JP2002005984A - Identification method for accident point and accident phase line in power system - Google Patents

Identification method for accident point and accident phase line in power system

Info

Publication number
JP2002005984A
JP2002005984A JP2000187127A JP2000187127A JP2002005984A JP 2002005984 A JP2002005984 A JP 2002005984A JP 2000187127 A JP2000187127 A JP 2000187127A JP 2000187127 A JP2000187127 A JP 2000187127A JP 2002005984 A JP2002005984 A JP 2002005984A
Authority
JP
Japan
Prior art keywords
point
incident
accident
wave
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000187127A
Other languages
Japanese (ja)
Inventor
Hideto Furusawa
秀人 古澤
Akio Sakaba
昭雄 坂場
Koichi Sato
晃一 佐藤
Kazuo Kotani
一夫 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Cable Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP2000187127A priority Critical patent/JP2002005984A/en
Publication of JP2002005984A publication Critical patent/JP2002005984A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Locating Faults (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve problems in a conventional accident point identification method, in which a sufficient detection level cannot be secured for a system having multiple branches and a large number of installed apparatuses because of great incident pulse attenuation and a reflection wave from an accident point cannot be determined among various reflection waves. SOLUTION: A pulse having a width wider than a time for reciprocating propagation of an incident wave through a measurement line is propagated as an incident wave 1 to an accident phase line 3, and a reflection wave 2 is obtained in an accident point 4. The polarity of the reflection wave 2 is reversed if an impedance in the accident point is higher than that of the line 3, and the reflection wave is propagated in the opposite direction so as to be overlapped to the incident wave consequently, and form then on, turned into a reflection wave 5 increasing in a level. In a sound phase fine in which no accident is caused, the reflection wave is propagated in the same way as the incident wave, so that the accident point can be identified easily from a time difference between a current increment starting point and an incident point when a differential current waveform between the current waveforms of the accident phase and the sound phase detected in the incident point is found, and consequently, high detection accuracy can be provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電力系統、主とし
て高圧配電系統の事故点及び事故相線路標定法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of locating a fault point and a fault phase line in a power system, mainly a high-voltage distribution system.

【0002】[0002]

【従来の技術】ケーブルの事故点標定には、事故点でイ
ンピーダンスが変化していることに着目して、事故の発
生した線路を限定した後、ケーブルの一端より高周波パ
ルスを入射し、入射時間と事故点で生じる反射波の到達
時間の差から事故点を算出するパルスレーダ法がある。
また、架空絶縁線路の様に、分岐が多く、設置機器の数
多く存在する系統においては、直流の高電圧を線路に入
射し、各箇所(分岐点等)で事故点に流れ込む電流を測
定して、その電流の有無あるいは電流の方向を見ながら
順次事故点を追いつめていく方法がある。
2. Description of the Related Art In locating a fault point of a cable, focusing on the fact that impedance changes at the fault point, limiting the line in which the fault has occurred, applying a high-frequency pulse from one end of the cable, There is a pulse radar method for calculating an accident point from the difference between the arrival times of reflected waves generated at the accident point and the accident point.
Also, in systems with many branches and many installed devices, such as overhead insulation lines, high DC voltage is incident on the line, and the current flowing into the accident point at each point (branch point, etc.) is measured. There is a method of sequentially tracking the fault point while checking the presence or absence of the current or the direction of the current.

【0003】[0003]

【発明が解決しようとする課題】高周波パルスを用いた
パルスレーダ法では、図6(a)に示す様に分岐部6や
設置機器、例えば変圧器7が数多く設置された系統で実
施した場合、分岐部での減衰、変圧器による大きな減衰
により事故点からの反射波の検出レベルが確保できな
い。図6(b)はこの様子を示したもので、入射波A、
分岐部からの反射波B、変圧器からの反射波C、事故点
からの反射波Dと次第に減衰し検出レベルが低下すると
共に、これら反射波の中から事故点よりの反射波を判別
することができない。このため、分岐のある線路や機器
の設置された区間ではこの方法は使用できない。分岐が
多く、機器の多く設置された線路では、直流の高電圧を
線路に印加して、各箇所で順次電流レベルを測定して事
故点を標定する方法が行われているが、各箇所で昇柱作
業を伴い、探査に長時間を要し復旧が遅くなってしま
う。また、事故点が断線により高インピーダンスとなっ
ている場合には、電流が流れ込まないため事故点を標定
できないという問題があった。本発明は、前記従来技術
の欠点を解消し、分岐が多く、かつ、設置機器の多い線
路でもパルスレーダ法により事故点で生じる反射波を検
出でき、事故復旧時間を短縮できる新規な方法を提供す
ることを目的とする。
According to the pulse radar method using high-frequency pulses, as shown in FIG. 6 (a), when the method is carried out in a system in which a large number of branch units 6 and installation equipment, for example, transformers 7, are installed. The detection level of the reflected wave from the accident point cannot be secured due to the attenuation at the branch and the large attenuation due to the transformer. FIG. 6B shows this state, in which the incident waves A,
The reflected wave B from the branch, the reflected wave C from the transformer, and the reflected wave D from the accident point gradually attenuate and the detection level decreases, and the reflected wave from the accident point is determined from these reflected waves. Can not. For this reason, this method cannot be used in a branch line or a section where equipment is installed. On a line with many branches and many devices installed, a method of applying a high DC voltage to the line and measuring the current level sequentially at each location to locate the fault point is used. With the work of ascending poles, the exploration takes a long time and the recovery is delayed. Further, when the fault point has a high impedance due to disconnection, there is a problem that the fault point cannot be located because no current flows. The present invention solves the drawbacks of the prior art, and provides a novel method that can detect a reflected wave generated at an accident point by a pulse radar method even on a line with many branches and many installation devices, thereby shortening an accident recovery time. The purpose is to do.

【0004】[0004]

【課題を解決するための手段】本発明は、パルスレーダ
法を用いた事故点標定において、幅を、測定線路を入射
波が往復伝搬する時間以上としたパルスを用い、入射点
で検出される事故相と健全相の電流波形から差分電流波
形を求め、差分電流波形から事故点での反射波を求める
ことにより、分岐が多く、設置機器の多い線路でも事故
点を容易に標定できる方法を提供するものである。ここ
で測定線路とは、パルスを入射させる測定対象の線路を
いい、3相の線路の場合、各相の線路にパルスを入射
し、特に事故の発生した線路を事故相線路、事故の発生
していない線路を健全相線路と呼び、事故相線路で検出
される電流波形を事故相の電流波形、健全相線路で検出
される電流波形を健全相の電流波形という。パルスの形
状としては、種々考えられるが、一定勾配で立ち上る形
状のものが好適である。上記パルスを用いた本発明の事
故点標定法によれば、差分電流波形は事故点での反射波
発生時より連続的に変化し始める。このため、事故点ま
での距離Dは、測定線路での入射波の伝搬速度をkとす
れば、入射点と、差分電流波形が連続的に変化を開始す
る点の時間差△tを求めることにより、次式より容易に
求めることができる。 D=(△t/2)・k 特に、分岐が多い系統では、パルス勾配を大きくするこ
とで容易に感度を向上することができる。また、パルス
の幅を、測定線路を入射波が往復伝搬する時間以上、す
なわち入射波が測定線路の端部で反射して入射点に戻っ
てくる時間以上とすることにより、各相の線路の入射点
で検出される反射波の電流レベルは、測定線路を入射波
が往復伝搬する時間後では事故相と健全相で大きく相違
が生じるため容易に事故相と健全相の線路を判別でき、
事故相線路を標定することができる。
According to the present invention, in an accident point locating method using a pulse radar method, a pulse whose width is set to be equal to or longer than a time required for an incident wave to reciprocate propagate on a measurement line is detected at an incident point. By providing the differential current waveform from the current waveforms of the fault phase and the healthy phase and obtaining the reflected wave at the fault point from the differential current waveform, a method is provided for easily locating the fault point even on lines with many branches and many installed equipment. Is what you do. Here, the measurement line is a line to be measured on which a pulse is incident. In the case of a three-phase line, a pulse is incident on each phase line. A line that is not present is called a healthy phase line, a current waveform detected on the fault phase line is called a fault phase current waveform, and a current waveform detected on the healthy phase line is called a healthy phase current waveform. Although various shapes of the pulse are conceivable, a shape that rises at a constant gradient is preferable. According to the fault point locating method of the present invention using the pulse, the differential current waveform starts to change continuously from the time when the reflected wave is generated at the fault point. For this reason, the distance D to the fault point is determined by calculating the time difference Δt between the incident point and the point where the differential current waveform starts to change continuously, where k is the propagation speed of the incident wave on the measurement line. , Can be easily obtained from the following equation. D = (△ t / 2) · k In particular, in a system with many branches, the sensitivity can be easily improved by increasing the pulse gradient. Also, by setting the pulse width to be equal to or longer than the time during which the incident wave reciprocates in the measurement line, that is, equal to or longer than the time during which the incident wave is reflected at the end of the measurement line and returns to the incident point, the phase of each phase line is reduced. The current level of the reflected wave detected at the point of incidence can be easily distinguished between the fault phase and the sound phase because a large difference occurs between the fault phase and the sound phase after the time when the wave propagates back and forth through the measurement line,
The accident phase track can be located.

【0005】[0005]

【発明の実施の形態】図1は本発明に使用する入射パル
スを示したものであり、一定勾配で立ち上るパルスは、
その幅が測定線路を入射波が往復伝播する時間以上にさ
れている。図1に示すパルスを図2(a)に示すよう
に、測定線路、この場合は事故相線路3として示した、
の入射点より入射させると、入射波1は事故相線路3を
伝播するが、事故点4に到達すると、ここで反射され入
射波と反対方向に伝播され入射点に戻ってくる。このと
き事故点が接地状態にある場合には、測定線路よりも事
故点でのインピーダンスが低いため反射波2は入射波1
と逆極性となり、かつ逆方向に伝搬されるので、結果と
して入射波1と同極性に重畳される。この様子を示した
のが図2(b)である。入射波が入射点と事故点を往復
する時間を△tとすると、時間(△t/2)後に事故点
での反射波は入射波に重畳され、以降入射パルスの形状
に依存して一定勾配で更に大きくなってゆく重畳された
反射波5となる。図2(b)の点線で示したパルス波1
は、事故の発生がない場合に測定線路を伝播する入射波
を示している。入射点に戻ってくる反射波を電流波形と
して検出し、事故の発生した事故相線路で検出したもの
を事故相の電流波形とし、事故の生じていない健全相線
路で検出したものを健全相の電流波形とすると、その差
分電流波形は図3に示す様になる。入射点で検出する差
分電流波形は、入射点から時間△t後に一定勾配で立ち
上る波形となる。したがって、測定線路での入射波の伝
播速度をkとすれば、入射点から事故点までの距離D
は、 D=(△t/2)・k で求まる。図3の差分電流波形より求まる事故点での反
射波は、一定勾配で立ち上る形状となるために、反射開
始点、すなわち事故点は、電流増加開始点として求めれ
ばよく、検出が容易であり、高精度で事故点を標定する
ことができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an incident pulse used in the present invention.
The width is set to be equal to or longer than the time during which the incident wave propagates back and forth through the measurement line. The pulse shown in FIG. 1 is shown as a measurement line as shown in FIG.
When the incident wave 1 is incident from the incident point, the incident wave 1 propagates through the fault phase line 3, but when it reaches the fault point 4, it is reflected here, propagates in the opposite direction to the incident wave, and returns to the incident point. At this time, when the fault point is in the ground state, the reflected wave 2 is the incident wave 1 because the impedance at the fault point is lower than that of the measurement line.
Has the opposite polarity and propagates in the opposite direction, and as a result, is superposed with the same polarity as the incident wave 1. FIG. 2B shows this state. Assuming that the time for the incident wave to reciprocate between the incident point and the accident point is Δt, the reflected wave at the accident point is superimposed on the incident wave after a time (Δt / 2), and thereafter has a constant gradient depending on the shape of the incident pulse. And the superimposed reflected wave 5 is further increased. Pulse wave 1 indicated by a dotted line in FIG.
Indicates an incident wave propagating through the measurement line when no accident occurs. The reflected wave returning to the point of incidence is detected as a current waveform, the one detected on the faulty phase line where the fault occurred is used as the fault phase current waveform, and the one detected on the healthy phase line where no fault has occurred is detected as the faulty phase. Assuming the current waveform, the difference current waveform is as shown in FIG. The differential current waveform detected at the incident point is a waveform that rises at a constant gradient after a time Δt from the incident point. Therefore, assuming that the propagation speed of the incident wave on the measurement line is k, the distance D from the incident point to the accident point is D
Is determined by D = (△ t / 2) · k. Since the reflected wave at the fault point obtained from the differential current waveform in FIG. 3 has a shape rising with a constant gradient, the reflection start point, that is, the fault point may be obtained as the current increase start point, and the detection is easy. Accident points can be located with high accuracy.

【0006】測定線路に分岐部が存在する場合、分岐点
では入射波の透過レベルと共に事故点からの反射波の透
過レベルも減衰するため差分電流波形のレベルは低下す
るが、入射パルスの勾配を大きくすることにより、容易
に検出レベルを向上することができる。測定線路に変圧
器が存在する場合、変圧器が高周波領域(数10kHz以
上)で低インピーダンスとなるために、高周波成分の減
衰が大きく、事故点での反射波の変化開始点のレベル減
衰が大きくなるものの、その後のレベルは大きく、高い
反射レベルが得られる。また、1台目の変圧器より高周
波成分が損なわれた後は、2台目以降の変圧器の影響に
よる事故点での反射波の変化開始点のレベルの減衰は小
さくなる。このため、標定誤差は大きく変化しない。ま
た、1台目の変圧器の影響を考慮し、測定値△tより一
定値を減算するか、あるいは事故点の算出に用いる伝搬
速度を遅く見積もることにより、標定誤差を小さくする
ことができる。
When a branch is present in the measurement line, the level of the differential current waveform is reduced at the branch point because the transmission level of the reflected wave from the accident point is attenuated together with the transmission level of the incident wave, but the gradient of the incident pulse is reduced. By increasing the value, the detection level can be easily improved. If a transformer is present on the measurement line, the impedance of the transformer is low in the high-frequency region (several tens of kHz or more), so the attenuation of the high-frequency component is large, and the level attenuation of the change start point of the reflected wave at the accident point is large. Nevertheless, the level after that is large, and a high reflection level can be obtained. Further, after the high frequency component is impaired by the first transformer, the attenuation of the level of the change start point of the reflected wave at the accident point due to the influence of the second and subsequent transformers becomes small. Therefore, the orientation error does not change significantly. In addition, the location error can be reduced by subtracting a constant value from the measured value Δt in consideration of the influence of the first transformer or by estimating the propagation speed used for calculating the fault point late.

【0007】次に、事故相線路の標定法について図4に
より説明する。図4(a)は、事故相線路を伝搬する入
射波の時間経過によるレベル変化を示したものであり、
入射点Sから入射された図1に示すパルス波は、事故点
Fで反射し入射波に重畳されレベルが増大し、時間経過
と共に一定勾配で更に増大する。入射パルスの幅は、測
定線路を入射波が往復伝播する時間以上に設定されてい
るために、入射波が測定線路の端部Tに達する時間が経
過してもレベルの増大は続く。一方、図4(b)は、事
故の発生していない健全相線路を伝播する入射波の時間
経過によるレベル変化を示したものであり、この場合は
入射波は時間と共に入射パルスの波形に従って一定勾配
で変化するだけであり、入射波が測定線路の端部Tに達
した後は反射波が入射波に重畳される。しかし反射波は
入射波と同極性で逆向きとなるため、結果として重畳さ
れた反射波はレベル増加しなくなる。したがって、入射
点で検出する事故相と健全相の電流波形を比較すると、
入射波が入射点と測定線路の端部とを往復伝搬する時間
後の検出レベルでは大きく差がでるので容易に事故相と
健全相の電流波形を判別でき、事故相線路を標定するこ
とができる。上記の例では事故点のインピーダンスが低
い場合について記載したが、断線により事故点が高イン
ピーダンス状態の場合には、事故点での反射波により事
故相の電流波形の検出レベルが低下すると考えて同様に
扱うことができる。すなわち、差分電流波形を求めれ
ば、この場合には連続した減少開始点が事故点となる。
Next, a method for locating a faulty phase line will be described with reference to FIG. FIG. 4A shows a level change with time of an incident wave propagating in the fault phase line.
The pulse wave shown in FIG. 1 incident from the incident point S is reflected at the accident point F and superimposed on the incident wave, and the level increases, and further increases at a constant gradient with time. Since the width of the incident pulse is set to be equal to or longer than the time for the incident wave to reciprocate in the measurement line, the level continues to increase even after the time for the incident wave to reach the end T of the measurement line elapses. On the other hand, FIG. 4 (b) shows a level change of an incident wave propagating in a sound phase line in which no accident has occurred with the passage of time. In this case, the incident wave is constant with time according to the waveform of the incident pulse. It only changes with a gradient, and after the incident wave reaches the end T of the measurement line, the reflected wave is superimposed on the incident wave. However, the reflected wave has the same polarity as the incident wave and is in the opposite direction, and as a result, the level of the superimposed reflected wave does not increase. Therefore, comparing the current waveforms of the accident phase and the healthy phase detected at the incident point,
Since the detection level after the time when the incident wave travels back and forth between the incident point and the end of the measurement line greatly differs, the current waveforms of the fault phase and the sound phase can be easily distinguished, and the fault phase line can be located. . In the above example, the case where the impedance at the fault point is low is described.However, when the fault point is in a high impedance state due to disconnection, it is considered that the detection level of the current waveform in the fault phase decreases due to the reflected wave at the fault point. Can be handled. That is, if a difference current waveform is obtained, in this case, a continuous decrease start point is an accident point.

【0008】入射パルスは図1に示す形状の他、単調に
立ち上るパルスとして図5(a)に示す正弦自乗波、飽
和する波形として図5(b)に示す立ち上り形状のも
の、また図5の(a)と(b)とを組合せた図5(c)
の立ち上り形状のもの、あるいは図5の(d)に示す様
に、μSオーダーで立ち上げた後に一定値となる波形の
パルスを使用してもよい。
The incident pulse has the shape shown in FIG. 1, a sine square wave shown in FIG. 5A as a monotonically rising pulse, a rising waveform shown in FIG. 5B as a saturated waveform, and a pulse shown in FIG. FIG. 5 (c) combining (a) and (b)
5D, or a pulse having a waveform having a constant value after rising in the order of μS as shown in FIG. 5D.

【0009】[0009]

【発明の効果】本発明によれば、以下の顕著な効果を奏
する。 1.入射波が事故点で反射する開始点を、事故相と健全
相の検出電流波形より求まる差分電流波形から、連続し
た変化の開始点として容易に標定できるので高い標定精
度を得ることができる。 2.入射パルスの勾配を大きくすることにより検出感度
の向上が容易なため、分岐が多く損失が大きい線路で
も、事故点の標定が可能である。 3.不連続箇所、例えば図1に示すパルスで一定勾配で
立ち上がっている、立ち上がり点、が一箇所であるため
変圧器の影響を受けにくく、高い標定精度を確保でき
る。 4.パルスの幅を、測定線路を入射波が往復伝搬する時
間以上とすることにより、容易に事故相線路を標定する
ことができる。
According to the present invention, the following remarkable effects are obtained. 1. The start point at which the incident wave reflects at the fault point can be easily located as the start point of a continuous change from the differential current waveform obtained from the detected current waveforms of the fault phase and the sound phase, so that high positioning accuracy can be obtained. 2. Since the detection sensitivity can be easily improved by increasing the gradient of the incident pulse, the fault point can be located even on a line with many branches and large loss. 3. Since there is only one discontinuous point, for example, a rising point where the pulse shown in FIG. 1 rises with a constant gradient, the transformer is less affected by the transformer, and high positioning accuracy can be secured. 4. By setting the pulse width to be equal to or longer than the time during which the incident wave propagates back and forth in the measurement line, the fault phase line can be easily located.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に使用する入射パルスの一例を示す波形
図。
FIG. 1 is a waveform diagram showing an example of an incident pulse used in the present invention.

【図2】本発明の事故点標定法を説明する図で、(a)
は入射波が事故点で逆極性の反射波となることを示す
図、(b)は入射波が事故点での反射波と重畳され事故
点以後レベルが増大することを示す図。
FIGS. 2A and 2B are diagrams for explaining an accident point locating method according to the present invention; FIG.
FIG. 4B is a diagram showing that an incident wave becomes a reflected wave of the opposite polarity at the fault point, and FIG. 4B is a diagram showing that the incident wave is superimposed on the reflected wave at the fault point and the level increases after the fault point.

【図3】事故相と健全相の電流波形から求めた差分電流
波形を示す図。
FIG. 3 is a view showing a differential current waveform obtained from current waveforms of an accident phase and a healthy phase.

【図4】各相線路を伝搬する入射波のレベル変化を示す
図で、(a)は事故相線路について示した図、(b)は
健全相線路について示した図。
4A and 4B are diagrams showing a level change of an incident wave propagating in each phase line, wherein FIG. 4A is a diagram showing an accident phase line and FIG. 4B is a diagram showing a healthy phase line.

【図5】本発明に使用する入射パルスの他の例を示す
図。
FIG. 5 is a diagram showing another example of an incident pulse used in the present invention.

【図6】従来のパルスレーダ法による事故点標定を説明
する図で、(a)は各点で入射パルスが反射されること
を示す図、(b)は入射点で検出される各点での反射パ
ルスとそのレベルを示す図。
FIGS. 6A and 6B are diagrams for explaining fault point localization by a conventional pulse radar method, wherein FIG. 6A shows that an incident pulse is reflected at each point, and FIG. 6B shows each point detected at the incident point; FIG. 5 is a diagram showing reflected pulses and their levels.

【符号の説明】[Explanation of symbols]

1 入射波 2 反射波 3 事故相線路 4 事故点 5 入射波に重畳された反射波 6 分岐部 7 変圧器 A 入射波 B 分岐点からの反射波 C 変圧器設置点からの反射波 D 事故点からの反射波 F 事故点 S 入射点 T 端部 DESCRIPTION OF SYMBOLS 1 Incident wave 2 Reflected wave 3 Fault phase line 4 Fault point 5 Reflected wave superimposed on incident wave 6 Branch part 7 Transformer A Incident wave B Reflected wave from branch point C Reflected wave from transformer installation point D Fault point Reflected wave from F F Accident point S Incident point T Edge

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂場 昭雄 東京都千代田区内幸町1丁目1番3号 東 京電力株式会社内 (72)発明者 佐藤 晃一 茨城県日立市日高町5丁目1番1号 日立 電線株式会社総合技術研究所内 (72)発明者 小谷 一夫 茨城県日立市日高町5丁目1番1号 日立 電線株式会社総合技術研究所内 Fターム(参考) 2G033 AA02 AB01 AB05 AC02 AD08 AE02 AF01 AG00 5G047 AA01  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Akio Sakaba 1-3-1 Uchisaiwaicho, Chiyoda-ku, Tokyo Tokyo Electric Power Company (72) Inventor Koichi Sato 5-1-1 Hidakacho, Hitachi City, Ibaraki Prefecture No. Hitachi Cable, Ltd. General Research Laboratory (72) Inventor Kazuo Kotani 5-1-1, Hidaka-cho, Hitachi City, Ibaraki Prefecture Hitachi Cable, Ltd. General Research Laboratory F-term (reference) 2G033 AA02 AB01 AB05 AC02 AD08 AE02 AF01 AG00 5G047 AA01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 入射波が測定線路を往復伝搬する時間以
上の幅を有するパルスを測定線路に入射し、入射点で検
出される事故相の電流波形と健全相の電流波形から差分
電流波形を求め、差分電流波形より事故点での反射波を
求めることにより事故点を標定することを特徴とする事
故点標定法。
A pulse having a width equal to or longer than a time required for an incident wave to reciprocate on a measurement line is incident on the measurement line, and a differential current waveform is calculated from a current waveform of an accident phase detected at an incident point and a current waveform of a healthy phase. An accident point locating method characterized in that an accident point is located by calculating a reflected wave at the accident point from the differential current waveform.
【請求項2】 入射波が測定線路を往復伝搬する時間以
上の幅を有するパルスを測定線路に入射し、入射点で検
出される事故相の電流波形と健全相の電流波形から差分
電流波形を求め、差分電流波形における連続変化の開始
点を求めることにより事故点を標定することを特徴とす
る事故点標定法。
2. A pulse having a width equal to or longer than the time required for an incident wave to reciprocate on a measurement line is incident on the measurement line, and a difference current waveform is obtained from a current waveform of an accident phase and a current waveform of a healthy phase detected at an incident point. An accident point locating method characterized in that an accident point is located by finding a start point of a continuous change in the differential current waveform.
【請求項3】 パルスが、一定勾配の立ち上り形状で、
入射波が測定線路を往復伝搬する時間以上の幅を有する
パルスであることを特徴とする請求項1または2記載の
事故点標定法。
3. The pulse has a rising shape with a constant gradient,
3. The fault point locating method according to claim 1, wherein the incident wave is a pulse having a width equal to or longer than a time required for reciprocating propagation through the measurement line.
【請求項4】 入射波が測定線路を往復伝搬する時間以
上の幅を有するパルスを測定線路に入射し、入射波が測
定線路を往復伝搬する時間後に各相の線路で検出される
反射波の電流レベルを比較することにより、事故相の電
流波形を判別し、事故相線路を標定する事故相線路標定
法。
4. A pulse having a width equal to or longer than the time required for the incident wave to reciprocate propagate on the measurement line, and the reflected wave detected by the line of each phase after the time the incident wave reciprocates on the measurement line. Accident-phase line locating method that identifies the current waveform of the fault phase by comparing the current levels and locates the fault-phase line.
【請求項5】 パルスが、一定勾配の立ち上り形状で、
入射波が測定線路を往復伝搬する時間以上の幅を有する
パルスであることを特徴とする請求項4記載の事故相線
路標定法。
5. The pulse has a rising shape with a constant gradient,
5. The fault-phase line localization method according to claim 4, wherein the incident wave is a pulse having a width longer than a time required for the wave to propagate back and forth on the measurement line.
JP2000187127A 2000-06-22 2000-06-22 Identification method for accident point and accident phase line in power system Pending JP2002005984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000187127A JP2002005984A (en) 2000-06-22 2000-06-22 Identification method for accident point and accident phase line in power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000187127A JP2002005984A (en) 2000-06-22 2000-06-22 Identification method for accident point and accident phase line in power system

Publications (1)

Publication Number Publication Date
JP2002005984A true JP2002005984A (en) 2002-01-09

Family

ID=18687162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000187127A Pending JP2002005984A (en) 2000-06-22 2000-06-22 Identification method for accident point and accident phase line in power system

Country Status (1)

Country Link
JP (1) JP2002005984A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124401A (en) * 2009-12-11 2011-06-23 System Jd:Kk Failure diagnosis system, failure diagnosis device, failure diagnosis method, program, and recording medium
CN102326089A (en) * 2009-02-19 2012-01-18 Abb研究有限公司 Be used to test the method and the electric power distribution system analyser device of electric power distribution system
JP2012256771A (en) * 2011-06-10 2012-12-27 System Jd:Kk Failure diagnosis method and diagnosed object
CN112731208A (en) * 2020-12-29 2021-04-30 湖南科比特电气技术有限公司 Low-voltage line fault and abnormity online monitoring method, equipment and medium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102326089A (en) * 2009-02-19 2012-01-18 Abb研究有限公司 Be used to test the method and the electric power distribution system analyser device of electric power distribution system
JP2011124401A (en) * 2009-12-11 2011-06-23 System Jd:Kk Failure diagnosis system, failure diagnosis device, failure diagnosis method, program, and recording medium
JP2012256771A (en) * 2011-06-10 2012-12-27 System Jd:Kk Failure diagnosis method and diagnosed object
CN112731208A (en) * 2020-12-29 2021-04-30 湖南科比特电气技术有限公司 Low-voltage line fault and abnormity online monitoring method, equipment and medium
CN112731208B (en) * 2020-12-29 2022-05-24 湖南科比特电气技术有限公司 Low-voltage line fault and abnormity on-line monitoring method, equipment and medium

Similar Documents

Publication Publication Date Title
Coenen et al. Location of PD sources in power transformers by UHF and acoustic measurements
US4039938A (en) Method and apparatus for detecting faults in buried insulated conductors
US4095173A (en) Method and system for corona source location by acoustic signal detection
CN110726905B (en) Method and system for determining cable position based on cable length
US7603243B2 (en) Method and error location in branched low voltage and medium voltage networks and evaluation circuit used thereof
CN113030635A (en) Non-contact type traveling wave fault location method and device
CN114675145B (en) High-frequency partial discharge double-end monitoring partial discharge source positioning method for high-voltage cable
JP2002005984A (en) Identification method for accident point and accident phase line in power system
CN109917257A (en) A kind of partial discharge of transformer method for ultrasonic locating
Hoek et al. Localizing partial discharge in power transformers by combining acoustic and different electrical methods
CN102313858B (en) Method for identifying traveling wave in initial reversed polarity direction
CN114814493B (en) Four-segment type cable partial discharge source double-end monitoring and positioning method
JP5086119B2 (en) Deterioration location method and apparatus for power cable
US20220065823A1 (en) Measurement method and measurement arrangement for interference suppression in a receive signal of an EMAT transducer
JPS6255570A (en) Location of fault point for cable line
JPH08160098A (en) Method for detecting partial discharge signal
Zheng et al. Research on partial discharge localization in XLPE cable accessories using multi-sensor joint detection technology
JPH1090337A (en) Method for deterioration measurement of cable
CN112067955A (en) Three-phase synchronous partial discharge detection method
Lee et al. Impedance change localization for live underground cable using time-frequency domain reflectometry
Sakoda et al. Characteristics of elastic waves caused by corona discharges in an oil-immersed pole transformer
Prabhavathi et al. Detection and location of faults in 11kv underground cable by using continuous wavelet transform (cwt)
JPH0815363A (en) Fault location method for transmission line
JP3419924B2 (en) Partial discharge measurement method
JPH05288823A (en) Detection method of very weak radiated electromagnetic waves, & position detection method of their radiation source, and dertection appartus of very weak radiated electromgnetic waves utilizing them