JP2002009600A - Switch circuit - Google Patents

Switch circuit

Info

Publication number
JP2002009600A
JP2002009600A JP2000190586A JP2000190586A JP2002009600A JP 2002009600 A JP2002009600 A JP 2002009600A JP 2000190586 A JP2000190586 A JP 2000190586A JP 2000190586 A JP2000190586 A JP 2000190586A JP 2002009600 A JP2002009600 A JP 2002009600A
Authority
JP
Japan
Prior art keywords
mosfet
gate
source
series
switch circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000190586A
Other languages
Japanese (ja)
Inventor
Takayuki Mimura
隆之 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Original Assignee
Origin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd filed Critical Origin Electric Co Ltd
Priority to JP2000190586A priority Critical patent/JP2002009600A/en
Publication of JP2002009600A publication Critical patent/JP2002009600A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a switch circuit consisting of many MOSFETs connected in series that increases a noise margin in an off-state. SOLUTION: The switch circuit 10 is configured by connecting each drain of the MOSFETs Q1-Q40 to each source of an upper stage in series sequentially. When no on-signal is given between control terminals 3 and 4 and the Q1-Q40 are not conductive, all capacitors C40-C1 are charged through the path of R40 →C40 → the source of the Q40 → the gate of the Q40 → ...R1 → C1 to apply a reverse bias voltage to each MOSFET. In this case, Zener diodes D1, DD1-D40, DD40 that are connected in series in opposite polarity are respectively connected in parallel between each gate and each source of each of the Q1-Q40 to decide the reverse bias voltage to be a proper value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は、半導体を用いた
スイッチ回路に係り、特にMOSFETを複数個直列接
続にして構成した高電圧回路への適用に好適なスイッチ
回路に関する。
The present invention relates to a switch circuit using a semiconductor, and more particularly to a switch circuit suitable for application to a high-voltage circuit configured by connecting a plurality of MOSFETs in series.

【0002】[0002]

【従来の技術】 従来のMOSFETを複数個直列接続
にして構成したスイッチ回路としては、例えば 特開昭
60−93820号に開示されている構造のものがあっ
た。すなわち、ゲートに与えられる制御信号により導通
が制御されるMOSFETとこのMOSFETのドレイ
ン側に順次直列に接続され、このMOSFETの動作に
追従して動作する1個あるいは複数個のMOSFETか
らなるスイッチ回路において、ゲートに与えられる制御
信号により導通が制御されるMOSFETのソースとこ
れに直列接続されたMOSFETのゲート、及び順次直
列接続された各MOSFETのソースとこれに接続され
た各MOSFETのゲート、及び順次直列接続されたM
OSFETのうち最後に位置するMOSFETのソー
ス、ドレイン間にコンデンサと抵抗からなる直列回路を
接続し、かつゲートに与えられる制御信号により導通が
制御されるMOSFETに順次直列接続される各MOS
FETのソース、ゲート間にツェナーダイオードを接続
したことを特徴とするスイッチ回路が開示されている。
2. Description of the Related Art A conventional switch circuit constituted by connecting a plurality of MOSFETs in series has a structure disclosed in, for example, JP-A-60-93820. That is, in a switch circuit composed of a MOSFET whose conduction is controlled by a control signal given to the gate and one or a plurality of MOSFETs which are sequentially connected in series to the drain side of the MOSFET and operate following the operation of the MOSFET. , The source of the MOSFET whose conduction is controlled by a control signal given to the gate, the gate of the MOSFET connected in series thereto, the source of each MOSFET connected in series and the gate of each MOSFET connected thereto, and M connected in series
Each MOSFET connected in series with a MOSFET whose conduction is controlled by a control signal given to the gate, wherein a series circuit consisting of a capacitor and a resistor is connected between the source and the drain of the MOSFET located last in the OSFET.
There is disclosed a switch circuit in which a Zener diode is connected between the source and the gate of the FET.

【0003】[0003]

【発明が解決しようとする課題】 従来の回路構成で回
路を動作させ、回路のメイン電流が増加するとMOSF
ETのドレインとゲート間の静電容量経て、ゲートにノ
イズが入る場合があり、ゲート信号がオフ時にこの現象
が起きると、MOSFETが誤動作してしまう。本発明
は、直流高電圧の電子的なスイッチ回路において、オフ
時のノイズマージンを大きく保つことを課題とするもの
である。
When the circuit is operated with the conventional circuit configuration and the main current of the circuit increases, the MOSF
Noise may enter the gate via the capacitance between the drain and the gate of the ET, and if this phenomenon occurs when the gate signal is off, the MOSFET malfunctions. SUMMARY OF THE INVENTION It is an object of the present invention to maintain a large off-state noise margin in a DC high voltage electronic switch circuit.

【0004】[0004]

【課題を解決するための手段】 この課題を解決するた
めに、本発明では、以下の手段を提案するものである。
すなわち、ゲートに与えられる制御信号により導通が制
御されるMOSFETとこのMOSFETのドレイン側
に順次直列に接続され、このMOSFETの動作に追従
して動作する複数個のMOSFETからなるスイッチ回
路で、ゲートに与えられる制御信号により導通が制御さ
れるMOSFETのソースとこれに直列接続されたMO
SFETのゲート、及び順次直列接続された各MOSF
ETのソースとこれに接続された各MOSFETのゲー
ト、及び順次直列接続されたMOSFETのうち最後に
位置するMOSFETのソース、ドレイン間にコンデン
サと抵抗からなる直列回路を接続し、かつゲートに与え
られる制御信号により導通が制御されるMOSFETに
順次直列接続される各MOSFETのソース、ゲート間
にそれぞれ第1の定電圧ダイオードを接続したスイッチ
回路において、これらそれぞれの第1の定電圧ダイオー
ドに直列にそれぞれ逆極性で第2の定電圧ダイオードを
接続してなることを特徴とするスイッチ回路を提案する
ものである。それぞれの第2の定電圧ダイオードが、M
OSFETのゲート、ソース間に充分な逆バイアス電圧
を保つ作用をするので、ノイズ電圧に対して充分なマー
ジンを得ることができる。
Means for Solving the Problems In order to solve this problem, the present invention proposes the following means.
That is, a switch circuit consisting of a MOSFET whose conduction is controlled by a control signal given to the gate and a plurality of MOSFETs which are sequentially connected in series to the drain side of the MOSFET and operate following the operation of the MOSFET. A source of a MOSFET whose conduction is controlled by a given control signal and an MO connected in series with the source
The gate of the SFET and each MOSF connected in series
A series circuit consisting of a capacitor and a resistor is connected between the source and drain of the MOSFET located at the end of the ET source and the gate of each MOSFET connected to the ET, and the MOSFET sequentially connected in series, and is given to the gate. In a switch circuit in which a first constant voltage diode is connected between a source and a gate of each MOSFET sequentially connected in series with a MOSFET whose conduction is controlled by a control signal, each MOSFET is connected in series with each of the first constant voltage diodes. A switch circuit characterized by connecting a second constant voltage diode with reverse polarity is proposed. Each second constant voltage diode is
Since a sufficient reverse bias voltage is maintained between the gate and the source of the OSFET, a sufficient margin for noise voltage can be obtained.

【0005】[0005]

【発明の実施の形態】 図1は、本発明に係るスイッチ
回路の実施の形態の一例であり、30キロボルトの耐圧
のスイッチ回路である。このスイッチ回路10の端子1
と端子2のいずれも直流高電圧に荷電された電位点に上
に設置されており、後に示す図の2絶縁駆動回路によ
り、その荷電された電位に駆動信号を伝達する。端子1
と端子2との間に、40個のMOSFETQ1〜MOS
FETQ40のMOSFETの各ソース・ドレイン間を
もって、互いに直列接続して構成される。各MOSFE
TQ1〜MOSFETQ40の耐圧は1キロボルトある
が、単純な各耐圧の和の値より余裕をみて設計してあ
る。端子1と端子2の間には、比較的高い抵抗値を有す
る抵抗RR1〜RR40を直列接続した抵抗群が接続さ
れる。これらの抵抗は、例えば抵抗RR1と抵抗RR2
の相互接続点はMOSFETQ2のゲートに接続され、
以下同様に各抵抗の相互接続点は各MOSFETQ3〜
MOSFETQ40のゲートに接続される。これら直列
接続された抵抗RR1〜RR40は、MOSFETQ1
〜Q40のオフ時に各もれ電流などによる電圧分担の均
一化の働きをする。また、MOSFETQ1のゲート、
ソース間には互いに逆方向に直列接続されたツェナーダ
イオードD1とDD1とが接続される。以下同様に、M
OSFETQ2〜MOSFETQ40のゲート、ソース
間にも互いに逆方向に直列接続されたツェナーダイオー
ドD2、DD2〜D40、DD40とが接続される。ま
た、MOSFETQ1のソースとMOSFETQ2のベ
ースとの間には抵抗R1とコンデンサC1との直列回路
が接続され、以下同様に抵抗R2、コンデンサC2〜抵
抗R39、コンデンサC39がMOSFETQ2〜MO
SFETQ39のソースとMOSFETQ3〜MOSF
ETQ40のゲートとの間にそれぞれ接続される。最上
段のMOSFETQ40については、抵抗R40とコン
デンサ40との直列回路が、MOSFETQ40のソー
スと端子1との間に接続される。最下段のMOSFET
Q1のゲートは端子3に接続され、MOSFETQ1の
ソースは端子4に接続される。なお、ツェナーダイオー
ドD1〜D40、DD1〜DD40は定電圧特性を示す
半導体ならばツェナーダイオードに限定されることな
く、他の種類と半導体を使用することができる。
FIG. 1 shows an example of an embodiment of a switch circuit according to the present invention, which is a switch circuit having a withstand voltage of 30 kilovolts. Terminal 1 of this switch circuit 10
And the terminal 2 are placed above a potential point charged with a DC high voltage, and a drive signal is transmitted to the charged potential by a two-insulation drive circuit shown in the following figure. Terminal 1
40 terminals of the MOSFETs Q1 to MOS
The source and drain of the MOSFET of the FET Q40 are connected in series with each other. Each MOSFE
Although the withstand voltage of TQ1 to MOSFET Q40 is 1 kilovolt, it is designed with more margin than the sum of the simple withstand voltages. A resistor group in which resistors RR1 to RR40 having relatively high resistance values are connected in series is connected between the terminal 1 and the terminal 2. These resistors are, for example, a resistor RR1 and a resistor RR2.
Is connected to the gate of MOSFET Q2,
Hereinafter, similarly, the interconnection points of the resistors are connected to the MOSFETs Q3 to
Connected to the gate of MOSFET Q40. The resistors RR1 to RR40 connected in series are connected to the MOSFET Q1.
When Q40 is off, the voltage sharing due to each leakage current and the like is made uniform. The gate of the MOSFET Q1;
Zener diodes D1 and DD1 connected in series in opposite directions are connected between the sources. Similarly, M
Zener diodes D2, DD2 to D40, DD40 connected in series in opposite directions to each other are also connected between the gate and source of the OSFETs Q2 to MOSFET Q40. A series circuit of a resistor R1 and a capacitor C1 is connected between the source of the MOSFET Q1 and the base of the MOSFET Q2.
Source of SFET Q39 and MOSFETs Q3 to MOSFET
It is respectively connected between the gate of ETQ40. Regarding the uppermost MOSFET Q40, a series circuit of the resistor R40 and the capacitor 40 is connected between the source of the MOSFET Q40 and the terminal 1. The bottom MOSFET
The gate of Q1 is connected to terminal 3 and the source of MOSFET Q1 is connected to terminal 4. The Zener diodes D1 to D40 and DD1 to DD40 are not limited to Zener diodes as long as they exhibit constant voltage characteristics, and other types and semiconductors can be used.

【0006】 図2は、本発明に係るスイッチ回路の実
施の形態における絶縁駆動回路の一例を示す。この絶縁
駆動回路100は、低圧側の高周波源101から絶縁変
圧器120の一次巻線と二次巻線との間を介して必要な
耐圧に絶縁しつつ、高圧側の回路にこの絶縁駆動回路1
00に必要な比較的小さな電力をエネルギー供給する。
すなわち、絶縁変圧器120の二次巻線の比較的低い電
圧は整流器121で整流され、コンデンサ122で平滑
されて、コモン線COM と内部電源線VCC として、トラン
ジスタ110の回路とオプティカルレシーバ107に電
力供給する。また、低圧側のパルス源102のパルス信
号は、発光ダイオード103により光信号になり、光フ
ァイバ106により必要な耐圧を得るように絶縁しつつ
オプティカルレシーバ107に伝達される。オプティカ
ルレシーバ107の出力端子には、内部電源の+側との
間に抵抗108が接続され、また、内部電源の−側との
間には抵抗109が接続される。そして、オプティカル
レシーバ107の出力端子は、トランジスタ110のベ
ースに接続される。トランジスタ110のエミッタは内
部電源の−側に接続されるとともに端子104に接続さ
れ、コレクタは抵抗111を介して内部電源+側に接続
されるとともに端子103に接続される。
FIG. 2 shows an example of an insulation drive circuit in a switch circuit according to an embodiment of the present invention. The insulation drive circuit 100 is configured to insulate the insulation drive circuit 100 from the low-voltage high-frequency source 101 to the required withstand voltage via the primary winding and the secondary winding of the insulation transformer 120 and to connect the insulation drive circuit to the high-voltage circuit. 1
It supplies a relatively small amount of power required for 00.
That is, the relatively low voltage of the secondary winding of the insulating transformer 120 is rectified by the rectifier 121, smoothed by the capacitor 122, and supplied to the circuit of the transistor 110 and the optical receiver 107 as the common line COM and the internal power line VCC. Supply. The pulse signal from the pulse source 102 on the low voltage side is converted into an optical signal by the light emitting diode 103 and transmitted to the optical receiver 107 while being insulated by the optical fiber 106 so as to obtain a required withstand voltage. A resistor 108 is connected to the output terminal of the optical receiver 107 between the output terminal of the optical receiver 107 and the + side of the internal power supply, and a resistor 109 is connected between the output terminal and the − side of the internal power supply. The output terminal of the optical receiver 107 is connected to the base of the transistor 110. The emitter of the transistor 110 is connected to the negative side of the internal power supply and to the terminal 104, and the collector is connected to the internal power supply + side and to the terminal 103 via the resistor 111.

【0007】 図2の絶縁駆動回路100のパルス信号
の伝達動作は、低圧側のパルス源102のパルス信号が
Hレベルになっている短い区間は、発光ダイオード10
3から光信号が発生して光ファイバ106を経てオプテ
ィカルレシーバ107がオンして、L信号となり、トラ
ンジスタ110のベースもL信号となり、したがってト
ランジスタ110はオフしてコレクタ電位はH信号とな
り、端子103と104の間にH信号を発生する。反対
に低圧側のパルス源102のパルス信号がLレベルのと
きは、端子103と104の間にL信号を発生する。こ
の端子103と104の間の信号は図1に示すスイッチ
回路10の端子3と4に接続され、絶縁した状態で駆動
される。
The pulse signal transmission operation of the insulated driving circuit 100 shown in FIG. 2 is performed during a short period in which the pulse signal of the low-voltage side pulse source 102 is at the H level.
3, an optical signal is generated, the optical receiver 107 is turned on via the optical fiber 106, the L signal is turned on, and the base of the transistor 110 is also turned L signal. Therefore, the transistor 110 is turned off, the collector potential becomes the H signal, and the terminal 103 is turned on. And an H signal is generated between. Conversely, when the pulse signal from the low-voltage side pulse source 102 is at L level, an L signal is generated between terminals 103 and 104. The signal between the terminals 103 and 104 is connected to the terminals 3 and 4 of the switch circuit 10 shown in FIG. 1, and is driven in an insulated state.

【0008】 このスイッチ回路10の動作は以下のと
おりである。MOSFETQ1に正のゲート信号が印加
されていないときは、MOSFETQ1はオフ状態であ
り、追従して動作するMOSFETQ2〜Q40もオフ
状態となり、端子1、2間には電圧Eが印加される。コ
ンデンサC1〜C40の静電容量がほぼ等しいと仮定
し、そして、ツェナーダイオードD、DD等の電圧値を
無視した場合には、コンデンサC1〜C40で電圧Eを
ほぼ均等に分担し、MOSFETQ1〜Q40にはコン
デンサC1〜C40とほぼ等しい電圧が図の上側を正と
する極性で印加される。次に、MOSFETQ1に正の
ゲート信号を印加すると、MOSFETQ1は導通を開
始する。MOSFETQ1 が導通を開始すると、コンデ
ンサC1 の電荷は抵抗R1 、MOSFETQ2のゲー
ト、ソース及びMOSFETQ1のドレイン、ソースを
介して放電を開始し、MOSFETQ2のゲート、ソー
ス間にMOSFETQ2が動作するに充分な電圧が印加
されMOSFETQ2は導通を開始する。なお、ツェナ
ーダイオードDD1及びD1はMOSFETQ2のゲー
ト、ソース間電圧を所定値以下に抑えるためのものであ
る。MOSFETQ3〜Q40についても、MOSFE
TQ2と同様にして順次導通を開始し、スイッチ回路1
0はオン状態となる。MOSFETQ1は、オン期間中
正のゲート信号が印加され続けるので、小さなオン抵抗
でオン状態を持続する。MOSFETQ2のゲート・ソ
ース間には、その間に接続されて電流を流す抵抗がない
ので、ツェナーダイオードD2、DD2等で定まる電圧
がゲート、ソース間に印加され続け、MOSFETQ1
と同様に充分小さなオン抵抗でオン状態を持続する。M
OSFETQ3〜Q40は、MOSFETQ2と同様に
オン状態を持続する。それゆえ、多数個直列接続して
も、オン抵抗を充分に小さくできる。
The operation of the switch circuit 10 is as follows. When a positive gate signal is not applied to the MOSFET Q1, the MOSFET Q1 is in an off state, and the MOSFETs Q2 to Q40 that operate accordingly are also in an off state, and the voltage E is applied between the terminals 1 and 2. Assuming that the capacitances of the capacitors C1 to C40 are substantially equal, and ignoring the voltage values of the Zener diodes D, DD, etc., the capacitors C1 to C40 share the voltage E almost equally, and the MOSFETs Q1 to Q40 , A voltage substantially equal to that of the capacitors C1 to C40 is applied with a polarity having the upper side of the figure as positive. Next, when a positive gate signal is applied to the MOSFET Q1, the MOSFET Q1 starts conducting. When the MOSFET Q1 starts conducting, the electric charge of the capacitor C1 starts discharging through the resistor R1, the gate and source of the MOSFET Q2 and the drain and source of the MOSFET Q1, and a sufficient voltage between the gate and the source of the MOSFET Q2 to operate the MOSFET Q2. The applied MOSFET Q2 starts conducting. The Zener diodes DD1 and D1 are for suppressing the voltage between the gate and the source of the MOSFET Q2 to a predetermined value or less. MOSFETs Q3 to Q40 are also MOSFE
Conduction starts sequentially in the same manner as in TQ2, and the switch circuit 1
0 is turned on. Since the positive gate signal continues to be applied during the ON period, the MOSFET Q1 maintains the ON state with a small ON resistance. Since there is no resistor connected between the gate and the source of the MOSFET Q2 to allow a current to flow, a voltage determined by the Zener diodes D2, DD2, etc. is continuously applied between the gate and the source.
In the same manner as described above, the ON state is maintained with a sufficiently small ON resistance. M
The OSFETs Q3 to Q40 maintain the ON state similarly to the MOSFET Q2. Therefore, even if a large number are connected in series, the on-resistance can be sufficiently reduced.

【0009】 MOSFETQ1のゲート信号の印加を
停止すると、MOSFETQ1はオフ状態となり、MO
SFETQ1のドレイン電流は0となる。このため、ス
イッチ回路10を流れる電流は、MOSFETQ2のソ
ース→ゲート→抵抗R1→コンデンサC1→端子2を介
して流れ、オン時にMOSFETQ2のゲート、ソース
間に充電した電荷を打ち消す。MOSFETQ2のゲー
ト、ソース間電荷の消去が行われるとMOSFETQ2
がオフ状態となり電流は0となる。スイッチ回路10を
流れる電流は、MOSFETQ3のソース→ゲート→抵
抗R2→コンデンサC2を介して流れ、MOSFETQ
3のゲート、ソース間電荷の打ち消しが行われ、MOS
FETQ3がオフ状態となる。以下同様にして、瞬時に
MOSFETQ4、Q5、…Q40がオフ状態となりス
イッチ回路10はオフ状態になる。MOSFETはスイ
ッチング時間が数10ns以下と非常に短いため、上記した
オン動作、オフ動作におけるスイッチング時間の差によ
る分担電圧の不均衡はほとんどない。しかも、コンデン
サC1〜C40によりスイッチオフ時の負荷回路電流の
変化率を低減し、スイッチオフ回路への過大電圧の印加
を防止できる。
When the application of the gate signal of the MOSFET Q1 is stopped, the MOSFET Q1 is turned off and the MO
The drain current of the SFET Q1 becomes 0. Therefore, the current flowing through the switch circuit 10 flows through the source → gate → resistance R1 → capacitor C1 → terminal 2 of the MOSFET Q2, and cancels the charge between the gate and the source of the MOSFET Q2 when turned on. When charge between the gate and the source of MOSFET Q2 is erased, MOSFET Q2
Is turned off, and the current becomes zero. The current flowing through the switch circuit 10 flows through the source of the MOSFET Q3 → the gate → the resistor R2 → the capacitor C2.
3, the charge between the gate and the source is canceled and the MOS
FET Q3 is turned off. Similarly, the MOSFETs Q4, Q5,..., Q40 are turned off instantaneously, and the switch circuit 10 is turned off. Since the switching time of the MOSFET is as short as several tens of ns or less, there is almost no imbalance in the shared voltage due to the difference between the switching times in the above-described ON operation and OFF operation. Moreover, the rate of change of the load circuit current at the time of switch-off can be reduced by the capacitors C1 to C40, and application of an excessive voltage to the switch-off circuit can be prevented.

【0010】 図3は、図1に示すスイッチ回路を図2
に示す絶縁駆動回路でパルス駆動した場合におけるMO
SFETQ2のゲート・ソース間電圧の波形を示す。パ
ルス信号がHレベルのときはゲート・ソース間電圧は図
のピークA点で約+15Vの正バイアスが印加され、パ
ルス信号がLレベルのときはゲート・ソース間電圧は図
のピークB点で約−15Vの負バイアスが印加されて充
分なノイズマージンを備える。
FIG. 3 is a circuit diagram of the switch circuit shown in FIG.
MO when pulse drive is performed by the insulation drive circuit shown in
7 shows a waveform of a gate-source voltage of the SFET Q2. When the pulse signal is at the H level, a positive bias of about +15 V is applied to the gate-source voltage at the peak A point in the figure, and when the pulse signal is at the L level, the gate-source voltage is at about the peak B point in the figure. A negative bias of -15 V is applied to provide a sufficient noise margin.

【0011】 図4は、従来のスイッチ回路においてパ
ルス駆動した場合のMOSFETのゲート・ソース間電
圧の波形を示す。パルス信号がHレベルのときはゲート
・ソース間電圧は図のピークC点で約+15Vの正バイ
アスが印加され、パルス信号がLレベルのときはゲート
・ソース間電圧は図のD点で約−0.5Vのわずかな負
バイアスが印加されるに止まる。
FIG. 4 shows a waveform of a gate-source voltage of a MOSFET when pulse driving is performed in a conventional switch circuit. When the pulse signal is at the H level, a positive bias of about +15 V is applied to the gate-source voltage at the peak C point in the figure, and when the pulse signal is at the L level, the gate-source voltage is about-at the point D in the figure. Only a slight negative bias of 0.5 V is applied.

【0012】[0012]

【発明の効果】 本発明は以上述べたような特徴を有し
ており、MOSFETを直列に接続したスイッチ回路に
おいて、オフ時に充分な負バイアスを与えることでで
き、MOSFETの誤動作をなくすことができる。ま
た、回路構成も各段のMOSFETのゲートとソース間
に定電圧ダイオードを1つずつ追加されるだけなので回
路構成も複雑化しない。
The present invention has the features as described above. In a switch circuit in which MOSFETs are connected in series, a sufficient negative bias can be applied at the time of off, and malfunction of the MOSFETs can be eliminated. . In addition, the circuit configuration is not complicated because only a constant voltage diode is added between the gate and the source of each stage MOSFET.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係るスイッチ回路の実施の形態を示
す。
FIG. 1 shows an embodiment of a switch circuit according to the present invention.

【図2】 本発明に係るスイッチ回路の実施の形態にお
ける絶縁駆動回路の一例を示す。
FIG. 2 shows an example of an insulating drive circuit in a switch circuit according to an embodiment of the present invention.

【図3】 図1に示すスイッチ回路におけるMOSFE
Tのゲート、ソース間電圧の波形を示す。
FIG. 3 is a diagram showing a MOSFE in the switch circuit shown in FIG. 1;
3 shows a waveform of a voltage between a gate and a source of T.

【図4】 従来のスイッチ回路におけるMOSFETの
ゲート、ソース間電圧の波形を示す。
FIG. 4 shows a waveform of a voltage between a gate and a source of a MOSFET in a conventional switch circuit.

【符号の説明】[Explanation of symbols]

1、2…端子 Q1、Q2...Q40…MOSFET R1、R2...R40…抵抗 RR1、RR2...RR40…抵抗 C1、C2...C40…コンデンサ D1、D2...D40…ツェナーダイオード DD1、DD2...DD40…ツェナーダイオード 10…スイッチ回路 100…絶縁駆動回路 101…高周波源 102
…パルス源 103…発光ダイオード 106…光ファイバ 107…オプティカルレシーバ 120…絶縁変圧
1, 2,... Terminals Q1, Q2. . . Q40: MOSFET R1, R2. . . R40... Resistors RR1, RR2. . . RR40 ... resistance C1, C2. . . C40: Capacitors D1, D2. . . D40: Zener diode DD1, DD2. . . DD40: Zener diode 10: Switch circuit 100: Insulation drive circuit 101: High frequency source 102
... Pulse source 103 ... Light-emitting diode 106 ... Optical fiber 107 ... Optical receiver 120 ... Insulation transformer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ゲートに与えられる制御信号により導通
が制御されるMOSFETとこのMOSFETのドレイ
ン側に順次直列に接続され、このMOSFETの動作に
追従して動作する複数個のMOSFETからなるスイッ
チ回路で、ゲートに与えられる制御信号により導通が制
御されるMOSFETのソースとこれに直列接続された
MOSFETのゲート、及び順次直列接続された各MO
SFETのソースとこれに接続された各MOSFETの
ゲート、及び順次直列接続されたMOSFETのうち最
後に位置するMOSFETのソース、ドレイン間にコン
デンサと抵抗からなる直列回路を接続し、かつゲートに
与えられる制御信号により導通が制御されるMOSFE
Tに順次直列接続される各MOSFETのソース、ゲー
ト間にそれぞれ第1の定電圧ダイオードを接続したスイ
ッチ回路において、これらそれぞれの第1の定電圧ダイ
オードに直列にそれぞれ逆極性で第2の定電圧ダイオー
ドを接続してなることを特徴とするスイッチ回路。
1. A switch circuit comprising a MOSFET whose conduction is controlled by a control signal applied to a gate and a plurality of MOSFETs connected in series to the drain side of the MOSFET and operating in accordance with the operation of the MOSFET. , The source of a MOSFET whose conduction is controlled by a control signal applied to the gate, the gate of a MOSFET connected in series to the source, and each MO connected in series.
A series circuit consisting of a capacitor and a resistor is connected between the source and drain of the SFET source, the gate of each MOSFET connected thereto, and the last MOSFET among the serially connected MOSFETs, and is applied to the gate. MOSFE whose conduction is controlled by a control signal
In a switch circuit in which a first constant voltage diode is connected between the source and the gate of each MOSFET sequentially connected to T in series, a second constant voltage having a reverse polarity is connected in series with each of the first constant voltage diodes. A switch circuit comprising a diode connected.
JP2000190586A 2000-06-26 2000-06-26 Switch circuit Withdrawn JP2002009600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000190586A JP2002009600A (en) 2000-06-26 2000-06-26 Switch circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000190586A JP2002009600A (en) 2000-06-26 2000-06-26 Switch circuit

Publications (1)

Publication Number Publication Date
JP2002009600A true JP2002009600A (en) 2002-01-11

Family

ID=18690034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000190586A Withdrawn JP2002009600A (en) 2000-06-26 2000-06-26 Switch circuit

Country Status (1)

Country Link
JP (1) JP2002009600A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144373A1 (en) 2011-04-21 2012-10-26 ルネサスエレクトロニクス株式会社 Switch circuit, selection circuit, and voltage measurement device
CN114488910A (en) * 2022-02-18 2022-05-13 坎德拉(深圳)科技创新有限公司 Restart control device and robot

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144373A1 (en) 2011-04-21 2012-10-26 ルネサスエレクトロニクス株式会社 Switch circuit, selection circuit, and voltage measurement device
US9453886B2 (en) 2011-04-21 2016-09-27 Renesas Electronics Corporation Switch circuit, selection circuit, and voltage measurement device
CN114488910A (en) * 2022-02-18 2022-05-13 坎德拉(深圳)科技创新有限公司 Restart control device and robot

Similar Documents

Publication Publication Date Title
US6081432A (en) Active reset forward converter employing synchronous rectifiers
KR940009252B1 (en) Photo coupler device
EP0245769A1 (en) Solid-state relay
JP4903214B2 (en) Method and circuit device for controlling semiconductor switch with galvanic isolation
US9444351B2 (en) Electrical power conversion device including normally-off bidirectional switch
US8816653B2 (en) Circuit including a transformer for driving a semiconductor switching element
US8059437B2 (en) Integrated circuit and DC-DC converter formed by using the integrated circuit
JPH01111383A (en) Photocoupler
KR101089206B1 (en) A drive circuit comprising a field effect transistor
US20130265096A1 (en) Load control device
CN110752739B (en) Power equipment driving device
CN111865086B (en) Self-powered control circuit and control method and switching power supply circuit
KR20040029082A (en) Half-bridge circuit
JP2002009600A (en) Switch circuit
US20170324322A1 (en) Supply voltage generating circuit and switching power supply
EP0177148A2 (en) Power supplies using mosfet devices
US6657872B2 (en) Voltage converter
CN110932528B (en) Self-powered control circuit and control method and switching power supply circuit
US7005834B2 (en) Synchronous rectifier circuit and power supply
JP4320735B2 (en) Semiconductor relay
US11699945B2 (en) Drive circuit and switching power supply device
JPS6135616A (en) Field effect transistor drive circuit
JP4093014B2 (en) Semiconductor switching element drive circuit and semiconductor relay using the same
US8547670B2 (en) Integrated circuit
JP3707002B2 (en) Switch circuit

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070904