JP2002008725A - Lithium polymer secondary battery - Google Patents

Lithium polymer secondary battery

Info

Publication number
JP2002008725A
JP2002008725A JP2000184793A JP2000184793A JP2002008725A JP 2002008725 A JP2002008725 A JP 2002008725A JP 2000184793 A JP2000184793 A JP 2000184793A JP 2000184793 A JP2000184793 A JP 2000184793A JP 2002008725 A JP2002008725 A JP 2002008725A
Authority
JP
Japan
Prior art keywords
active material
electrolyte
current collector
material layer
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000184793A
Other languages
Japanese (ja)
Inventor
Yusuke Watarai
祐介 渡會
Akio Mizuguchi
暁夫 水口
Akihiro Higami
晃裕 樋上
Sawako Takeuchi
さわ子 竹内
Tadashi Kobayashi
正 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2000184793A priority Critical patent/JP2002008725A/en
Publication of JP2002008725A publication Critical patent/JP2002008725A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium polymer secondary battery. SOLUTION: This lithium polymer secondary battery has an active material layer having such structure that an electrolyte concentration in an active material is decreased toward a current collector; a lithium ion polymer battery forms such structure that the electrolyte concentration in the active material layer is decreased toward the current collector by the diffusion process of the electrolyte into the active material layer; or the lithium ion polymer secondary battery has an adhesion layer containing conductive particles between the current collector and the active material layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主として電気自動
車、ハイブリッド車向の大型電池又はノ−トパソコン、
携帯電話等の携帯機器用の電池等用の二次電池等に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates mainly to a large battery or a notebook personal computer for electric vehicles and hybrid vehicles,
The present invention relates to a secondary battery or the like for a battery or the like for a portable device such as a mobile phone.

【0002】[0002]

【従来技術】従来技術としては、特開平9−18596
0号に示されている様に、集電体面に活物質と結着剤と
からなる活物質層を積層してなり、該活物質層の組成
が、その厚み方向において変化しており、集電体と活物
質層の密着性を上げるために、集電体側の結着剤濃度を
高くした電極板からなる非水電解液二次電池が知られて
いる。
2. Description of the Related Art The prior art is disclosed in Japanese Patent Application Laid-Open No. Hei 9-18596.
As shown in No. 0, an active material layer composed of an active material and a binder was laminated on the current collector surface, and the composition of the active material layer was changed in the thickness direction. A non-aqueous electrolyte secondary battery including an electrode plate with a high binder concentration on the current collector side in order to increase the adhesion between the current collector and the active material layer is known.

【0003】[0003]

【発明が解決しようとする課題】上述の従来の技術に示
された構成でポリマ−電池を作製すると、ポリマ−電解
質と活物質層との界面のインピ−ダンスが高くなり、出
力特性が悪くなるという問題があった。
When a polymer battery is manufactured with the structure shown in the above-mentioned prior art, the impedance at the interface between the polymer electrolyte and the active material layer increases, and the output characteristics deteriorate. There was a problem.

【0004】[0004]

【課題を解決するための手段】上記問題点を解決すべ
く、鋭意研究開発に努めたところ、活物質層中の電解質
濃度を調整することにより、問題点を解決し得るとの知
見を得た。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have made intensive research and development and found that the problems can be solved by adjusting the concentration of the electrolyte in the active material layer. .

【0005】本発明は、上述の知見に基づいて得られた
ものであって、(1)活物質中の電解質濃度が集電体に
向って、減少する構造をもつ活物質するリチウムポリマ
−二次電池、(2)活物質層の電解質濃度の集電体に向
かう減少構造を、電解質の活物質層への拡散処理によっ
て形成することを特徴とする請求項1記載のリチウムイ
オンポリマ−二次電池、(3)集電体−活物質層間に導
電性粒子を含む接着層を有する(1)、(2)載のリチ
ウムイオンポリマ−二次電池、に特徴を有するものであ
る。
The present invention has been made based on the above findings. (1) A lithium polymer as an active material having a structure in which the concentration of the electrolyte in the active material decreases toward the current collector. 2. The lithium ion polymer secondary according to claim 1, wherein the secondary battery has (2) a structure in which the concentration of the electrolyte in the active material layer is reduced toward the current collector by diffusion treatment of the electrolyte into the active material layer. The battery is characterized by (3) the lithium ion polymer secondary battery described in (1) or (2), which has an adhesive layer containing conductive particles between the current collector and the active material layer.

【0006】本発明において、ポリマ−電解質層側の電
解質濃度を活物質層側よりも高くすることにより、ポリ
マ−電解質層と活物質層との界面のインピ−ダンスが低
下し、電池の出力特性が向上する。しかし、活物質ある
いは電解質の種類によっては、そのために集電体箔との
密着力が低下する場合がある。そのため、集電体−活物
質層間に導電性粒子を含む接着剤層を設けることによ
り、集電体−活物質層間の接着力が向上し、耐衝撃性が
高まり、また熱変化に対しても、剥がれの発生がなく、
信頼性が向上する。
In the present invention, by making the electrolyte concentration on the polymer electrolyte layer side higher than on the active material layer side, the impedance at the interface between the polymer electrolyte layer and the active material layer is reduced, and the output characteristics of the battery are reduced. Is improved. However, depending on the type of the active material or the electrolyte, the adhesion to the current collector foil may be reduced. Therefore, by providing an adhesive layer containing conductive particles between the current collector and the active material layer, the adhesive force between the current collector and the active material layer is improved, the impact resistance is increased, and heat resistance is also reduced. , No peeling,
Reliability is improved.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。本発明のリチウムポリマ−二次電池に用い
られる集電体としては、例えば、アルミニウム、銅等の
金属箔が好ましく用いられる。金属箔の厚さとしては、
5〜30μm程度のものを用いる。本発明の好ましい実
施形態では、まず、上記集電体の一方の表面に、活物質
と結着剤とからなる塗工液を塗布する。活物質として
は、正極活物質と負極活物質とが用いられる。これら活
物質は、形成される塗布層中に均一に分散されることが
好ましい。このため、本発明においては、活物質として
1〜100μmの範囲の粒径を有し、平均粒径が5〜2
0μm程度の粉末を用いるのが好ましい。さらに、分散
剤を添加する事も可能である。次いで、上記に挙げられ
た粉末状の活物質と結着剤とを、適当な有機溶媒からな
る分散媒体中に入れ、更に必要に応じて導電剤を混合さ
せた組成物を、従来公知の適当な分散機を用いて混合分
散することによってスラリ−を調製する。
Embodiments of the present invention will be described below. As the current collector used in the lithium polymer secondary battery of the present invention, for example, a metal foil such as aluminum and copper is preferably used. As the thickness of the metal foil,
One having a thickness of about 5 to 30 μm is used. In a preferred embodiment of the present invention, first, a coating liquid comprising an active material and a binder is applied to one surface of the current collector. As the active material, a positive electrode active material and a negative electrode active material are used. It is preferable that these active materials are uniformly dispersed in the formed coating layer. Therefore, in the present invention, the active material has a particle size in the range of 1 to 100 μm and an average particle size of 5 to 2 μm.
It is preferable to use a powder of about 0 μm. Further, it is possible to add a dispersant. Next, the above-mentioned powdered active material and the binder are placed in a dispersion medium composed of an appropriate organic solvent, and a composition obtained by further mixing a conductive agent, if necessary, is added to a composition known in the art. The slurry is prepared by mixing and dispersing using a suitable dispersing machine.

【0008】本発明では、上述の集電体の一方の表面に
正極活物質層または負極活物質層を形成する。本発明で
用いられる正極活物質としては、例えば、LiCoO2
LiNO2、LiMn24、LiMnO2等のリチウム酸化
物、TiS2、MnO2、MoO3、V25等のカルコゲン
化合物のうちの一種、或いは復数が組み合わせて用いら
れる。一方、負極活物質としては、金属リチウム、リチ
ウム合金、或いは、グラファイト、カ−ボンブラック、
アセチレンブラック等の炭素質材料、またはリチウムイ
オンをインタ−カレ−トする材料が好ましく用いられ
る。特に、LiCoO 2を正極活物質として、炭素質材料
を負極活物質として用いることにより、高い放電電圧の
リチウム系二次電池が得られる。
[0008] In the present invention, the above-mentioned current collector is provided on one surface.
A positive electrode active material layer or a negative electrode active material layer is formed. In the present invention
As the positive electrode active material used, for example, LiCoOTwo,
LiNOTwo, LiMnTwoOFour, LiMnOTwoEtc. lithium oxidation
Thing, TiSTwo, MnOTwo, MoOThree, VTwoOFiveEtc. chalcogen
One of the compounds or a combination of multiple
It is. On the other hand, as the negative electrode active material, metallic lithium, lithium
Alloy, or graphite, carbon black,
Carbonaceous materials such as acetylene black or lithium ion
A material that intercalates the ON is preferably used.
You. In particular, LiCoO TwoAs a positive electrode active material, a carbonaceous material
As a negative electrode active material, high discharge voltage
A lithium secondary battery is obtained.

【0009】上記活物質を含む塗工液の調製に用いられ
る結着剤としては、例えば、ポリフッ化ビニリデン樹
脂、ポリエステル樹脂、ポリアミド樹脂、ポリアクリル
酸エステル樹脂、ポリカ−ボネ−ト樹脂、ポリウレタン
樹脂、セルロ−ス樹脂、ポリオレフィン樹脂、ポリビニ
ル樹脂、フッ素系樹脂およびポリイミド樹脂等の熱可塑
性樹脂、または、ゴム系の樹脂、アクリレ−トモノマ−
またはオリゴマ−或いはそれらの混合物からなる電離放
射線硬化性樹脂、更にはこれらの各種樹脂の混合物が使
用できる。
Examples of the binder used for preparing the coating solution containing the active material include polyvinylidene fluoride resin, polyester resin, polyamide resin, polyacrylate resin, polycarbonate resin, and polyurethane resin. Thermoplastic resin such as cellulose resin, polyolefin resin, polyvinyl resin, fluorine resin and polyimide resin, or rubber resin, acrylate monomer
Alternatively, an ionizing radiation-curable resin comprising an oligomer or a mixture thereof, and a mixture of these various resins can be used.

【0010】上記の分散媒体としては、トルエン、メチ
ルエチルケトン、N−メチルピロリドン、アセトン或い
はこれらの混合物等の有機溶媒からなる。また、上記の
分散機としては、従来公知のホモジナイザ−、ボ−ルミ
ル、サンドミル、ロ−ルミル等が使用される。
The above-mentioned dispersion medium comprises an organic solvent such as toluene, methyl ethyl ketone, N-methylpyrrolidone, acetone or a mixture thereof. As the above-mentioned dispersing machine, a conventionally known homogenizer, ball mill, sand mill, roll mill and the like are used.

【0011】本発明の塗布方法としては、例えば、グラ
ビヤコ−ト、グラビヤリバ−スコ−ト、ロ−ルコ−ト、
マイヤ−バ−コ−ト、ブレ−ドコ−ト、ナイフコ−ト、
エヤナイフコ−ト、コンマコ−ト、スロットダイコ−
ト、スライドコ−ト、ディッツプコ−ト、ドクタ−ブレ
−ド法等が用いられる。塗布層の厚みは、乾燥厚みで1
0〜250μm、好ましくは50〜200μmの範囲で
ある。
The coating method of the present invention includes, for example, gravure coat, gravure reverse coat, roll coat,
Myr bar coat, blade coat, knife coat,
Air knife coating, comma coating, slot die coating
, Slide coat, dip coat, doctor blade method and the like are used. The thickness of the coating layer is 1
It is in the range of 0 to 250 μm, preferably 50 to 200 μm.

【0012】塗布および乾燥処理して形成された塗布層
の均一性をより向上させるために、該塗布層に金属ロ−
ル、加熱ロ−ル、シ−トプレス機等を用いてプレス処理
を施すことも好ましい。この際のプレス条件としては、
500Kgf/cm2未満では、塗布層の均一性が得ら
れにくく、また7、500Kgf/cm2を越えると、
集電体基材を含めた極板自体が破損してしまうため、プ
レス条件は500〜7、500Kgf/cm2の範囲が
好ましい。更に好ましくは3、000〜5、000Kg
f/cm2の範囲である。
In order to further improve the uniformity of the coating layer formed by coating and drying, the coating layer is coated with a metal
It is also preferable to perform a press treatment using a roll, a heating roll, a sheet press machine or the like. Pressing conditions at this time include:
If it is less than 500 kgf / cm 2, it is difficult to obtain uniformity of the coating layer, and if it exceeds 7,500 kgf / cm 2 ,
The pressing conditions are preferably in the range of 500 to 7,500 kgf / cm 2 because the electrode plate itself including the current collector base material is damaged. More preferably, 3,000-5,000 Kg
f / cm 2 .

【0013】本発明の電解液を形成する溶質のリチウム
塩としては、例えば、LiClO4、LiBF4、LiP
6、LiAsF6、LiCl、LiBr等の無機リチウム
塩、およびLiB(C664、LiN(SO2CF32
LiC(SO2CF33、LiOSO2CF3、LiOSO2
25、LiOSO237、LiOSO249、LiO
SO2611、LiOSO2613、LiOSO2715
等の有機リチウム塩等が用いられる。
The lithium salt of the solute forming the electrolytic solution of the present invention includes, for example, LiClO 4 , LiBF 4 , LiP
Inorganic lithium salts such as F 6 , LiAsF 6 , LiCl, and LiBr; and LiB (C 6 H 6 ) 4 , LiN (SO 2 CF 3 ) 2 ,
LiC (SO 2 CF 3 ) 3 , LiOSO 2 CF 3 , LiOSO 2
C 2 F 5 , LiOSO 2 C 3 F 7 , LiOSO 2 C 4 F 9 , LiO
SO 2 C 6 F 11 , LiOSO 2 C 6 F 13 , LiOSO 2 C 7 F 15
And the like are used.

【0014】本発明の電解液の溶質の有機溶媒として
は、環状エステル類、鎖状エステル類、環状エ−テル
類、鎖状エ−テル類等が挙げられる。環状エステル類と
しては、例えば、エチレンカ−ボネ−ト、プロピレンカ
−ボネ−ト、ブチレンカ−ボネ−ト、γ−ブチロラクト
ン、ビニレンカ−ボネ−ト、2−メチル−γ−ブチロラ
クトン、アセチル−γ−ブチロラクトン、γ−バレロラ
クトン等が挙げられる。
The organic solvent for the solute of the electrolytic solution of the present invention includes cyclic esters, chain esters, cyclic ethers, chain ethers and the like. Examples of the cyclic esters include ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, vinylene carbonate, 2-methyl-γ-butyrolactone, and acetyl-γ-butyrolactone. , Γ-valerolactone and the like.

【0015】鎖状エステル類としては、例えば、ジメチ
ルカ−ボネ−ト、ジエチルカ−ボネ−ト、ジブチルカ−
ボネ−ト、ジプロピルカ−ボネ−ト、メチルエチルカ−
ボネ−ト、メチルブチルカ−ボネ−ト、メチルプロピル
カ−ボネ−ト、エチルブチルカ−ボネ−ト、エチルプロ
ピルカ−ボネ−ト、プロピオン酸アルキルエステル、マ
ロン酸ジアルキルエステル、酢酸アルキルエステル等が
挙げられる。
Examples of the chain esters include dimethyl carbonate, diethyl carbonate, dibutyl carbonate and the like.
Carbonate, dipropyl carbonate, methyl ethyl carbonate
Examples include carbonate, methyl butyl carbonate, methyl propyl carbonate, ethyl butyl carbonate, ethyl propyl carbonate, alkyl propionate, dialkyl malonate and alkyl acetate.

【0016】環状エ−テル類としては、例えば、テトラ
ヒドロフラン、アルキルテトラヒドロフラン、ジアルキ
ルアルキルテトラヒドロフラン、アルコキシテトラヒド
ロフラン、ジアルコキシテトラヒドロフラン、ジアルコ
キシテトラヒドロフラン、1,3−ジオキソラン、アル
キル−1,3−ジオキソラン、1,4−ジオキソラン等
が挙げられる。鎖状エ−テル類としては、1,2−ジメ
トキシエタン、1,2−ジエトキシエタン、ジエチルエ
−テル、エチレングリコ−ルジアルキルエ−テル、ジエ
チレングリコ−ルジアルキルエ−テル、テトラエチレン
グリコ−ルジアルキルエ−テル等が挙げられる。
Examples of the cyclic ethers include tetrahydrofuran, alkyltetrahydrofuran, dialkylalkyltetrahydrofuran, alkoxytetrahydrofuran, dialkoxytetrahydrofuran, dialkoxytetrahydrofuran, 1,3-dioxolan, alkyl-1,3-dioxolan, and 1,4 -Dioxolane and the like. Examples of chain ethers include 1,2-dimethoxyethane, 1,2-diethoxyethane, diethyl ether, ethylene glycol dialkyl ether, diethylene glycol dialkyl ether, and tetraethylene glycol dialkyl ether. No.

【0017】次いで、ポリマ−共重合体を有機溶媒に所
定の温度で溶解し、これに電解液を攪拌混合し、ゲル化
した電解質スラリ−を作製し、これを一定の温度条件下
で乾燥させ、ポリマ−電解質シ−トを作製し、上述の正
極シ−ト上にポリマ−電解質シ−トを重ね、熱プレスを
行い、所定の条件下で拡散処理を行った。次いで同様
に、負極シ−トの上にポリマ−電解質シ−トを重ね、所
定の条件下で拡散処理を行った。次いで、処理後の2種
類のシ−トを電解質層が合う様に重ねた後、所定の温度
下で熱間ロ−ルにより熱圧着し、本発明の電池を構成す
ることが出来る。
Next, the polymer copolymer is dissolved in an organic solvent at a predetermined temperature, and an electrolytic solution is stirred and mixed therein to produce a gelled electrolyte slurry, which is dried under a constant temperature condition. Then, a polymer electrolyte sheet was prepared, the polymer electrolyte sheet was overlaid on the above-mentioned positive electrode sheet, hot pressed, and subjected to a diffusion treatment under predetermined conditions. Next, similarly, a polymer electrolyte sheet was overlaid on the negative electrode sheet, and diffusion treatment was performed under predetermined conditions. Next, the two sheets after the treatment are overlapped so that the electrolyte layers match, and then thermocompression-bonded at a predetermined temperature by a hot roll to form the battery of the present invention.

【0018】[0018]

【実施例】以下、本発明の実施例について詳細に説明す
る。日本アチソン製エレクトロダグをアルミ箔、銅箔に
ドクタ−ブレ−ド法で3μmの厚さに塗布し、接着層を
形成した。まず、LiCoO2粉末70gとケッチェンブ
ラック4gを、ポリフッ化ビニリデンのN−メチルピロ
リドン溶液に分散混合してスラリ−を作製した。なお、
スラリ−中の固形分重量組成は、LiCoO2(89
%)、ポリフッ化ビニリデン(6%)とした。このスラ
リ−を接着層を形成したアルミ箔上にドクタ−ブレ−ド
法で塗布、乾燥した後、ロ−ル圧延して活物質膜厚80
μmの正極シ−トを作製した。次いで、燐片状天然黒鉛
粉末50gを、ポリ化ビニリデンのN−メチルビロリド
ン溶液に分散混合してスラリを作製した。なお、スラリ
−中の固形分重量組成は、黒鉛粉末(90%)、ポリフ
ッ化ビニリデン(10%)とした。このスラリ−を接着
層を形成した銅箔上にドクタ−ブレ−ド法で塗布、乾燥
した後、ロ−ル圧延して活物質膜厚50μmの負極シ−
トを作製した。次いで、エチレンカ−ボネ−トとジエチ
ルカ−ボネ−トの等容積の混合溶媒に六フッ化リン酸リ
チウムを1mol/lとなるように溶解したものを電解液
とした。引き続いて、フッ化ビニリデン−ヘキサフルオ
ロブロピレン共重合体(エルフアトケム製、Kynar2
80l:ヘキサフルオロプロピレン12wt%含有品)
40gをジメチルカ−ボネ−ト200gに60℃で溶解
したのち、電解液80gを攪拌混合し、電解質スラリ−
を調製した。電解質スラリ−を80℃で離型紙上にキャ
ストし、60℃で3分間乾燥させ、ポリマ−電解質シ−
トを作製した。上述の正極シ−ト上に同じく上述のポリ
マ−電解質シ−トを重ねた。重ねたシ−トを厚さ100
μmのPETフィルムに鋏み、ホットプレスを用い、9
0℃×0.5kg/cm2で5分間、正極−電解質の拡
散処理を行なった。次いで、上述の負極シ−ト上に同様
にポリマ−電解質シ−トを厚さ100μmのPETフィ
ルムに鋏み、ホットプレスを用い、90℃×0.5kg
/cm2で5分間、負極−電解質の拡散処理を行なっ
た。処理後の2種類のシ−トを電解質層が合うように重
ねた後、110℃の熱ロ−ルにより、熱圧着を行った。
電池の断面をEPMAで観察し、負極シ−トに電解質が
拡散しており、活物質中の電解質濃度が、集電体に向っ
て、減少する構造をもつ活物質層が形成されていること
が確認された(図(a))。この電池の充放電試験を行
った。70mAでは35mAhであった。700mAの
高レ−トでも300mAhの高い放電容量が得られた。
0℃×30分,50℃×30分の温度サイクルを100
回繰り返した後、充放電試験を行った。70mA放電で
350mAhであった
Embodiments of the present invention will be described below in detail. Electrodug manufactured by Acheson Japan was applied to an aluminum foil or a copper foil to a thickness of 3 μm by a doctor blade method to form an adhesive layer. First, 70 g of LiCoO 2 powder and 4 g of Ketjen Black were dispersed and mixed in an N-methylpyrrolidone solution of polyvinylidene fluoride to prepare a slurry. In addition,
The solids weight composition in the slurry is LiCoO 2 (89
%) And polyvinylidene fluoride (6%). The slurry is applied on an aluminum foil having an adhesive layer formed thereon by a doctor blade method, dried, and roll-rolled to form an active material film having a thickness of 80 mm.
A μm positive electrode sheet was prepared. Next, 50 g of flaky natural graphite powder was dispersed and mixed in an N-methyl bilolidone solution of polyvinylidene polyvinylidene to prepare a slurry. The weight composition of the solids in the slurry was graphite powder (90%) and polyvinylidene fluoride (10%). This slurry was applied on a copper foil having an adhesive layer formed thereon by a doctor blade method, dried and then rolled to form a negative electrode sheet having an active material film thickness of 50 μm.
Was made. Next, a solution prepared by dissolving lithium hexafluorophosphate in an equal volume of a mixed solvent of ethylene carbonate and diethyl carbonate at a concentration of 1 mol / l was used as an electrolytic solution. Subsequently, a vinylidene fluoride-hexafluoropropylene copolymer (Kynar2, manufactured by Elphatochem)
80l: product containing 12% by weight of hexafluoropropylene)
After dissolving 40 g in 200 g of dimethyl carbonate at 60 ° C., 80 g of the electrolytic solution was stirred and mixed, and an electrolyte slurry was obtained.
Was prepared. The electrolyte slurry is cast on release paper at 80 ° C., dried at 60 ° C. for 3 minutes, and polymer electrolyte
Was made. The above-mentioned polymer electrolyte sheet was similarly stacked on the above-mentioned positive electrode sheet. Thickness of the stacked sheets is 100
Using a hot press with 9 μm PET film scissors
The positive electrode-electrolyte diffusion treatment was performed at 0 ° C. × 0.5 kg / cm 2 for 5 minutes. Next, a polymer electrolyte sheet was similarly scissored on a 100 μm-thick PET film on the above-mentioned negative electrode sheet, and 90 ° C. × 0.5 kg using a hot press.
/ Cm 2 for 5 minutes to perform a negative electrode-electrolyte diffusion treatment. After the two kinds of sheets after the treatment were overlapped so that the electrolyte layers matched each other, thermocompression bonding was performed by a heat roll at 110 ° C.
The cross section of the battery is observed by EPMA, and the electrolyte is diffused into the negative electrode sheet, and the active material layer having a structure in which the concentration of the electrolyte in the active material decreases toward the current collector is formed. Was confirmed (Figure (a)). A charge / discharge test of this battery was performed. At 70 mA, it was 35 mAh. Even at a high rate of 700 mA, a high discharge capacity of 300 mAh was obtained.
A temperature cycle of 0 ° C x 30 minutes and 50 ° C x 30 minutes is 100
After repetition, a charge / discharge test was performed. 350 mAh at 70 mA discharge

【0019】[0019]

【比較例1】比較のために、正極シ−ト−ポリマ−−電
解質−負極シ−トの順に重ねた後、110℃の熱ロ−ル
により、熱圧着を行った。電池の断面をEPMAで観察
し、負極シ−トに電解質が拡散していなく、本発明を構
成していないことが確認された(図(b))。その結
果、70mAでは350mAhであったが、700mA
の高いレ−トでは50mAhと低い放電容量であった。
Comparative Example 1 For comparison, a positive electrode sheet, a polymer, an electrolyte, and a negative electrode sheet were stacked in this order, and then thermocompression-bonded by a heat roll at 110 ° C. The cross section of the battery was observed by EPMA, and it was confirmed that the electrolyte did not diffuse into the negative electrode sheet and did not constitute the present invention (FIG. (B)). The result was 350 mAh at 70 mA, but 700 mA
At a high rate, the discharge capacity was as low as 50 mAh.

【0020】[0020]

【比較例2】比較のために、接着層を形成しないアルミ
と銅箔を用いて電池を作製した。作製方法は、接着層形
成以外は実施例と同様である。この電池を0℃×30
分,50℃×30分の温度サイクルを100回繰り返し
た後、充放電試験を行った。70mA放電で30mAh
と低い放電容量であった。電池内部を観察した結果、A
l箔−正極、Cu箔−負極の界面の一部が剥離してい
た。
Comparative Example 2 For comparison, a battery was prepared using aluminum and copper foil without forming an adhesive layer. The manufacturing method is the same as that of the embodiment except for the formation of the adhesive layer. This battery is 0 ° C x 30
After repeating a temperature cycle of 50 ° C. × 30 minutes for 100 times, a charge / discharge test was performed. 30mAh at 70mA discharge
And low discharge capacity. As a result of observing the inside of the battery,
1 A part of the interface between the foil-positive electrode and the Cu foil-negative electrode was peeled off.

【0021】[0021]

【発明の効果】上記の実施例、比較例から明らかな様
に、本発明においては、リチウムポリマ−二次電池が、
活物質中の電解質濃度が、集電体に向って、減少する構
造をもつ活物質層を有することにより、ポリマ−電解質
と活物質層との界面のインピ−ダンスが低下し、電池の
出力特性が向上する効果が得られている。又、集電体−
活物質層間に導電性粒子を含む接着剤層を設けることに
より、集電体−活物質層間の接着力が向上し、可撓性と
共に密着性向上もあり、耐衝撃性が高まり、熱変化に対
しても、剥がれ等の発生がなく、信頼性が向上する効果
が得られている。
As is clear from the above Examples and Comparative Examples, in the present invention, a lithium polymer secondary battery is
By having an active material layer having a structure in which the concentration of the electrolyte in the active material decreases toward the current collector, the impedance at the interface between the polymer electrolyte and the active material layer is reduced, and the output characteristics of the battery are reduced. The effect of improving is obtained. Current collector
By providing an adhesive layer containing conductive particles between the active material layers, the adhesive force between the current collector and the active material layer is improved, the flexibility and the adhesion are improved, the impact resistance is increased, and heat change is prevented. On the other hand, there is no peeling or the like, and the effect of improving reliability is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1(a)】本発明の実施例のEPMA線分析の結
果。
FIG. 1 (a) is a result of an EPMA line analysis of an example of the present invention.

【図1(b)】本発明の比較例のEPMA線分析の結
果。
FIG. 1 (b) shows the result of EPMA line analysis of a comparative example of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹内 さわ子 埼玉県大宮市北袋町1−297 三菱マテリ アル株式会社総合研究所内 (72)発明者 小林 正 埼玉県大宮市北袋町1−297 三菱マテリ アル株式会社総合研究所内 Fターム(参考) 5H017 AA03 BB08 CC01 DD05 EE01 EE05 EE06 EE09 5H029 AJ02 AJ06 AK02 AK03 AK05 AL06 AL07 AL08 AL12 AM02 AM03 AM04 AM05 AM07 AM16 BJ04 BJ12 DJ07 DJ12 EJ04 EJ12 HJ12 5H050 AA02 AA12 BA16 BA18 CA02 CA05 CA08 CA09 CA11 CB08 CB09 CB12 DA04 DA10 DA11 EA08 FA02 FA12 FA18 HA12 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Sawako Takeuchi 1-297 Kitabukurocho, Omiya City, Saitama Prefecture Inside Mitsubishi Research Institute, Inc. (72) Inventor Tadashi Kobayashi 1-297 Kitabukurocho, Omiya City, Saitama Mitsubishi Materia Al F-term in the Research Institute, Inc. (reference) CA09 CA11 CB08 CB09 CB12 DA04 DA10 DA11 EA08 FA02 FA12 FA18 HA12

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 活物質中の電解質濃度が集電体に向っ
て、減少する構造をもつ活物質層を有することを特徴と
するリチウムポリマ−二次電池。
1. A lithium polymer secondary battery comprising an active material layer having a structure in which the concentration of an electrolyte in the active material decreases toward the current collector.
【請求項2】活物質層の電解質濃度の集電体に向かう減
少構造を、電解質の活物質層への拡散処理によって形成
することを特徴とする請求項1記載のリチウムイオンポ
リマ−二次電池。
2. The lithium ion polymer secondary battery according to claim 1, wherein the structure for decreasing the electrolyte concentration of the active material layer toward the current collector is formed by a diffusion treatment of the electrolyte into the active material layer. .
【請求項3】集電体−活物質層間に導電性粒子を含む接
着層を有することを特徴とする請求項1、2記載のリチ
ウムイオンポリマ−二次電池。
3. The lithium ion polymer secondary battery according to claim 1, further comprising an adhesive layer containing conductive particles between the current collector and the active material.
JP2000184793A 2000-06-20 2000-06-20 Lithium polymer secondary battery Withdrawn JP2002008725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000184793A JP2002008725A (en) 2000-06-20 2000-06-20 Lithium polymer secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000184793A JP2002008725A (en) 2000-06-20 2000-06-20 Lithium polymer secondary battery

Publications (1)

Publication Number Publication Date
JP2002008725A true JP2002008725A (en) 2002-01-11

Family

ID=18685197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000184793A Withdrawn JP2002008725A (en) 2000-06-20 2000-06-20 Lithium polymer secondary battery

Country Status (1)

Country Link
JP (1) JP2002008725A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005050756A (en) * 2003-07-31 2005-02-24 Nissan Motor Co Ltd Gel electrolyte battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005050756A (en) * 2003-07-31 2005-02-24 Nissan Motor Co Ltd Gel electrolyte battery

Similar Documents

Publication Publication Date Title
JP4695074B2 (en) Winding type non-aqueous secondary battery and electrode plate used therefor
JP4116784B2 (en) Negative electrode coating composition, negative electrode plate, method for producing the same, and nonaqueous electrolyte secondary battery
CN102013473B (en) Negative electrode for nonaqueous electrolyte secondary cell, method of manufacturing the same, and nonaqueous electrolyte secondary cell
JP5220273B2 (en) Electrode and non-aqueous secondary battery using the same
JP3652769B2 (en) Electrode plate for non-aqueous electrolyte secondary battery
JP5133020B2 (en) Method for producing positive electrode plate for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the positive electrode plate
CN101983448A (en) Positive electrode of lithium secondary battery and method for producing the same
JP6805374B2 (en) Electrodes for lithium-ion secondary batteries, their manufacturing methods, and lithium-ion secondary batteries
JP4988169B2 (en) Lithium secondary battery
JP2004171901A (en) Nonaqueous secondary battery, negative electrode therefor, manufacturing method thereof, and electronic device using nonaqueous secondary battery
JP2006286496A (en) Polymer cell
JP5066804B2 (en) Lithium ion secondary battery
JP3668579B2 (en) Slurry for electrode
JP4357857B2 (en) Slurries for electrode mixture layers, electrode plates, and non-aqueous electrolyte batteries
JP2008027600A (en) Method of manufacturing cathode plate for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using above cathode plate
JP4834975B2 (en) Coating composition for active material layer, electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2005019149A (en) Lithium secondary battery
JP4971646B2 (en) Method for producing positive electrode mixture-containing composition, method for producing negative electrode mixture-containing composition, method for producing positive electrode for battery, method for producing negative electrode for battery, non-aqueous secondary battery and method for producing the same
JP4712158B2 (en) Production method of active material powder for lithium ion battery and electrode for lithium ion battery
JP2002008725A (en) Lithium polymer secondary battery
JP7087532B2 (en) Negative negative for lithium ion secondary battery and lithium ion secondary battery
JP2008210576A (en) Negative electrode plate for non-aqueous electrolyte secondary battery, and nonaqueous secondary battery using that negative electrode plate
JP2002260665A (en) Nonaqueous electrolyte secondary battery
JP2003173780A (en) Coating composition for anode, anode plate, and nonaqueous electrolyte solution secondary battery
EP3876319B1 (en) Nonaqueous secondary battery electrode binder and nonaqueous secondary battery electrode

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070904