JP2002001059A - Method and apparatus for desulfurization using granular limestone - Google Patents

Method and apparatus for desulfurization using granular limestone

Info

Publication number
JP2002001059A
JP2002001059A JP2000188069A JP2000188069A JP2002001059A JP 2002001059 A JP2002001059 A JP 2002001059A JP 2000188069 A JP2000188069 A JP 2000188069A JP 2000188069 A JP2000188069 A JP 2000188069A JP 2002001059 A JP2002001059 A JP 2002001059A
Authority
JP
Japan
Prior art keywords
limestone
tank
amount
granular
neutralization tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000188069A
Other languages
Japanese (ja)
Inventor
Kensho Taniguchi
憲昭 谷口
Shigeru Nozawa
滋 野澤
Kozo Obata
晃三 小幡
Takanori Nakamoto
隆則 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2000188069A priority Critical patent/JP2002001059A/en
Publication of JP2002001059A publication Critical patent/JP2002001059A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To advance a desulfurization reaction using granular limestone smoothly by controlling the amount of new limestone to be supplied after grasping the amount of the granular limestone packed in a tank for neutralizing an absorption liquid. SOLUTION: A pressure loss when the absorption liquid which absorbed sulfur oxide in exhaust gas is oxidized and passes through the limestone packed in a neutralization tank 17 for neutralization is proportional to the difference between gravity and buoyancy acting on the granular limestone suspending in a fluidized bed. Since both the gravity and the buoyancy are proportional to the height of a limestone layer, i.e., the amount of the packed limestone, a relationship of limestone layer pressure loss ΔP=f (amount of packed limestone) is satisfied, so that the amount of the granular limestone packed in the neutralization tank can be grasped by detecting the pressure loss of the limestone layer. As a result, the difference between the level of the absorption liquid when the granular limestone is packed and the level when it is not packed is obtained, and the pressure loss when the absorption liquid passes through the limestone layer is calculated from the signal of the number of operated circulating pumps 3, so that the amount of the packed limestone can be controlled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ボイラ等の燃焼排
ガス処理を行う排煙脱硫処理システムに係わり、特に排
ガス中の二酸化硫黄ガス(以下SO2と記す)を吸収す
る吸収媒体として数mm以下の粒状石灰石を用いた場合
の好適な石灰石供給方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flue gas desulfurization treatment system for treating combustion exhaust gas from a boiler or the like, and more particularly to an absorption medium for absorbing sulfur dioxide gas (hereinafter referred to as SO2) in exhaust gas having a size of several mm or less. The present invention relates to a preferable method for supplying limestone when granular limestone is used.

【0002】[0002]

【従来の技術】ボイラプラントにおける排煙脱硫システ
ムとして、実際に稼働しているシステムのほとんどは湿
式法によるものである。湿式法では、通常SO2ガスの
吸収剤として数百メッシュ程度に微粉砕した石灰石が用
いられるのが通例である。数百メッシュは石灰石粒径に
換算すると100〜200μm以下に対応し、微細な大
きさであるため、脱硫装置に供給された石灰石は撹拌機
等の機械的な攪拌により分散され、吸収液内にほぼ一様
に分布する。
2. Description of the Related Art Most of flue gas desulfurization systems in boiler plants are actually operated by a wet method. In the wet method, limestone finely pulverized to about several hundred meshes is usually used as an absorbent for SO2 gas. Hundreds of meshes correspond to 100 to 200 μm or less in terms of limestone particle size, and are of a fine size, so the limestone supplied to the desulfurization device is dispersed by mechanical stirring such as a stirrer, and is contained in the absorbing solution. Almost uniformly distributed.

【0003】従来技術からなる脱硫装置の系統を図4に
示す。図4に示す従来の脱硫装置は主に、吸収塔本体
1、循環タンク2、循環ポンプ3、ミストエリミネータ
4、吸収塔入口ダクト5、吸収塔出口ダクト6、ブリー
ドポンプ7、スプレ部9等からなる。
FIG. 4 shows a system of a conventional desulfurizer. The conventional desulfurization apparatus shown in FIG. 4 mainly includes an absorption tower main body 1, a circulation tank 2, a circulation pump 3, a mist eliminator 4, an absorption tower inlet duct 5, an absorption tower outlet duct 6, a bleed pump 7, a spray section 9, and the like. Become.

【0004】図示していないがボイラから排出される排
ガスは、脱硫ファン(図示せず)により入口ダクト5を
通り、吸収塔本体1本体に導入され、出口ダクト6から
排出される。この間に、吸収塔本体1内には循環ポンプ
3により昇圧することで送られる石灰石を含んだ吸収液
がスプレ部9から噴霧され、吸収液と排ガスとの気液接
触が行われる。
Although not shown, the exhaust gas discharged from the boiler passes through an inlet duct 5 by a desulfurization fan (not shown), is introduced into the main body of the absorption tower 1, and is discharged from an outlet duct 6. During this time, the absorbing liquid containing limestone, which is sent by being pressurized by the circulation pump 3, is sprayed from the spray unit 9 into the absorption tower main body 1, and gas-liquid contact between the absorbing liquid and the exhaust gas is performed.

【0005】このとき、吸収液は排ガス中のSO2を吸
収し、亜硫酸カルシウムを生成する。亜硫酸カルシウム
を生成した吸収液は循環タンク2に溜まり、酸化用空気
16中に含まれる酸素によって吸収液中の亜硫酸カルシ
ウムが酸化されて石膏を生成する。
[0005] At this time, the absorbing liquid absorbs SO2 in the exhaust gas to generate calcium sulfite. The absorption liquid that has generated calcium sulfite accumulates in the circulation tank 2, and the oxygen contained in the oxidizing air 16 oxidizes calcium sulfite in the absorption liquid to produce gypsum.

【0006】石灰石及び石膏が共存する循環タンク2内
の吸収液の一部は循環ポンプ3によって再びスプレ部9
に送られ、一部はブリードポンプ7より石膏回収系へと
送られる。吸収剤である石灰石は石灰石スラリとして供
給ライン14より循環タンク2へ供給される。
A part of the absorbent in the circulation tank 2 where limestone and gypsum coexist is again sprayed by the circulation pump 3 into the spray section 9.
And a part is sent from the bleed pump 7 to the gypsum recovery system. Limestone, which is an absorbent, is supplied from the supply line 14 to the circulation tank 2 as limestone slurry.

【0007】石灰石スラリ供給の制御方法としては、吸
収塔入口ダクト5中に設置されたガス流量計11(もし
くはボイラ負荷信号計)、SO2濃度計12より送られ
る信号をもとに演算器13によって必要な石灰石量を計
算し、石灰石流量調節バルブ15の開度を調節するフィ
ードフォアード制御が行われる。
[0007] As a method of controlling the supply of limestone slurry, a computing unit 13 uses a signal sent from a gas flow meter 11 (or a boiler load signal meter) and an SO2 concentration meter 12 installed in the absorption tower inlet duct 5. The required limestone amount is calculated, and feedforward control for adjusting the opening of the limestone flow control valve 15 is performed.

【0008】また同時に、吸収液抜き出しライン8中に
設置されたpH計10によって吸収塔本体1内のpHを
一定に保つよう石灰石流量調節バルブ15の開度を調節
するフィードバック制御系も組み込まれている。
At the same time, a feedback control system for adjusting the opening of the limestone flow control valve 15 so that the pH in the absorption tower main body 1 is kept constant by the pH meter 10 installed in the absorption liquid extraction line 8 is also incorporated. I have.

【0009】しかしながら従来の微細粒径(100〜2
00μm以下)を有する石灰石のスラリに代えて0.5
〜10mm程度の粒径(前記微細粒径の石灰石の約50
〜100倍の大きさを有する粒状石灰石を脱硫剤として
用いるシステムにおいては、SO2を吸収した吸収液を
酸化する部位(循環タンク2または図示していないが別
途設けられた酸化タンク)と中和する部位(図示してい
ない中和槽)に分けられる。
However, the conventional fine particle size (100 to 2)
0.5 μm instead of limestone slurry
Particle size of about 10 to 10 mm (approximately 50
In a system in which granular limestone having a size of about 100 times is used as a desulfurizing agent, the absorption liquid that has absorbed SO2 is neutralized with a site for oxidizing (the circulation tank 2 or an oxidation tank not shown but separately provided). It is divided into parts (neutralization tank not shown).

【0010】中和槽内には粒状の石灰石が充填されてお
り、粒状石灰石の流動により吸収液と接触して中和され
る。粒状石灰石は従来の前記微細粒径の石灰石と比較し
て約50〜100倍程度の粒子径であるため、全ての吸
収液中に均一に存在することはなく、中和槽内において
選択的に保持されて吸収液と接触し、中和反応すること
になる。
[0010] The neutralization tank is filled with granular limestone, and is neutralized by contact with the absorbing liquid by the flow of the granular limestone. Granular limestone has a particle diameter of about 50 to 100 times that of conventional limestone having a fine particle size, and therefore does not exist uniformly in all the absorbing liquids. It is held and comes into contact with the absorbing solution to cause a neutralization reaction.

【0011】脱硫性能を支配する一つの因子として吸収
液pH値が挙げられ、現在実働している脱硫プラントに
おいても、このpH値の制御が広く用いられている。微
粒石灰石を用いた従来技術では吸収液中に石灰石が一様
に存在するため、吸収液内の石灰石濃度がpH値を左右
するのに対して、粒状石灰石システムでは、中和槽内に
充填された石灰石量がpH値を左右する。つまり、粒状
石灰石システムにおいてpH値の制御機能を取り込むた
めには、中和槽内に充填された石灰石量を把握すること
が必要となる。
One of the factors governing the desulfurization performance is the pH value of the absorbing solution, and the control of this pH value is widely used also in currently operating desulfurization plants. In the prior art using fine-grained limestone, limestone is uniformly present in the absorbing solution, and the limestone concentration in the absorbing solution determines the pH value, whereas in the granular limestone system, the limestone is filled in the neutralization tank. The amount of limestone determines the pH value. That is, in order to incorporate the pH value control function in the granular limestone system, it is necessary to know the amount of limestone filled in the neutralization tank.

【0012】なぜなら、何らかの突変により適切な吸収
液pH値の維持が困難になった場合など、従来技術では
吸収液のpHを回復するために石灰石を供給し、吸収液
中の石灰石濃度を増加させるだけで良かったが、粒状石
灰石システムでは、中和槽内に過剰の石灰石が充填され
ることにより、大粒径の石灰石が石膏回収系に同伴され
て石膏純度が大幅に低下し、保証値を満足できないこと
が懸念される。
For example, in the case where it becomes difficult to maintain an appropriate pH value of the absorbing solution due to some sudden change, in the related art, limestone is supplied to recover the pH of the absorbing solution, and the limestone concentration in the absorbing solution is increased. However, in the granular limestone system, excess limestone was filled in the neutralization tank, and limestone with a large particle size was entrained in the gypsum recovery system, and gypsum purity was greatly reduced. There is a concern that we cannot be satisfied.

【0013】また、中和槽内に石灰石を過剰に充填して
いることにより石灰石の流動化が弱まり、中和されない
ままの吸収液がスプレ部9を循環することで脱硫性能が
低下し、最悪の場合流動化の停止による循環ポンプ3の
トリップ、つまりは脱硫装置の緊急停止を引き起こしか
ねない。
In addition, since the limestone is excessively filled in the neutralization tank, fluidization of the limestone is weakened, and the desulfurization performance is deteriorated by circulating the unneutralized absorbent through the spray section 9, and the worst case is caused. In this case, tripping of the circulation pump 3 due to the stop of fluidization, that is, an emergency stop of the desulfurization device, may be caused.

【0014】つまり、粒状石灰石システムにおいては、
中和槽内に充填された石灰石量を把握した上で、供給石
灰石量を制御することが必要となる。
That is, in the granular limestone system,
It is necessary to control the amount of supplied limestone after grasping the amount of limestone filled in the neutralization tank.

【0015】[0015]

【発明が解決しようとする課題】上記従来技術による石
灰石供給方法において粒状の石灰石を用いた場合、石膏
中への大粒径石灰石の混入による生成石膏純度の低下、
及び粒状石灰石の円滑な流動化について考慮がなされて
いなかった。
When granular limestone is used in the limestone supply method according to the prior art, the purity of the formed gypsum decreases due to the incorporation of large-diameter limestone into gypsum.
And the smooth fluidization of granular limestone was not taken into account.

【0016】本発明の課題は中和槽内に充填された石灰
石量を常に吸収液の中和に必要な量より一定量以上存在
するように中和槽への石灰石供給量を維持する粒状石灰
石を用いる脱硫方法と脱硫装置を提供することである。
An object of the present invention is to maintain a supply amount of limestone to a neutralization tank so that the amount of limestone charged in the neutralization tank always exceeds a quantity required for neutralizing the absorbing solution by a certain amount or more. And a desulfurization apparatus using the same.

【0017】[0017]

【課題を解決するための手段】上記本発明の課題は、次
の構成により解決できる。 (1)ボイラ等の燃焼装置から排出される排ガス中の硫
黄酸化物を吸収塔内で吸収液と接触させ、硫黄酸化物を
吸収した吸収液を酸化タンク内で酸化した後、粒状石灰
石が充填された中和槽を通過させることにより中和し、
再び吸収部へ一以上の循環ポンプにより循環する粒状石
灰石を用いる脱硫方法において、中和槽内の石灰石充填
量を酸化タンクの吸収液面と中和槽の吸収液面の液面レ
ベル差及び循環ポンプの運転台数または循環液量に基づ
き検知して、所定量の石灰石充填量が中和槽に充填され
るように中和槽に石灰石を供給する粒状石灰石を用いる
脱硫方法。
The object of the present invention can be solved by the following constitution. (1) The sulfur oxides in the exhaust gas discharged from a combustion device such as a boiler are brought into contact with an absorbing solution in an absorption tower, and the absorbing solution having absorbed the sulfur oxides is oxidized in an oxidation tank, and then filled with granular limestone. Neutralized by passing through the neutralization tank
In the desulfurization method using granular limestone circulated again to the absorption section by one or more circulation pumps, the amount of limestone charged in the neutralization tank is determined by the difference between the level of the absorption liquid in the oxidation tank and the level of the absorption liquid in the neutralization tank and circulation. A desulfurization method using granular limestone that supplies limestone to a neutralization tank so that a predetermined amount of limestone is charged into the neutralization tank by detecting based on the number of operating pumps or the amount of circulating liquid.

【0018】(2)ボイラ等の燃焼装置から排出される
排ガス中の硫黄酸化物を吸収液と接触させる吸収塔と、
該吸収塔内で硫黄酸化物を吸収した吸収液を酸化する酸
化タンクと、該酸化タンクの吸収液を粒状石灰石充填層
中を通過させて吸収液を中和させる粒状石灰石充填層を
備えた中和槽と、該中和槽を通過した吸収液を前記吸収
塔に循環供給する一以上の循環ポンプとを備えた脱硫装
置において、中和槽内の吸収液面レベル計と、酸化タン
ク内の吸収液面レベル計と、前記両液面レベル計の液面
レベル差及び循環ポンプの運転台数または循環液量に基
づき所定量の石灰石充填量になるように中和槽に供給す
る石灰石供給量を演算する演算器と、該演算された量の
粒状石灰石の供給手段とを設けた粒状石灰石を用いる脱
硫装置。
(2) an absorption tower for bringing sulfur oxides in exhaust gas discharged from a combustion device such as a boiler into contact with an absorbing solution;
An oxidation tank that oxidizes the absorbing solution that has absorbed the sulfur oxides in the absorption tower, and a granular limestone packed layer that neutralizes the absorbing solution by passing the absorbing solution in the oxidation tank through the granular limestone packed bed. In a desulfurization apparatus equipped with a sump tank and one or more circulation pumps for circulating and supplying the absorbent passed through the neutralization tank to the absorption tower, an absorption liquid level meter in the neutralization tank, The absorption liquid level meter and the supply amount of limestone to be supplied to the neutralization tank so that a predetermined amount of limestone is charged based on the liquid level difference between the two liquid level meters and the number of operating circulating pumps or the amount of circulating liquid. A desulfurization apparatus using granular limestone provided with an arithmetic unit for calculating and a supply unit of the calculated amount of granular limestone.

【0019】[0019]

【作用】中和槽内に充填された粒状石灰石層内を吸収液
が通過する際の圧力損失(以下、圧損と言うことがあ
る)は、流動層内を浮游する石灰石に作用する重力と浮
力の差として整理することが可能である。この時、重
力、浮力は共に石灰石層高つまりは石灰石充填量に比例
するため、重力、浮力=f(石灰石充填量)なる関係が
成立する。
The pressure loss (hereinafter, sometimes referred to as pressure loss) when the absorbent passes through the granular limestone layer filled in the neutralization tank is determined by the gravity and buoyancy acting on the limestone floating in the fluidized bed. It is possible to organize as the difference of. At this time, since both gravity and buoyancy are proportional to the limestone layer height, that is, the limestone filling amount, the relationship of gravity and buoyancy = f (limestone filling amount) is established.

【0020】一方で粒状石灰石層の圧損は重力と浮力の
差として整理できるため、石灰石層圧損△P=f(石灰
石充填量)なる関係が成立することになり、石灰石層を
通過するときの圧損は石灰石層の高さ、即ち石灰石充填
量に比例して増加する。よって、石灰石層の圧損を検知
することで中和槽内に充填された粒状石灰石量を把握す
ることが可能となる。
On the other hand, since the pressure loss of the granular limestone layer can be arranged as the difference between gravity and buoyancy, the relationship of limestone layer pressure loss △ P = f (limestone filling amount) is established, and the pressure loss when passing through the limestone layer is established. Increases in proportion to the height of the limestone layer, ie the limestone loading. Therefore, by detecting the pressure loss of the limestone layer, it becomes possible to grasp the amount of granular limestone filled in the neutralization tank.

【0021】[0021]

【発明の実施の形態】本発明の実施の形態について、図
面と共に説明する。本発明による実施の形態の脱流装置
の粒状石灰石供給システムを図1に示す。粒状石灰石シ
ステムでは、SO2を吸収した吸収液を酸化する部位
(酸化タンク(循環タンク2と同一))と石灰石の流動
化により中和する部位(中和槽17)に分けられる。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a granular limestone supply system of a deflower according to an embodiment of the present invention. The granular limestone system is divided into a part that oxidizes the absorbing solution that has absorbed SO2 (an oxidation tank (same as the circulation tank 2)) and a part that neutralizes limestone by fluidization (neutralization tank 17).

【0022】図1に示す脱硫装置は主に、吸収塔本体
1、循環タンク2、循環ポンプ3、ミストエリミネータ
4、吸収塔入口ダクト5、吸収塔出口ダクト6、ブリー
ドポンプ7、スプレ部9の他に循環タンク2からの吸収
液が送られてくる中和槽17からなる。図示しないボイ
ラから排出される排ガスは、脱硫ファン(図示せず)に
より入口ダクト5を通り、吸収塔本体1に導入され、出
口ダクト6から排出される。
The desulfurization apparatus shown in FIG. 1 mainly includes an absorption tower main body 1, a circulation tank 2, a circulation pump 3, a mist eliminator 4, an absorption tower inlet duct 5, an absorption tower outlet duct 6, a bleed pump 7, and a spray section 9. It also comprises a neutralization tank 17 to which the absorbing liquid from the circulation tank 2 is sent. Exhaust gas discharged from a boiler (not shown) passes through an inlet duct 5 by a desulfurization fan (not shown), is introduced into the absorption tower main body 1, and is discharged from an outlet duct 6.

【0023】この間に、循環ポンプ3により昇圧された
吸収液が吸収塔本体1内のスプレ部9から噴霧され、吸
収液と排ガスとの気液接触が行われる。このとき、吸収
液は排ガス中のSO2を吸収し、亜硫酸を生成する。亜
硫酸を生成した吸収液は循環タンク2に溜まり、循環タ
ンク2に供給される酸化用空気16中に含まれる酸素に
よって吸収液中の亜硫酸が酸化され、硫酸を生成する。
During this time, the absorbing liquid pressurized by the circulation pump 3 is sprayed from the spray section 9 in the absorption tower main body 1, and gas-liquid contact between the absorbing liquid and the exhaust gas is performed. At this time, the absorbing liquid absorbs SO2 in the exhaust gas and generates sulfurous acid. The absorbing solution that has generated sulfurous acid accumulates in the circulation tank 2, and the oxygen contained in the oxidizing air 16 supplied to the circulation tank 2 oxidizes the sulfurous acid in the absorbing solution to generate sulfuric acid.

【0024】循環タンク2内の吸収液は、その液面と中
和槽17内の吸収液の液面とのレベル差△Hにより中和
槽17内に送られ、中和槽17内に充填された粒状石灰
石を流動化させ、吸収液中に含まれる硫酸と反応して石
膏を生成する。
The absorption liquid in the circulation tank 2 is sent into the neutralization tank 17 due to the level difference ΔH between the level of the absorption liquid and the level of the absorption liquid in the neutralization tank 17, and is filled in the neutralization tank 17. The granulated limestone is fluidized and reacts with sulfuric acid contained in the absorbing solution to produce gypsum.

【0025】中和糟17内の成分である吸収液と粒状石
灰石の中で粒状石灰石が選択的に中和糟17内に保持さ
れたまま、吸収液は抜き出され、その一部は循環ポンプ
3によって再びスプレ部9に送られ、他の吸収液はブリ
ードポンプ7より石膏回収系へと送られる。吸収剤であ
る石灰石は、石灰石スラリ又は固形石灰石として供給ラ
イン14により中和槽17へ供給される。
The absorption liquid is extracted while the particulate limestone is selectively retained in the neutralization tank 17 among the absorption liquid and the particulate limestone, which are components in the neutralization tank 17, and a part thereof is circulated by a circulation pump. 3 again sends it to the spraying section 9 and the other absorbing liquid is sent from the bleed pump 7 to the gypsum recovery system. Limestone, which is an absorbent, is supplied to the neutralization tank 17 through the supply line 14 as limestone slurry or solid limestone.

【0026】石灰石の中和槽17への供給制御はバッチ
式で行う。中和槽17内には中和性能を満足するために
必要な石灰石が充填してあればよいため、それ以上の充
填量を常に維持するよう石灰石を供給する。
The supply of limestone to the neutralization tank 17 is controlled in a batch system. Since it is sufficient that the neutralization tank 17 is filled with limestone necessary for satisfying the neutralization performance, limestone is supplied so as to always maintain a higher filling amount.

【0027】中和槽17内の石灰石充填量は中和槽17
内の吸収液の液面レベル計19と循環タンク2内の吸収
液の液面レベル計20からの信号及び循環ポンプ3の運
転台数の信号から演算器13によって計算される。
The amount of limestone charged in the neutralization tank 17 is
It is calculated by the calculator 13 from the signal from the liquid level meter 19 of the absorbing liquid in the inside, the liquid level meter 20 of the absorbing liquid in the circulation tank 2 and the signal of the number of operating circulation pumps 3.

【0028】これにより、必要以上に中和槽17内に石
灰石が充填されることはなく、石灰石の過剰供給により
脱硫装置の運転に支障を来すことはない。
As a result, the neutralization tank 17 is not filled with limestone more than necessary, and the operation of the desulfurization device is not hindered by the excessive supply of limestone.

【0029】以上が本発明の趣旨であるが、以下、中和
槽17内への石灰石充填量の検知方法及び中和槽17内
の液面レベルの制御方法について詳述する。
The above is the purpose of the present invention. Hereinafter, a method for detecting the amount of limestone charged into the neutralization tank 17 and a method for controlling the liquid level in the neutralization tank 17 will be described in detail.

【0030】図2に中和槽17内の石灰石充填量Qと中
和槽17内の液面レベル差△Hの関係を示す。図中△H
0は中和槽17に石灰石を充填していないときの循環タ
ンク2と中和槽17の各吸収液の液面レベル差であり、
この値は酸化糟でもある循環タンク2から中和槽17へ
の連絡配管18内を吸収液が通過する際の圧損に相当す
る。
FIG. 2 shows the relationship between the limestone filling amount Q in the neutralization tank 17 and the liquid level difference ΔH in the neutralization tank 17. △ H in the figure
0 is the liquid level difference between the circulating tank 2 and the neutralizing tank 17 when the neutralizing tank 17 is not filled with limestone,
This value corresponds to the pressure loss when the absorbent passes through the communication pipe 18 from the circulation tank 2 which is also an oxidation tank to the neutralization tank 17.

【0031】因みに、この値は試運転時の調整により把
握することができる。次に中和槽17に石灰石を充填し
ていき、その都度、液面レベル差△Hを測定することに
より、石灰石層高と液面レベル差△Hの関係を把握する
ことが可能となる。
Incidentally, this value can be grasped by adjustment at the time of trial operation. Next, the neutralization tank 17 is filled with limestone, and by measuring the liquid level difference ΔH each time, the relationship between the limestone layer height and the liquid level difference ΔH can be grasped.

【0032】ここで液面レベル差△H1となる点に着目
すると、液面レベル差△H1は連絡配管18と中和槽1
7の石灰石層を通過する際の吸収液の圧損であり、(△
H1−△H0)が石灰石層の圧損となる。
Attention is paid to the point that the liquid level difference ΔH1 is obtained.
7 is the pressure loss of the absorbent when passing through the limestone layer of (7)
H1− △ H0) causes a pressure loss of the limestone layer.

【0033】この時の石灰石充填量はQ1であり、つま
りは循環タンク2と中和槽17の各液面レベル差△Hを
検知することで中和槽17内の石灰石充填量を把握する
ことが可能となる。
The amount of limestone filling at this time is Q1, that is, the amount of limestone filling in the neutralization tank 17 is determined by detecting the liquid level difference ΔH between the circulation tank 2 and the neutralization tank 17. Becomes possible.

【0034】同時に、実際の脱硫装置の運転状況を考慮
した場合、ガス量およびSO2負荷によっては脱硫装置
の計画条件よりもスプレ部9への循環液量を下げて運転
することが可能である場合も存在する。この場合、通常
複数台からなる循環ポンプ3の運転台数をカットするよ
うな運転も行われている。
At the same time, when the actual operation state of the desulfurization unit is taken into consideration, it is possible to operate the desulfurization unit with the circulating liquid amount to the spray unit 9 lower than the planned condition depending on the gas amount and the SO2 load. Also exists. In this case, an operation is also performed to cut the number of operating circulating pumps 3 which is usually a plurality of units.

【0035】前記液面レベル差△Hは吸収液の圧損であ
るため、循環液量即ち循環ポンプ3の運転台数によって
異なるため、循環ポンプ3の運転台数別に上述の石灰石
充填量Qと液面レベル差△Hの関係を把握する必要があ
る。
Since the liquid level difference ΔH is a pressure loss of the absorbent, it differs depending on the amount of circulating liquid, that is, the number of operating circulating pumps 3. It is necessary to understand the relationship of the difference ΔH.

【0036】以上により、中和糟17内の石灰石充填量
の検知が可能であるため、この信号をもとに中和糟17
内への性能上必要な石灰石供給量の制御及び構造上必要
なインターロック等の中和糟17内への充填量制御(中
和槽内へ石灰石を入れすぎてあふれ出ることのないよう
に保護インターロックにより中和槽内の石灰石がある程
度以上にならないように制御すること。)を行うことが
可能となる。
As described above, it is possible to detect the amount of limestone charged in the neutralization tank 17.
Control of supply amount of limestone necessary for performance and control of filling amount of neutralization tank 17 such as interlock necessary for structure (protection to prevent limestone from being overfilled into neutralization tank and overflowing) The interlock controls the limestone in the neutralization tank so that it does not exceed a certain amount.).

【0037】続いて、中和糟17内への粒状石灰石供給
方法について説明する。従来方式においては、ガス量と
SO2濃度によりSO2の吸収量を計算し、それに見合
った微粒状石灰石を断続的に中和槽でもある循環タンク
に供給していたのに対して、粒状石灰石を用いる本発明
の脱硫システムにおいては、中和槽17へ石灰石のバッ
チ供給が可能である。図3に石灰石バッチ供給について
の説明図を示す。
Next, a method for supplying granular limestone into the neutralization tank 17 will be described. In the conventional method, the amount of SO2 absorption is calculated based on the gas amount and the SO2 concentration, and fine limestone corresponding to the calculated amount is intermittently supplied to the circulation tank which is also a neutralization tank. In the desulfurization system of the present invention, limestone can be batch-supplied to the neutralization tank 17. FIG. 3 shows an explanatory diagram of limestone batch supply.

【0038】上述の通り、中和槽17内の石灰石充填量
は循環タンク2と中和槽17の各液面レベル差△Hによ
り検知可能であるため、吸収液中の亜硫酸を中和するに
必要な性能を満足するために必要な石灰石層高さ以上を
常に維持すればよい。
As described above, the amount of limestone charged in the neutralization tank 17 can be detected by the liquid level difference ΔH between the circulation tank 2 and the neutralization tank 17, so that the sulfuric acid in the absorption liquid is neutralized. What is necessary is just to always maintain the limestone layer height or more necessary to satisfy the required performance.

【0039】つまりは、吸収液の中和に必要な最低限度
の石灰石層高を最低レベルとして、その必要な石灰石層
高から、予め決めておいた石灰石層高分を一バッチとし
て積み増すように石灰石を中和槽17内に供給すればよ
いことになる。
That is, the minimum limestone layer height required for neutralization of the absorbent is set to the minimum level, and a predetermined limestone layer height is added as a batch from the required limestone layer height. Limestone should be supplied into the neutralization tank 17.

【0040】図3では石灰石充填量Q1が前記必要最低
石灰石層高に対応し、石灰石充填量Q1に対応する液面
レベル差△H1となった時点で粒状石灰石を中和槽17
に供給を開始する。
In FIG. 3, when the limestone filling amount Q1 corresponds to the required minimum limestone layer height and the liquid level difference ΔH1 corresponding to the limestone filling amount Q1 is reached, the granular limestone is removed from the neutralization tank 17.
Start supplying.

【0041】そして、最大石灰石層高に相当する充填量
Q2に対応する予め分かっていた液面レベル差△H2と
なった時点で石灰石の供給を停止する。つまり、石灰石
充填量(Q2−Q1)が一バッチ分の石灰石供給量とな
る。
Then, the supply of the limestone is stopped when the liquid level difference ΔH2, which is known in advance and corresponds to the filling amount Q2 corresponding to the maximum limestone layer height, is reached. That is, the limestone filling amount (Q2-Q1) is the limestone supply amount for one batch.

【0042】ここで、従来技術における微粒状石灰石の
バッチ供給について考えてみる。従来技術では微粒状石
灰石を供給するため吸収液中の石灰石濃度は一様とな
る。このため、一バッチ供給後の吸収液中の石灰石濃度
は大幅に増加する。
Here, consider the batch supply of fine limestone in the prior art. In the prior art, since fine limestone is supplied, the concentration of limestone in the absorbent is uniform. For this reason, the limestone concentration in the absorbing solution after one batch supply is greatly increased.

【0043】しかしながら、生成石膏は石膏ボードなど
の原材料として利用されるため、石膏純度が規定されて
いるのが通例であるため、一バッチ供給後、大幅に石灰
石濃度が増加し、石膏純度を維持できないことが懸念さ
れる。
However, since the formed gypsum is used as a raw material such as a gypsum board, the gypsum purity is usually specified. Therefore, after one batch is supplied, the limestone concentration is greatly increased and the gypsum purity is maintained. It is feared that it cannot be done.

【0044】これに対して本発明の粒状石灰石システム
では数mm以下の粒径を持つ粒状石灰石を利用する。そ
のため粒状石灰石の表面から一部微粒状の石灰石が吸収
液中に移行はするが、大部分の粒状石灰石は中和槽17
内に選択的に滞留したままとなる。
On the other hand, the granular limestone system of the present invention utilizes granular limestone having a particle size of several mm or less. Therefore, some fine limestone migrates from the surface of the granular limestone into the absorbing solution, but most of the granular limestone is removed from the neutralization tank 17.
Remains selectively in the interior.

【0045】したがって、一バッチで大量に石灰石を供
給した後でも石膏回収系に多量の石灰石が混入すること
はなく、石灰石純度を維持することが可能である。
Therefore, even after a large amount of limestone is supplied in one batch, a large amount of limestone is not mixed into the gypsum recovery system, and the limestone purity can be maintained.

【0046】[0046]

【発明の効果】本発明によれば、酸化タンクと中和槽の
レベル差及び循環ポンプの運転台数により中和槽内の石
灰石充填量を把握し、石灰石をバッチで供給することに
より、粒状石灰石を用いた脱硫装置の円滑な運転を可能
にする。
According to the present invention, the amount of limestone filling in the neutralization tank is determined based on the level difference between the oxidation tank and the neutralization tank and the number of operating circulation pumps, and the limestone is supplied in batches, whereby granular limestone is supplied. Enables smooth operation of a desulfurization unit using

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明による実施の形態を示した概略構成図
である。
FIG. 1 is a schematic configuration diagram showing an embodiment according to the present invention.

【図2】 石灰石層を通過するときの圧損について説明
する図である。
FIG. 2 is a diagram illustrating a pressure loss when passing through a limestone layer.

【図3】 石灰石層を通過するときの圧損について説明
する図である。
FIG. 3 is a diagram illustrating a pressure loss when passing through a limestone layer.

【図4】 従来技術を示した図である。FIG. 4 is a diagram showing a conventional technique.

【符号の説明】[Explanation of symbols]

1 吸収塔本体 2 循環タンク 3 循環ポンプ 4 ミストエリミネー
タ 5 吸収塔入口ダクト 6 吸収塔出口ダクト 7 ブリードポンプ 8 吸収液抜出ライン 9 スプレ部 10 pH計 11 ガス流量計 12 SO2濃度計 13 演算器 14 石灰石供給ライ
ン 15 石灰石流量調節バルブ 16 酸化用空気 17 中和槽 18 連絡配管 19、20 レベル計
DESCRIPTION OF SYMBOLS 1 Absorption tower main body 2 Circulation tank 3 Circulation pump 4 Mist eliminator 5 Absorption tower entrance duct 6 Absorption tower exit duct 7 Bleed pump 8 Absorbent extraction line 9 Spray part 10 pH meter 11 Gas flow meter 12 SO2 concentration meter 13 Calculator 14 Limestone supply line 15 Limestone flow control valve 16 Oxidation air 17 Neutralization tank 18 Communication pipe 19, 20 Level meter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小幡 晃三 広島県呉市宝町6番9号 バブコック日立 株式会社呉事業所内 (72)発明者 中本 隆則 広島県呉市宝町6番9号 バブコック日立 株式会社呉事業所内 Fターム(参考) 4D002 AA02 AC01 BA02 CA01 DA05 DA16 EA07 EA12 EA13 EA14 FA03 GA02 GA03 GB05 GB06 GB09 GB20  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kozo Obata 6-9 Takara-cho, Kure-shi, Hiroshima Prefecture Inside the Babcock Hitachi Co., Ltd. (72) Inventor Takanori Nakamoto 6-9 Takara-cho, Kure-shi, Hiroshima Prefecture Babcock Hitachi Co., Ltd. F-term in the Kure office (reference) 4D002 AA02 AC01 BA02 CA01 DA05 DA16 EA07 EA12 EA13 EA14 FA03 GA02 GA03 GB05 GB06 GB09 GB20

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ボイラ等の燃焼装置から排出される排ガ
ス中の硫黄酸化物を吸収塔内で吸収液と接触させ、硫黄
酸化物を吸収した吸収液を酸化タンク内で酸化した後、
粒状石灰石が充填された中和槽を通過させることにより
中和し、再び吸収部へ一以上の循環ポンプにより循環す
る粒状石灰石を用いる脱硫方法において、 中和槽内の石灰石充填量を酸化タンクの吸収液面と中和
槽の吸収液面の液面レベル差及び循環ポンプの運転台数
または循環液量に基づき検知して、所定量の石灰石充填
量が中和槽に充填されるように中和槽に石灰石を供給す
る粒状石灰石を用いる脱硫方法。
Claims 1. After contacting sulfur oxides in exhaust gas discharged from a combustion device such as a boiler with an absorbing solution in an absorption tower and oxidizing the absorbing solution having absorbed the sulfur oxides in an oxidation tank,
Neutralization by passing through a neutralization tank filled with granular limestone, and again in a desulfurization method using granular limestone circulated by one or more circulation pumps to the absorption section, the amount of limestone in the neutralization tank is reduced by the oxidation tank. Detects based on the liquid level difference between the absorption liquid level and the absorption liquid level in the neutralization tank and the number of operating circulation pumps or the amount of circulating liquid, and neutralizes so that a predetermined amount of limestone is filled in the neutralization tank. A desulfurization method using granular limestone that supplies limestone to a tank.
【請求項2】 中和槽内の吸収液の中和に必要な石灰石
量より所定量過剰の石灰石を供給する請求項1記載の粒
状石灰石を用いる脱硫方法。
2. The desulfurization method using granular limestone according to claim 1, wherein a predetermined amount of limestone is supplied in excess of the amount of limestone necessary for neutralizing the absorbent in the neutralization tank.
【請求項3】 中和槽内にバッチ方式で石灰石を供給す
る請求項1記載の粒状石灰石を用いる脱硫方法。
3. The desulfurization method using granular limestone according to claim 1, wherein the limestone is supplied into the neutralization tank in a batch system.
【請求項4】 酸化タンクの吸収液面と中和槽の吸収液
面の液面レベル差に制御幅を持たせて中和槽内に石灰石
を供給する請求項1記載の粒状石灰石を用いる脱硫方
法。
4. The desulfurization using granular limestone according to claim 1, wherein the limestone is supplied into the neutralization tank by giving a control width to the liquid level difference between the absorption liquid level in the oxidation tank and the absorption liquid level in the neutralization tank. Method.
【請求項5】 ボイラ等の燃焼装置から排出される排ガ
ス中の硫黄酸化物を吸収液と接触させる吸収塔と、該吸
収塔内で硫黄酸化物を吸収した吸収液を酸化する酸化タ
ンクと、該酸化タンクの吸収液を粒状石灰石充填層中を
通過させて吸収液を中和させる粒状石灰石充填層を備え
た中和槽と、該中和槽を通過した吸収液を前記吸収塔に
循環供給する一以上の循環ポンプとを備えた脱硫装置に
おいて、 中和槽内の吸収液面レベル計と、酸化タンク内の吸収液
面レベル計と、前記両液面レベル計の液面レベル差及び
循環ポンプの運転台数または循環液量に基づき所定量の
石灰石充填量になるように中和槽に供給する石灰石供給
量を演算する演算器と、該演算された量の粒状石灰石を
供給する粒状石灰石の供給手段とを設けた粒状石灰石を
用いる脱硫装置。
5. An absorption tower for bringing sulfur oxides in exhaust gas discharged from a combustion device such as a boiler into contact with an absorption liquid, an oxidation tank for oxidizing the absorption liquid having absorbed the sulfur oxides in the absorption tower, A neutralization tank provided with a granular limestone packed bed for neutralizing the absorbed liquid by passing the absorbing liquid in the oxidation tank through the granular limestone packed bed; and circulating the absorbing liquid passed through the neutralizing tank to the absorption tower. A desulfurization apparatus provided with one or more circulation pumps for performing the following operations: an absorption liquid level meter in a neutralization tank, an absorption liquid level meter in an oxidation tank, and a liquid level difference between the two liquid level meters and circulation. A calculator for calculating a supply amount of limestone to be supplied to the neutralization tank so that a predetermined amount of limestone is charged based on the number of operating pumps or a circulating fluid amount; and a granular limestone for supplying the calculated amount of granular limestone. Using granular limestone provided with a supply means Apparatus.
JP2000188069A 2000-06-22 2000-06-22 Method and apparatus for desulfurization using granular limestone Pending JP2002001059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000188069A JP2002001059A (en) 2000-06-22 2000-06-22 Method and apparatus for desulfurization using granular limestone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000188069A JP2002001059A (en) 2000-06-22 2000-06-22 Method and apparatus for desulfurization using granular limestone

Publications (1)

Publication Number Publication Date
JP2002001059A true JP2002001059A (en) 2002-01-08

Family

ID=18687921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000188069A Pending JP2002001059A (en) 2000-06-22 2000-06-22 Method and apparatus for desulfurization using granular limestone

Country Status (1)

Country Link
JP (1) JP2002001059A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009172541A (en) * 2008-01-26 2009-08-06 Chugoku Electric Power Co Inc:The Air supply amount control method for oxidization of wet-type flue gas desulfurization apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009172541A (en) * 2008-01-26 2009-08-06 Chugoku Electric Power Co Inc:The Air supply amount control method for oxidization of wet-type flue gas desulfurization apparatus

Similar Documents

Publication Publication Date Title
US20180229179A1 (en) Oxidation control for improved flue gas desulfurization performance
PL183264B1 (en) Apparatus for and method of treating flue gas
JP3337382B2 (en) Exhaust gas treatment method
JP2002001059A (en) Method and apparatus for desulfurization using granular limestone
JP3519498B2 (en) Wet flue gas desulfurization equipment
JP3068452B2 (en) Wet flue gas desulfurization equipment
JPH0724252A (en) Wet flue gas desulfurizer by magnesium oxide and method thereof
WO1999017863A1 (en) Wet type exhaust gas desulfurization method
JP2004351262A (en) Method and apparatus for wet type flue gas desulfurization
JPH0355171B2 (en)
JP2002224533A (en) Method and apparatus for flue gas desulfurization
JP4514029B2 (en) Flue gas desulfurization method and apparatus
JP2547803B2 (en) Wet flue gas desulfurization equipment
JP2001120947A (en) Method and device for controlling stack gas desulfurizing device
JPH0829217B2 (en) Oxidation tower air flow rate control method in wet desulfurization equipment
JPH0691940B2 (en) Oxidizing air control method for wet flue gas desulfurization equipment
JPH07116456A (en) Method for controlling flue gas wet desulfurization apparatus
JP3519582B2 (en) Flue gas desulfurization device and flue gas desulfurization method
JP3241197B2 (en) Method for controlling the oxidation of calcium sulfite in absorption solution
JP3414127B2 (en) Oxidizing air supply control method and apparatus for flue gas desulfurization equipment
JPH10249145A (en) Method of controlling number of absorber circulating pumps of flue gas desurfurizer
JP3575502B2 (en) Absorbent flow control device for flue gas desulfurization unit
JPH09327616A (en) Oxidative substance concentration controlling method and apparatus for exhaust gas desulfurization
JPS6265927A (en) Method for controlling oxidation of calcium sulfite
JPH11244647A (en) Prevention of activity lowering of wet stack gas desulfurizer and device therefor