JP2002009047A - Plasma processor and plasma processing method - Google Patents

Plasma processor and plasma processing method

Info

Publication number
JP2002009047A
JP2002009047A JP2000183856A JP2000183856A JP2002009047A JP 2002009047 A JP2002009047 A JP 2002009047A JP 2000183856 A JP2000183856 A JP 2000183856A JP 2000183856 A JP2000183856 A JP 2000183856A JP 2002009047 A JP2002009047 A JP 2002009047A
Authority
JP
Japan
Prior art keywords
electrode
plasma
lower electrode
plasma processing
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000183856A
Other languages
Japanese (ja)
Inventor
Shiyuushin Amano
修臣 天野
Kenji Sumita
賢二 住田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000183856A priority Critical patent/JP2002009047A/en
Publication of JP2002009047A publication Critical patent/JP2002009047A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To uniform the peak-to-peak of a high frequency voltage in an electrode face which is the cause of the improvement of the uniformity of a plasma processing, in a plasma processor where a planar electrode in which an object to be processed is installed in a vacuum chamber, high frequency power is applied at the back of the electrode, plasma is generated on a side where the processed object is installed for plasma-processing. SOLUTION: A first dielectric 13 which is formed in such a way that it is sequentially thickened along a direction to an outer peripheral part from a center where high frequency power is applied is arranged in a lower electrode 5 and the impedance of the lower electrode 5 is varied in the periphery of the center and the outer peripheral part. Thus, voltage drops differ in respective parts in the lower electrode 5 and the peak-to-peak of the high frequency voltage in the lower electrode 5 is uniformed. Consequently, electric field intensity in the lower electrode 5 is uniformed, ion energy accelerated by an electric field is uniformed in the substrate face and the uniformity of the plasma processing is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ドライエッチン
グ、プラズマCVD、スパッタリングなどのプラズマ処
理を行なうプラズマ処理装置および方法に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a plasma processing apparatus and method for performing plasma processing such as dry etching, plasma CVD, and sputtering.

【0002】[0002]

【従来の技術】近年、プラズマ処理は、ドライエッチン
グによる微細加工、薄膜形成、及び表面改質等の物質の
表面処理に広く利用されており、特に半導体の分野にお
いて、超高集積回路装置を製造する上で必要不可欠な技
術となっている。
2. Description of the Related Art In recent years, plasma processing has been widely used for surface processing of substances such as fine processing by dry etching, thin film formation, and surface modification. It is an indispensable technology in doing so.

【0003】従来のプラズマ処理装置としては、容量結
合型の平行平板プラズマ処理装置が広く用いられてき
た。その理由は、均一なプラズマ処理が要求される中
で、比較的低い真空度の圧力下で均一な低密度プラズマ
を容易に発生させることができるからである。
[0003] As a conventional plasma processing apparatus, a capacitively coupled parallel plate plasma processing apparatus has been widely used. The reason is that, while uniform plasma processing is required, uniform low-density plasma can be easily generated under a relatively low degree of vacuum.

【0004】ところが、半導体集積回路の微細化が進む
につれ、高い真空度の圧力下で高密度プラズマを生成す
る必要が生じてきており、コイルに高周波電流を流しそ
の誘導磁界を減圧下の空間に作用させてプラズマを発生
させる誘導結合型プラズマ発生装置、及びそれを用いた
プラズマ処理装置が注目を集めている。
However, as the miniaturization of semiconductor integrated circuits has progressed, it has become necessary to generate high-density plasma under a high degree of vacuum, and a high-frequency current is passed through a coil to induce an induced magnetic field in a space under reduced pressure. Inductively coupled plasma generators that generate plasma by acting on them, and plasma processing apparatuses using the same have attracted attention.

【0005】高真空においてプラズマを発生させると、
ドライエッチング装置の場合、基板表面に形成されるイ
オンシース中でイオンがイオン又は他の中性ガス粒子と
衝突する確立が小さくなるため、イオンの方向性が基板
に向かって揃い、エッチング異方性が高められ、高アス
ペクト比の加工が可能になる。プラズマCVD装置の場
合、イオンによるスパッタリング効果によって微細パタ
ーンの埋め込みと平坦化作用が得られ、高アスペクト比
の加工が可能になる。スパッタリング装置としては、R
F(Radio Frequency:高周波)マグネトロンスパッタ
装置が知られており、このRFマグネトロンスパッタ装
置では、ターゲットと基板の間にRF電圧を印加してス
パッタガスを放電させ陰極近傍の空間にプラズマを発生
させることにより基板上に薄膜を堆積している。
When plasma is generated in a high vacuum,
In the case of a dry etching apparatus, the probability that ions collide with ions or other neutral gas particles in the ion sheath formed on the substrate surface is reduced, so that the direction of the ions is aligned toward the substrate and the etching anisotropy is increased. And high aspect ratio processing becomes possible. In the case of a plasma CVD apparatus, a fine pattern is buried and flattened by the sputtering effect of ions, and processing with a high aspect ratio becomes possible. As the sputtering device, R
2. Description of the Related Art An F (Radio Frequency) magnetron sputtering apparatus is known. In this RF magnetron sputtering apparatus, an RF voltage is applied between a target and a substrate to discharge a sputtering gas and generate plasma in a space near a cathode. To deposit a thin film on the substrate.

【0006】プラズマ処理装置の一例として、上述した
従来よりある平行平板型ドライエッチング装置について
図面を参照しながら説明する。図3に示すように、チャ
ンバー1には、チャンバー1に対して被処理物を出し入
れする搬出入手段および排気手段(図示せず)、反応ガ
スを導入する反応ガス導入手段2、およびチャンバー1
内を所定の圧力に保持する圧力制御手段3が設けられて
いる。チャンバー1の内部には、平板状の上部電極4と
下部電極5とが互いに平行に設けられている。下部電極
5は、エッチングや膜堆積を行う液晶用ガラス基板6等
の被処理物が設置されるものであり、その下面の中央部
又はその近傍に、チャンバー1の外部の高周波電源7よ
りインピーダンス整合器8を介して高周波電力が印加さ
れる。
As an example of a plasma processing apparatus, a conventional parallel plate type dry etching apparatus described above will be described with reference to the drawings. As shown in FIG. 3, the chamber 1 includes a loading / unloading unit and an exhaust unit (not shown) for taking a workpiece into and out of the chamber 1, a reaction gas introducing unit 2 for introducing a reaction gas, and a chamber 1.
Pressure control means 3 for keeping the inside at a predetermined pressure is provided. Inside the chamber 1, a flat upper electrode 4 and a lower electrode 5 are provided in parallel with each other. The lower electrode 5 is provided with an object to be processed such as a liquid crystal glass substrate 6 on which etching or film deposition is performed. The lower electrode 5 is provided with a high-frequency power source 7 outside the chamber 1 at the center or in the vicinity of the lower surface thereof. High frequency power is applied via the device 8.

【0007】下部電極5は、図4に示すように、基板6
が載置される電極9と、この電極9の下に配置されてチ
ャンバー底面と絶縁する誘電体10と、これら電極9お
よび誘電体10の周囲を囲む絶縁ブロック11とで構成
されている。電極9は全面が平坦な平板型や円盤型をな
す形状に、導電性材料、例えばアルマイト処理されたア
ルミニウムである単一材料を用いて構成されていて、そ
のインピーダンスは部位による偏りはなく電極中央部と
電極外周部とでほぼ等しくなっている。
[0007] As shown in FIG.
, A dielectric 10 disposed under the electrode 9 to insulate it from the bottom of the chamber, and an insulating block 11 surrounding the periphery of the electrode 9 and the dielectric 10. The electrode 9 is made of a conductive material, for example, a single material such as alumite-treated aluminum, in a flat plate shape or a disk shape having a flat surface, and its impedance is not biased depending on the position and the center of the electrode. And the outer periphery of the electrode are substantially equal.

【0008】このようなプラズマ処理装置を用いてドラ
イエッチングを行うには、まず、図示しない搬出入手段
により基板6をチャンバー1に搬入して下部電極5の上
に設置する。その後に、図示しない排気手段によりチャ
ンバー1内の気体を排出するとともに、反応ガス導入手
段2より反応ガスをチャンバー1に導入し、圧力制御手
段3によって所定の反応ガス圧力に維持する。次いで、
高周波電源7からインピーダンス整合器8を介して下部
電極5に高周波電力を印加し、上部電極4との間でプラ
ズマを発生させて、基板6のエッチングを行なう。エッ
チングが終了したら、高周波電力の供給を停止し、反応
ガスの導入を停止するとともに、チャンバー1内の残留
ガスを排出し、その後に基板6をチャンバー1の外部に
取り出す。
In order to perform dry etching using such a plasma processing apparatus, first, the substrate 6 is loaded into the chamber 1 by a loading / unloading means (not shown) and placed on the lower electrode 5. Thereafter, the gas in the chamber 1 is exhausted by an exhaust means (not shown), the reaction gas is introduced into the chamber 1 by the reaction gas introduction means 2, and the pressure is maintained at a predetermined pressure by the pressure control means 3. Then
High-frequency power is applied to the lower electrode 5 from the high-frequency power source 7 via the impedance matching device 8 to generate plasma between the lower electrode 5 and the upper electrode 4, thereby etching the substrate 6. When the etching is completed, the supply of the high-frequency power is stopped, the introduction of the reaction gas is stopped, the residual gas in the chamber 1 is exhausted, and then the substrate 6 is taken out of the chamber 1.

【0009】[0009]

【発明が解決しようとする課題】上記した従来の平行平
板型プラズマ処理装置において、下部電極5への高周波
電力の印加ポイントを下面中央部とし、Ti(チタン)
膜を堆積した550mm×670mm液晶用ガラス基板
6を被処理物とし、13.56Mhzの高周波電力を高
周波電源7より出力してエッチングを行ったところ、エ
ッチングレートの基板面内分布は図5に示すようになっ
た。図中、A,Bはそれぞれ、印加ポイントの直上を通
るように互いに垂直な方向に設定した2本の線A,B上
での測定値であることを示す。この分布を見ると、エッ
チングレートは高周波電力の印加ポイントおよびその周
辺で低く、印加ポイントから離れるほど高くなってい
る。
In the above-mentioned conventional parallel plate type plasma processing apparatus, the point of application of high frequency power to the lower electrode 5 is set at the center of the lower surface, and Ti (titanium) is used.
The 550 mm × 670 mm liquid crystal glass substrate 6 on which the film was deposited was used as an object to be processed, and high frequency power of 13.56 Mhz was output from the high frequency power supply 7 to perform etching. The distribution of the etching rate in the substrate surface is shown in FIG. It became so. In the drawing, A and B indicate measurement values on two lines A and B set in directions perpendicular to each other so as to pass right above the application point. Looking at this distribution, the etching rate is low at and around the application point of the high-frequency power, and increases as the distance from the application point increases.

【0010】また、下部電極5に高周波電力を印加して
いる非放電状態で下部電極面のVPP(高周波電圧のピ
ークツーピーク)を調べたところ、図6に示すように、
高周波電力の印加ポイントおよびその周辺で低く、印加
ポイントから離れるほど高くなっていることが判った。
Further, when the VPP (peak-to-peak of the high-frequency voltage) on the lower electrode surface was examined in a non-discharge state in which high-frequency power was applied to the lower electrode 5, as shown in FIG.
It was found that the frequency was low at and around the application point of the high-frequency power, and increased as the distance from the application point increased.

【0011】これらのことから、高周波電力の印加ポイ
ントからの距離に応じて図6に示すように下部電極面の
VPPが変化し、下部電極面内でVPPに応じた電界強
度が与えられ、その電界強度に応じて加速されるイオン
エネルギーが与えられる結果、図5に示すようなエッチ
ングレートの基板面内分布が得られたものと考えられ
る。
From these facts, as shown in FIG. 6, the VPP of the lower electrode surface changes according to the distance from the point to which the high-frequency power is applied, and the electric field intensity corresponding to the VPP is given in the lower electrode surface. It is considered that the ion energy accelerated according to the electric field intensity was applied, and as a result, the etching rate distribution in the substrate surface as shown in FIG. 5 was obtained.

【0012】下部電極面にVPPの変化(バラツキ)が
生じるのは、伝送ケーブルのケーブル端を開放すること
でケーブル上に生じる定在波やアンテナから電波を放射
する時に、開放端の電位が一番高くなり、開放端から1
/4λ離れた箇所で電位が最小となることと同じと考え
られる。上記した条件では、周波数が13.56Mhz
であり、下部電極5のサイズは1/4λより十分に小さ
いものの、無視出来ない大きさになっていると言える。
The change (variation) of the VPP on the lower electrode surface is caused by the fact that when a cable end of a transmission cable is opened and a standing wave generated on the cable or a radio wave is radiated from an antenna, the potential at the open end becomes one. Highest, 1 from open end
This is considered to be the same as that the potential becomes minimum at a position / 4λ away. Under the above conditions, the frequency is 13.56 Mhz
Thus, although the size of the lower electrode 5 is sufficiently smaller than 1 / λ, it can be said that the size is not negligible.

【0013】この点において、近年は半導体や液晶パネ
ルの製造工程で、エッチングや膜堆積を行うウェハや基
板の大版化が進行してきており、プラズマ処理装置の電
極もそれに伴って大型化してきている。そしてそのた
め、ドライエッチング装置においてはエッチングレート
の面内均一性の確保が、またCVD・スパッタリング装
置においては堆積膜厚の面内均一性の確保が、困難にな
ってきている。
In this regard, in recent years, in the manufacturing process of semiconductors and liquid crystal panels, the size of wafers and substrates on which etching and film deposition are performed has been increasing, and the electrodes of plasma processing apparatuses have also increased in size. I have. For this reason, it is becoming difficult to secure the in-plane uniformity of the etching rate in the dry etching apparatus and to secure the in-plane uniformity of the deposited film thickness in the CVD / sputtering apparatus.

【0014】特に液晶パネルの製造においては、基板サ
イズは、従来は370mm×470mm等が主流であっ
たが、現在は550mm×670mm等が主流となって
おり、3〜4年先には1000mm角へと大型化が進む
と予測される。そして電極の大型化が進むにつれて、高
周波電力の印加ポイントから外周部までの距離が大きく
なり、下部電極面のVPPの変化(バラツキ)がより顕
著になり、プロセス処理の面内均一性の確保が更に困難
になると予想される。
In particular, in the production of liquid crystal panels, the size of a substrate has conventionally been 370 mm × 470 mm or the like in the past, but now 550 mm × 670 mm or the like, and it is 1000 mm square in 3 to 4 years from now. The size is expected to increase. As the size of the electrode increases, the distance from the high-frequency power application point to the outer peripheral portion increases, and the change (variation) in the VPP of the lower electrode surface becomes more remarkable, and the in-plane uniformity of the process is ensured. It is expected to be even more difficult.

【0015】本発明は上記問題を解決するもので、プラ
ズマ処理の均一性向上の要因である電極面のVPPを均
一化できるプラズマ処理装置を提供することを目的とす
る。
An object of the present invention is to solve the above-mentioned problem, and an object of the present invention is to provide a plasma processing apparatus capable of uniformizing VPP on an electrode surface, which is a factor for improving uniformity of plasma processing.

【0016】[0016]

【課題を解決するための手段】上記問題を解決するため
に本発明は、真空チャンバーの内部に被処理物を設置す
る平板状電極を配置し、この電極の背面に高周波電力を
印加して被処理物設置面側でプラズマを発生させ被処理
物をプラズマ処理するプラズマ処理装置において、前記
電極の内部に高周波印加部から外周部に向かう方向に沿
って順次に厚く形成した誘電体を配置して、前記電極の
インピーダンスを前記高周波印加部の周辺と外周部とで
相違させたことを特徴とする。誘電体を順次に厚く形成
するに際しては、連続して緩やかに厚くしてもよいし、
段階的に厚くしてもよい。
In order to solve the above-mentioned problems, according to the present invention, a plate-like electrode on which an object to be processed is placed is arranged inside a vacuum chamber, and high-frequency power is applied to the back of the electrode to apply the object. In a plasma processing apparatus that generates plasma on the processing object installation surface side and performs plasma processing on an object to be processed, a dielectric body that is formed sequentially thicker in a direction from a high frequency application unit to an outer peripheral portion is disposed inside the electrode. The impedance of the electrode is different between the periphery of the high-frequency application section and the outer periphery. When forming the dielectric sequentially thicker, it may be made gently thicker continuously,
The thickness may be increased stepwise.

【0017】また本発明は、真空チャンバーの内部に被
処理物を設置する平板状電極を配置し、この電極の背面
に高周波電力を印加して被処理物設置面側でプラズマを
発生させ被処理物をプラズマ処理するに際し、前記電極
の内部に高周波印加部から外周部に向かう方向に沿って
順次に厚く形成した誘電体を配置することにより、前記
電極のインピーダンスを前記高周波印加部の周辺と外周
部とで相違させ、電極面内の高周波電圧のピークツーピ
ークを均一化する状態において、被処理物を処理するこ
とを特徴とする。
Further, according to the present invention, a plate-like electrode for placing an object to be processed is arranged inside a vacuum chamber, and high-frequency power is applied to the back of this electrode to generate plasma on the side of the object-to-be-processed and to generate a plasma. When the object is subjected to the plasma treatment, the impedance of the electrode is arranged around the periphery of the high-frequency application unit by placing a dielectric formed in the electrode in the order of thickness from the high-frequency application unit in the direction from the high-frequency application unit to the outer periphery. The process is performed in a state where the peak-to-peak of the high-frequency voltage in the electrode surface is made uniform.

【0018】かかる構成によれば、高周波印加部および
その周辺(以下、高周波印加部周辺という)のように本
来、高周波電圧のピークツーピーク(以下、VPP)が
低いところは誘電体の厚みを薄くし、外周部のように本
来VPPが高いところは誘電体の厚みを厚くして、電極
自体のインピーダンスを高周波印加部周辺と外周部とで
相違させたことにより、前記各部位での電圧降下が相違
することになり、電極面内のVPPが均一化される。そ
れにより電極面内の電界強度が均一化され、電界により
加速されるイオンエネルギーが基板面内で均一になる結
果、プラズマ処理の均一性が向上する。
According to this configuration, the dielectric material is thinner at places where the peak-to-peak (VPP) of the high-frequency voltage is originally low, such as the high-frequency application section and its periphery (hereinafter referred to as the high-frequency application section periphery). However, where the VPP is originally high, such as the outer peripheral portion, the thickness of the dielectric is increased, and the impedance of the electrode itself is made different between the periphery of the high-frequency application portion and the outer peripheral portion. The difference is that the VPP in the electrode surface is made uniform. As a result, the electric field intensity in the electrode surface is made uniform, and the ion energy accelerated by the electric field becomes uniform in the substrate surface, so that the uniformity of the plasma processing is improved.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態におけ
るプラズマ処理装置およびプラズマ処理方法について図
面を参照しながら説明する。 (実施の形態1)本発明の実施の形態1におけるプラズ
マ処理装置は先に図3を用いて説明した従来の平行平板
プラズマ処理装置とほぼ同様の構成を有しているので、
図3を援用して全体構成の図示および詳細な説明を省略
し、このプラズマ処理装置の特徴的な部材である下部電
極について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a plasma processing apparatus and a plasma processing method according to an embodiment of the present invention will be described with reference to the drawings. (Embodiment 1) The plasma processing apparatus according to Embodiment 1 of the present invention has substantially the same configuration as the conventional parallel plate plasma processing apparatus described above with reference to FIG.
With reference to FIG. 3, illustration and detailed description of the entire configuration are omitted, and a lower electrode, which is a characteristic member of the plasma processing apparatus, will be described.

【0020】図1に縦断面を示すように、下部電極5
は、全面が平坦な平板型の形状をしており、液晶用ガラ
ス基板6等の被処理物が載置される第1電極12と、イ
ンピーダンスを調節するための第1誘電体13と、高周
波電力を印加するための第2電極14と、チャンバー底
面と絶縁するための第2誘電体15とがこの順に上方よ
り配置されて互いに接触し、これらの周囲を囲むように
絶縁性材料、例えばセラミックからなる絶縁ブロック1
6が配置されている。
As shown in FIG. 1, the lower electrode 5
Has a first electrode 12 on which an object to be processed such as a glass substrate for liquid crystal 6 is placed, a first dielectric 13 for adjusting impedance, A second electrode 14 for applying power and a second dielectric 15 for insulating the chamber from the bottom surface are arranged in this order from above and are in contact with each other. Insulation block 1
6 are arranged.

【0021】第1電極12は、導電性材料、例えばアル
マイト処理されたアルミニウムである単一材料で構成さ
れており、基板6が載置される上面は全面が平坦な形
状、ここでは長さ780mm、幅660mmの長方形で
ある。
The first electrode 12 is made of a single material that is a conductive material, for example, alumite-treated aluminum. The upper surface on which the substrate 6 is mounted has a flat surface, in this case, a length of 780 mm. , 660 mm in width.

【0022】第2電極14は、導電性材料、例えばアル
ミニウムから構成されており、下面の中央部(その近傍
でもよい)に、チャンバー1の外部の高周波電源7がイ
ンピーダンス整合器8を介して接続している。
The second electrode 14 is made of a conductive material, for example, aluminum. A high-frequency power source 7 outside the chamber 1 is connected to a central portion of the lower surface (or in the vicinity thereof) via an impedance matching device 8. are doing.

【0023】第1誘電体13は、テフロン(商標)等の
フルオロカーボン樹脂などの誘電材料を用いて、外周部
が厚く高周波電力が印加される中央部およびその周辺
(以下、中央部周辺という)が薄くなるように緩やかな
傾きを持った形状に形成されている。上述した従来装置
では下部電極面のVPP分布が±5.7%であったた
め、中央部周辺は厚みaを10mmとし、外周部は厚み
bを11.4mmとしている。この第1誘電体13と接
触する第1電極12の下面は、第1誘電体13に沿う緩
やかな傾きを持った形状とされている。
The first dielectric 13 is made of a dielectric material such as a fluorocarbon resin such as Teflon (trademark), and has a thick outer peripheral portion and a peripheral portion to which high-frequency power is applied and a peripheral portion thereof (hereinafter referred to as a peripheral portion of the central portion). It is formed in a shape with a gentle inclination so as to be thin. In the above-described conventional device, the VPP distribution on the lower electrode surface was ± 5.7%, so that the thickness a was 10 mm around the center and the thickness b was 11.4 mm around the periphery. The lower surface of the first electrode 12 in contact with the first dielectric 13 has a shape having a gentle inclination along the first dielectric 13.

【0024】なお、第1電極12の内部には、図示して
いない温度調節機構、例えば冷媒循環路が設けられてい
て、この第1電極12を介してプラズマ処理時に基板6
が所定の温度に維持される。
A temperature control mechanism (not shown), for example, a coolant circulation path, is provided inside the first electrode 12.
Is maintained at a predetermined temperature.

【0025】一般に、誘電体のインピーダンスZは、Z
=1/2πfC で決まる。(fは高周波周波数、Cは
誘電体の容量)また、誘電体の容量Cは、C=ε×S/
d で決まる。
In general, the impedance Z of a dielectric is Z
= 1 / 2πfC. (F is the high frequency, C is the capacitance of the dielectric) The capacitance C of the dielectric is C = ε × S /
It is determined by d.

【0026】(εは誘電率、Sは誘電体面積、dは誘電
体の厚さ) このような関係から、誘電体の厚い部分(dが大きい部
分)は容量Cが小さくインピーダンスZが大きくなり、
薄い部分(dが小さい部分)は容量Cが大きくインピー
ダンスZが小さくなる。
(Ε is the dielectric constant, S is the dielectric area, and d is the thickness of the dielectric) From such a relationship, the thick part of the dielectric (the part where d is large) has a small capacitance C and a large impedance Z. ,
A thin portion (a portion where d is small) has a large capacitance C and a small impedance Z.

【0027】従って、上記した第1誘電体13は、外周
部でインピーダンスが大きくなって高周波印加時の電圧
降下が大きくなり、中央部周辺でインピーダンスが小さ
くなって高周波印加時の電圧降下が小さくなる。
Accordingly, the first dielectric 13 has a large impedance at the outer peripheral portion and a large voltage drop when a high frequency is applied, and has a small impedance around the central portion and a small voltage drop when a high frequency is applied. .

【0028】その結果、下部電極5における従来の問題
点、高周波電力が印加される中央部周辺でVPPが低
く、外周部に行くほどVPPが高くなるという現象を緩
和することができ、基板6が載置される第1電極12面
内のVPP分布を均一にすることができる。
As a result, the conventional problem of the lower electrode 5, that is, the phenomenon that VPP is low around the central portion to which high-frequency power is applied and VPP becomes higher toward the outer peripheral portion can be mitigated. The VPP distribution in the surface of the first electrode 12 to be mounted can be made uniform.

【0029】よって、高周波電源7からインピーダンス
整合器8を通して下部電極5に高周波電力を印加する
と、下部電極5の面内の電界強度が均一になり、電界に
より加速されるイオンエネルギーが基板6面内で均一に
なることになり、均一性の良いプラズマ処理を行うこと
ができる。なおこの時、プラズマに対してインピーダン
ス整合をとるので、安定なプラズマ放電を起こすことが
できる。 (実施の形態2)本発明の実施の形態2におけるプラズ
マ処理装置では、図5の縦断面図に示すように、第1誘
電体17は、高周波電力が印加される中央部周辺が薄く
外周部が厚くなるように段階的に厚みが変化した形状と
されている。すなわち、上述した従来装置では下部電極
面のVPP分布が±5.7%であったため、中央部周辺
は厚みc=10mmとし、外周部は厚みd=11.4m
mとし、中央部と外周部との中間部で厚みe=10.7
mmとしている。この第1誘電体17と接触する第1電
極18の下面は、第1誘電体17に沿う段階的な傾きを
持った形状とされている。
Therefore, when high-frequency power is applied to the lower electrode 5 from the high-frequency power source 7 through the impedance matching device 8, the electric field intensity in the plane of the lower electrode 5 becomes uniform, and the ion energy accelerated by the electric field is reduced in the plane of the substrate 6. And uniform plasma processing can be performed. At this time, since the impedance is matched with the plasma, a stable plasma discharge can be generated. (Embodiment 2) In the plasma processing apparatus according to Embodiment 2 of the present invention, as shown in the vertical sectional view of FIG. Has a shape in which the thickness is changed stepwise so as to increase the thickness. That is, in the above-described conventional device, the VPP distribution on the lower electrode surface was ± 5.7%, so that the thickness c = 10 mm around the central portion and the thickness d = 11.4 m around the peripheral portion.
m, and a thickness e = 10.7 at an intermediate portion between the central portion and the outer peripheral portion.
mm. The lower surface of the first electrode 18 in contact with the first dielectric 17 has a shape having a stepwise inclination along the first dielectric 17.

【0030】このようにすることによって、基板6が載
置される第1電極18面内のVPP分布を均一にするこ
とができ、実施の形態1と同様の効果が得られる。以
上、本発明の好適な実施の形態について説明したが、本
発明はかかる構成に限定されるものではなく、特許請求
の範囲に記載された技術的思想の範疇における修正、変
更を施した構成も本発明の範囲に属する。例えば、上記
実施の形態では平行平板型プラズマ処理装置を例に挙げ
て説明したが、チャンバーの上部等にプラズマ発生用の
コイルを配置する誘導結合型プラズマ処理装置にも本発
明の構成を適用可能である。また、液晶用基板に対して
エッチング処理を施す例を挙げて説明したが、被処理物
として半導体用や電子部品用のウェアを用いる処理や、
CVD、スパッタリングなど各種プラズマ処理でも、本
発明の構成を適用することができる。
By doing so, the VPP distribution in the surface of the first electrode 18 on which the substrate 6 is mounted can be made uniform, and the same effect as in the first embodiment can be obtained. As described above, the preferred embodiments of the present invention have been described. However, the present invention is not limited to such a configuration, and may be modified or changed within the scope of the technical idea described in the claims. It belongs to the scope of the present invention. For example, in the above embodiment, the parallel plate type plasma processing apparatus has been described as an example, but the configuration of the present invention can be applied to an inductively coupled plasma processing apparatus in which a coil for generating plasma is arranged at an upper portion of a chamber or the like. It is. Also, an example in which an etching process is performed on a liquid crystal substrate has been described. However, a process using semiconductor or electronic component wear as an object to be processed,
The structure of the present invention can be applied to various plasma treatments such as CVD and sputtering.

【0031】[0031]

【発明の効果】以上説明したように本発明によれば、液
晶用基板などの被対象物を設置し高周波電力を印加する
電極の内部に、高周波印加部から外周部に向かう方向に
沿って厚みが順次に変化する誘電体を配置して、電極自
体のインピーダンスを高周波印加部の周辺と外周部とで
相違させることにより、電極面内における高周波電圧の
ピークツーピーク分布を均一化できる。その結果、電極
面内の電界強度を均一にし、電界により加速されるイオ
ンエネルギーを基板面内で均一にすることができ、プラ
ズマ処理の均一性を向上できる。
As described above, according to the present invention, an object such as a liquid crystal substrate is placed and the thickness of the electrode along the direction from the high-frequency application section toward the outer periphery is set inside the electrode for applying the high-frequency power. By arranging a dielectric which changes sequentially, and making the impedance of the electrode itself different between the periphery and the outer periphery of the high-frequency application section, the peak-to-peak distribution of the high-frequency voltage in the electrode plane can be made uniform. As a result, the electric field intensity in the electrode surface can be made uniform, the ion energy accelerated by the electric field can be made uniform in the substrate surface, and the uniformity of the plasma processing can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施の形態におけるプラズマ処理
装置を構成する下部電極の縦断面図
FIG. 1 is a vertical sectional view of a lower electrode constituting a plasma processing apparatus according to a first embodiment of the present invention.

【図2】本発明の第2の実施の形態におけるプラズマ処
理装置を構成する下部電極の縦断面図
FIG. 2 is a vertical sectional view of a lower electrode constituting a plasma processing apparatus according to a second embodiment of the present invention.

【図3】従来よりある平行平板型プラズマ処理装置の概
略全体構成図
FIG. 3 is a schematic overall configuration diagram of a conventional parallel plate type plasma processing apparatus.

【図4】図3のプラズマ処理装置に設置されている従来
の下部電極の縦断面図
FIG. 4 is a longitudinal sectional view of a conventional lower electrode installed in the plasma processing apparatus of FIG. 3;

【図5】図4の下部電極に設置された基板面内における
エッチングレートの分布図
FIG. 5 is a distribution diagram of an etching rate in a plane of a substrate provided on a lower electrode of FIG. 4;

【図6】図4の下部電極面におけるVPP分布図FIG. 6 is a VPP distribution diagram on the lower electrode surface of FIG. 4;

【符号の説明】[Explanation of symbols]

1 チャンバー 2 反応ガス導入手段 3 圧力制御手段 4 上部電極 5 下部電極 6 基板 7 高周波電源 8 インピーダンス整合器 9 電極 10 誘電体 11 絶縁ブロック 12 第1電極 13 第1誘電体 14 第2電極 15 第2誘電体(絶縁用) 16 絶縁ブロック 17 第1誘電体 18 第1電極 DESCRIPTION OF SYMBOLS 1 Chamber 2 Reaction gas introduction means 3 Pressure control means 4 Upper electrode 5 Lower electrode 6 Substrate 7 High frequency power supply 8 Impedance matching device 9 Electrode 10 Dielectric 11 Insulation block 12 First electrode 13 First dielectric 14 Second electrode 15 Second Dielectric (for insulation) 16 Insulation block 17 First dielectric 18 First electrode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/31 H01L 21/302 C 5F103 Fターム(参考) 4K029 BD01 CA05 DC35 FA05 4K030 DA04 FA03 KA15 KA30 LA15 4K057 DA11 DA16 DB06 DB20 DD01 DG15 DM03 DM06 DM09 DN01 5F004 BA06 BB13 BD04 BD05 5F045 AA08 AE01 BB02 DP02 EH14 EH20 5F103 AA08 BB09 BB33 HH03 HH04 RR06 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification FI FI Theme coat ゛ (Reference) H01L 21/31 H01L 21/302 C 5F103 F-term (Reference) 4K029 BD01 CA05 DC35 FA05 4K030 DA04 FA03 KA15 KA30 LA15 4K057 DA11 DA16 DB06 DB20 DD01 DG15 DM03 DM06 DM09 DN01 5F004 BA06 BB13 BD04 BD05 5F045 AA08 AE01 BB02 DP02 EH14 EH20 5F103 AA08 BB09 BB33 HH03 HH04 RR06

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 真空チャンバーの内部に被処理物を設置
する平板状電極を配置し、この電極の背面に高周波電力
を印加して被処理物設置面側でプラズマを発生させ被処
理物をプラズマ処理するプラズマ処理装置において、 前記電極の内部に高周波印加部から外周部に向かう方向
に沿って順次に厚く形成した誘電体を配置して、前記電
極のインピーダンスを前記高周波印加部の周辺と外周部
とで相違させたことを特徴とするプラズマ処理装置。
A flat electrode for placing an object to be processed is disposed inside a vacuum chamber, and a high-frequency power is applied to the back surface of the electrode to generate plasma on the side where the object is to be placed, thereby generating a plasma. In the plasma processing apparatus for performing processing, a dielectric formed sequentially thicker in a direction from the high-frequency application unit to the outer peripheral portion is disposed inside the electrode, and the impedance of the electrode is set to the periphery and the outer peripheral portion of the high-frequency application unit. And a plasma processing apparatus characterized in that:
【請求項2】 真空チャンバーの内部に被処理物を設置
する平板状電極を配置し、この電極の背面に高周波電力
を印加して被処理物設置面側でプラズマを発生させ被処
理物をプラズマ処理するに際し、 前記電極の内部に高周波印加部から外周部に向かう方向
に沿って順次に厚く形成した誘電体を配置することによ
り、前記電極のインピーダンスを前記高周波印加部の周
辺と外周部とで相違させ、電極面内の高周波電圧のピー
クツーピークを均一化する状態において、被処理物を処
理することを特徴とするプラズマ処理方法。
2. A plate-like electrode on which an object to be processed is placed is disposed inside a vacuum chamber, and high-frequency power is applied to the back of the electrode to generate plasma on the side where the object to be processed is installed. In performing the process, by arranging a dielectric formed sequentially thicker along the direction from the high frequency applying unit to the outer peripheral portion inside the electrode, the impedance of the electrode is changed between the periphery and the outer peripheral portion of the high frequency applying unit. A plasma processing method characterized by processing an object to be processed in a state where peak-to-peak of a high-frequency voltage in an electrode surface is made uniform.
JP2000183856A 2000-06-20 2000-06-20 Plasma processor and plasma processing method Pending JP2002009047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000183856A JP2002009047A (en) 2000-06-20 2000-06-20 Plasma processor and plasma processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000183856A JP2002009047A (en) 2000-06-20 2000-06-20 Plasma processor and plasma processing method

Publications (1)

Publication Number Publication Date
JP2002009047A true JP2002009047A (en) 2002-01-11

Family

ID=18684370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000183856A Pending JP2002009047A (en) 2000-06-20 2000-06-20 Plasma processor and plasma processing method

Country Status (1)

Country Link
JP (1) JP2002009047A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006144091A (en) * 2004-11-22 2006-06-08 Fuji Electric Holdings Co Ltd Plasma-controlling method and plasma-controlling apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006144091A (en) * 2004-11-22 2006-06-08 Fuji Electric Holdings Co Ltd Plasma-controlling method and plasma-controlling apparatus

Similar Documents

Publication Publication Date Title
JP3482904B2 (en) Plasma processing method and apparatus
JP3739137B2 (en) Plasma generator and surface treatment apparatus using the plasma generator
US5487785A (en) Plasma treatment apparatus
US6346915B1 (en) Plasma processing method and apparatus
EP0809274B1 (en) Apparatus and method for manufacturing an electronic device
US5537004A (en) Low frequency electron cyclotron resonance plasma processor
KR100552641B1 (en) Plasma processing apparatus and plasma processing method
US20060096706A1 (en) Dry etching apparatus and a method of manufacturing a semiconductor device
CN111183504B (en) Superlocal and plasma uniformity control in manufacturing processes
JP3396399B2 (en) Electronic device manufacturing equipment
KR100786537B1 (en) Multi plasama source for process chamber of semiconductor device
KR100864111B1 (en) Inductively coupled plasma reactor
US20030010453A1 (en) Plasma processing apparatus and plasma processing method
JP4220316B2 (en) Plasma processing equipment
JP2002110649A (en) Plasma treatment apparatus
CN110770880B (en) Plasma processing apparatus
JP3676680B2 (en) Plasma apparatus and plasma generation method
JP3228679B2 (en) Plasma-excited chemical vapor deposition apparatus and plasma etching apparatus
JP2002009047A (en) Plasma processor and plasma processing method
JPH1167725A (en) Plasma etching device
JP3736016B2 (en) Plasma processing method and apparatus
KR100753869B1 (en) Compound plasma reactor
JP3379506B2 (en) Plasma processing method and apparatus
JP3172757B2 (en) Plasma processing equipment
JP2675000B2 (en) Plasma processing equipment