がそれ
ぞれの分枝観測座標系において同一位置になるよう位置
の整合させ、分枝光束ごとに設けられた撮像装置でこれ
らの干渉縞に対応する画像データを取得し、前記被検面
の観測範囲の平面起伏形状を位相シフト法を用いて数値
データとして再現させる位相シフト干渉縞同時撮像装置
において、 前記参照光と前記試料光との間に相対的な光学的位相差
を別途与えたときに前記各撮像装置で得られる分枝ごと
の位相シフト干渉縞画像データから算出した分枝ごとの
バイアスと振幅と、試料光がない状態で各分枝ごとに得
られる分枝参照光画像データとを用いて平面起伏形状計
測時の分枝ごとの位相シフト干渉縞画像データを輝度変
換して、観測領域内の各点におけるバイアスと振幅を整
合調整し、位相シフト法により干渉縞の各点ごとの位相
算出を行うことを特徴とする位相シフト干渉縞同時撮像
装置における平面形状計測方法。
1. A reference surface and a test surface are irradiated with a coherent light beam from a laser light source, and polarization surfaces of a reference light and a sample light, which are reflected light from the reference surface and the test surface, are polarized by a polarizing optical element. By interposing them at right angles to each other,
An observation optical system that generates an original light beam in an optically non-interfering state; and a divided stationary light beam that is divided into a plurality of branched original light beams by dividing the original light beam into a plurality of divided original light beams via a polarizing optical element. A plurality of branched phase-shifted interference fringes having an optical phase difference are generated, and the positions are aligned so that one position in the observation range of the surface to be inspected becomes the same position in each branch observation coordinate system. A phase shift interference fringe that acquires image data corresponding to these interference fringes with an imaging device provided for each branch light beam, and reproduces a plane undulation shape of the observation range of the test surface as numerical data using a phase shift method. In the simultaneous imaging device, when a relative optical phase difference is separately provided between the reference light and the sample light, the amount calculated from the phase shift interference fringe image data for each branch obtained by each of the imaging devices. Per branch The luminance of the phase shift interference fringe image data for each branch at the time of measuring the planar undulation shape using the bias, the amplitude, and the branch reference light image data obtained for each branch in the absence of the sample light, A plane shape measuring method in a phase shift interference fringe simultaneous imaging apparatus, wherein a bias and an amplitude at each point in an observation area are adjusted and adjusted, and a phase of each interference fringe point is calculated by a phase shift method.
【請求項2】 前記参照光と前記試料光との間に相対的
な光学的位相差を別途与える際、前記レーザ光源の波長
をわずかづつ変化させることにより前記光学的位相差を
発生させることを特徴とする請求項1記載の位相シフト
干渉縞同時撮像装置における平面形状計測方法。
2. The method according to claim 1, wherein when the relative optical phase difference is separately provided between the reference light and the sample light, the optical phase difference is generated by slightly changing the wavelength of the laser light source. The method for measuring a planar shape in a simultaneous phase shift interference fringe imaging apparatus according to claim 1.
【請求項3】 前記参照光と前記試料光との間に相対的
な光学的位相差を別途与える際、前記参照面あるいは前
記被検面のどちらか一方を光軸に沿ってわずかづつ平行
移動させることにより、前記光学的位相差を発生させる
ことを特徴とする請求項1記載の位相シフト干渉縞同時
撮像装置における平面形状計測方法。
3. When separately giving a relative optical phase difference between the reference light and the sample light, one of the reference surface and the test surface is slightly translated along the optical axis. 2. The method according to claim 1, wherein the optical phase difference is generated.
【請求項4】 前記参照光と前記試料光との間に相対的
な光学的位相差を別途与える際、前記参照面と前記被検
面との間の光路に1より大きい屈折率をもつ無反射透過
体であって、互いに厚みが異なる少なくとも1枚の平行
板を挿入することにより前記光学的位相差を発生させる
ことを特徴とする請求項1記載の位相シフト干渉縞同時
撮像装置における平面形状計測方法。
4. When separately providing a relative optical phase difference between the reference light and the sample light, the optical path between the reference surface and the test surface has a refractive index greater than 1 in the optical path. The planar shape in the phase shift interference fringe simultaneous imaging apparatus according to claim 1, wherein the optical phase difference is generated by inserting at least one parallel plate having a thickness different from each other in a reflection / transmission body. Measurement method.
【請求項5】 前記参照光と前記試料光との間に相対的
な光学的位相差を別途与える際、前記参照面と前記被検
面との間の光路に1より大きい屈折率を持つ無反射透過
体であって、参照面及び被検面に向かい合う2面が平行
でない光学楔を挿入し、光軸に対してほぼ略直交する面
内において光学楔を楔方向に移動させ前記光学的位相差
を発生させることを特徴とする請求項1記載の干渉縞同
時撮像装置における平面形状計測方法。
5. When separately providing a relative optical phase difference between the reference light and the sample light, the optical path between the reference surface and the test surface has a refractive index greater than 1 in the optical path. An optical wedge, which is a reflective / transmissive body and whose two surfaces facing the reference surface and the test surface are not parallel, is inserted, and the optical wedge is moved in a wedge direction in a plane substantially orthogonal to the optical axis to thereby adjust the optical position. 2. A method according to claim 1, wherein a phase difference is generated.
【請求項6】 前記参照光と前記試料光との間に相対的
な光学的位相差を別途与える際、前記参照面を被検面と
の間に液晶を配置し、液晶の電気的な制御により屈折率
を可変し、所定の光学的位相差を発生させることを特徴
とする請求項1記載の干渉縞同時撮像装置における平面
形状計測方法。
6. When separately providing a relative optical phase difference between the reference light and the sample light, a liquid crystal is arranged between the reference surface and the surface to be measured, and an electrical control of the liquid crystal is performed. 2. The method according to claim 1, wherein the refractive index is varied by the step (b) to generate a predetermined optical phase difference.
【請求項7】 各点ごとに求めたバイアスと振幅前記バ
イアスと振幅が、許容範囲である各点の集合ごとに整理
された前記バイアスと振幅の値であることを特徴とする
請求項1記載の干渉縞同時撮像装置における平面形状計
測方法。
7. The bias and amplitude obtained for each point, wherein the bias and amplitude are values of the bias and amplitude arranged for each set of points within an allowable range. Plane shape measurement method in the simultaneous interference fringe imaging apparatus.
【請求項8】 各点ごとに求めた前記バイアスと振幅の
値から得た単純平均または中央値または2乗平均値が、
バイアスと振幅の代表値として、各点の位置に関係なく
全領域に用いられることを特徴とする請求項7記載の干
渉縞同時撮像装置における平面形状計測方法。
8. A simple average, a median or a root mean square obtained from the bias and amplitude values obtained for each point,
8. The plane shape measuring method in the simultaneous interference fringe imaging apparatus according to claim 7, wherein the representative values of the bias and the amplitude are used for all regions regardless of the position of each point.
【請求項9】 波長をわずかづつ変化できる請求項2記
載のレーザ光源、光軸に沿ってわずかづつ平行移動でき
る請求項3記載の前記参照面あるいは前記被検面、前記
参照面と前記被検面との間の光路に位置される1より大
きい屈折率をもつ請求項4記載の無反射透過体平行板、
前記参照面と前記被検面との間の光路に位置される1よ
り大きい屈折率をもちかつ楔方向に移動できる請求項5
記載の光学楔、前記参照面と前記被検面との間の光路に
位置されかつ電気的制御で屈折率を変化できる請求項6
記載の液晶の何れかひとつを備える位相シフト干渉縞同
時撮像装置。
9. The laser light source according to claim 2, wherein the wavelength can be changed little by little, the reference surface or the test surface, the reference surface and the test object according to claim 3, wherein the laser light source can be moved in parallel little by little along the optical axis. The non-reflective transmissive parallel plate according to claim 4, having a refractive index greater than 1 and located in an optical path between the plane and the surface.
6. A wedge-shaped movable member having a refractive index greater than 1 and located in an optical path between the reference surface and the test surface.
7. The optical wedge according to claim 6, wherein the optical wedge is located in an optical path between the reference surface and the test surface, and the refractive index can be changed by electrical control.
A phase shift interference fringe simultaneous imaging apparatus comprising any one of the liquid crystals described in the above.
JP2000197484A 2000-06-30 2000-06-30 Planar shape measuring method in phase shift interference fringe simultaneous imaging device Expired - Fee Related JP3714854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000197484A JP3714854B2 (en) 2000-06-30 2000-06-30 Planar shape measuring method in phase shift interference fringe simultaneous imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000197484A JP3714854B2 (en) 2000-06-30 2000-06-30 Planar shape measuring method in phase shift interference fringe simultaneous imaging device

Publications (2)

Publication Number Publication Date
JP2002013907A true JP2002013907A (en) 2002-01-18
JP3714854B2 JP3714854B2 (en) 2005-11-09

Family

ID=18695808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000197484A Expired - Fee Related JP3714854B2 (en) 2000-06-30 2000-06-30 Planar shape measuring method in phase shift interference fringe simultaneous imaging device

Country Status (1)

Country Link
JP (1) JP3714854B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005062183A (en) * 2003-08-08 2005-03-10 Mitsutoyo Corp Signal providing method for offset compensation decision, and interferometer system
JP2006526790A (en) * 2003-06-04 2006-11-24 トモフェイズ コーポレーション Measurement of optical heterogeneity and other properties in materials using light propagation modes
JP2006329975A (en) * 2005-04-27 2006-12-07 Mitsutoyo Corp Interferometer and method of calibrating the interferometer
JP2010038695A (en) * 2008-08-04 2010-02-18 Mitsutoyo Corp Shape measuring device, and method of calibrating the same
US7831298B1 (en) 2005-10-04 2010-11-09 Tomophase Corporation Mapping physiological functions of tissues in lungs and other organs
US7970458B2 (en) 2004-10-12 2011-06-28 Tomophase Corporation Integrated disease diagnosis and treatment system
US8041162B2 (en) 2007-04-24 2011-10-18 Tomophase Corporation Delivering light via optical waveguide and multi-view optical probe head
US8452383B2 (en) 2008-02-29 2013-05-28 Tomophase Corporation Temperature profile mapping and guided thermotherapy
US8467858B2 (en) 2009-04-29 2013-06-18 Tomophase Corporation Image-guided thermotherapy based on selective tissue thermal treatment
US8498681B2 (en) 2004-10-05 2013-07-30 Tomophase Corporation Cross-sectional mapping of spectral absorbance features
US8964017B2 (en) 2009-08-26 2015-02-24 Tomophase, Inc. Optical tissue imaging based on optical frequency domain imaging
EP3118571A1 (en) 2015-07-14 2017-01-18 Mitutoyo Corporation Instantaneous phase-shift interferometer and measurement method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006526790A (en) * 2003-06-04 2006-11-24 トモフェイズ コーポレーション Measurement of optical heterogeneity and other properties in materials using light propagation modes
US7999938B2 (en) 2003-06-04 2011-08-16 Tomophase Corporation Measurements of optical inhomogeneity and other properties in substances using propagation modes of light
JP4756218B2 (en) * 2003-06-04 2011-08-24 トモフェイズ コーポレーション Measurement of optical heterogeneity and other properties in materials using light propagation modes
JP2005062183A (en) * 2003-08-08 2005-03-10 Mitsutoyo Corp Signal providing method for offset compensation decision, and interferometer system
US8498681B2 (en) 2004-10-05 2013-07-30 Tomophase Corporation Cross-sectional mapping of spectral absorbance features
US7970458B2 (en) 2004-10-12 2011-06-28 Tomophase Corporation Integrated disease diagnosis and treatment system
JP2006329975A (en) * 2005-04-27 2006-12-07 Mitsutoyo Corp Interferometer and method of calibrating the interferometer
US7831298B1 (en) 2005-10-04 2010-11-09 Tomophase Corporation Mapping physiological functions of tissues in lungs and other organs
US8041162B2 (en) 2007-04-24 2011-10-18 Tomophase Corporation Delivering light via optical waveguide and multi-view optical probe head
US8666209B2 (en) 2007-04-24 2014-03-04 Tomophase Corporation Delivering light via optical waveguide and multi-view optical probe head
US8452383B2 (en) 2008-02-29 2013-05-28 Tomophase Corporation Temperature profile mapping and guided thermotherapy
JP2010038695A (en) * 2008-08-04 2010-02-18 Mitsutoyo Corp Shape measuring device, and method of calibrating the same
US8467858B2 (en) 2009-04-29 2013-06-18 Tomophase Corporation Image-guided thermotherapy based on selective tissue thermal treatment
US8964017B2 (en) 2009-08-26 2015-02-24 Tomophase, Inc. Optical tissue imaging based on optical frequency domain imaging
EP3118571A1 (en) 2015-07-14 2017-01-18 Mitutoyo Corporation Instantaneous phase-shift interferometer and measurement method
CN106352789A (en) * 2015-07-14 2017-01-25 株式会社三丰 Instantaneous phase-shift interferometer and measurement method
JP2017020962A (en) * 2015-07-14 2017-01-26 株式会社ミツトヨ Instantaneous phase-shift interferometer
US10088291B2 (en) 2015-07-14 2018-10-02 Mitutoyo Corporation Instantaneous phase-shift interferometer

Also Published As

Publication number Publication date
JP3714854B2 (en) 2005-11-09

Similar Documents

Publication Publication Date Title
EP1717546B1 (en) Interferometer and method of calibrating the interferometer
JP5349739B2 (en) Interferometer and interferometer calibration method
JPH0712535A (en) Interferometer
KR102426103B1 (en) An Improved Holographic Reconstruction Apparatus and Method
CN109163673B (en) A kind of multi-wavelength and the bisynchronous surface method for real-time measurement of phase shift interference and system
JP2002013907A (en) Plane shape measuring method for phase-shift interference fringe simultaneous photographing device
JP2017020962A (en) Instantaneous phase-shift interferometer
CN109470173A (en) A kind of binary channels simultaneous phase shifting interference microscopic system
US20220065617A1 (en) Determination of a change of object's shape
JPH06117830A (en) Measuring/analyzing method of interference fringe by hologram interferometer
US20040150834A1 (en) Application of the phase shifting diffraction interferometer for measuring convex mirrors and negative lenses
US20200240770A1 (en) Device and Method for Calibrating a Measuring Apparatus Using Projected Patterns and a Virtual Plane
JP4799766B2 (en) Planar shape measuring method in phase shift interference fringe simultaneous imaging device
JP3714853B2 (en) Planar shape measuring method in phase shift interference fringe simultaneous imaging device
JP2008107144A (en) Apparatus and method for measuring refractive index distribution
JPH11194011A (en) Interference apparatus
JP2014106222A (en) Interference measurement device, wavefront aberration measurement device, shape measurement device, exposure device, interference measurement method, projection optical system manufacturing method and exposure device manufacturing method
US6804009B2 (en) Wollaston prism phase-stepping point diffraction interferometer and method
JPH11119107A (en) Interference microscope device
JP2003139515A (en) Method for measuring absolute value of deformation quantity using speckle
JP3233723B2 (en) Phase pattern difference discriminator
JP2009145068A (en) Surface profile measuring method and interferometer
JP4386543B2 (en) Surface shape measuring device
JPH07280535A (en) Three-dimensional shape measuring apparatus
JP3493329B2 (en) Planar shape measuring device, planar shape measuring method, and storage medium storing program for executing the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3714854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees