JP2001512469A - Method for producing carboxylic acid or its ester by carbonylation of olefin - Google Patents

Method for producing carboxylic acid or its ester by carbonylation of olefin

Info

Publication number
JP2001512469A
JP2001512469A JP53621298A JP53621298A JP2001512469A JP 2001512469 A JP2001512469 A JP 2001512469A JP 53621298 A JP53621298 A JP 53621298A JP 53621298 A JP53621298 A JP 53621298A JP 2001512469 A JP2001512469 A JP 2001512469A
Authority
JP
Japan
Prior art keywords
ester
producing
carboxylic acid
compounds
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP53621298A
Other languages
Japanese (ja)
Inventor
シェーファー マーティン
ヘーン アルトゥール
ハーダー ヴォルフガング
リペルト フェルディナント
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of JP2001512469A publication Critical patent/JP2001512469A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0239Quaternary ammonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0244Nitrogen containing compounds with nitrogen contained as ring member in aromatic compounds or moieties, e.g. pyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0255Phosphorus containing compounds
    • B01J31/0267Phosphines or phosphonium compounds, i.e. phosphorus bonded to at least one carbon atom, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, the other atoms bonded to phosphorus being either carbon or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/20Carbonyls
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/10Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
    • C07C51/14Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide on a carbon-to-carbon unsaturated bond in organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/36Preparation of carboxylic acid esters by reaction with carbon monoxide or formates
    • C07C67/38Preparation of carboxylic acid esters by reaction with carbon monoxide or formates by addition to an unsaturated carbon-to-carbon bond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/321Hydroformylation, metalformylation, carbonylation or hydroaminomethylation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2234Beta-dicarbonyl ligands, e.g. acetylacetonates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

(57)【要約】 本発明は、温度100〜270℃および圧力30〜100バールで水またはアルコールの存在下にオレフィンと一酸化炭素とからカルボン酸またはそのエステルを製造するための方法において、ハロゲン不含の触媒系として、a)ニッケルまたはニッケル化合物、b)クロム、モリブデン、タングステン、レニウム、ルテニウム、オスミウム、ロジウム、イリジウム、パラジウム、白金、銀、金またはこれらの金属の化合物の群の少なくとも1種の金属、c)第三級または第四級窒素化合物、リン化合物またはヒ素化合物および窒素含有複素環式化合物の群からの少なくとも1種の非金属化合物からなる混合物を使用することを特徴とする、カルボン酸またはそのエステルの製造方法に関する。   (57) [Summary] The present invention relates to a process for producing a carboxylic acid or its ester from an olefin and carbon monoxide in the presence of water or an alcohol at a temperature of 100 to 270 ° C. and a pressure of 30 to 100 bar, wherein the halogen-free catalyst system is used. A) nickel or a nickel compound; b) at least one metal of the group of chromium, molybdenum, tungsten, rhenium, ruthenium, osmium, rhodium, iridium, palladium, platinum, silver, gold or compounds of these metals; c) Carboxylic acids or esters thereof, characterized in that a mixture of at least one non-metallic compound from the group of tertiary or quaternary nitrogen compounds, phosphorus compounds or arsenic compounds and nitrogen-containing heterocyclic compounds is used. And a method for producing the same.

Description

【発明の詳細な説明】 オレフィンのカルボニル化によりカルボン酸またはそのエステルを製造する方法 本発明は、水またはアルコールおよびハロゲン不含の触媒系、ニッケルまたは ニッケル化合物、少なくとも1種の貴金属またはその化合物ならびに非金属の窒 素化合物、ヒ素化合物またはリン化合物からなる混合物の存在下に圧力30〜1 00バールおよび100〜270℃でオレフィンと一酸化炭素とを反応させるこ とによりカルボン酸またはそのエステルを製造するための方法に関する。 ヴァイサーメル等(Weissermel et al.)は、Industrielle Organische Chemie 、1978年、第2版、Verlag Chemie、第132頁に、レッペ法によるオレフ ィンのカルボニル化、例えば触媒の存在下でのエチレン、一酸化炭素および水か らのプロピオン酸の製造を記載している。触媒として、反応条件下で反応してニ ッケルカルボニルになるプロピオン酸ニッケルを使用する。エチレンの高い反応 率は、高い圧力(200〜240バール)の場合にのみ達成される。この反応条 件は、適切な反応器の建設の際に高い技術的コストを、ならびに、反応条件下で の生成物の腐食性により条件づけられて、特別かつ高価な材料を要求する。 GB−A1063617号は、ホウ酸の存在下でニッケル触媒およびコバルト 触媒を使用したオレフィンのカルボニル化を教示している。このためにもまた高 い圧力および温度が要求される。 オレフィンのカルボニル化は、貴金属触媒を用いて圧力約100バールで実施 することができる。例えばEP−A495547号は、パラジウム源および二座 のホスフィン配位子からなる触媒を教示している。しかしこのような触媒は、し ばしば金属パラジウムの折出により短い反応時間の後で失活する。特に、使用さ れるホスフィン配位子は所望の反応条件下で熱安定性ではない。 DE−A4424710号は、触媒系としてニッケルまたはニッケル化合物と 貴金属または貴金属化合物とからなる混合物を用いたオレフィンのカルボニル化 を記載している。しかし記載されている方法は、製造するべき生成物に関する選 択性および活性の点で、特に100バール以下の圧力ではまだ満足できるもので はない。 従って、前記の欠点を回避し、かつ100バール以下の圧力で、その選択性お よび活性に関して改善されたオレフィンのカルボニル化のための方法を提供する という課題が生じる。 この課題に応じて、水またはアルコールおよびハロゲン不含の触媒系の存在下 に温度100〜270℃お よび圧力30〜100バール、有利には30〜80バールで、オレフィンと一酸 化炭素とからカルボン酸またはそのエステルを製造するための、新規かつ改善さ れた方法が判明し、該方法の特徴は、触媒系として、 a)ニッケルまたはニッケル化合物、 b)クロム、モリブデン、タングステン、レニウム、ルテニウム、オスミウム 、ロジウム、イリジウム、パラジウム、白金、銀、金またはこれらの金属の化合 物の群の少なくとも1種の金属、 c)第三級または第四級窒素化合物、リン化合物またはヒ素化合物および窒素 含有複素環式化合物の群からの少なくとも1種の非金属化合物 からなる混合物を使用することである。 本発明による方法により、DE−A4424710号に記載されている触媒系 に対して、特に100バール以下の低い圧力で活性および選択性を著しく改善す ることができた。さらに本発明による方法で使用される触媒系は、オレフィン1 モル当たり水0.5〜5モルの低い水濃度でも、反応搬出物中ですでに1%以下 の水分を有しているカルボン酸の製造を可能にするほど活性が高く、このことに より反応生成物の後処理が著しく容易になる。 以下の反応式は、エチレンからプロピオン酸への反応を例にとって本発明によ る方法を明らかにするものである: 触媒 CH2=CH2+CO+H2O → CH3CH2COOH 本発明による方法のための出発物質として、有利に2〜20個、特に有利には 2〜7個の炭素原子を有する脂肪族および脂環式アルケンが該当する。例えばエ チレン、プロピレン、イソ−ブテン、1−ブテン、2−ブテンおよびペンテンと ヘキセンの異性体ならびにシクロヘキセンが挙げられ、中でもエチレンが有利で ある。 これらのオレフィンを、カルボン酸の製造のためは水と、またはカルボン酸エ ステルの製造のためにはアルコールと反応させる。これらのアルコールは、有利 に1〜20個の炭素原子を、特に有利には1〜6個の炭素原子を有する脂肪族お よび脂環式化合物、例えばメタノール、エタノール、n−プロパノール、イソ− プロパノール、t−ブタノール、ステアリルアルコール、ジオール、例えばエチ レングリコール、1,2−プロパンジオールおよび1,6−ヘキサンジオールな らびにシクロヘキサノールを含む。ジオールを反応させる場合、選択された化学 量論的な比に応じてモノエステルおよびジエステルが得られ、その際ジエステル の製造のためにジオールおよびオレフィンをモル比約1:2で、およびモノエス テルの製造のためにジオールを過剰量で使用する。 前記の出発化合物を一酸化炭素と反応させ、その際これを純粋な形で、または 不活性ガス、例えば窒素またはアルゴンで希釈して使用することができる。 出発化合物であるオレフィンと水またはアルコールのモル比は、拾いはにで変 化してもよいが、しかし通常は少なくとも等モル量の水もしくはアルコールを使 用する。カルボン酸の製造の際にオレフィン1モル当たり水0.5〜10モル、 有利には0.5〜5モルを使用することができる。 オレフィン対一酸化炭素のモル比もまた著しく変化してもよく、その際、一酸 化炭素1モル当たりオレフィン5:1〜1:5のモル比が有利である。 本発明による方法ではハロゲン不含の触媒系として、 a)ニッケルまたはニッケル化合物、 b)クロム、モリブデン、タングステン、レニウム、ルテニウム、オスミウム 、ロジウム、イリジウム、パラジウム、白金、銀、金またはこれらの金属の化合 物の少なくとも1種の金属および c)第三級または第四級窒素化合物、リン化合物またはヒ素化合物および窒素 含有複素環式化合物からなる群からの少なくとも1種の非金属化合物 からなる混合物を使用する。 活性のニッケル化合物を形成できるように、反応混合物に有利にはこの中で可 溶性の化合物、例えば酢酸 塩、プロピオン酸塩、アセチルアセトネート、水酸化物および炭酸塩またはこれ らの化合物の混合物を添加する。しかしまたNi(CO)4ならびにニッケル金 属を反応混合物に導入することもまた可能である。特に有利には、ニッケル成分 を反応の際に形成されるカルボン酸の塩の形で導入する。 第二の触媒成分として、クロム、モリブデン、タングステン、レニウム、ルテ ニウム、オスミウム、ロジウム、イリジウム、パラジウム、白金、銀、金の群か らの少なくとも1種の金属あるいはこれらの金属の化合物を使用し、なかでもロ ジウムおよびパラジウムが有利であり、ルテニウムおよび白金が特に有利である 。これらの金属は例えばニッケルに関して前記したような塩として、つまり酢酸 塩、プロピオン酸塩、アセチルアセトネート、水酸化物または炭酸塩として、反 応溶液に導入することができる。さらにカルボニル化合物、特にクロムヘキサカ ルボニル、モリブデンヘキサカルボニル、タングステンヘキサカルボニル、ジレ ニウムデカカルボニル、トリルテニウムドデカカルボニル、トリオスミウムドデ カカルボニルおよび別の配位子を有しているカルボニル化合物、例えばロジウム ジカルボニルアセチルアセトネートまたはドナー配位子、例えばホスフィン、ヒ 素および窒素塩基ならびにオレフィンにより安定化させた金属化合物が該当する 。白金もまたジベンザルアセトン白金として使用する ことができる。ルテニウムは有利にはアセチルアセトネートとして使用する。該 金属は反応混合物中でその溶解度に応じて溶解しているかまたは懸濁して存在し ている。触媒成分b)の金属またはこれらの金属の化合物は、有機または無機の 不活性担体上で、例えば活性炭、グラファイト、酸化アルミニウム、酸化ジルコ ニウムおよび酸化ケイ素上で使用することもできる。 第三の触媒成分として、第三級または第四級窒素化合物、リン化合物またはヒ 素化合物および窒素含有複素環式化合物の群からの少なくとも1種の非金属化合 物を使用する。 第四級窒素化合物、リン化合物またはヒ素化合物とは、第四級アンモニウム塩 、アルソニウム塩およびホスホニウム塩と理解する。 第四級窒素化合物、ヒ素化合物またはリン化合物として、第三の触媒成分c) は、有利には一般式(I) [式中、Eは、窒素、リンまたはヒ素を表し、X-は、ハロゲン不含のアニオン 、例えば硝酸塩イオンまたは水酸化物イオンを表すが、しかし特に有利には反応 の 際に形成されるカルボン酸のアニオンを表し、かつR1、R2、R3およびR4は、 脂肪族基、例えば有利に1〜18個の炭素原子を有し、かつ直鎖状または分枝鎖 状であるアルキル基、特に有利にはC1〜C8−アルキル基、例えばメチル、エチ ル、n−プロピル、n−ブチルおよびオクチルを表す]の化合物を含有している 。 R1、R2、R3およびR4は、脂環式基、例えばシクロペンチルまたはシクロヘ キシル、芳香族基、例えばフェニルまたはアルキル基により置換された芳香族基 、例えばトリルまたは芳香族脂肪族基、例えばベンジルを表していてもよい。 第三級窒素化合物、リン化合物またはヒ素化合物として、第三の触媒成分c) は、有利には一般式(II): [式中、E、R1、R2およびR3は、前記の式I中で記載したものを表す]の化 合物を含有している。 窒素含有複素環式化合物として、ピリジン、C1〜C4−アルキルにより1〜3 置換されたピリジン、キノリン、イソキノリン、ピリミジン、ピリダジン、ピラ ジン、ピラゾール、イミダゾール、チアゾールおよびオキサゾールが第三の触媒 成分c)として適切であり、 有利には場合によりC1〜C4−アルキルにより1置換されたピリジン、キノリン 、イソキノリン、ピリミジン、ピリダジン、ピラジン、ピラゾール、イミダゾー ル、チアゾールおよびオキサゾールならびに窒素のところでN−C1〜C4−アル キル化されたか、またはN,N−C1〜C4−ジアルキル化され、ハロゲン不含の アニオンX-(この場合、X-は、前記のものを表す)を有するこれらの塩であり 、有利にはピリジン、N−メチルピリジニウム塩、イミダゾールおよびN,N− ジメチルイミダゾリニウム塩である。 触媒系の第一の成分a)中に含まれているニッケル対第二の触媒成分b)のモ ル比は、1:1〜100000:1、有利には100:1〜50000:1であ る。成分a)およびb)の反応溶液の触媒活性金属の含有率は、金属として計算 して、合計で0.1〜5重量%である。成分a)のニッケル対第三の非金属触媒 成分c)のモル比は、一般に2:1〜1:20、有利には1:1〜1:10であ る。反応溶液の非金属触媒成分c)の含有率は1〜50重量%である。 反応は、溶剤を用いて実施してもよいし、用いないで実施してもよい。このた めに溶剤、例えばアセトン、エーテル、ジオキサン、ジメトキシエタン、テトラ エチレングリコールジメチルエーテル、非プロトン性の極性溶剤、例えばN−メ チルピロリドンおよび芳香族炭化水素、例えばトルエンが該当する。カルボン酸 を製造するための反応を、20〜95重量%の、有利には50〜80重量%の水 性カルボン酸中で実施することは有利である。 カルボン酸エステルの製造は、本発明による方法により、有利には、溶剤とし て水1〜5重量%を含有していてもよいそれぞれのアルコール中で実施する。 プロピオン酸を製造する場合、溶剤として水性プロピオン酸の使用は有利であ る。 反応は通常、100〜270℃、有利には170〜250℃および圧力30〜 100バール、有利には30〜80バール、特に有利には40〜60バールで実 施する。 出発化合物であるオレフィン、水および触媒系は、反応前に場合により溶剤中 で反応器中で混合してもよい。次いでこれらを反応温度まで加熱し、その際、反 応圧力は一酸化炭素の圧入または短鎖のオレフィンを使用する場合にはこのオレ フィンと一酸化炭素とからなる混合物の圧入により調整する。 通常、反応は0.5〜3時間後に終了する。該反応は連続的にまたは断続的に 反応器、例えば反応釜、バブルカラム、管型反応器または環流反応器中で実施す ることができる。 プロセス生成物の単離のために有利な実施態様では反応搬出物を放圧する。次 いでニッケルカルボニルを気体、例えば空気または窒素を導通することにより液 体から搬出する。ニッケルカルボニルは不活性ガスにより分離することができ、 かつ後処理してニッケル化合物が得られ、次いでこれを反応に再供給することが できる。プロセス生成物以外に可溶性または懸濁触媒を含有している反応搬出物 の液相を、蒸留により後処理し、その際プロセス生成物を、場合により引き続き 精留した後で単離する。触媒含有の蒸留塔底液を反応に再供給する。同様に場合 により蒸留前に分離した触媒成分ならびに低沸点物質として、または蒸留の側方 流として分離した揮発性触媒成分を、相応する後処理の後で再供給してもよい。 本発明による方法により、高い選択性で高い空時収率のプロセス生成物の製造 が可能になる。 実施例 例1:プロピオン酸の製造のための断続的な試験 磁気撹拌機を有する300mlのオートクレーブに、プロピオン酸90gおよ び水10gからなる混合物中の塩基性炭酸ニッケル2.13gおよびアセチルア セトナトルテニウム12mgの溶液を装入した。引き続き40%の水性水酸化テ トラブチルアンモニウム溶液([NBu4]OH)20gを添加した。その後、 CO 50体積%およびエチレン50体積%からなる気体混合物を用いて前圧力 を30バールに調整し、かつ反応溶液を200℃に加熱する。反応温度に到達後 、最終圧力を60バールに調整し、かつCO/エテンの 気体混合物を15分間の後プレスにより保持する。1時間後、室温に冷却し、放 圧し、かつ反応搬出物を滴定および気体分析により調査した。その結果を第1表 にまとめる。 例2 例1の記載と同様に試験を実施した。ただし水酸化テトラブチルアンモニウム の代わりに、トリエチルアミン(NEt3)10gを使用した。その結果は第1 表から明らかである。 例A 例1の記載と同様に試験を実施したが、ただし窒素化合物を添加しなかった。 その結果を第1表にまとめる。 例B 例1の記載と同様に試験を実施したが、ただしルテニウム触媒を使用しなかっ た。その結果を第1表にまとめる。 例C 例1の記載と同様に試験を実施したが、ただしニッケル触媒を添加しなかった 。その結果を第1表にまとめる。 RZA=空時収率 S =選択率 PS =プロピオン酸 PA =プロピオンアルデヒド、副生成物 DEK=ジエチルケトン、副生成物 % =重量パーセント 本発明による例1および2では、ニッケル、ルテニウムおよび水酸化テトラブ チルアンモニウムもしくはトリエチルアミンからなる触媒を60バールで用いて 、両方の金属触媒成分を単独で用いた比較試験Aよりも明らかに高い空時収率お よび選択率を達成することができた。比較例BおよびCから、両方の触媒金属の 一方へ水酸化テトラブチルアンモニウムを添加することにより活性な触媒系は生 じないことが判明した。試験1、2、AおよびCは、添加した窒素成分が特にカ ルボニル化反応を促進するが、しかし副生成物であるエタン、プロピオンアルデ ヒドおよびジエチルケトンの形成をはるかに少なくすることを示している。 例3 転/分)を備えた300mlのオートクレーブに、プロピオン酸60gおよび4 0%水酸化テトラブチルアンモニウム水溶液40gからなる混合物中の塩基性炭 酸ニッケル2.13gおよびアセチルアセトナトルテニウム12mgからなる溶 液を装入した。その後、C O 50体積%およびエチレン50体積%からなる気体混合物を用いて前圧力を 30バールに調整し、反応溶液を200℃に加熱した。反応温度に到達後、最終 圧力を75バールに調整し、かつCO/エテンの気体混合物の連続的な後プレス により一定に保持した。2時間後、室温に冷却し、放圧し、かつ反応搬出物を滴 定および気体分析により調査した。その結果を第2表にまとめる。 例D 例3に記載したオートクレーブに、プロピオン酸60gおよび水40gからな る混合物中の塩基性炭酸ニッケル2.13gおよびアセチルアセトナトルテニウ ム12mgからなる溶液を装入した。その後、CO 50体積%およびエチレン 50体積%からなる混合物を用いて前圧力を30バールに調整し、かつ反応溶液 を200℃に加熱した。反応温度に到達後、最終圧力を75バールに調整し、か つCO/エテンの気体混合物の連続的な後プレスにより一定に保持した。2時間 後、室温に冷却し、放圧し、かつ反応搬出物を滴定および気体分析により調査し た。結果を第2表にまとめる。 例4 例3に記載したとおりに試験を実施したが、ただし圧力は55バールであった 。その結果を第2表にまとめる。 例5 例3に記載したとおりに試験を実施したが、ただしプロピオン酸60g、40 %水酸化テトラブチルアンモニウム水溶液25gおよび溶剤としての水15gを 用いて、かつ圧力55バールで実施した。その結果を第2表にまとめる。 例E 例Dに記載したとおりに実施したが、ただし圧力は55バールであった。その 結果を第2表にまとめる。 RZA=空時収率 S =選択率 PS =プロピオン酸 PA =プロピオンアルデヒド、副生成物 DEK=ジエチルケトン、副生成物 % =重量パーセント 例6 磁気撹拌機を有する300mlのオートクレーブ中に、プロピオン酸80gお よび40%水酸化テトラブチルアンモニウム水溶液20g中の塩基性炭酸ニッケ ル2.13gおよびアセチルアセトナトルテニウム12mgとからなる溶液を装 入した([H2O]=12g)。その後、CO 50体積%およびエチレン50 体積%からなる気体混合物を用いて前圧力を30バールに調整し、かつ反応溶液 を200℃に加熱した。反応温度に到達後、最終圧力を100バールに調整し、 かつCO/エテンの気体混合物の半時間の後プレスにより保持した。2時間後、 室温に冷却し、かつ放圧した。液状の反応搬出物126gが得られた。ガスクロ マトグラフィーおよび滴定による分析によれば、以下の第3表にまとめた組成が 得られた。 例7 磁気撹拌機を有する300mlのオートクレーブ中に、プロピオン酸90gお よび水10gおよびトリエチルアミン10gからなる混合物中の塩基性炭酸ニッ ケル2.13gおよびアセチルアセトナトルテニウム12mgとからなる溶液を 装入した。その後、CO 50体積%およびエチレン50体積%からなる気体混 合物を用いて前圧力を30バールに調整し、かつ反応溶液を200℃に加熱した 。反応温度に到達後、最終圧力を100バールに調整し、かつCO/エテンの気 体混合物の半時間の後プレスにより保持した。2時間後、室温に冷却し、かつ放 圧した。液状の反応搬出物134gが得られた。ガスクロマトグラフィーおよび 滴定による分析によれば、以下の第3表にまとめた組成が得られた。 例6および7から、ニッケル化合物、ルテニウム化合物および窒素含有化合物 、例えばトリエチルアミンまたは水酸化テトラブチルアンモニウムからなる触媒 系は、極めて低い水濃度でも高い活性を有していることが明らかである。The invention relates to a process for the preparation of carboxylic acids or their esters by carbonylation of olefins. The invention relates to a catalyst system free of water or alcohol and halogen, nickel or nickel compounds, at least one noble metal or compounds thereof and For the production of carboxylic acids or their esters by reacting olefins with carbon monoxide at a pressure of 30 to 100 bar and 100 to 270 ° C. in the presence of a mixture of non-metallic nitrogen, arsenic or phosphorus compounds About the method. Weissermel et al., In Industrielle Organische Chemie, 1978, 2nd edition, Verlag Chemie, page 132, refer to the carbonylation of olefins by the Lepe method, for example ethylene, carbon monoxide in the presence of a catalyst. And the production of propionic acid from water. As catalyst, nickel propionate, which reacts under the reaction conditions to nickel carbonyl, is used. High conversions of ethylene are achieved only at high pressures (200-240 bar). These reaction conditions require high technical costs in the construction of suitable reactors as well as special and expensive materials, conditioned by the corrosive nature of the products under the reaction conditions. GB-A 1063617 teaches the carbonylation of olefins using nickel and cobalt catalysts in the presence of boric acid. This also requires high pressures and temperatures. The carbonylation of the olefin can be carried out using a noble metal catalyst at a pressure of about 100 bar. For example, EP-A-4955547 teaches a catalyst consisting of a source of palladium and a bidentate phosphine ligand. However, such catalysts often deactivate after a short reaction time due to the precipitation of metallic palladium. In particular, the phosphine ligands used are not thermostable under the desired reaction conditions. DE-A 44 24 710 describes the carbonylation of olefins using nickel or a mixture of a nickel compound and a noble metal or a noble metal compound as a catalyst system. However, the process described is still unsatisfactory in terms of selectivity and activity with respect to the product to be produced, especially at pressures below 100 bar. The problem therefore arises of avoiding the disadvantages mentioned above and of providing a process for the carbonylation of olefins at pressures below 100 bar with improved selectivity and activity. According to this task, the carboxylic acid is converted from the olefin and carbon monoxide in the presence of water or an alcohol and a halogen-free catalyst system at a temperature of 100 to 270 ° C. and a pressure of 30 to 100 bar, preferably 30 to 80 bar. Or a new and improved method for producing the ester thereof, characterized by the following: a) nickel or nickel compounds, b) chromium, molybdenum, tungsten, rhenium, ruthenium, osmium, At least one metal of the group rhodium, iridium, palladium, platinum, silver, gold or compounds of these metals; c) tertiary or quaternary nitrogen compounds, phosphorus compounds or arsenic compounds and nitrogen-containing heterocyclic compounds A mixture of at least one non-metallic compound from the group of The activity and selectivity of the catalyst system described in DE-A 44 24 710 can be significantly improved with the process according to the invention, in particular at low pressures of less than 100 bar. Furthermore, the catalyst system used in the process according to the invention can be used for carboxylic acids which already have less than 1% of water in the reaction output, even at low water concentrations of 0.5 to 5 mol of water per mol of olefin. The activity is high enough to allow production, which greatly facilitates the work-up of the reaction product. The following reaction scheme illustrates the process according to the invention by taking the reaction of ethylene to propionic acid as an example: Catalyst CH 2 = CH 2 + CO + H 2 O → CH 3 CH 2 COOH The process according to the invention Useful starting materials include aliphatic and cycloaliphatic alkenes having preferably 2 to 20, especially preferably 2 to 7, carbon atoms. Examples include ethylene, propylene, iso-butene, 1-butene, 2-butene and isomers of pentene and hexene and cyclohexene, of which ethylene is preferred. These olefins are reacted with water for the production of carboxylic acids or with alcohols for the production of carboxylic esters. These alcohols are preferably aliphatic and cycloaliphatic compounds having 1 to 20 carbon atoms, particularly preferably 1 to 6 carbon atoms, such as methanol, ethanol, n-propanol, iso-propanol, Includes t-butanol, stearyl alcohol, diols such as ethylene glycol, 1,2-propanediol and 1,6-hexanediol, and cyclohexanol. When reacting the diol, monoesters and diesters are obtained, depending on the selected stoichiometric ratio, with the diol and olefin being used in a molar ratio of about 1: 2 for the production of the diester and of the monoester. The diol is used in excess for the preparation. The starting compound described above is reacted with carbon monoxide, which can be used in pure form or diluted with an inert gas such as nitrogen or argon. The molar ratio of the starting compound olefin to water or alcohol may vary depending on the choice, but usually at least an equimolar amount of water or alcohol is used. In the preparation of the carboxylic acid, 0.5 to 10 mol, preferably 0.5 to 5 mol, of water can be used per mol of olefin. The molar ratio of olefin to carbon monoxide may also vary significantly, with a molar ratio of olefin of 5: 1 to 1: 5 per mole of carbon monoxide being advantageous. In the process according to the invention, the halogen-free catalyst system comprises: a) nickel or a nickel compound; b) chromium, molybdenum, tungsten, rhenium, ruthenium, osmium, rhodium, iridium, palladium, platinum, silver, gold or a metal of these metals. Using a mixture consisting of at least one metal of the compound and c) at least one non-metallic compound from the group consisting of tertiary or quaternary nitrogen compounds, phosphorus compounds or arsenic compounds and nitrogen-containing heterocyclic compounds. . In order to be able to form active nickel compounds, it is advantageous to add to the reaction mixture soluble compounds, such as acetates, propionates, acetylacetonates, hydroxides and carbonates or mixtures of these compounds. . However, it is also possible to introduce Ni (CO) 4 as well as nickel metal into the reaction mixture. With particular preference the nickel component is introduced in the form of a salt of the carboxylic acid formed during the reaction. As the second catalyst component, at least one metal from the group of chromium, molybdenum, tungsten, rhenium, ruthenium, osmium, rhodium, iridium, palladium, platinum, silver, and gold, or a compound of these metals is used. However, rhodium and palladium are preferred, and ruthenium and platinum are particularly preferred. These metals can be introduced into the reaction solution, for example, as salts as described above for nickel, ie as acetates, propionates, acetylacetonates, hydroxides or carbonates. Further carbonyl compounds, in particular chromium hexacarbonyl, molybdenum hexacarbonyl, tungsten hexacarbonyl, dirhenium decacarbonyl, tolyruthenium dodecacarbonyl, triosmium dodecacarbonyl and carbonyl compounds having another ligand, such as rhodium dicarbonylacetyl Acetonate or donor ligands such as phosphine, arsenic and nitrogen bases and metal compounds stabilized by olefins are relevant. Platinum can also be used as dibenzalacetone platinum. Ruthenium is preferably used as acetylacetonate. The metal is either dissolved or suspended in the reaction mixture depending on its solubility. The metals of the catalyst component b) or compounds of these metals can also be used on organic or inorganic inert supports, for example on activated carbon, graphite, aluminum oxide, zirconium oxide and silicon oxide. As third catalyst component, at least one non-metallic compound from the group of tertiary or quaternary nitrogen compounds, phosphorus compounds or arsenic compounds and nitrogen-containing heterocyclic compounds is used. Quaternary nitrogen compounds, phosphorus compounds or arsenic compounds are understood as quaternary ammonium salts, arsonium salts and phosphonium salts. As quaternary nitrogen compounds, arsenic compounds or phosphorus compounds, the third catalyst component c) is preferably of the general formula (I) Wherein E represents nitrogen, phosphorus or arsenic and X represents a halogen-free anion, such as a nitrate ion or a hydroxide ion, but particularly preferably the carboxylic acid formed during the reaction. R 1 , R 2 , R 3 and R 4 represent anions of acids and are aliphatic groups, for example alkyls having preferably 1 to 18 carbon atoms and being straight-chain or branched Radicals, particularly preferably C 1 -C 8 -alkyl radicals, such as, for example, methyl, ethyl, n-propyl, n-butyl and octyl]. R 1 , R 2 , R 3 and R 4 are alicyclic groups such as cyclopentyl or cyclohexyl, aromatic groups substituted by aromatic groups such as phenyl or alkyl groups, such as tolyl or aromatic aliphatic groups, such as It may represent benzyl. As a tertiary nitrogen compound, a phosphorus compound or an arsenic compound, the third catalyst component c) is preferably of the general formula (II): Wherein E, R 1 , R 2 and R 3 represent those described in Formula I above. As the nitrogen-containing heterocyclic compound, pyridine, pyridine substituted with 1 to 4 carbon atoms, quinoline, isoquinoline, pyrimidine, pyridazine, pyrazine, pyrazole, imidazole, thiazole and oxazole are the third catalyst components c. Pyridine, pyridine, quinoline, isoquinoline, pyrimidine, pyridazine, pyrazine, pyrazole, imidazole, thiazole and oxazole, optionally monosubstituted by C 1 -C 4 -alkyl and N—C 1 at nitrogen -C 4 - or alkylated or N, N-C 1 ~C 4 - is dialkylated, halogen-free anion X - (in this case, X - represents one of the) these salts with Pyridine, N-methylpyridinium salt, imidazo And N, N- dimethyl imidazolinium salts. The molar ratio of nickel contained in the first component a) of the catalyst system to the second catalyst component b) is from 1: 1 to 100000: 1, preferably from 100: 1 to 50,000: 1. The content of catalytically active metals in the reaction solution of components a) and b), calculated as metals, amounts to a total of 0.1 to 5% by weight. The molar ratio of the nickel of component a) to the third nonmetallic catalyst component c) is generally between 2: 1 and 1:20, preferably between 1: 1 and 1:10. The content of nonmetallic catalyst component c) in the reaction solution is from 1 to 50% by weight. The reaction may be carried out with or without a solvent. Solvents such as acetone, ether, dioxane, dimethoxyethane, tetraethylene glycol dimethyl ether, aprotic polar solvents such as N-methylpyrrolidone and aromatic hydrocarbons such as toluene are suitable for this purpose. It is advantageous to carry out the reaction for preparing the carboxylic acid in 20 to 95% by weight, preferably 50 to 80% by weight, of aqueous carboxylic acid. The preparation of the carboxylic esters is carried out by the process according to the invention, preferably in the respective alcohols which may contain 1 to 5% by weight of water as solvent. When producing propionic acid, the use of aqueous propionic acid as solvent is advantageous. The reaction is usually carried out at from 100 to 270 ° C., preferably at from 170 to 250 ° C., and at a pressure of from 30 to 100 bar, preferably from 30 to 80 bar, particularly preferably from 40 to 60 bar. The starting olefin, water and the catalyst system may optionally be mixed in a solvent in a reactor before the reaction. They are then heated to the reaction temperature, the reaction pressure being adjusted by injection of carbon monoxide or, if short-chain olefins are used, by injection of a mixture of this olefin and carbon monoxide. Usually, the reaction is terminated after 0.5 to 3 hours. The reaction can be carried out continuously or intermittently in a reactor, for example a reactor, a bubble column, a tubular reactor or a reflux reactor. In an advantageous embodiment for the isolation of the process products, the reaction output is depressurized. The nickel carbonyl is then removed from the liquid by passing a gas, for example air or nitrogen, through. Nickel carbonyl can be separated off with an inert gas and worked up to give a nickel compound which can then be fed back into the reaction. The liquid phase of the reaction effluent which contains, besides the process product, a soluble or suspended catalyst, is worked up by distillation, the process product optionally being isolated after further rectification. The catalyst-containing distillation bottoms are re-fed to the reaction. It is likewise possible to refeed the catalyst components which have optionally been separated off as well as the volatile catalyst components which have been separated off as low-boiling substances or as a side stream of the distillation after a corresponding work-up. The process according to the invention enables the production of process products with high selectivity and high space-time yields. EXAMPLES Example 1 Intermittent Testing for Propionic Acid Production In a 300 ml autoclave with a magnetic stirrer, 2.13 g of basic nickel carbonate and 12 mg of acetylacetonatoruthenium in a mixture consisting of 90 g of propionic acid and 10 g of water. Was charged. Subsequently, 20 g of a 40% aqueous tetrabutylammonium hydroxide solution ([NBu 4 ] OH) were added. Thereafter, the prepressure is adjusted to 30 bar with a gas mixture consisting of 50% by volume of CO and 50% by volume of ethylene, and the reaction solution is heated to 200 ° C. After reaching the reaction temperature, the final pressure is adjusted to 60 bar, and the CO / ethene gas mixture is held by a post-press for 15 minutes. After 1 hour, it was cooled to room temperature, depressurized and the reaction output was investigated by titration and gas analysis. The results are summarized in Table 1. Example 2 The test was carried out as described in Example 1. However, 10 g of triethylamine (NEt 3 ) was used instead of tetrabutylammonium hydroxide. The results are clear from Table 1. Example A The test was carried out as described in Example 1, except that no nitrogen compound was added. The results are summarized in Table 1. Example B The test was carried out as described in Example 1, except that no ruthenium catalyst was used. The results are summarized in Table 1. Example C The test was carried out as described in Example 1, except that no nickel catalyst was added. The results are summarized in Table 1. RZA = space-time yield S = selectivity PS = propionic acid PA = propionaldehyde, by-product DEK = diethyl ketone, by-product% = weight percent In Examples 1 and 2 according to the invention, nickel, ruthenium and tetrahydroxide Using a catalyst consisting of butylammonium or triethylamine at 60 bar, it was possible to achieve a significantly higher space-time yield and selectivity than the comparative test A using both metal catalyst components alone. Comparative Examples B and C showed that the addition of tetrabutylammonium hydroxide to one of both catalyst metals did not result in an active catalyst system. Tests 1, 2, A and C show that the added nitrogen component particularly accelerates the carbonylation reaction, but significantly reduces the formation of by-products ethane, propionaldehyde and diethyl ketone. Example 3 Autoclave equipped with 2.13 g of basic nickel carbonate and 12 mg of acetylacetonatoruthenium in a mixture of 60 g of propionic acid and 40 g of a 40% aqueous solution of tetrabutylammonium hydroxide. did. Thereafter, the pre-pressure was adjusted to 30 bar using a gas mixture consisting of 50% by volume of C 2 O and 50% by volume of ethylene, and the reaction solution was heated to 200 ° C. After reaching the reaction temperature, the final pressure was adjusted to 75 bar and kept constant by continuous post-pressing of a gas mixture of CO / ethene. After 2 hours, it was cooled to room temperature, depressurized and the reaction output was investigated by titration and gas analysis. Table 2 summarizes the results. Example D The autoclave described in Example 3 was charged with a solution consisting of 2.13 g of basic nickel carbonate and 12 mg of acetylacetonatoruthenium in a mixture consisting of 60 g of propionic acid and 40 g of water. Thereafter, the pre-pressure was adjusted to 30 bar with a mixture consisting of 50% by volume of CO and 50% by volume of ethylene, and the reaction solution was heated to 200.degree. After reaching the reaction temperature, the final pressure was adjusted to 75 bar and kept constant by continuous post-pressing of a gas mixture of CO / ethene. After 2 hours, it was cooled to room temperature, depressurized and the reaction output was investigated by titration and gas analysis. The results are summarized in Table 2. Example 4 The test was carried out as described in example 3, except that the pressure was 55 bar. Table 2 summarizes the results. Example 5 The test was carried out as described in Example 3, but using 60 g of propionic acid, 25 g of a 40% aqueous solution of tetrabutylammonium hydroxide and 15 g of water as solvent and at a pressure of 55 bar. Table 2 summarizes the results. Example E The procedure was as described in Example D, except that the pressure was 55 bar. Table 2 summarizes the results. RZA = space-time yield S = selectivity PS = propionic acid PA = propionaldehyde, by-product DEK = diethyl ketone, by-product% = weight percent Example 6 80 g of propionic acid in a 300 ml autoclave with a magnetic stirrer And a solution consisting of 2.13 g of basic nickel carbonate and 12 mg of acetylacetonatoruthenium in 20 g of a 40% aqueous solution of tetrabutylammonium hydroxide ([H 2 O] = 12 g). Thereafter, the pre-pressure was adjusted to 30 bar using a gas mixture consisting of 50% by volume of CO and 50% by volume of ethylene, and the reaction solution was heated to 200 ° C. After reaching the reaction temperature, the final pressure was adjusted to 100 bar and maintained by pressing after half an hour of the gas mixture of CO / ethene. After 2 hours, it was cooled to room temperature and depressurized. 126 g of liquid reaction product were obtained. According to analysis by gas chromatography and titration, the compositions summarized in Table 3 below were obtained. Example 7 A 300 ml autoclave with a magnetic stirrer was charged with a solution consisting of 2.13 g of basic nickel carbonate and 12 mg of acetylacetonatoruthenium in a mixture consisting of 90 g of propionic acid and 10 g of water and 10 g of triethylamine. Thereafter, the pre-pressure was adjusted to 30 bar using a gas mixture consisting of 50% by volume of CO and 50% by volume of ethylene, and the reaction solution was heated to 200 ° C. After reaching the reaction temperature, the final pressure was adjusted to 100 bar and maintained by pressing after half an hour of the CO / ethene gas mixture. After 2 hours, it was cooled to room temperature and depressurized. 134 g of a liquid reaction discharge were obtained. According to analysis by gas chromatography and titration, the compositions summarized in Table 3 below were obtained. From Examples 6 and 7, it is clear that catalyst systems consisting of nickel compounds, ruthenium compounds and nitrogen-containing compounds, such as triethylamine or tetrabutylammonium hydroxide, have a high activity even at very low water concentrations.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C07B 61/00 300 C07B 61/00 300 (72)発明者 ヴォルフガング ハーダー ドイツ連邦共和国 D―69469 ヴァイン ハイム ベルクヴァルトシュトラーセ 16 (72)発明者 フェルディナント リペルト ドイツ連邦共和国 D―67098 バート デュルクハイム ヴェルスリング 16──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // C07B 61/00 300 C07B 61/00 300 (72) Inventor Wolfgang Harder Germany D-69469 Weinheim Bergwaldstrasse 16 (72) Inventor Ferdinand Rippert Germany D-67098 Bad Durkheim Welsling 16

Claims (1)

【特許請求の範囲】 1.温度100〜270℃および圧力30〜100バールで、水またはアルコ ールの存在下にオレフィンと一酸化炭素とからカルボン酸またはそのエステルを 製造するための方法において、活性炭固定床の非存在下でハロゲン不含の触媒系 として、 a)ニッケルまたはニッケル化合物 b)クロム、モリブデン、タングステン、レニウム、ルテニウム、オスミウム 、ロジウム、イリジウム、パラジウム、白金、銀、金またはこれらの金属の化合 物の群の少なくとも1種の金属、 c)第三級または第四級窒素化合物、リン化合物またはヒ素化合物および窒素 含有複素環式化合物の群からの少なくとも1種の非金属化合物 からなる混合物を使用することを特徴とする、カルボン酸またはそのエステルの 製造方法。 2.触媒系の成分が、a):b):c)のモル比1:1:0.5〜10000 0:1:200000で存在する、請求項1記載のカルボン酸またはそのエステ ルの製造方法。 3.触媒系が、一般式(I): [式中、Eは、窒素、リンまたはヒ素を表し、R1、R2、R3、R4は、脂肪族、 脂環式、芳香族脂肪族または芳香族の基を表し、かつX-はハロゲン不含のアニ オンを表す]の第四級化合物を含有している、請求項1または2記載のカルボン 酸またはそのエステルの製造方法。 4.触媒系が、一般式(II):[式中、Eは、窒素、リン、またはヒ素を表し、かつR1、R2およびR3は、脂 肪族、脂環式、芳香族脂肪族または芳香族の基を表す]の第三級化合物を含有し ている、請求項1から3までのいずれか1項記載のカルボン酸またはそのエステ ルの製造方法。 5.反応溶液の非金属化合物c)の含有率が、1〜50重量%である、請求項 1または2記載のカルボン酸またはそのエステルの製造方法。 6.反応溶液がオレフィン1モル当たり水0.5〜 10モルを含有している、請求項1から5までのいずれか1項記載のカルボン酸 またはそのエステルの製造方法。 7.反応を温度170℃〜250℃および圧力40〜60バールで実施する、 請求項1から6までのいずれか1項記載のカルボン酸またはそのエステルの製造 方法。 8.一酸化炭素およびオレフィンをモル比5:1〜1:5で使用する、請求項 1から7までのいずれか1項記載のカルボン酸またはそのエステルの製造方法。 9.オレフィンとしてエチレンを使用する、請求項1から7までのいずれか1 項記載のカルボン酸またはそのエステルの製造方法。[Claims] 1. In a process for producing carboxylic acids or their esters from olefins and carbon monoxide in the presence of water or alcohol at a temperature of 100 to 270 ° C. and a pressure of 30 to 100 bar, halogen-free in the absence of a fixed bed of activated carbon. As catalyst systems comprising: a) nickel or nickel compounds b) at least one of the group of chromium, molybdenum, tungsten, rhenium, ruthenium, osmium, rhodium, iridium, palladium, platinum, silver, gold or compounds of these metals Metal, c) a carboxylic or tertiary or quaternary nitrogen compound, a phosphorus compound or an arsenic compound and a mixture comprising at least one non-metallic compound from the group of the nitrogen-containing heterocyclic compounds. A method for producing an acid or an ester thereof. 2. 2. The process for preparing a carboxylic acid or its ester according to claim 1, wherein the components of the catalyst system are present in a): b): c) molar ratio of 1: 1: 0.5 to 10,000: 1: 200,000. 3. The catalyst system has the general formula (I): [Wherein E represents nitrogen, phosphorus or arsenic, R 1 , R 2 , R 3 and R 4 represent an aliphatic, alicyclic, aromatic aliphatic or aromatic group, and X Represents a halogen-free anion.] The method for producing a carboxylic acid or an ester thereof according to claim 1 or 2, wherein 4. The catalyst system has the general formula (II): Wherein E represents nitrogen, phosphorus or arsenic, and R 1 , R 2 and R 3 represent an aliphatic, alicyclic, aromatic aliphatic or aromatic group. The method for producing a carboxylic acid or an ester thereof according to any one of claims 1 to 3, further comprising a compound. 5. The method for producing a carboxylic acid or an ester thereof according to claim 1 or 2, wherein the content of the nonmetallic compound c) in the reaction solution is 1 to 50% by weight. 6. The method for producing a carboxylic acid or an ester thereof according to any one of claims 1 to 5, wherein the reaction solution contains 0.5 to 10 mol of water per 1 mol of the olefin. 7. The process for producing a carboxylic acid or an ester thereof according to claim 1, wherein the reaction is carried out at a temperature of 170 ° C. to 250 ° C. and a pressure of 40 to 60 bar. 8. The method for producing a carboxylic acid or an ester thereof according to any one of claims 1 to 7, wherein carbon monoxide and an olefin are used in a molar ratio of 5: 1 to 1: 5. 9. The method for producing a carboxylic acid or an ester thereof according to any one of claims 1 to 7, wherein ethylene is used as the olefin.
JP53621298A 1997-02-21 1998-02-09 Method for producing carboxylic acid or its ester by carbonylation of olefin Pending JP2001512469A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19706876A DE19706876A1 (en) 1997-02-21 1997-02-21 Process for the preparation of carboxylic acids or their esters by carbonylation of olefins
DE19706876.6 1997-02-21
PCT/EP1998/000708 WO1998037049A1 (en) 1997-02-21 1998-02-09 Method for producing carboxylic acids or their esters by carbonylation of olefins

Publications (1)

Publication Number Publication Date
JP2001512469A true JP2001512469A (en) 2001-08-21

Family

ID=7821034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53621298A Pending JP2001512469A (en) 1997-02-21 1998-02-09 Method for producing carboxylic acid or its ester by carbonylation of olefin

Country Status (6)

Country Link
EP (1) EP0970034A1 (en)
JP (1) JP2001512469A (en)
KR (1) KR20000075494A (en)
CN (1) CN1250432A (en)
DE (1) DE19706876A1 (en)
WO (1) WO1998037049A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1556783A (en) * 2001-08-03 2004-12-22 伊斯曼化学公司 Vapor phase carbonylation process using iridium-gold co-catalysts
WO2003018524A1 (en) * 2001-08-03 2003-03-06 Eastman Chemical Company Vapor phase carbonylation process using iridium-gold co-catalysts
CN103338865B (en) * 2011-02-11 2015-07-22 陶氏环球技术有限责任公司 Heterogeneous catalyst and its use thereof
CN108003023B (en) * 2016-11-02 2019-10-18 中国科学院大连化学物理研究所 A method of preparing methyl propionate
CN108003022B (en) * 2016-11-02 2020-01-07 中国科学院大连化学物理研究所 Method for preparing ester compound
CN108003024B (en) * 2016-11-02 2019-10-18 中国科学院大连化学物理研究所 A kind of preparation method of methyl propionate
CN109761811B (en) * 2019-02-26 2021-12-31 浙江师范大学 Preparation method of carboxylic ester
CN116328761B (en) * 2021-12-23 2024-05-28 上海浦景化工技术股份有限公司 Catalyst for preparing methyl propionate by ethylene carbonylation and preparation method and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE868150C (en) * 1941-09-21 1953-02-23 Basf Ag Process for the preparation of carbonic acid mixtures
US4257973A (en) * 1971-11-05 1981-03-24 E. I. Du Pont De Nemours And Company Process of making acids or esters from unsaturated compounds
US4659518A (en) * 1980-12-24 1987-04-21 The Halcon Sd Group, Inc. Preparation of carboxylic acids
US4588834A (en) * 1984-10-04 1986-05-13 Texaco Inc. Process for carbonylation of olefins to carboxylic acids and esters
CA2146903C (en) * 1993-12-22 2000-01-25 Stephen Wayne King Reductive amination catalysts for the selective production of aminoethylethanolamine
DE4424710A1 (en) * 1994-07-13 1996-01-18 Basf Ag Process for the carbonylation of olefins

Also Published As

Publication number Publication date
WO1998037049A1 (en) 1998-08-27
DE19706876A1 (en) 1998-08-27
EP0970034A1 (en) 2000-01-12
CN1250432A (en) 2000-04-12
KR20000075494A (en) 2000-12-15

Similar Documents

Publication Publication Date Title
EP0055875B1 (en) Process for the carbonylation of olefins
US4659518A (en) Preparation of carboxylic acids
JPH08506575A (en) Carbonylation method
EP0296550A2 (en) Phosphonium salts and processes for production of and uses for the same
KR101978009B1 (en) Process for preparing esters from formates and olefinically unsaturated compounds
JP2001512469A (en) Method for producing carboxylic acid or its ester by carbonylation of olefin
EP0081942B1 (en) Improved hydroformylation catalyst and process of using it
US4335059A (en) Preparation of carboxylic acid anhydrides
US5705683A (en) Carbonylation of olefins
JP2640362B2 (en) Preparation of carboxylic acid esters
US4556744A (en) Process for the production of ethanol and/or acetaldehyde by the metal catalysed liquid phase reaction of methanol, carbon monoxide and hydrogen in the presence of a solvent
JP3763847B2 (en) Process for producing carboxylic acid by carbonylation of olefin
US4614816A (en) Preparation of carboxylic acids and esters thereof
JP2946790B2 (en) Production method of aldehydes
US4414421A (en) Process for the preparation of glycol aldehyde
JP2650061B2 (en) Method for producing alkanediol
US4588834A (en) Process for carbonylation of olefins to carboxylic acids and esters
EP0151515B1 (en) Hydroformylation of allyl alcohol
US4323513A (en) Production of methyl esters and ethylene glycol esters from reaction of carbon monoxide and hydrogen in presence of ruthenium catalyst
EP0065323B1 (en) Process for the co-production of dicarboxylates and acids
EP0063105B1 (en) Process for producing ethyl acetate by homologation of methyl acetate
JP2756811B2 (en) Process for producing carboxylic acids or their esters
US4328362A (en) Conversion of acetic anhydride to ethylidene diacetate
GB2121794A (en) Process for preparing acetic acid
JPH0456019B2 (en)